
Control	2374-04-086, ETC.
Project	С 2374-4-86, ЕТС.
Highway	IH 20
County	DALLAS

ADDENDUM ACKNOWLEDGMENT

Each bidder is required to acknowledge receipt of an addendum issued for a specific project. This page is provided for the purpose of acknowledging an addendum.

FAILURE TO ACKNOWLEDGE RECEIPT OF AN ADDENDUM WILL RESULT IN THE BID NOT BEING READ.

In order to properly acknowledge an addendum place a mark in the box next to the respective addendum.

In addition, the bidder by affixing their signature to the signature page of the proposal is acknowledging that they have taken the addendum(s) into consideration when preparing their bid and that the information contained in the addendum will be included in the contract, if awarded by the Commission or other designees.

This page intentionally left blank.

Control	2374-04-086, ETC.
Project	C 2374-4-86, ETC.
Highway	IH 20
County	DALLAS

PROPOSAL TO THE TEXAS TRANSPORTATION COMMISSION

2014 SPECIFICATIONS

WORK CONSISTING OF REHABILITATE EXISTING ROADWAY DALLAS COUNTY, TEXAS

The quantities in the proposal are approximate. The quantities of work and materials may be increased or decreased as considered necessary to complete the work as planned and contemplated.

This project is to be completed in 345 working days and will be accepted when fully completed and finished to the satisfaction of the Executive Director or designee.

Provide a proposal guaranty in the form of a Cashier's Check, Teller's Check (including an Official Check) or Bank Money Order on a State or National Bank or Savings and Loan Association, or State or Federally chartered Credit Union made payable to the Texas Transportation Commission in the following amount:

ONE HUNDRED THOUSAND (Dollars) (\$100,000)

A bid bond may be used as the required proposal guaranty. The bond form may be detached from the proposal for completion. The proposal may not be disassembled to remove the bond form. The bond must be in accordance with Item 2 of the specifications.

Any addenda issued amending this proposal and/or the plans that have been acknowledged by the bidder, become part of this proposal.

By signing the proposal the bidder certifies:

- 1. the only persons or parties interested in this proposal are those named and the bidder has not directly or indirectly participated in collusion, entered into an agreement or otherwise taken any action in restraint of free competitive bidding in connection with the above captioned project.
- 2. in the event of the award of a contract, the organization represented will secure bonds for the full amount of the contract.
- 3. the signatory represents and warrants that they are an authorized signatory for the organization for which the bid is submitted and they have full and complete authority to submit this bid on behalf of their firm.
- 4. that the certifications and representations contained in the proposal are true and accurate and the bidder intends the proposal to be taken as a genuine government record.
- Signed: **

(1)	_(2)	_(3)
Print Name:		
(1)	_(2)	_(3)
Title: (1)	_(2)	_(3)
Company: (1)	_(2)	_(3)

• Signatures to comply with Item 2 of the specifications.

**Note: Complete (1) for single venture, through (2) for joint venture and through (3) for triple venture.

* When the working days field contains an asterisk (*) refer to the Special Provisions and General Notes.

NOTICE TO CONTRACTORS

ANY CONTRACTORS INTENDING TO BID ON ANY WORK TO BE AWARDED BY THIS DEPARTMENT MUST SUBMIT A SATISFACTORY "AUDITED FINANCIAL STATEMENT" AND "EXPERIENCE QUESTIONNAIRE" AT LEAST TEN DAYS PRIOR TO THE LETTING DATE.

UNIT PRICES MUST BE SUBMITTED IN ACCORDANCE WITH ITEM 2 OF THE STANDARD SPECIFICATIONS OR SPECIAL PROVISION TO ITEM 2 FOR EACH ITEM LISTED IN THIS PROPOSAL.

		BID BOND	
KNOW ALL PERS	ONS BY THESE F	PRESENTS,	
hat we, (Contracto	or Name)		
Iereinafter called th	ne Principal, and (S	urety Name)	
urety, are held and ne sum of not less t nousand dollars, no isplayed on the cov	firmly bound unto han two percent (2' ot to exceed one hur ver of the proposal) l ourselves, our heir	transact surety business in the State of the Texas Department of Transportation %) of the department's engineer's estin ndred thousand dollars (\$100,000) as a , the payment of which sum will and tr rs, executors, administrators, successors	n, hereinafter called the Ob nate, rounded to the nearest proposal guaranty (amount uly be made, the said Princ
VHEREAS, the prin	ncipal has submitte	d a bid for the following project identif	fied as:
	Control	2374-04-086, ETC.	
	Project	С 2374-4-86, ЕТС.	
	Highway County	IH 20 DALLAS	
	E, if the Obligee sh	all award the Contract to the Principal	and the Principal shall ente
he Contract in writi oid. If in the event his bond shall beco enalty but as liquid	of failure of the Pr me the property of lated damages.	e in accordance with the terms of such l incipal to execute such Contract in acc the Obligee, without recourse of the P	bid, then this bond shall be n ordance with the terms of st rincipal and/or Surety, not a
ne Contract in writi oid. If in the event nis bond shall beco enalty but as liquid	of failure of the Pr me the property of lated damages.	e in accordance with the terms of such l incipal to execute such Contract in acc	bid, then this bond shall be n ordance with the terms of st rincipal and/or Surety, not a
he Contract in writi oid. If in the event his bond shall becon enalty but as liquid	of failure of the Pr me the property of lated damages.	e in accordance with the terms of such l incipal to execute such Contract in acc the Obligee, without recourse of the P	bid, then this bond shall be p ordance with the terms of survival and/or Surety, not a 2020
he Contract in writi oid. If in the event his bond shall becon enalty but as liquid	of failure of the Pr me the property of lated damages.	e in accordance with the terms of such l incipal to execute such Contract in acc the Obligee, without recourse of the P	bid, then this bond shall be p ordance with the terms of survival and/or Surety, not a 2020
he Contract in writi oid. If in the event his bond shall becon enalty but as liquid ligned this	of failure of the Pr me the property of lated damages.	e in accordance with the terms of such l incipal to execute such Contract in acc the Obligee, without recourse of the P Day of (Contractor/Principal Name) d Title of Authorized Signatory for Contractor/H	bid, then this bond shall be pordance with the terms of strincipal and/or Surety, not a
e Contract in writi oid. If in the event his bond shall beco enalty but as liquid igned this By:	of failure of the Pr me the property of lated damages. (Signature and	e in accordance with the terms of such t incipal to execute such Contract in acc the Obligee, without recourse of the P Day of (Contractor/Principal Name) d Title of Authorized Signatory for Contractor/F (Surety Name)	bid, then this bond shall be pordance with the terms of strincipal and/or Surety, not a
he Contract in writi oid. If in the event his bond shall beco enalty but as liquid ligned this By: By:	of failure of the Pr me the property of lated damages. (Signature and	e in accordance with the terms of such l incipal to execute such Contract in acc the Obligee, without recourse of the P Day of (Contractor/Principal Name) d Title of Authorized Signatory for Contractor/F	bid, then this bond shall be pordance with the terms of strincipal and/or Surety, not a
be Contract in writi oid. If in the event his bond shall becomenalty but as liquid igned this By:	of failure of the Pr me the property of lated damages. (Signature and	e in accordance with the terms of such I incipal to execute such Contract in acc the Obligee, without recourse of the P Day of (Contractor/Principal Name) d Title of Authorized Signatory for Contractor/F (Surety Name) (Signature of Attorney-in-Fact)	pid, then this bond shall be pordance with the terms of strincipal and/or Surety, not a 2020202020202020

This page intentionally left blank.

BIDDER'S CHECK RETURN

IMPORTANT

The space provided for the return address must be completed to facilitate the return of your bidder's check. Care must be taken to provide a legible, accurate, and <u>complete</u> return address, including zip code. A copy of this sheet should be used for each different return address.

NOTE

Successful bidders will receive their guaranty checks with the executed contract.

RETURN BIDDERS CHECK TO (PLEASE PRINT):

Control	2374-04-086, ETC.
Project	C 2374-4-86, ETC.
Highway	IH 20
County	DALLAS

IMPORTANT

PLEASE RETURN THIS SHEET IN ITS ENTIRETY

Please acknowledge receipt of this check(s) at your earliest convenience by signing below in longhand, in ink, and returning this acknowledgement in the enclosed self addressed envelope.

Check Received By:	Date:
Title:	
For (Contractor's Name):	
Project	County

This page intentionally left blank.

NOTICE TO THE BIDDER

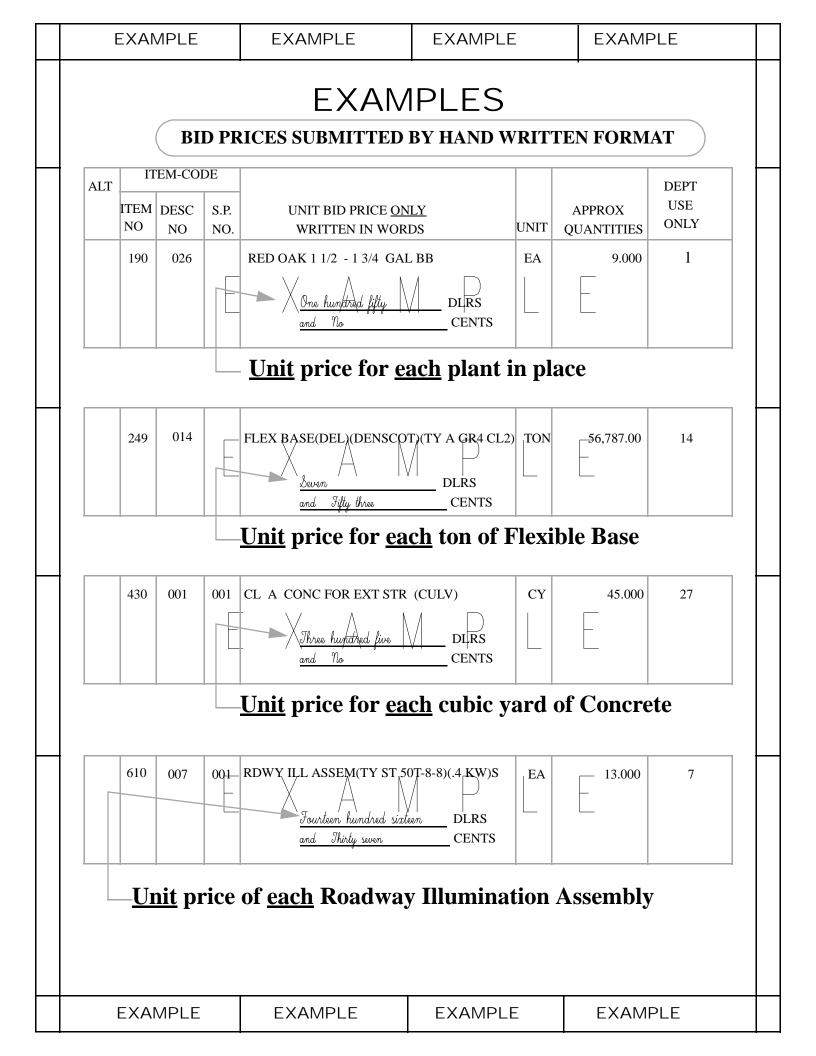
In the space provided below, please enter your total bid amount for this project. Only this figure will be read publicly by the Department at the public bid opening.

It is understood and agreed by the bidder in signing this proposal that the total bid amount entered below is not binding on either the bidder or the Department. It is further agreed that **the official total bid amount for this proposal will be determined by multiplying** <u>the unit bid prices</u> **for each pay item by the respective estimated quantities** <u>shown in this proposal</u> and then totaling all of the extended amounts.

\$_____

Total Bid Amount

Control0001-03-030ProjectSTP 2000(938)HESHighwaySH 20CountyEL PASO


ALT	ITEM	DESC	SP	Bid Item Description	Unit	Quantity	Bid Price	Amount	Seq
	104	509		REMOV CONC (SDWLK)	SY	266.400	\$10.000	\$2,664.00	1
						Total Bid Amo	unt\$2,6	64.00	-
Signe	d								

Signeu	
Title	
Date	

Additional Signature for Joint Venture:

Signed	
Title	
Date	

EXAMPLE OF BID PRICES SUBMITTED BY COMPUTER PRINTOUT

This page intentionally left blank.

PROJECT C 2374-4-86 COUNTY DALLAS , ETC.

Proposal Sheet TxDOT FORM 234-B I-61-5M

	ITI	EM-COD	ЭE					DEPT
ALT	ITEM NO	DESC CODE	S.P. NO.	UNIT BID PRICE ONLY. WRITTEN IN WORDS		UNIT	APPROX QUANTITIES	USE ONLY
	104	6009		REMOVING CONC (RIPRAP)		SY	31.000	1
					OLLARS ENTS			
	104	6054			IP) OLLARS ENTS	LF	1,738.000	2
	161	6017			OLLARS ENTS	SY	5,156.000	3
	162	6002			OLLARS ENTS	SY	5,156.000	4
	168	6001			OLLARS ENTS	MG	767.000	5
	351	6006			E OLLARS ENTS	SY	1,503.000	6
	354	6020			OLLARS ENTS	SY	30,501.000	7
	354	6077			') OLLARS ENTS	SY	880,268.000	8
	361	6004			OLLARS ENTS	SY	200.000	9
	401	6001			OLLARS ENTS	CY	16.000	10
	429	6001			T WTH OLLARS ENTS	SF	63.000	11

Proposal Sheet TxDOT FORM 234-B I-61-5M

	ITEM-CODE							DEPT
ALT	ITEM NO	DESC CODE	S.P. NO.	UNIT BID PRICE ONLY. WRITTEN IN WORDS		UNIT	APPROX QUANTITIES	USE ONLY
	429	6004		CONC STR REPAIR(RAPID DECH DPT)	K REP(PRT	SF	384.000	12
				and	DOLLARS CENTS			
	429	6006		CONC STR REPR(RAPID DECK F DPT))		SF	73.000	13
				and	DOLLARS CENTS			
	429	6007		CONC STR REPAIR (VERTICAL & HEAD)		SF	622.000	14
				and	DOLLARS CENTS			
	432	6008		RIPRAP (CONC)(CL B)(RR8&RR9	9) DOLLARS CENTS	CY	2.000	15
	432	6031		RIPRAP (STONE PROTECTION)(12 IN) DOLLARS CENTS	СҮ	11.000	16
	432	6045		RIPRAP (MOW STRIP)(4 IN)	DOLLARS CENTS	СҮ	371.000	17
	438	6002	002	CLEANING AND SEALING EXIS JOINTS(CL3) and		LF	6,850.000	18
	438	6011	002	CLEANING AND SEALING JOIN	TS (FOAM) DOLLARS CENTS	LF	4,516.000	19
	451	6024		RETROFIT RAIL (TY SSTR) and	DOLLARS CENTS	LF	11,002.000	20
	480	6001		CLEAN EXIST CULVERTS	DOLLARS CENTS	EA	1.000	21
	496	6018		REMOVE STR (CONC)	DOLLARS CENTS	EA	1.000	22

Proposal Sheet TxDOT FORM 234-B I-61-5M

	ITEM-CODE						DEPT
ALT	ITEM NO	DESC CODE	S.P. NO.	UNIT BID PRICE ONLY. WRITTEN IN WORDS	UNIT	APPROX QUANTITIES	USE ONLY
	500 6001			MOBILIZATION	LS	1.000	23
				DOLLA	RS		
				and CENTS			
	502	6001	008	BARRICADES, SIGNS AND TRAFFIC HAN DLING	N- MO	22.000	24
				and DOLLA	RS		
	506	6038	002	TEMP SEDMT CONT FENCE (INSTALL) DOLLA and CENTS	LF RS	3,000.000	25
	506	6039	002	TEMP SEDMT CONT FENCE (REMOVE) DOLLA and CENTS	LF RS	3,000.000	26
	506	6042	002	BIODEG EROSN CONT LOGS (INSTL) (18 DOLLA and CENTS	· ·	3,000.000	27
	506	6043	002	BIODEG EROSN CONT LOGS (REMOVE) DOLLA and CENTS	LF RS	3,000.000	28
	512	6005		PORT CTB (FUR & INST)(F-SHAPE)(TY 1) DOLLA and CENTS		3,210.000	29
	512	6029		PORT CTB (MOVE)(F-SHAPE)(TY 1) DOLLA and CENTS	LF RS	8,910.000	30
	512	6053		PORT CTB (REMOVE)(F-SHAPE)(TY 1) DOLLA and CENTS	LF RS	3,210.000	31
	533	6003		RUMBLE STRIPS (SHOULDER) ASPHALT DOLLA and CENTS		229,861.000	32
	540	6001	001	MTL W-BEAM GD FEN (TIM POST) DOLLA and CENTS	LF RS	4,838.000	33
	540	6006	001	MTL BEAM GD FEN TRANS (THRIE-BEA DOLLA and CENTS	<i>,</i>	17.000	34

Proposal Sheet TxDOT FORM 234-B I-61-5M

	IT	EM-COI	DE				DEPT
ALT	ITEM NO	DESC CODE	S.P. NO.	UNIT BID PRICE ONLY. WRITTEN IN WORDS	UNIT	APPROX QUANTITIES	USE ONLY
	540	6016	001	DOWNSTREAM ANCHOR TERMINAL SEC- TION	EA	19.000	35
				and DOLLARS			
	542	6001		REMOVE METAL BEAM GUARD FENCE DOLLARS and CENTS	LF	4,537.500	36
	542	6002		REMOVE TERMINAL ANCHOR SECTION DOLLARS and CENTS	EA	19.000	37
	542	6004		RM MTL BM GD FENCE TRANS (THRIE- BEAM) DOLLARS and CENTS	EA	14.000	38
	544	6001		GUARDRAIL END TREATMENT (INSTALL) DOLLARS and CENTS	EA	25.000	39
	544	6003		GUARDRAIL END TREATMENT (REMOVE) DOLLARS and CENTS	EA	25.000	40
	545	6003		CRASH CUSH ATTEN (MOVE & RESET) DOLLARS and CENTS	EA	19.000	41
	545	6005		CRASH CUSH ATTEN (REMOVE) DOLLARS and CENTS	EA	4.000	42
	545	6019		CRASH CUSH ATTEN (INSTL)(S)(N)(TL3) DOLLARS and CENTS	EA	4.000	43
	658	6013		INSTL DEL ASSM (D-SW)SZ (BRF)CTB DOLLARS and CENTS	EA	70.000	44
	658	6026		INSTL DEL ASSM (D-SY)SZ (BRF)CTB DOLLARS and CENTS	EA	70.000	45
	658	6061		INSTL DEL ASSM (D-SW)SZ 1(BRF)GF2 DOLLARS and CENTS	EA	175.000	46

Proposal Sheet TxDOT FORM 234-B I-61-5M

PROJECT C 2374-4-86 , ETC. COUNTY DALLAS

	ITEM-CODE						DEPT
ALT	ITEM NO	DESC CODE		UNIT BID PRICE ONLY. WRITTEN IN WORDS	UNIT	APPROX QUANTITIES	USE ONLY
	662	6005		WK ZN PAV MRK NON-REMOV (W)6"(BRK) DOLLARS and CENTS	LF	87,650.000	47
	662	6008		WK ZN PAV MRK NON-REMOV (W)6"(SLD) DOLLARS and CENTS	LF	113,433.000	48
	662	6037		WK ZN PAV MRK NON-REMOV (Y)6"(SLD) DOLLARS and CENTS	LF	112,983.000	49
	662	6109		WK ZN PAV MRK SHT TERM (TAB)TY W DOLLARS and CENTS	EA	25,536.000	50
	666	6039	007	REFL PAV MRK TY I (W)12"(LNDP)(100MIL) DOLLARS and CENTS	LF	2,092.000	51
	666	6042	007	REFL PAV MRK TY I (W)12"(SLD)(100MIL) DOLLARS and CENTS	LF	2,052.000	52
	666	6054	007	REFL PAV MRK TY I (W)(ARROW)(100MIL) DOLLARS and CENTS	EA	11.000	53
	666	6078	007	REFL PAV MRK TY I (W)(WORD)(100MIL) DOLLARS and CENTS	EA	11.000	54
	666	6081	007	REFL PAV MRK TY I(W)(ENTR GORE)(100MIL) and CENTS	EA	18.000	55
	666	6084	007	REFL PAV MRK TY I(W)(EXIT GORE)(100MIL) and CENTS	EA	21.000	56
	666	6306	007	RE PM W/RET REQ TY I (W)6"(BRK)(100MIL) DOLLARS and CENTS	LF	87,620.000	57
	666	6309	007	RE PM W/RET REQ TY I (W)6"(SLD)(100MIL) DOLLARS and CENTS	LF	113,393.000	58

	IT	EM-COI	DE					DEPT
ALT	ITEM NO	DESC CODE	S.P. NO.	UNIT BID PRICE OF WRITTEN IN WOR	UNIT	APPROX QUANTITIES	USE ONLY	
	666	66 6321	007	RE PM W/RET REQ TY I (Y)6"(S	SLD)(100MIL)) LF	112,943.000	59
					DOLLARS			
				and	CENTS			
	672	6010		REFL PAV MRKR TY II-C-R	REFL PAV MRKR TY II-C-R		4,506.000	60
					DOLLARS			
				and	CENTS			
	721	6002	002	FIBER REINFORCED POLYMEI	R PATCHING	LB	1,750.000	61
				MATLS				
				and	DOLLARS CENTS			
	770	6001				LF	22.000	()
	778	6001		CONCRETE RAIL REPAIR (IN-F	CONCRETE RAIL REPAIR (IN-KIND)		33.000	62
				and	DOLLARS CENTS			
	780	6002				LF	761.000	63
	/80	6002		CNC CRACK REPAIR (DISCRETE)(INJECT) DOLLARS		LF	/61.000	03
				and	CENTS			
	780	6004		CONC CRCK REPR(DISCRETE)(ROUT AND		LF	1,910.000	64
	780	0004		SEAL)		LI	1,910.000	04
					DOLLARS			
				and	CENTS			
	785	6004		BRIDGE JOINT REPAIR (ARMC	(R)	LF	430.000	65
					DOLLARS			
				and	CENTS			
	785	6009		BRIDGE JOINT REPAIR (PARTI	AL DEPTH)	LF	3.000	66
					DOLLARS			
				and	CENTS			
	788	6002		CONCRETE BEAM REPAIR (CF	RP)	EA	1.000	67
					DOLLARS			
				and	CENTS			
	3082	6004		TBWC (MEMBRANE)		GAL	200,369.000	68
					DOLLARS			
				and	CENTS			
	3082	6005		TBWC PG76-22 SAC-A TY C		TON	37,989.000	69
					DOLLARS			
				and	CENTS			
	4002	6001		REPLACE ELASTOMERIC BEA		EA	11.000	70
					DOLLARS			
				and	CENTS			

		Proposal Sheet
PROJECT C 2374-4-86	, ETC.	TxDOT
COUNTY DALLAS		FORM 234-B I-61-5M

	ITI	EM-COI	ЭE					DEPT
ALT	ITEM NO	DESC CODE	S.P. NO.	UNIT BID PRICE O WRITTEN IN WOF	UNIT	APPROX QUANTITIES	USE ONLY	
	6001	6002		PORTABLE CHANGEABLE ME	EA	2.000	71	
					DOLLARS			
				and	CENTS			
	6185	6002	002	TMA (STATIONARY)	DAY	690.000	72	
				DOLLARS				
				and	CENTS			
	6185	6005	002	TMA (MOBILE OPERATION)		DAY	345.000	73
					DOLLARS			
				and	CENTS			
	7000	6002		REML & DISPL DRIFTWOOD & DEBRIS		LS	1.000	74
				DOLLARS				
				and	CENTS			

CERTIFICATION OF INTEREST IN OTHER BID PROPOSALS FOR THIS WORK

By signing this proposal, the bidding firm and the signer certify that the following information, as indicated by checking "Yes" or "No" below, is true, accurate, and complete.

- A. Quotation(s) have been issued in this firm's name to other firm(s) interested in this work for consideration for performing a portion of this work.
 - _____ YES
- B. If this proposal is the low bid, the bidder agrees to provide the following information prior to award of the contract.
 - 1. Identify firms which bid as a prime contractor and from which the bidder received quotations for work on this project.
 - 2. Identify all the firms which bid as a prime contractor to which the bidder <u>gave quotations</u> for work on this project.

ENGINEER SEAL

Control2374-04-086, ETC.ProjectC 2374-4-86, ETC.HighwayIH 20CountyDALLAS

The enclosed Texas Department of Transportation Specifications, Special Specifications, Special Provisions, General Notes and Specification Data in this document have been selected by me, or under my responsible supervision as being applicable to this project. Alteration of a sealed document without proper notification to the responsible engineer is an offense under the Texas Engineering Practice Act.

The seal appearing on this document was authorized by Solomon Bayon, P.E. APRIL 04, 2024

Highway: IH 20

SPECIFICATION DATA

Item	Description	Description Thickness Rate Quantit						
162	Block Sod	N/A	See Specifications		See Specifications		5,156 SY	
166 * Fertlizer (12-6-6) N/A 500 Lbs./Ac 0								
168	Vegetative Watering (Warm or Cool)	N/A	12	MG/Ac/Day	767 Mg			
3082	TBWC PG76-22 SAC-A TY C	3/4"	110	Lbs./SY/In	37,989 Ton			
3082	TBWC (Membrane)	N/A	0.22	Gal/SY	200,369 Gal			
*For contractor's information only **Use Summer rate for calculation, adjust for actual field conditions/temperatures as necessary. See Vegetation Establishment Plan Sheet for estimated daily rates. ***Portland Concrete Cement Note: (1) Asphalt weight based on 110 Lbs./SY/In								

GENERAL

The construction, operation and maintenance of the proposed project will be consistent with the state implementation plan as prepared by the Texas Commission on Environmental Quality.

The disturbed area for this project, as shown on the plans is 0.75 acres. However, <u>the Total</u> <u>Disturbed Area</u> (TDA) <u>will establish the required authorization for storm water discharges</u>. The TDA of this project will be determined by the sum of the disturbed area in all project locations in the contract, and all disturbed area on all Project-Specific Locations (PSL) located in the project limits and/or within 1 mile of the project limits. The department will obtain an authorization to discharge storm water from the Texas Commission on Environmental Quality (TCEQ) for the construction site as shown on the plans, according to the TDA of the project. The contractor will obtain any required authorization from the TCEQ for the discharge of storm water from any PSL for construction support activities on or off of the project row according to the TDA of the project. When the TDA for the project exceeds 1 acre, provide a copy of the appropriate application of

Highway: IH 20

permit (NOI, or Construction Site Notice) to the engineer, for any PSL located in the project limits or within 1 mile of the project limits. Follow the directives and adhere to all requirements set forth in the TCEQ, Texas Pollution Discharge Elimination System, Construction General Permit (TPDES, CGP).

This project required formal consultation and permitting with environmental resources agencies as outlined in the Environmental Permits, Issue and Commitments (EPIC) Sheet. There is a high probability that an environmentally sensitive area could be encountered on the contractor designated Project-Specific Locations (PSL) for this project (haul roads, equipment staging areas, borrow pits, disposal sites, field offices, storage areas, parking areas, etc.). Item 7.6 "Project-Specific Locations", provides a listing of regulatory agencies that may need to be contacted regarding this project.

Leave all right of way areas undisturbed until actual construction is to be performed in said areas.

Questions may be submitted via the Letting Pre-Bid Q&A web page. This webpage can be accessed from the Notice to Contractors dashboard located at the following Address: https://tableau.txdot.gov/views/ProjectInformationDashboard/NoticetoContractors

or Contractor questions on this project are to be addressed to the following individual(s):

Nathan Petter Nathan.petter@txdot.gov Dung Nguyen dung.nguyen@txdot.gov

Contractor questions will be accepted through email, phone, and in person by the above individuals.

All contractor questions will be reviewed by the Engineer. All questions and any corresponding responses that are generated will be posted through the same Letting Pre-Bid Q&A web page.

The Letting Pre-Bid Q&A web page for each project can be accessed by using the dashboard to navigate to the project you are interested in by scrolling or filtering the dashboard using the controls on the left. Hover over the blue hyperlink for the project you want to view the Q&A for and click on the link in the window that pops up.

Item 5:

Underground utilities owned by the Texas Department of Transportation may be present within the Right-Of-Way on this project. For signal, illumination, surveillance, and communications & control maintained by TxDOT, call the TxDOT Traffic Signal Office (214-320-6682) for locates a minimum of 48 hours in advance of excavation. For irrigation systems, call TxDOT Landscape Office (214-320-6205) for locates a minimum of 48 hours in advance of excavation. If city or town owned irrigation facilities are present, call the appropriate department of the local city or town a minimum of 48 hours in advance of excavation. The Contractor is liable for all damages when utilities are damaged due to Contractor's negligence including, but not limited to, repair or replacement at the Contractor's expense.

Highway: IH 20

For the project to be deemed complete, permanently stabilize all unpaved disturbed areas of the project with a vegetative cover at a minimum of 70% density for the control of erosion.

Submit all shop drawings, working drawings, or other documents which require review sufficiently in advance of scheduled construction to allow no less than thirty (30) calendar days for review and response.

Coordination of lane closure and work areas will be needed with the contractors of adjacent project CSJ 2374-04-090 (TX-408 SPUR), CSJ 2374-03-091 (IH 20), CSJ 2374-04-085 (IH 20), and CSJ 2374-03-096 (IH 35E at IH 20 Interchange)

Item 6:

This project has structure with surface coatings which contain hazardous constituent which is asbestos. Contractor is responsible for the health and safety of his employees and compliance with all OSHA standards and regulations.

<u>ltem 7:</u>

Repair or replace any structures and utilities that might have been damaged by negligence or a failure to have utility locates performed.

Holiday restrictions – the engineer may decide that no lane closures or construction operations shall be allowed during the restricted periods listed in the following holiday schedule. TxDOT has the right to lengthen, shorten, or otherwise modify these restricted periods as actual, or expected, traffic conditions may warrant. Working days will not be charged for these restricted periods. No additional compensation will be allowed for these closures (i.e., overhead, delays, stand-by, barricades or any other associated cost impacts).

- New Year's Eve and Day (noon on December 31 thru 10:00 pm January 1)
- Easter Holiday weekend (noon on Friday thru 10:00 pm Sunday)
- Memorial Day weekend (noon on Friday thru 10:00pm Monday)
- Independence Day (noon on July 3 thru 10:00 pm on July 5)
- Labor Day weekend (noon on Friday thru 10:00 pm Monday)
- Thanksgiving Holiday (noon on Wednesday thru 10:00 pm Sunday)
- Christmas Holiday (noon on December 23 thru 10:00 pm December 26)

No significant traffic generator events identified.

Item 8:

This Project will be a Standard Workweek in accordance with Article 8.3.1.4.

Nighttime work is required in accordance with Article 8.3.3.2.1.

Highway: IH 20

Meet weekly with the engineer to notify him or her of planned work for the upcoming week.

Provide the engineer with a daily work schedule of planned work.

A 60 days delay start is included in the project for contractor mobilization.

Per Special Provision 008-045, this contract includes Lane Closure Assessment Fees for lane closures that remain in place and impeding traffic on the mainlanes of IH 20 after the specified closure time has elapsed. Lane closure times are addressed under item 502. Lane Closure Assessment Fees are outlined in Table 2 under item 502.

Item 104:

In those areas where the pavement is not to be overlaid, provide a smooth surface after the curb removal. Planing or grinding is considered an acceptable method at these locations. Measurement and payment is in accordance with this item.

Sawing of concrete is not paid for directly, but is considered subsidiary to this item.

Item 160:

Sequence construction operations to salvage topsoil from one location and spread on areas ready to receive topsoil. Keep stockpiling of topsoil to a minimum.

Use fertile clay or loam from the project site not more than six inches below natural grade as topsoil.

Item 161:

Provide tickets representing quantity of compost delivered to site.

Item 301:

Provide liquid antistripping agents unless otherwise directed. Add the minimum dosage determined by the manufacturer or higher dosage determined by design requirement and try subsequent trials at 0.25% increments.

Item 320:

Use a self-propelled wheel mounted MTV capable of receiving mix from the haul trucks, separate from the paver. It shall have a minimum storage capacity of approximately 25 tons. It shall be equipped with a pivoting discharge conveyor and shall completely and thoroughly remix the material prior to placement. The effectiveness of the MTV's remixing ability is subject to the approval of the Engineer. In addition, the paver shall have a surge storage insert with a minimum capacity of 20 tons.

Highway: IH 20

The use of windrow pick-up equipment is allowed except on the first course of roadway material placed over the subgrade.

Item 354:

Remove the loose material from the roadway before opening to traffic.

Patch pavement cut to excessive depth by equipment failure with an approved epoxy material. Re-plane patched area to an acceptable approved ride quality. Payment for these corrections is subsidiary to this item.

Take possession of recycled asphalt pavement from the project and recycle the material. Properly dispose of unsalvageable material at your own expense.

Item 361:

Provide Class HES concrete designed to attain a minimum average flexural strength of 255 psi or a minimum average compressive strength of 1,800 psi within the allowed lane closure times.

All permanent pavement markings which are removed during the removal of the existing concrete pavement are to be replaced as directed by the Engineer. These pavement markings will not be paid for directly, but will be considered subsidiary to this bid item.

Tining will be required as described in Item 360.4.8.3 unless otherwise directed by the Engineer. Surface Test Type A utilizing a 10' straight edge as described under Item 585 will be required unless otherwise directed by the Engineer.

Item 421:

Furnish mix designs to the Engineer in a format compatible to the latest version of the Department's Construction Management System (Site Manager). Mix Design templates will be provided by the Engineer.

Supply the Engineer with a list of certified personnel and copies of their current ACI certificates before beginning production and when personnel changes are made. Supply hard copies of calibration reports for testing equipment when required by the Engineer.

Item 500:

Material On Hand (MOH) will not be used in calculating partial payments for Mobilization.

Item 502:

The Contractor Force Account "Safety Contingency" that has been established for this project is intended to be utilized for work zone enhancements, to improve the effectiveness of the Traffic Control Plan, that could not be foreseen in the project planning and design stage. These

Highway: IH 20

enhancements will be mutually agreed upon by the Engineer and the Contractor's Responsible Person based on weekly or more frequent traffic management reviews on the project. The Engineer may choose to use existing bid items if it does not slow the implementation of enhancement.

Provide written proposed lane closure information by 1:00 pm on the business day prior to the proposed closures. Do not close lanes when this requirement is not met.

Place barricades and signs in locations that do not obstruct the sight distance of drivers entering the highway from driveways or side streets.

Provide rectangular shape (CW12-2a) Temporary Clearance Signs on all bridges where the existing vertical clearance has changed. Install Signs to the satisfaction of the Engineer prior to opening to traffic. Plywood sign blanks will have minimum dimensions of 84" X 24". Work performed and materials are subsidiary to this item.

When moving unlicensed equipment on or across any pavement or public highways, protect the pavement from all damage using an acceptable method.

As approved by the Engineer, provide uniformed off duty police officers and squad cars during lane or ramp closures, night time work or other situations that indicate a need for additional traffic control to protect the traveling public or the construction workforce. Provide documentation such as payroll, log sheets with signatures and badge number, or invoices from the government entity providing the officers for reimbursement. Complete the weekly tracking form provided by the department and submit invoices that agree with the tracking form for payment at the end of each month approved services were provided. Reimbursement will not be made for coordination fees charged by any party.

Patrol vehicles must be clearly marked to correspond with the officer's agency and equipped with appropriate lights to identify them as law enforcement. For patrol vehicles not owned by a law enforcement agency, markings will be retroreflective and legible from 100 ft. from both sides and the rear of the vehicle. Lights will be high intensity and visible from all angles.

The Lane Closure Assessment Fee is shown on table 2. The fee applies to the Contractor for closures or obstructions that overlap into restricted hour traffic for each hour or portion thereof, regardless of the duration of the lane closure or obstruction. Portions of hours will be rounded up to the nearest 15 minute increment.

Roadway	Amount Per Lane Per Half Hour
I H 20	\$4,000

Table 2 Lane Closure Assessment Fee Table

Highway: IH 20

Limit lane closures along IH 20 to the hours between 9:00 am and 3:30 pm or nightly from 9:00 pm to 5:00 am. Work in other areas of the project is not restricted to this time frame.

Traffic Control Plans with Lane Closures causing backups of 20 minutes or greater in duration will be modified by the Engineer.

Additional lanes may be closed, started earlier, or extended later with with written permission of the Engineer.

Item 506:

Take all practicable precautions to prevent debris from being discharged into the Waters of Texas or a designated wetland. Install Best Management Practices before demolition begins and maintain them during the demolition. Remove any debris or construction material that escapes containment devices and are discharged into the restricted areas, before the next rain event or within 24 hours of the discharge.

If temporary construction stream crossings are allowed under a Nationwide Permit, submit in writing for approval the type and location of each temporary stream crossing. Use temporary bridges, timber mats, or other structurally sound and non-eroding material for temporary stream crossings. A temporary culvert crossing will consist of storm sewer pipes and 4- to 8-inch nominal size rock. Temporary stream crossings must not cause more than minimal changes to the hydraulic flow characteristics of the stream, increase flooding, or cause more than minimal degradation of water quality. Remove the temporary stream crossings in their entirety and return the affected areas to their pre-existing elevation. All work and materials use for temporary construction stream crossings will not be paid for directly but are subsidiary to pertinent ltems.

Concrete Washouts are required per the CGP. The Concrete Washout Area(s) structural controls must consist of temporary berms, temporary shallow pits, and/or temporary storage tanks to prevent contaminated runoff and must be lined as to prevent contamination of underlying soil. Ensure pits properly maintained including removal of concrete as not to allow over flow. The location(s) of washout area will be approved by the Engineer. When washout pits are no longer needed, they will be removed and area will be restored to original condition. This work, materials and labor will not be measured or paid for directly but will be subsidiary to Item 506, "Temporary Erosion, Sedimentation, and Environmental Controls."

Item 512:

The contractor will furnish pre-cast F Shape Barriers for traffic control, and remove and retain possession of non-permanent barriers at the end of the project. Pre-cast F Shape Barriers must have drainage slots as detailed on the Concrete Safety Barrier Standards. Submit for approval the type of barrier joint connection proposed for the project.

Highway: IH 20

Item 514:

Provide High Performance Concrete (HPC) and epoxy coated reinforcing for all Permanent Concrete Traffic Barrier located on bridge approaches or bridge slabs.

Item 529:

Provide grooved joints at 10-foot intervals and ³/₄ inch expansion joint material for doweled curb at the same locations as on the existing pavement.

For Curb and Gutter sections, provide grooved joints at 10-foot intervals and ³/₄ inch expansion joint material at a maximum of 50-foot centers and at all radius points and inlets.

Curb and Gutter transitions will be paid for by the foot at the unit price for the corresponding curb or curb and gutter section.

Saw joints at the same location as on the existing pavement.

Item 540:

Furnish one type of post throughout the project except as specifically noted in the plans.

Item 585:

Use Surface Test Type B pay adjustment schedule 3 on the travel lanes.

Use Surface Test Type B pay adjustment schedule 3 on the ramps.

Item 662 and 672:

Black adhesive will be used on asphalt pavements and white adhesive will be used on concrete pavement.

Item 677:

A water blasting method approved by the Engineer will be the only method allowed for the removal of permanent and temporary pavement markings except on a sealcoat surface. A 2 foot wide sealcoat will be required on sealcoat surfaces to eliminate permanent and temporary pavement markings.

Item 3082:

Use aggregate that meets the Surface Aggregate Classification (SAC) requirement of Class A.

Provide the engineer the opportunity to witness all mixture design tests. The engineer may require a retest if not given the opportunity to witness.

Provide PG binder 76-22 in Type C mixture.

Highway: IH 20

Item 6185:

The total number of truck mounted attenuators (TMAs) or trailer attenuators (TAs) required when utilizing the traffic control standards are shown in the tables below.

TCP 3 Series	Scenario			Required TMA/TA
(3-2)-13	All			3
(2.2) 14	А	В	D	2
(3-3)-14	C			3

TCP 5 Series	Scei	nario	Required TMA/TA
(5-1)-18	А	В	1

TCP 6 Series	CP 6 Series Scenario			uired √TA
(6-1)-12	А	В	1	2
(6-2)-12 / (6-3)-12	A	11	1	
(6-4)-12	А	В	1	2
(6-5)-12	А	В	1	2
(6-8)-14	A	.II	1	

The contractor will be responsible for determining if one or more of these operations will be ongoing at the same time to determine the total number of TMAs/TAs needed for the project. Additional TMAs/TAs used that are not specified in the plans in which the contractor expects compensation will require prior approval from the Engineer.

The TMA/TA used for installation/removal of traffic control for a work area will be subsidiary to the TMA/TA used to perform the work.

CONTROL : 2374-04-086, ETC PROJECT : C 2374-4-86, ETC HIGHWAY : IH 20 COUNTY : DALLAS

TEXAS DEPARTMENT OF TRANSPORTATION

GOVERNING SPECIFICATIONS AND SPECIAL PROVISIONS

ALL SPECIFICATIONS AND SPECIAL PROVISIONS APPLICABLE TO THIS PROJECT ARE IDENTIFIED AS FOLLOWS:

STANDARD SPECIFICATIONS: ADOPTED BY THE TEXAS DEPARTMENT OF TRANSPORTATION NOVEMBER 1, 2014. STANDARD SPECIFICATIONS ARE INCORPORATED INTO THE CONTRACT BY REFERENCE.

ITEMS 1 TO 9 INCL., GENERAL REQUIREMENTS AND COVENANTS ITEM 104 REMOVING CONCRETE ITEM 161 COMPOST (160) ITEM 162 SODDING FOR EROSION CONTROL (166) (168) ITEM 168 VEGETATIVE WATERING ITEM 348 THIN BONDED FRICTION COURSES ITEM 351 FLEXIBLE PAVEMENT STRUCTURE REPAIR (132) (204) (247) (260) (263) (275) (276) (292) (310) (316) (330) (334) (340) <341><3076> <3077> ITEM 354 PLANING AND TEXTURING PAVEMENT ITEM 361 REPAIR OF CONCRETE PAVEMENT (360) (421) (440) ITEM 401 FLOWABLE BACKFILL (421) ITEM 429 CONCRETE STRUCTURE REPAIR (421)(431)(440)(780) ITEM 432 RIPRAP (247) (420) (421) (431) (440) ITEM 434 BRIDGE BEARINGS (420)(441)(442)(445)(446)(449) ITEM 438 CLEANING AND SEALING JOINTS ITEM 446 FIELD CLEANING AND PAINTING STEEL (441)(445) ITEM 451 RETROFIT RAILING (421)(429)(440)(442)(445)(446)(450)(540) ITEM 480 CLEANING EXISTING CULVERTS ITEM 496 REMOVING STRUCTURES ITEM 500 MOBILIZATION ITEM 502 BARRICADES, SIGNS, AND TRAFFIC HANDLING ITEM 506 TEMPORARY EROSION, SEDIMENTATION, AND ENVIRONMENTAL CONTROLS (161) (432) (556) ITEM 512 PORTABLE TRAFFIC BARRIER (420) (421) (424) (440) (442) ITEM 529 CONCRETE CURB, GUTTER, AND COMBINED CURB AND GUTTER (360) (420)(421)(440)ITEM 533 MILLED RUMBLE STRIPS ITEM 540 METAL BEAM GUARD FENCE (421)(441)(445)(529) ITEM 542 REMOVING METAL BEAM GUARD FENCE

ITEM 544 GUARDRAIL END TREATMENTS ITEM 545 CRASH CUSHION ATTENUATORS (421) ITEM 658 DELINEATOR AND OBJECT MARKER ASSEMBLIES (445) ITEM 662 WORK ZONE PAVEMENT MARKINGS (666) (668) (672) (677) ITEM 666 RETROREFLECTORIZED PAVEMENT MARKINGS (316) (502) (662) (677) (678)<6438> ITEM 672 RAISED PAVEMENT MARKERS (677)(678) ITEM 721 FIBER REINFORCED POLYMER PATCHING MATERIAL (302) ITEM 776 METAL RAIL REPAIR (429)(441)(445)(446)(448)(450) ITEM 778 CONCRETE RAIL REPAIR (429) (450) (776) ITEM 780 CONCRETE CRACK REPAIR ITEM 785 BRIDGE JOINT REPAIR OR REPLACEMENT (429)(438)(448)(449) (454) ITEM 788 CONCRETE BEAM REPAIR (424) (429) (441) (780) (786) SPECIAL PROVISIONS: SPECIAL PROVISIONS WILL GOVERN AND TAKE PRECEDENCE OVER THE SPECIFICATIONS ENUMERATED HEREON WHEREVER IN CONFLICT THEREWITH. SPECIAL LABOR PROVISIONS FOR STATE PROJECTS (000---008) WAGE RATES SPECIAL PROVISION "NONDISCRIMINATION" (000---002) SPECIAL PROVISION "SMALL BUSINESS ENTERPRISE IN STATE FUNDED PROJECTS " (000---009) SPECIAL PROVISION "CERTIFICATE OF INTERESTED PARTIES (FORM 1295)" (000 - -1019)SPECIAL PROVISION "SCHEDULE OF LIQUIDATED DAMAGES" (000--1243) SPECIAL PROVISION "NOTICE OF CONTRACTOR PERFORMANCE EVALUATIONS" (000---659) SPECIAL PROVISIONS TO ITEM 2 (002 - - 011)(002 - - 013)(002 - - 014)(002 - - - 015)SPECIAL PROVISIONS TO ITEM 3 (003---011) (003---013) SPECIAL PROVISIONS TO ITEM 5 (005---002) (005---003) (006---001) (006---012) SPECIAL PROVISIONS TO ITEM 6 SPECIAL PROVISIONS TO ITEM $7 \quad (007 - - - 004) \quad (007 - - - 008) \quad (007 - - - 010)$ (007 - - 011)(007 - - 013)SPECIAL PROVISIONS TO ITEM 8 (008---002) (008---030) (008---033) (008 - - - 045) (008 - - - 054)SPECIAL PROVISIONS TO ITEM 9 (009---010) (009---016) SPECIAL PROVISION TO ITEM 247 (247 - - - 005)SPECIAL PROVISION TO ITEM 300 (300 - - - 020)SPECIAL PROVISION TO ITEM 302 (302 - - - 003)SPECIAL PROVISION TO ITEM 316 (316---002) SPECIAL PROVISION TO ITEM 334 (334---004) SPECIAL PROVISION TO ITEM 340 (340 - - - 004)SPECIAL PROVISION TO ITEM 341 (341---004) SPECIAL PROVISION TO ITEM 342 (342---005) SPECIAL PROVISION TO ITEM 344 (344 - - - 005)SPECIAL PROVISION TO ITEM 347 (347 - - - 003)SPECIAL PROVISION TO ITEM 348 (348---004) SPECIAL PROVISION TO ITEM 360 (360---001) SPECIAL PROVISION TO ITEM 420 (420---001)

SPECIAL	PROVISION	ТО	ITEM	421	(421012)		
SPECIAL	PROVISION	то	ITEM	438	(438002)		
SPECIAL	PROVISION	ТО	ITEM	440	(440005)		
SPECIAL	PROVISION	ТО	ITEM	441	(441004)		
SPECIAL	PROVISION	ТО	ITEM	442	(442001)		
SPECIAL	PROVISION	ТО	ITEM	446	(446005)		
SPECIAL	PROVISION	ТО	ITEM	448	(448001)		
SPECIAL	PROVISION	ТО	ITEM	449	(449002)		
SPECIAL	PROVISION	ТО	ITEM	450	(450001)		
SPECIAL	PROVISION	ТО	ITEM	502	(502008)		
SPECIAL	PROVISION	ТО	ITEM	506	(506002)		
SPECIAL	PROVISION	ТО	ITEM	520	(520002)		
SPECIAL	PROVISION	ТО	ITEM	540	(540001)		
SPECIAL	PROVISION	ТО	ITEM	666	(666007)		
SPECIAL	PROVISION	ТО	ITEM	721	(721002)		
SPECIAL	PROVISION	ТО	SPECIAI	L SPEC	CIFICATION ITEM	3096	(3096003)
SPECIAL	PROVISION	ТО	SPECIAI	L SPEC	CIFICATION ITEM	6185	(6185002)

SPECIAL SPECIFICATIONS:

ITEM	3076	DENSE-GRADED HOT-MIX ASPHALT <300><301><316><320><340>
		<341><342><347><348><520><585><3079><3081><3082><3096>
ITEM	3077	SUPERPAVE MIXTURES <300><301><316><320><342><344><348>
		<520><3079><3081><3082><3096>
ITEM	3079	PERMEABLE FRICTION COURSE (PFC) <300><301><320><342><520>
		<585><3096>
ITEM	3081	THIN OVERLAY MIXTURES (TOM) <300><301><320><347><520>
		<585><3096>
ITEM	3082	THIN BONDED FRICTION COURSES <210><300><301><320><342>
		<348><520><585><3079><3096>
ITEM	3096	ASPHALTS, OILS, AND EMULSIONS
ITEM	4002	REPLACING ELASTOMERIC BEARING PADS
ITEM	6001	PORTABLE CHANGEABLE MESSAGE SIGN
ITEM	6185	TRUCK MOUNTED ATTENUATOR (TMA) AND TRAILER ATTENUATOR (TA)
ITEM	6438	MOBILE RETROREFLECTIVITY DATA COLLECTION FOR PAVEMENT
		MARKINGS
ITEM	7000	REMOVAL AND PROPER DISPOSAL OF DRIFTWOOD AND DEBRIS
GENERAL:		THE ABOVE-LISTED SPECIFICATION ITEMS ARE THOSE UNDER WHICH
		PAYMENT IS TO BE MADE. THESE, TOGETHER WITH SUCH OTHER

----- PAYMENT IS TO BE MADE. THESE, TOGETHER WITH SUCH OTHER PERTINENT ITEMS, IF ANY, AS MAY BE REFERRED TO IN THE ABOVE-LISTED SPECIFICATION ITEMS, AND INCLUDING THE SPECIAL PROVISIONS LISTED ABOVE, CONSTITUTE THE COMPLETE SPECIFI-CATIONS FOR THIS PROJECT.

Control2374-04-086, ETC.ProjectC 2374-4-86, ETC.HighwayIH 20CountyDALLAS

SMALL BUSINESS ENTERPRISE REQUIREMENTS

The following goal for small business enterprises is established:

SBE 0.0%

CHILD SUPPORT STATEMENT

Under Section 231.006, Family Code, the vendor or applicant certifies that the individual or business entity named in this contract, bid, or application is not ineligible to receive the specified grant, loan, or payment and acknowledges that this contract may be terminated and payment may be withheld if this certification is inaccurate.

CONFLICT OF INTEREST CERTIFICATION

Pursuant to Texas Government Code Section 2261.252(b), the Department is prohibited from entering into contracts in which Department officers and employees have a financial interest.

By signing the Contract, the Contractor certifies that it is not prohibited from entering into a Contract with the Department as a result of a financial interest as defined under Texas Government Code Section 2261.252(b), and that it will exercise reasonable care and diligence to prevent any actions or conditions that could result in a conflict of interest with the Department.

The Contractor also certifies that none of the following individuals, nor any of their family members within the second degree of affinity or consanguinity, owns 1% or more interest or has a financial interest as defined under Texas Government Code Section 2261.252(b) in the Contractor:

- Any member of the Texas Transportation Commission; and
- The Department's Executive Director, General Counsel, Chief of Procurement and Field Support Operations, Director of Procurement, and Director of Contract Services.

Violation of this certification may result in action by the Department.

E-VERIFY CERTIFICATION

Pursuant to Texas Transportation Code §223.051, all TxDOT contracts for construction, maintenance, or improvement of a highway must include a provision requiring Contractors and subcontractors to use the U.S. Department of Homeland Security's E-Verify system to determine employment eligibility. By signing the contract, the Contractor certifies that prior to the award of the Contract:

- the Contractor has registered with and will, to the extent permitted by law, utilize the United States Department of Homeland Security's E-Verify system during the term of the Contract to determine the eligibility of all persons hired to perform duties within Texas during the term of the agreement; and
- the Contractor will require that all subcontractors also register with and, to the extent permitted by law, utilize the United States Department of Homeland Security's E-Verify system during the term of the subcontract to determine the eligibility of all persons hired to perform duties within Texas during the term of the agreement.

Violation of this requirement constitutes a material breach of the Contract, subjects a subcontractor to removal from the Contract, and subjects the Contractor or subcontractors to possible sanctions in accordance with Title 43, Texas Administrative Code, Chapter 10, Subchapter F, "Sanctions and Suspension for Ethical Violations by Entities Doing Business with the Department."

Certification Regarding Disclosure of Public Information

Pursuant to Subchapter J, Chapter 552, Texas Government Code, contractors executing a contract with a governmental body that results in the expenditure of at least \$1 million in public funds must:

- 1) preserve all contracting information* as provided by the records retention requirements applicable to Texas Department of Transportation (TxDOT) for the duration of the contract,
- 2) on request of TxDOT, promptly provide any contracting information related to the contract that is in the custody or possession of the entity, and
- 3) on completion of the contract, either:
 - A. provide, at no cost to TxDOT, all contracting information related to the contract that is in the custody or possession of the entity, or
 - B. preserve the contracting information related to the contract as provided by the records retention requirements applicable to TxDOT

The requirements of Subchapter J, Chapter 552, Government Code, may apply to this contract, and the contractor or vendor agrees that the contract can be terminated if the contractor or vendor knowingly or intentionally fails to comply with a requirement of that subchapter.

By entering into Contract, the Contractor agrees to:

- provide, or make available, to TxDOT and any authorized governmental investigating or auditing agency all records, including electronic and payment records related to the contract, for the same period provided by the records retention schedule applicable to TxDOT, and
- ensure that all subcontracts include a clause requiring the same.

* As defined in Government Code §552.003, "Contracting information" means the following information maintained by a governmental body or sent between a governmental body and a vendor, contractor, potential vendor, or potential contractor:

- 1) information in a voucher or contract relating to the receipt or expenditure of public funds by a governmental body;
- 2) solicitation or bid documents relating to a contract with a governmental body;
- 3) communications sent between a governmental body and a vendor, contractor, potential vendor, or potential contractor during the solicitation, evaluation, or negotiation of a contract;
- 4) documents, including bid tabulations, showing the criteria by which a governmental body evaluates each vendor, contractor, potential vendor, or potential contractor responding to a solicitation and, if applicable, an explanation of why the vendor or contractor was selected; and

5) communications and other information sent between a governmental body and a vendor or contractor related to the performance of a final contract with the governmental body or work performed on behalf of the governmental body.

CERTIFICATION TO NOT BOYCOTT ISRAEL

Pursuant to Texas Government Code §2271.002, the Department must include a provision requiring a written verification affirming that the Contractor does not boycott Israel, as defined in Government Code §808.001, and will not boycott Israel during the term of the contract. This provision applies to a contract that:

- 1) is with a Contractor that is not a sole proprietorship,
- 2) is with a Contractor with 10 or more full-time employees, and
- 3) has a value of \$100,000 or more.

By signing the contract, the Contractor certifies that it does not boycott Israel and will not boycott Israel during the term of this contract. "Boycott" means refusing to deal with, terminating business activities with, or otherwise taking any action that is intended to penalize, inflict economic harm on, or limit commercial relations specifically with Israel, or with a person or entity doing business in Israel or in an Israeli-controlled territory, but does not include an action made for ordinary business purposes.

Violation of this certification may result in action by the Department.

CERTIFICATION TO NOT BOYCOTT ENERGY COMPANIES

Pursuant to Texas Government Code §2274.002, the Department must include a provision requiring a written verification affirming that the Contractor does not boycott energy companies, as defined in Government Code §809.001, and will not boycott energy companies during the term of the contract. This provision applies to a contract that:

- 1) is with a Contractor that is not a sole proprietorship,
- 2) is with a Contractor with 10 or more full-time employees, and
- 3) has a value of \$100,000 or more.

By signing the contract, the Contractor certifies that it does not boycott energy companies and will not boycott energy companies during the term of this contract. "Boycott" means taking any action that is intended to penalize, inflict economic harm on, or limit commercial relations with a company because the company: (1) engages in the exploration, production, utilization, transportation, sale, or manufacturing of fossil fuel-based energy and does not commit or pledge to meet environmental standards beyond applicable federal and state law; or (2) does business with a company described by (1).

Violation of this certification may result in action by the Department.

CERTIFICATION TO NOT DISCRIMINATE AGAINST FIREARM ENTITIES OR FIREARM TRADE ASSOCIATIONS

Pursuant to Texas Government Code §2274.002, the Department must include a provision requiring a written verification affirming that the Contractor:

- 1) does not have a practice, policy, guidance, or directive that discriminates against a firearm entity or firearm trade association, as defined in Government Code §2274.001, and
- 2) will not discriminate against a firearm entity or firearm trade association during the term of the contract.

This provision applies to a contract that:

- 1) is with a Contractor that is not a sole proprietorship,
- 2) is with a Contractor with 10 or more full-time employees, and
- 3) has a value of \$100,000 or more.

By signing the contract, the Contractor certifies that it does not discriminate against a firearm entity or firearm trade association as described and will not do so during the term of this contract. "Discriminate against a firearm entity or firearm trade association" means, with respect to the entity or association, to: (1) refuse to engage in the trade of any goods or services with the entity or association based solely on its status as a firearm entity or firearm trade association; (2) refrain from continuing an existing business relationship with the entity or association based solely on its status as a firearm entity or firearm trade association. "Discriminate against a firearm entity or firearm trade association; or (3) terminate an existing business relationship with the entity or firearm trade association. "Discriminate against a firearm entity or firearm trade association. "Discriminate against a firearm entity or firearm trade association. "Discriminate against a firearm entity or firearm trade association. "Discriminate against a firearm entity or firearm trade association. "Discriminate against a firearm entity or firearm trade association. "Discriminate against a firearm entity or firearm trade association. "Discriminate against a firearm entity or firearm trade association." does not include: (1) the established policies of a merchant, retail seller, or platform that restrict or prohibit the listing or selling of ammunition, firearms, or firearm accessories; (2) a company's refusal to engage in the trade of any goods or services, decision to refrain from continuing an existing business relationship, or decision to terminate an existing business relationship to comply with federal, state, or local law, policy, or regulations or a directive by a regulatory agency, or for any traditional business reason that is specific to the customer or potential customer and not based solely on an entity 's or association's status as a firearm entity or firearm trade association.

Violation of this certification may result in action by the Department.

PROHIBITION ON CERTAIN TELECOMMUNICATIONS EQUIPMENT OR SERVICES

The Federal Register Notice issued the Final Rule and states that the amendment to 2 CFR 200.216 is effective on August 13, 2020. The new 2 CFR 200.471 regulation provides clarity that the telecommunications and video surveillance costs associated with 2 CFR 200.216 are unallowable for services and equipment from these specific providers. OMB's Federal Register Notice includes the new 2 CFR 200.216 and 2 CFR 200.471 regulations.

https://www.federalregister.gov/documents/2020/08/13/2020-17468/guidance-for-grants-and-agreements

Per the Federal Law referenced above, use of services, systems, or services or systems that contain components produced by any of the following manufacturers is strictly prohibited for use on this project. Therefore, for any telecommunications, CCTV, or video surveillance equipment, services or systems cannot be manufactured by, or have components manufactured by:

- Huawei Technologies Company,
- ZTE Corporation (any subsidiary and affiliate of such entities),
- Hyatera Communications Corporation,
- Hangzhou Hikvision Digital Technology Company,
- Dahua Technology Company (any subsidiary and affiliate of such entities).

Violation of this prohibition will require replacement of the equipment at the contractor's expense.

Special Provision to Item 000 Special Labor Provisions for State Projects

1. GENERAL

This is a "Public Works" Project, as provided under Government Code Title 10, Chapter 2258, "Prevailing Wage Rates," and is subject to the provisions of the Statute. No provisions in the Contract are intended to be in conflict with the provisions of the Statute.

The Texas Transportation Commission has ascertained and indicated in the special provisions the regular rate of per diem wages prevailing in each locality for each craft or type of worker. Apply the wage rates contained in the specifications as minimum wage rates for the Contract.

2. MINIMUM WAGES, HOURS AND CONDITIONS OF EMPLOYMENT

All workers necessary for the satisfactory completion of the work are within the purview of the Contract.

Whenever and wherever practical, give local citizens preference in the selection of labor.

Do not require any worker to lodge, board or trade at a particular place, or with a particular person as a condition of employment.

Do not charge or accept a fee of any from any person who obtains work on the project. Do not require any person who obtains work on the project to pay any fee to any other person or agency obtaining employment for the person on the project.

Do not charge for tools or equipment used in connection with the duties performed, except for loss or damage of property. Do not charge for necessary camp water.

Do not charge for any transportation furnished to any person employed on the project.

The provisions apply where work is performed by piece work, station work, etc. The minimum wage paid will be exclusive of equipment rental on any shipment which the worker or subcontractor may furnish in connection with his work.

Take responsibility for carrying out the requirements of this specification and ensure that each subcontractor working on the project complies with its provisions.

Any form of subterfuge, coercion or deduction designated to evade, reduce or discount the established minimum wage scales will be considered a violation of the Contract.

The Fair Labor Standards Acts (FLSA) established one and one-half (1-1/2) pay for overtime in excess of 40 hours worked in 1 week. Do not consider time consumed by the worker in going to and returning from the place of work as part of the hours of work. Do not require or permit any worker to work in excess of 40 hours in 1 week, unless the worker receives compensation at a rate not less than 1-1/2 times the basic rate of pay for all hours worked in excess of 40 hours in the workweek.

The general rates of per diem wages prevailing in this locality for each class and type of workers whose services are considered necessary to fulfill the Contract are indicated in the special provisions, and these rates govern as minimum wage rates on this Contract. A penalty of \$60.00 per calendar day or portion of a calendar day for each worker that is paid less than the stipulated general rates of per diem wages for any work done under the Contract will be deducted. The Department, upon receipt of a complaint by a worker,

will determine within 30 days whether good cause exists to believe that the Contractor or a subcontractor has violated wage rate requirements and notify the parties involved of the findings. Make every effort to resolve the alleged violation within 14 days after notification. The next alternative is submittal to binding arbitration in accordance with the provisions of the Texas General Arbitration Act (Art. 224 et seq., Revised Statutes).

Notwithstanding any other provision of the Contract, covenant and agree that the Contractor and its subcontractors will pay each of their employees and contract labor engaged in any way in work under the Contract, a wage not less than what is generally known as the "federal minimum wage" as set out in 29 U.S.C. 206 as that Statute may be amended from time to time.

Pay any worker employed whose position is not listed in the Contract, a wage not less than the per diem wage rate established in the Contract for a worker whose duties are most nearly comparable.

3. RECORD AND INSPECTIONS

Keep copies of weekly payrolls for review. Require subcontractors to keep copies of weekly payrolls for review. Show the name, occupation, number of hours worked each day and per diem wage paid each worker together with a complete record of all deductions made from such wages. Keep records for a period of 3 years from the date of completion of the Contract.

Where the piece-work method is used, indicate on the payroll for each person involved:

- Quantity of piece work performed.
- Price paid per piece-work unit.
- Total hours employed.

The Engineer may require the Contractor to file an affidavit for each payroll certifying that payroll is a true and accurate report of the full wages due and paid to each person employed.

Post or make available to employees the prevailing wage rates from the Contract. Require subcontractors to post or make available to employees the prevailing wage rates from the Contract.

The wage rates listed herein are those predetermined by the Secretary of Labor and State Statue and listed in the United States Department of Labor's (USDOL) General Decisions dated 01-05-2024 and are the minimum wages to be paid accordingly for each specified classification. To determine the applicable wage rate zone, a list entitled "TEXAS COUNTIES IDENTIFIED BY WAGE RATE ZONES" is provided in the contract. Any wage rate that is not listed herein and not in the USDOL's general decision, must be requested by the contractor through the completion of an Additional Classification and Wage Rate Request and be submitted for approval. IMPORTANT NOTICE FOR STATE PROJECTS: only the controlling wage rate zone applies to the contract. Effective 01-05-2024.

CLASS. #	CLASSIFICATION DESCRIPTION	ZONE TX02 *(TX20240002)	ZONE TX03 *(TX20240003)	ZONE TX04 *(TX20240004)	ZONE TX05 *(TX20240005)	ZONE TX06 *(TX20240006)	ZONE TX07 *(TX20240007)	ZONE TX08 *(TX20240008)	ZONE TX24 *(TX20240024)	ZONE TX25 *(TX20240025)	ZONE TX27 *(TX20240027)	ZONE TX28 *(TX20240028)	ZONE TX29 *(TX20240029)	ZONE TX30 *(TX20240030)	ZONE TX37 *(TX20240037)	ZONE TX38 *(TX20240038)	ZONE TX42 *(TX20240042)
1428	Agricultural Tractor Operator						\$12.69					\$12.35			\$11.75		
1300	Asphalt Distributor Operator	\$14.87	\$13.48	\$13.88	\$15.72	\$15.58	\$15.55	\$15.72	\$13.28	\$15.32	\$15.62	\$14.36	\$14.25	\$14.03	\$13.75	\$14.06	\$14.40
1303	Asphalt Paving Machine Operator	\$13.40	\$12.25	\$12.35	\$13.87	\$14.05	\$14.36	\$14.20	\$13.26	\$13.99	\$14.68	\$12.92	\$13.44	\$12.53	\$14.00	\$14.32	\$12.99
1106	Asphalt Raker	\$12.28	\$10.61	\$12.02	\$14.21	\$11.65	\$12.12	\$11.64	\$11.44	\$12.69	\$12.05	\$11.34	\$11.67	\$11.40	\$12.59	\$12.36	\$11.78
1112	Batching Plant Operator, Asphalt																
1115	Batching Plant Operator, Concrete																
1214	Blaster																
1615	Boom Truck Operator						\$18.36										
1444	Boring Machine Operator																
1305	Broom or Sweeper Operator	\$11.21	\$10.33	\$10.08	\$11.99		\$11.04	\$11.62		\$11.74	\$11.41	\$10.30		\$10.23	\$10.60	\$12.68	\$11.05
1144	Communications Cable Installer																
4404	Concrete Finisher, Paving and		¢10.40	¢10.40	¢40.05	¢10.01	¢40.50	¢40.77	¢10.11	¢11.10	¢10.01	¢40.00	¢10.01	¢40.00	¢40.70	¢10.00	¢40.00
1124	Structures Concrete Pavement Finishing	\$13.55	\$12.46	\$13.16	\$12.85	\$12.64	\$12.56	\$12.77	\$12.44	\$14.12	\$13.04	\$13.38	\$12.64	\$12.80	\$12.79	\$12.98	\$13.32
1318	Machine Operator				\$16.05		\$15.48			\$16.05		\$19.31				\$13.07	
	Concrete Paving, Curing, Float,																
1315	Texturing Machine Operator											\$16.34				\$11.71	
	Concrete Saw Operator				\$14.67					\$14.48	\$17.33					\$13.99	
1399	Concrete/Gunite Pump Operator																
1344	orless				\$18.22		\$18.36			\$18.12	\$18.04	\$20.21			\$18.63	\$13.86	
	Crane Operator, Hydraulic Over																
1345	80 Tons Crane Operator, Lattice Boom 80																
1342	Tons or Less	\$16.82	\$14.39	\$13.85	\$17.27		\$15.87			\$17.27		\$14.67			\$16.42	\$14.97	\$13.87
	Crane Operator, Lattice Boom Over																
1343	80 Tons				\$20.52		\$19.38			\$20.52		\$17.49			\$25.13	\$15.80	
1306	Crawler Tractor Operator	\$13.96	\$16.63	\$13.62	\$14.26		\$15.67			\$14.07	\$13.15	\$13.38			\$14.60	\$13.68	\$13.50
1351	Crusher or Screen Plant Operator																
1446	Directional Drilling Locator						\$11.67										
1445	Directional Drilling Operator				\$20.32		\$17.24										
1139	Electrician Excavator Operator, 50,000	\$20.96		\$19.87	\$19.80		\$26.35		\$20.27	\$19.80		\$20.92				\$27.11	\$19.87
1347	pounds or less	\$13.46	\$12.56	\$13.67	\$17.19		\$12.88	\$14.38	\$13.49	\$17.19		\$13.88			\$14.09	\$12.71	\$14.42
	Excavator Operator, Over 50,000	÷						÷	÷						÷		
1348	pounds		\$15.23	\$13.52	\$17.04		\$17.71			\$16.99	\$18.80	\$16.22				\$14.53	\$13.52
1150	Flagger	\$9.30	\$9.10	\$8.50	\$10.28	\$8.81	\$9.45	\$8.70		\$10.06	\$9.71	\$9.03	\$8.81	\$9.08	\$9.90	\$10.33	\$8.10
	Form Builder/Setter, Structures	\$13.52	\$12.30	\$13.38	\$12.91	\$12.71	\$12.87	\$12.38	\$12.26	\$13.84	\$12.98	\$13.07	\$13.61	\$12.82	\$14.73	\$12.23	\$12.25
1160	Form Setter, Paving & Curb	\$12.36	\$12.16	\$13.93	\$11.83	\$10.71	\$12.94			\$13.16	\$12.54	\$11.33	\$10.69		\$13.33	\$12.34	\$13.93
1360	Foundation Drill Operator, Crawler Mounted				\$17.99					\$17.99						\$17.43	
1363	Foundation Drill Operator, Truck Mounted		\$16.86	\$22.05	\$21.51		\$16.93			\$21.07	\$20.20	\$20.76		\$17.54	\$21.39	\$15.89	\$22.05
	Front End Loader Operator,			·										÷			
1369	3 CY or Less	\$12.28	\$13.49	\$13.40	\$13.85		\$13.04	\$13.15	\$13.29	\$13.69	\$12.64	\$12.89			\$13.51	\$13.32	\$12.17
1372	Front End Loader Operator, Over 3 CY	\$12.77	\$13.69	\$12.33	\$14.96		\$13.21	\$12.86	\$13.57	\$14.72	\$13.75	\$12.32			\$13.19	\$13.17	\$13.02
1329	Joint Sealer																
1172	Laborer, Common	\$10.30	\$9.86	\$10.08	\$10.51	\$10.71	\$10.50	\$10.24	\$10.58	\$10.72	\$10.45	\$10.30	\$10.25	\$10.03	\$10.54	\$11.02	\$10.15
1175	Laborer, Utility	\$11.80	\$11.53	\$12.70	\$12.17	\$11.81	\$12.27	\$12.11	\$11.33	\$12.32	\$11.80	\$11.53	\$11.23	\$11.50	\$11.95	\$11.73	\$12.37
1346	Loader/Backhoe Operator	\$14.18	\$12.77	\$12.97	\$15.68		\$14.12			\$15.18	\$13.58	\$12.87		\$13.21	\$14.13	\$14.29	\$12.90
1187	Mechanic	\$20.14	\$15.47	\$17.47	\$17.74	\$17.00	\$17.10			\$17.68	\$18.94	\$18.58	\$17.00	\$16.61	\$18.46	\$16.96	\$17.47

	CLASSIFICATION DESCRIPTION	ZONE TX02 *(TX20240002)	ZONE TX03 *(TX20240003)	ZONE TX04 *(TX20240004)	ZONE TX05 *(TX20240005)	ZONE TX06 *(TX20240006)	ZONE TX07 *(TX20240007)	ZONE TX08 *(TX20240008)	ZONE TX24 *(TX20240024)	ZONE TX25 *(TX20240025)	ZONE TX27 *(TX20240027)	ZONE TX28 *(TX20240028)	ZONE TX29 *(TX20240029)	ZONE TX30 *(TX20240030)	ZONE TX37 *(TX20240037)	ZONE TX38 *(TX20240038)	ZONE TX42 *(TX20240042)
1380	Milling Machine Operator	\$15.54	\$14.64	\$12.22	\$14.29		\$14.18			\$14.32	\$14.35	\$12.86			\$14.75	\$13.53	\$12.80
1390	Motor Grader Operator, Fine Grade	\$17.49	\$16.52	\$16.88	\$17.12	\$18.37	\$18.51	\$16.69	\$16.13	\$17.19	\$18.35	\$17.07	\$17.74	\$17.47	\$17.08	\$15.69	\$20.01
	Motor Grader Operator, Rough	\$16.15	\$14.62	\$15.83	\$16.20	\$17.07	\$14.63	\$18.50		\$16.02	\$16.44	\$15.12	\$16.85	\$14.47	\$17.39	\$14.23	\$15.53
	Off Road Hauler		•••••	\$10.08	\$12.26		\$11.88			\$12.25		\$12.23			\$13.00	\$14.60	
	Painter, Structures					\$21.29	\$18.34						\$21.29			\$18.62	
	Pavement Marking Machine																
1396	Operator	\$16.42		\$13.10	\$13.55		\$19.17	\$12.01		\$13.63	\$14.60	\$13.17		\$16.65	\$10.54	\$11.18	\$13.10
1443	Percussion or Rotary Drill Operator																
-	Piledriver															\$14.95	
	Pipelayer		\$11.87	\$14.64	\$13.17	\$11.17	\$12.79		\$11.37	\$13.24	\$12.66	\$13.24	\$11.17	\$11.67		\$12.12	\$14.64
1384	Reclaimer/Pulverizer Operator	\$12.85			\$11.90		\$12.88			\$11.01		\$10.46					
1500	Reinforcing Steel Worker	\$13.50	\$14.07	\$17.53	\$16.17		\$14.00			\$16.18	\$12.74	\$15.83		\$17.10		\$15.15	\$17.72
1402	Roller Operator, Asphalt	\$10.95		\$11.96	\$13.29		\$12.78	\$11.61		\$13.08	\$12.36	\$11.68			\$11.71	\$11.95	\$11.50
1405	Roller Operator, Other	\$10.36		\$10.44	\$11.82		\$10.50	\$11.64		\$11.51	\$10.59	\$10.30		\$12.04	\$12.85	\$11.57	\$10.66
1411	Scraper Operator	\$10.61	\$11.07	\$10.85	\$12.88		\$12.27		\$11.12	\$12.96	\$11.88	\$12.43		\$11.22	\$13.95	\$13.47	\$10.89
1417	Self-Propelled Hammer Operator																
1194	Servicer	\$13.98	\$12.34	\$14.11	\$14.74		\$14.51	\$15.56	\$13.44	\$14.58	\$14.31	\$13.83		\$12.43	\$13.72	\$13.97	\$14.11
1513	Sign Erector																1
1708	Slurry Seal or Micro-Surfacing Machine Operator																
1341	Small Slipform Machine Operator									\$15.96							
1515	Spreader Box Operator	\$12.60		\$13.12	\$14.71		\$14.04			\$14.73	\$13.84	\$13.68		\$13.45	\$11.83	\$13.58	\$14.05
1705	Structural Steel Welder															\$12.85	
1509	Structural Steel Worker						\$19.29									\$14.39	1
1339	Subgrade Trimmer																
1143	Telecommunication Technician																
1145	Traffic Signal/Light Pole Worker						\$16.00										
1440	Trenching Machine Operator, Heavy						\$18.48										
1437	Trenching Machine Operator, Light																
1609	Truck Driver Lowboy-Float	\$14.46	\$13.63	\$13.41	\$15.00	\$15.93	\$15.66			\$16.24	\$16.39	\$14.30	\$16.62	\$15.63	\$14.28	\$16.03	\$13.41
1612	Truck Driver Transit-Mix				\$14.14					\$14.14							
1600	Truck Driver, Single Axle Truck Driver, Single or Tandem Axle	\$12.74	\$10.82	\$10.75	\$13.04	\$11.61	\$11.79	\$13.53	\$13.16	\$12.31	\$13.40	\$10.30	\$11.61		\$11.97	\$11.46	\$10.75
1606	Dump Truck	\$11.33	\$14.53	\$11.95	\$12.95		\$11.68		\$14.06	\$12.62	\$11.45	\$12.28		\$13.08	\$11.68	\$11.48	\$11.10
1607	Truck Driver, Tandem Axle Tractor withSemi Trailer	\$12.49	\$12.12	\$12.50	\$13.42		\$12.81	\$13.16		\$12.86	\$16.22	\$12.50			\$13.80	\$12.27	\$12.50
1441	Tunneling Machine Operator, Heavy																
	Tunneling Machine Operator, Light																
	Welder		\$14.02		\$14.86		\$15.97		\$13.74	\$14.84					\$13.78		
	Work Zone Barricade Servicer	\$10.30	\$12.88	\$11.46	\$11.70	\$11.57	\$11.85	\$10.77		\$11.68	\$12.20	\$11.22	\$11.51	\$12.96	\$10.54	\$11.67	\$11.76

Notes:

*Represents the USDOL wage decision.

Any worker employed on this project shall be paid at the rate of one and one half (1-1/2) times the regular rate for every hour worked in excess of forty (40) hours per week.

For reference, the titles and descriptions for the classifications listed here are detailed further in the AGC of Texas' *Standard Job Classifications and Descriptions for Highway, Heavy, Utilities, and Industrial Construction in Texas* posted on the AGC's Web site for any contractor.

TEXAS COUNTIES IDENTIFIED BY WAGE RATE ZONES: 2, 3, 4, 5, 6, 7, 8, 24, 25, 27, 28, 29, 30, 37, 38, 42

County Name	Zone	County Name	Zone	County Name	Zone	County Name	Zone
Anderson		Donley		Karnes		Reagan	37
Andrews		Duval		Kaufman		Real	37
Angelina		Eastland		Kendall	7	Red River	28
Aransas		Ector	2	Kenedy		Reeves	8
Archer		Edwards	8	Kent		Refugio	27
Armstrong	2	El Paso		Kerr	27	Roberts	37
Atascosa	7	Ellis		Kimble	37	Robertson	7
Austin		Erath		King		Rockwall	25
Bailey	-	Falls		Kinney	8	Runnels	37
Bandera	7	Fannin		Kleberg	27	Rusk	4
Bastrop	7	Fayette		Knox		Sabine	28
Baylor		Fisher		Lamar		San Augustine	28
Bee		Floyd		Lamb	37	San Jacinto	38
Bell	7	Foard		Lampasas	7	San Patricio	29
Bexar	7	Fort Bend		LaSalle		San Saba	37
Blanco		Franklin		Lavaca	27	Schleicher	37
Borden		Freestone		Lee	27	Scurry	37
Bosque		Frio		Leon		Shackelford	37
Bowie	4	Gaines		Liberty		Shelby	28
Brazoria	38	Galveston		Limestone	28	Sherman	37
Brazos	7	Garza		Lipscomb	-	Smith	4
Brewster	8	Gillespie		Live Oak		Somervell	28
Briscoe	37	Glasscock		Llano	27	Starr	30
Brooks	30	Goliad		Loving		Stephens	37
Brown	37	Gonzales		Lubbock	2	Sterling	37
Burleson	7	Gray		Lynn	37	Stonewall	37
Burnet	27	Grayson	25	Madison		Sutton	8
Caldwell	7	Gregg	4	Marion		Swisher	37
Calhoun	29	Grimes	28	Martin	37	Tarrant	25
Callahan	25	Guadalupe	7	Mason	27	Taylor	2
Cameron	3	Hale	37	Matagorda	27	Terrell	8
Camp		Hall		Maverick	30	Terry	37
Carson	2	Hamilton		McCulloch	37	Throckmorton	37
Cass		Hansford	37	McLennan	7	Titus	28
Castro		Hardeman		McMullen	30	Tom Green	2
Chambers		Hardin		Medina	7	Travis	7
Cherokee		Harris		Menard	37	Trinity	28
Childress		Harrison		Midland	2	Tyler	28
Clay		Hartley		Milam		Upshur	4
Cochran		Haskell	37	Mills	37	Upton	37
Coke		Hays	7	Mitchell		Uvalde	30
Coleman		Hemphill		Montague		Val Verde	8
Collin		Henderson		Montgomery		Van Zandt	28
Collingsworth	37	Hidalgo	3	Moore	37	Victoria	6
Colorado		Hill	28	Morris	-	Walker	28
Comal		Hockley		Motley		Waller	38
Comanche	-	Hood		Nacogdoches		Ward	37
Concho	37	Hopkins		Navarro	28	Washington	28
Cooke	37	Houston	28	Newton	28	Webb	3
Coryell	7	Howard	37	Nolan	37	Wharton	27
Cottle		Hudspeth	8	Nueces	29	Wheeler	37
Crane	37	Hunt	25	Ochiltree	37	Wichita	5
Crockett	8	Hutchinson	37	Oldham	37	Wilbarger	37
Crosby	2	Irion	2	Orange	38	Willacy	30
Culberson	8	Jack	28	Palo Pinto	28	Williamson	7
Dallam	37	Jackson	27	Panola		Wilson	7
Dallas	25	Jasper		Parker		Winkler	37
Dawson		Jeff Davis		Parmer		Wise	25
Deaf Smith	37	Jefferson		Pecos	8	Wood	28
Delta	25			Polk		Yoakum	37
Denton		Jim Wells		Potter	2	Young	37
DeWitt	27	Johnson		Presidio		Zapata	30
						7	
Dickens	37	Jones	25	Rains	28	Zavala	30

Special Provision to Item 000 Nondiscrimination

1. DESCRIPTION

All recipients of federal financial assistance are required to comply with various nondiscrimination laws including Title VI of the Civil Rights Act of 1964, as amended, (Title VI). Title VI forbids discrimination against anyone in the United States on the grounds of race, color, or national origin by any agency receiving federal funds.

Texas Department of Transportation, as a recipient of Federal financial assistance, and under Title VI and related statutes, ensures that no person shall on the grounds of race, religion (where the primary objective of the financial assistance is to provide employment per 42 U.S.C. § 2000d-3), color, national origin, sex, age or disability be excluded from participation in, be denied the benefits of, or otherwise be subjected to discrimination under any Department programs or activities.

2. DEFINITION OF TERMS

Where the term "contractor" appears in the following six nondiscrimination clauses, the term "contractor" is understood to include all parties to contracts or agreements with the Texas Department of Transportation.

3. NONDISCRIMINATION PROVISIONS

During the performance of this contract, the contractor agrees as follows:

- 3.1. **Compliance with Regulations**. The Contractor shall comply with the Regulations relative to nondiscrimination in Federally-assisted programs of the Department of Transportation (hereinafter, "DOT") Title 49, Code of Federal Regulations, Part 21, as they may be amended from time to time, (hereinafter referred to as the Regulations), which are herein incorporated by reference and made a part of this contract.
- 3.2. **Nondiscrimination**. The contractor, with regard to the work performed by it during the contract, shall not discriminate on the grounds of race, color, or national origin in the selection and retention of subcontractors, including procurements of materials and leases of equipment. The contractor shall not participate either directly or indirectly in the discrimination prohibited by section 21.5 of the Regulations, including employment practices when the contract covers a program set forth in Appendix B of the Regulations.
- 3.3. Solicitations for Subcontracts, Including Procurements of Materials and Equipment: In all solicitations either by competitive bidding or negotiation made by the contractor for work to be performed under a subcontract, including procurements of materials or leases of equipment, each potential subcontractor or supplier shall be notified by the contractor of the contractor's obligations under this contract and the Regulations relative to nondiscrimination on the grounds of race, color, or national origin.
- 3.4. Information and Reports: The contractor shall provide all information and reports required by the Regulations or directives issued pursuant thereto, and shall permit access to its books, records, accounts, other sources of information, and its facilities as may be determined by the Recipient or the Texas Department of Transportation to be pertinent to ascertain compliance with such Regulations, orders and instructions. Where any information required of a contractor is in the exclusive possession of another who fails or refuses to furnish this information the contractor shall so certify to the Recipient, or the Texas Department of Transportation as appropriate, and shall set forth what efforts it has made to obtain the information.

- 3.5. **Sanctions for Noncompliance**. In the event of the contractor's noncompliance with the nondiscrimination provisions of this contract, the Recipient shall impose such contract sanctions as it or the Texas Department of Transportation may determine to be appropriate, including, but not limited to:
 - withholding of payments to the contractor under the contract until the contractor complies, and/or
 - cancellation, termination or suspension of the contract, in whole or in part.
- 3.6. Incorporation of Provisions. The contractor shall include the provisions of paragraphs (1) through (6) in every subcontract, including procurements of materials and leases of equipment, unless exempt by the Regulations, or directives issued pursuant thereto. The contractor shall take such action with respect to any subcontract or procurement as the Recipient or the Texas Department of Transportation may direct as a means of enforcing such provisions including sanctions for non-compliance: Provided, however, that, in the event a contractor becomes involved in, or is threatened with, litigation with a subcontractor or supplier as a result of such direction, the contractor may request the Recipient to enter into such litigation to protect the interests of the Recipient, and, in addition, the contractor may request the United States to enter into such litigation to protect the interests of the United States.

Special Provision to Item 000 Small Business Enterprise in State Funded Projects

1. DESCRIPTION

The purpose of this Special Provision is to carry out the Texas Department of Transportation's policy of ensuring that Small Business Enterprise (SBE) has an opportunity to participate in the performance of contracts. If the SBE goal is greater than zero, Article A of this Special Provision shall apply to this Contract; otherwise, Article B of this Special Provision applies. The percentage goal for SBE participation in the work to be performed under this contract will be shown in the proposal.

2. DEFINITIONS

Small Business Enterprise (SBE) is a firm (including affiliates) certified by the Department whose annual gross receipts do not exceed the U.S. Small Business Administration's size standards for 4 consecutive years. Firms certified as Historically Underutilized Businesses (HUBs) by the Texas Comptroller of Public Accounts and as Disadvantaged Business Enterprises (DBEs) by the Texas Uniform Certification Program automatically qualify as SBEs.

2.1. Article A - SBE Goal is Greater than Zero.

- 2.1.1. **Policy**. The Department is committed to providing contracting opportunities for small businesses. In this regard, it is the Department's policy to develop and maintain a program in order to facilitate contracting opportunities for small businesses. Consequently, the requirements of the Department's Small Business Enterprise Program apply to this contract as follows:
- 2.1.1.1. The Contractor shall make a good faith effort to meet the SBE goal for this contract.
- 2.1.1.2. The Contractor and any Subcontractors shall not discriminate on the basis of race, color, national origin, age, disability or sex in the award and performance of this contract. These nondiscrimination requirements shall be incorporated into any subcontract and purchase order.
- 2.1.1.3. After a conditional award is made to the low bidder, the Department will determine the adequacy of a Contractor's efforts to meet the contract goal, as is outlined under Section 2, "Contractor's Responsibilities." If the requirements of Section 2 are met, the contract will be forwarded to the Contractor for execution.

The Contractor's performance, during the construction period of the contract in meeting the SBE goal, will be monitored by the Department.

- 2.1.2. **Contractor's Responsibilities**. These requirements must be satisfied by the Contractor. A SBE Contractor may satisfy the SBE requirements by performing at least 25% of the contract work with its own organization as defined elsewhere in the contract.
- 2.1.2.1. The Contractor shall submit a completed SBE Commitment Agreement Form for each SBE they intend to use to satisfy the SBE goal so as to arrive in the Department's Office of Civil Rights (OCR) in Austin, Texas not later than 5:00 p.m. on the 10th business day, excluding national holidays, after the conditional award of the contract. When requested, additional time, not to exceed 7 business days, excluding national holidays, may be granted based on documentation submitted by the Contractor.
- 2.1.2.2. A Contractor who cannot meet the contract goal, in whole or in part, shall document the good faith efforts taken to meet the SBE goal. The Department will consider as good faith efforts all documented explanations

that are submitted and that describe a Contractor's failure to meet a SBE goal or obtain SBE participation, including:

- 2.1.2.2.1. Advertising in general circulation, trade association, and/or minority/women focus media concerning subcontracting opportunities,
- 2.1.2.2.2. Dividing the contract work into reasonable portions in accordance with standard industry practices,
- 2.1.2.2.3. Documenting reasons for rejection or meeting with the rejected SBE to discuss the rejection,
- 2.1.2.2.4. Providing qualified SBEs with adequate information about bonding, insurance, plans, specifications, scope of work, and the requirements of the contract,
- 2.1.2.2.5. Negotiating in good faith with qualified SBEs, not rejecting qualified SBEs who are also the lowest responsive bidder, and;
- 2.1.2.2.6. Using the services of available minorities and women, community organizations, contractor groups, local, state and federal business assistance offices, and other organizations that provide support services to SBEs.
- 2.1.2.3. The good faith effort documentation is due at the time and place specified in Subarticle 2.(a). of this Special Provision. The Director of the DBE & SBE Programs Section will evaluate the Contractor's documentation. If it is determined that the Contractor has failed to meet the good faith effort requirements, the Contractor will be given an opportunity for reconsideration by the Department.
- 2.1.2.4. Should the bidder to whom the contract is conditionally awarded refuse, neglect or fail to meet the SBE goal and/or demonstrate to the Department's satisfaction sufficient efforts to obtain SBE participation, the proposal guaranty filed with the bid shall become the property of the State, not as a penalty, but as liquidated damages to the Department.
- 2.1.2.5. The Contractor must not terminate a SBE subcontractor submitted on a commitment agreement for a contract with an assigned goal without the prior written consent of the Department.
- 2.1.2.6. The Contractor shall designate a SBE contact person who will administer the Contractor's SBE program and who will be responsible for submitting reports, maintaining records, and documenting good faith efforts to use SBEs.
- 2.1.2.7. The Contractor must inform the Department of the representative's name, title and telephone number within 10 days of beginning work.
- 2.1.3. Eligibility of SBEs.
- 2.1.3.1. The Department certifies the eligibility of SBEs.
- 2.1.3.2. The Department maintains and makes available to interested parties a directory of certified SBEs.
- 2.1.3.3. Only firms certified at the time of letting or at the time the commitments are submitted are eligible to be used in the information furnished by the Contractor required under Section 2.(a) above.
- 2.1.3.4. Certified HUBs and DBEs are eligible as SBEs.
- 2.1.3.5. Small Business Size Regulations and Eligibility is referenced on e-CFR (Code of Federal Regulations), Title 13 – Business Credit and Assistance, Chapter 1 – Small Business Administration, Part 121 – Small Business Size Regulations, Subpart A – Size Eligibility Provisions and Standards.
- 2.1.4. **Determination of SBE Participation**. SBE participation shall be counted toward meeting the SBE goal in this contract in accordance with the following:

- 2.1.4.1. A Contractor will receive credit for all payments actually made to a SBE for work performed and costs incurred in accordance with the contract, including all subcontracted work.
- 2.1.4.2. A SBE Contractor or subcontractor may not subcontract more than 75% of a contract. The SBE shall perform not less than 25% of the value of the contract work with its own organization.
- 2.1.4.3. A SBE may lease equipment consistent with standard industry practice. A SBE may lease equipment from the prime contractor if a rental agreement, separate from the subcontract specifying the terms of the lease arrangement, is approved by the Department prior to the SBE starting the work in accordance with the following:
- 2.1.4.3.1. If the equipment is of a specialized nature, the lease may include the operator. If the practice is generally acceptable with the industry, the operator may remain on the lessor's payroll. The operator of the equipment shall be subject to the full control of the SBE, for a short term, and involve a specialized piece of heavy equipment readily available at the job site.
- 2.1.4.3.2. For equipment that is not specialized, the SBE shall provide the operator and be responsible for all payroll and labor compliance requirements.

2.1.5. Records and Reports.

2.1.5.1. The Contractor shall submit monthly reports, after work begins, on SBE payments, (including payments to HUBs and DBEs). The monthly reports are to be sent to the Area Engineer's office. These reports will be due within 15 days after the end of a calendar month.

These reports will be required until all SBE subcontracting or supply activity is completed. The "SBE Progress Report" is to be used for monthly reporting. Upon completion of the contract and prior to receiving the final payment, the Contractor shall submit the "SBE Final Report" to the Office of Civil Rights and a copy to the Area Engineer. These forms may be obtained from the Office of Civil Rights and reproduced as necessary. The Department may verify the amounts being reported as paid to SBEs by requesting, on a random basis, copies of invoices and cancelled checks paid to SBEs. When the SBE goal requirement is not met, documentation supporting Good Faith Efforts, as outlined in Section 2.(b) of this Special Provision, must be submitted with the Final Report.

- 2.1.5.2. SBE subcontractors and/or suppliers should be identified on the monthly report by SBE certification number, name and the amount of actual payment made to each during the monthly period. These reports are required regardless of whether or not SBE activity has occurred in the monthly reporting period.
- 2.1.5.3. All such records must be retained for a period of 3 years following completion of the contract work and shall be available at reasonable times and places for inspection by authorized representatives of the Department.
- 2.1.6. **Compliance of Contractor**. To ensure that SBE requirements of this contract are complied with, the Department will monitor the Contractor's efforts to involve SBEs during the performance of this contract. This will be accomplished by a review of monthly reports submitted by the Contractor indicating his progress in achieving the SBE contract goal and by compliance reviews conducted by the Department.

A Contractor's failure to comply with the requirements of this Special Provision shall constitute a material breach of this contract. In such a case, the Department reserves the right to employ remedies as the Department deems appropriate in the terms of the contract.

2.2. Article B - No SBE Goal.

2.2.1. **Policy**. It is the policy of the Department that SBEs shall have an opportunity to participate in the performance of contracts. Consequently, the requirements of the Department's Small Business Enterprise Program apply to this contract as specified in Section 2-5 of this Article.

- 2.2.2. **Contractor's Responsibilities**. If there is no SBE goal, the Contractor will offer SBEs an opportunity to participate in the performance of contracts and subcontracts.
- 2.2.3. **Prohibit Discrimination**. The Contractor and any subcontractor shall not discriminate on the basis of race, color, national origin, religion, age, disability or sex in the award and performance of contracts. These nondiscrimination requirements shall be incorporated into any subcontract and purchase order.

2.2.4. Records and Reports.

2.2.4.1. The Contractor shall submit reports on SBE (including HUB and DBE) payments. The reports are to be sent to the Area Engineer's office. These reports will be due annually by the 31st of August or at project completion, whichever comes first.

These reports will be required until all SBE subcontracting or supply activity is completed. The "SBE Progress Report" is to be used for reporting. Upon completion of the contract and prior to receiving the final payment, the Contractor shall submit the "SBE Final Report" to the Office of Civil Rights and a copy to the Area Engineer. These forms may be obtained from the Office of Civil Rights and reproduced as necessary. The Department may verify the amounts being reported as paid to SBEs by requesting copies of invoices and cancelled checks paid to SBEs on a random basis.

- 2.2.4.2. SBE subcontractors and/or suppliers should be identified on the report by SBE Certification Number, name and the amount of actual payment made.
- 2.2.4.3. All such records must be retained for a period of 3 years following completion of the contract work and shall be available at reasonable times and places for inspection by authorized representatives of the Department.

Special Provision 000 Certificate of Interested Parties (Form 1295)

Submit a notarized Form 1295, "Certificate of Interested Parties," in the following instances:

- at Contract execution for Contracts awarded by the Commission;
- at Contract execution for Contracts awarded by the District Engineer or Chief Engineer with an award amount of \$1,000,000 or more; at any time an existing Contract awarded by the District Engineer or Chief Engineer increases in value to \$1,000,000 or more due to changes in the Contract; at any time there is an increase of \$1,000,000 or more to an existing Contract (change orders, extensions, and renewals); or
- at any time there is a change to the information in Form 1295, when the form was filed for an existing Contract.

Form 1295 and instructions on completing and filing the form are available on the Texas Ethics Commission website.

Special Provision 000 Important Notice to Contractors

For Dollar Amount	of Original Contract	Dollar Amount of Daily Contract Administration Liquidated		
From More Than	To and including	Damages per Working Day		
0	1,000,000	618		
1,000,000	3,000,000	832		
3,000,000	5,000,000	940		
5,000,000	15,000,000	1317		
15,000,000	25,000,000	1718		
25,000,000	50,000,000	2411		
50,000,000	Over 50,000,000	4265		

In addition to the amount shown in Table 1, the Liquidated Damages will be increased by the amount shown in Item 8 of the General Notes for Road User Cost (RUC), when applicable.

Special Provision 000 Notice of Contractor Performance Evaluations

1. GENERAL

In accordance with Texas Transportation Code §223.012, the Engineer will evaluate Contractor performance based on quality, safety, and timeliness of the project.

2. DEFINITIONS

2.1. **Project Recovery Plan (PRP)**—a formal, enforceable plan developed by the Contractor, in consultation with the District, that documents the cause of noted quality, safety, and timeliness issues and specifies how the Contractor proposes to correct project-specific performance deficiencies.

In accordance with Title 43, Texas Administrative Code (TAC), §9.23, the District will request a PRP if the Contractor's performance on a project is below the Department's acceptable standards and will monitor the Contractor's compliance with the established plan.

2.2. **Corrective Action Plan (CAP)**—a formal, enforceable plan developed by the Contractor, and proposed for adoption by the Construction or Maintenance Division, that documents the cause of noted quality, safety, and timeliness issues and specifies how the Contractor proposes to correct statewide performance deficiencies.

In accordance with 43 TAC §9.23, the Division will request a CAP if the average of the Contractor's statewide final evaluation scores falls below the Department's acceptable standards for the review period and will monitor the Contractor's compliance with the established plan.

3. CONTRACTOR EVALUATIONS

In accordance with Title 43, Texas Administrative Code (TAC) §9.23, the Engineer will schedule evaluations at the following intervals, at minimum:

- Interim evaluations—at or within 30 days after the anniversary of the notice to proceed, for Contracts extending beyond 1 yr., and
- Final evaluation—upon project closeout.

In case of a takeover agreement, neither the Surety nor its performing Contractor will be evaluated.

In addition to regularly scheduled evaluations, the Engineer may schedule an interim evaluation at any time to formally communicate issues with quality, safety, or timeliness. Upon request, work with the Engineer to develop a PRP to document expectations for correcting deficiencies.

Comply with the PRP as directed. Failure to comply with the PRP may result in additional remedial actions available to the Engineer under Item 5, "Control of the Work." Failure to meet a PRP to the Engineer's satisfaction may result in immediate referral to the Performance Review Committee for consideration of further action against the Contractor.

The Engineer will consider and document any events outside the Contractor's control that contributed to the failure to meet performance standards or comply with a PRP, including consideration of sufficient time.

Follow the escalation ladder if there is a disagreement regarding an evaluation or disposition of a PRP. The Contractor may submit additional documentation pertaining to the dispute. The District Engineer's decision

on a Contractor's evaluation score and recommendation of action required in a PRP or follow up for noncompliance is final.

4. DIVISION OVERSIGHT

Upon request of the Construction or Maintenance Division, develop and submit for Division approval a proposed CAP to document expectations for correcting deficiencies in the performance of projects statewide.

Comply with the CAP as directed. The CAP may be modified at any time up to completion or resolution after written approval of the premise of change from the Division. Failure to meet an adopted or revised adopted CAP to the Division's satisfaction within 120 days will result in immediate referral to the Performance Review Committee for consideration of further action against the Contractor.

The Division will consider and document any events outside the Contractor's control that contributed to the failure to meet performance standards or comply with a CAP, including consideration of sufficient time and associated costs as appropriate.

5. PERFORMANCE REVIEW COMMITTEE

The Performance Review Committee, in accordance with 43 TAC §9.24, will review at minimum all final evaluations, history of compliance with PRPs, any adopted CAPs including agreed modifications, any information about events outside a Contractor's control contributing to the Contractor's performance, and any documentation submitted by the Contractor and may recommend one or more of the following actions:

- take no action,
- reduce the Contractor's bidding capacity,
- prohibit the Contractor from bidding on one or more projects,
- immediately suspend the Contractor from bidding for a specified period of time, by reducing the Contractor's bidding capacity to zero, or
- prohibit the Contractor from being awarded a Contract on which they are the apparent low bidder.

The Deputy Executive Director will determine any further action against the Contractor.

6. APPEALS PROCESS

In accordance with 43 TAC §9.25, the Contractor may appeal remedial actions determined by the Deputy Executive Director.

Item 2, "Instructions to Bidders," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 2.3., "Issuing Proposal Forms," is supplemented by the following:

the Bidder or affiliate of the Bidder that was originally determined as the apparent low Bidder on a project, but was deemed nonresponsive for failure to register or participate in the Department of Homeland Security's (DHS) E-Verify system as specified in Article 2.15., "Department of Homeland Security (DHS) E-Verify System," is prohibited from rebidding that specific project.

Article 2.7., "Nonresponsive Bid," is supplemented by the following:

the Bidder failed to participate in the Department of Homeland Security's (DHS) as specified in Article 2.15., "Department of Homeland Security (DHS) E-Verify System."

Article 2.15., "Department of Homeland Security (DHS) E-Verify System," is added.

The Department will not award a Contract to a Contractor that is not registered in the DHS E-Verify system. Remain active in E=Verify throughout the life of the contract. In addition, in accordance with paragraph six of Article 8.2, "Subcontracting," include this requirement in all subcontracts and require that subcontractors remain active in E-Verify until their work is completed.

If the apparent low Bidder does not appear on the DHS E-Verify system prior to award, the Department will notify the Contractor that they must submit documentation showing that they are compliant within 5-business days after the date the notification was sent. A Contractor who fails to comply or respond within the deadline will be declared non-responsive and the Department will execute the proposal guaranty. The proposal guaranty will become the property of the State, not as a penalty, but as liquidated damages. The Bidder forfeiting the proposal guaranty will not be considered in future proposals for the same work unless there has been a substantial change in the scope of the work.

The Department may recommend that the Commission:

- reject all bids, or
- award the Contract to the new apparent low Bidder, if the Department is able to verify the Bidder's participation in the DHS E-verify system. For the Bidder who is not registered in E-Verify, the Department will allow for one business day after notification to provide proof of registration.

If the Department is unable to verify the new apparent low Bidder's participation in the DHS E-Verify system within one calendar day:

- the new apparent low Bidder will not be deemed nonresponsive,
- the new apparent low Bidder's guaranty will not be forfeited,
- the Department will reject all bids, and
- the new apparent low Bidder will remain eligible to receive future proposals for the same project.

Item 2, "Instructions to Bidders" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 3., "Issuing Proposal Forms," is supplemented by the following:

The Electronic State Business Daily (ESBD), the Integrated Contractor Exchange (iCX) system, and the project proposal are the official sources of advertisement and bidding information for the State and Local Lettings. Bidders should bid the project using the information found therein, including any addenda. These sources take precedence over information from other sources, including TxDOT webpages, which are unofficial and intended for informational purposes only.

Item 2, "Instructions to Bidders," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 2.8.2., "Proposal Guaranty," third paragraph is replaced by the following.

It is the Bidder's responsibility to ensure the electronic bid bond is issued in the name or Department vendor identification numbers of the Bidder or Bidders.

Item 2, "Instructions to Bidders," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 2.3., "Issuing Proposal Forms," is supplemented by the following:

the Bidder or affiliate of the Bidder that was originally determined as the apparent low Bidder on a project but was deemed nonresponsive for failure to register or participate in the Department of Homeland Security's (DHS) E-Verify system as specified in Article 2.15., "Department of Homeland Security (DHS) E-Verify System," is prohibited from rebidding that specific project.

Article 2.7., "Nonresponsive Bid," is supplemented by the following:

the Bidder failed to participate in the Department of Homeland Security's (DHS) as specified in Article 2.15., "Department of Homeland Security (DHS) E-Verify System."

Article 2.15., "Department of Homeland Security (DHS) E-Verify System," is added.

The Department will not award a Contract to a Contractor that is not registered in the DHS E-Verify system. Remain active in E-Verify throughout the life of the Contract. In addition, in accordance with paragraph six of Article 8.2., "Subcontracting," include this requirement in all subcontracts and require that subcontractors remain active in E-Verify until their work is completed.

If the apparent low Bidder does not appear in the DHS E-Verify system before award, the Contractor must submit documentation showing that they are compliant within 5 calendar days after bid opening. A Contractor that fails to comply or respond within the deadline will be declared nonresponsive. The Bidder forfeiting the proposal guaranty will not be considered in future proposals for the same work unless there has been a substantial change in the scope of the work.

The Department may recommend that the Commission:

- reject all bids, or
- award the Contract to the new apparent low Bidder, if the Department is able to verify the Bidder's participation in the DHS E-Verify system.

If the Department is unable to verify the new apparent low Bidder's participation in the DHS E-Verify system:

- the new apparent low Bidder will not be deemed nonresponsive,
- the new apparent low Bidder's guaranty will not be forfeited,
- the Department will reject all bids,
- the new apparent low Bidder will remain eligible to receive future proposals for the same project, and
- the proposal guaranty of the original low bidder will become the property of the State, not as a penalty, but as liquidated damages.

Special Provision to Item 3 Award and Execution Contract

Item 3, Award and Execution of Contract," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 4.3, "Insurance." The first sentence is voided and replaced by the following:

For construction and building Contracts, submit a certificate of insurance showing coverages in accordance with Contract requirements. For routine maintenance Contracts, refer to Article 8, "Beginning of Work."

Article 8, "Beginning of Work." The first sentence is supplemented by the following:

For a routine maintenance Contract, do not begin work until a certificate of insurance showing coverages in accordance with the Contract requirements is provided and accepted.

Special Provision to Item 3 Award and Execution of Contract

Item 3, "Award and Execution of Contract" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 4.3 "Insurance" is being amended by the following:

Table 2 Insurance Requirements							
Type of Insurance	Amount of Coverage						
Commercial General Liability Insurance	Not Less Than:						
	\$600,000 each occurrence						
Business Automobile Policy	Not Less Than:						
	\$600,000 combined single limit						
Workers' Compensation	Not Less Than:						
	Statutory						
All Risk Builder's Risk Insurance	100% of Contract Price						
(For building-facilities contracts only)							

Special Provision to Item 5 Control of the Work

Item 5, "Control of the Work," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 5.1, "Authority of Engineer," is voided and replaced by the following.

The Engineer has the authority to observe, test, inspect, approve, and accept the work. The Engineer decides all questions about the quality and acceptability of materials, work performed, work progress, Contract interpretations, and acceptable Contract fulfillment. The Engineer has the authority to enforce and make effective these decisions.

The Engineer acts as a referee in all questions arising under the terms of the Contract. The Engineer's decisions will be final and binding.

The Engineer will pursue and document actions against the Contractor as warranted to address Contract performance issues. Contract remedies include, but are not limited to, the following:

- conducting interim performance evaluations requiring a Project Recovery Plan, in accordance with Title 43, Texas Administrative Code (TAC) §9.23,
- requiring the Contractor to remove and replace defective work, or reducing payment for defective work,
- removing an individual from the project,
- suspending the work without suspending working day charges,
- assessing standard liquidated damages to recover the Department's administrative costs, including additional projectspecific liquidated damages when specified in the Contract in accordance with 43 TAC §9.22,
- withholding estimates,
- declaring the Contractor to be in default of the Contract, and
- in case of a Contractor's failure to meet a Project Recovery Plan, referring the issue directly to the Performance Review Committee for consideration of further action against the Contractor in accordance with 43 TAC §9.24.

The Engineer will consider and document any events outside the Contractor's control that contributed to the failure to meet performance standards, including consideration of sufficient time.

Follow the issue escalation ladder if there is disagreement regarding the application of Contract remedies.

Special Provision to Item 5 Control of the Work

Item 5, "Control of the Work" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 5.4, "Coordination of Plans, Specifications, and Special Provisions," the last sentence of the last paragraph is replaced by the following:

Failure to promptly notify the Engineer will constitute a waiver of all contract claims against the Department for misunderstandings or ambiguities that result from the errors, omissions, or discrepancies.

Special Provision to Item 6 Control of Materials

For this project, Item 6, "Control of Materials," of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Article 4., "Sampling, Testing, and Inspection," is supplemented by the following:

Meet with the Engineer and choose either the Department or a Department-selected Commercial Lab (CL) for conducting the subset of project-level sampling and testing shown in Table 1, "Select Guide Schedule Sampling and Testing." Selection may be made on a test by test basis. CLs will meet the testing turnaround times shown (includes test time and time for travel/sampling and reporting) and in all cases issue test reports as soon as possible.

If the Contractor chooses a Department-selected CL for any Table 1 sampling and testing:

- notify the Engineer, District Lab, and the CL of project scheduling that may require CL testing;
- provide the Engineer, District Lab, and CL at least 24 hours' notice by phone and e-mail;
- reimburse the Department for CL Table 1 testing using the contract fee schedule for the CL (including mileage and travel/standby time) at the minimum guide schedule testing frequencies;
- reimburse the Department for CL Table 1 testing above the minimum guide schedule frequencies for retesting when minimum frequency testing results in failures to meet specification limits;
- agree with the Engineer and CL upon a policy regarding notification for testing services;
- give any cancellation notice to the Engineer, District Lab, and CL by phone and e-mail;
- reimburse the Department a \$150 cancellation fee to cover technician time and mileage charges for
 previously scheduled work cancelled without adequate notice, which resulted in mobilization of
 technician and/or equipment by the CL; and
- all CL charges will be reimbursed to the Department by a deduction from the Contractor's monthly pay estimate.

If the CL does not meet the Table 1 turnaround times, testing charge to the Contractor will be reduced by 50% for the first late day and an additional 5% for each succeeding late day.

Approved CL project testing above the minimum testing frequencies in the Guide Schedule of Sampling and Testing, and not as the result of failing tests, will be paid by the Department.

Other project-level Guide Schedule sampling and testing not shown on Table 1 will be the responsibility of the Department.

 Table 1

 Select Guide Schedule Sampling and Testing (Note 1)

TxDOT Test	Test Description	Turn- Around Time (Calendar days)
	SOILS/BASE	
Tex-101-E	Preparation of Soil and Flexible Base Materials for Testing (included in other tests)	
Tex-104-E	Liquid Limit of Soils (included in 106-E)	
Tex-105-E	Plastic Limit of Soils (included in 106-E)	
Tex-106-E	Calculating the Plasticity Index of Soils	7
Tex-110-E	Particle Size Analysis of Soils	6
Tex-113-E	Moisture-Density Relationship of Base Materials	7
Tex-114-E	Moisture-Density Relationship of Subgrade and Embankment Soil	7
Tex-115-E	Field Method for In-Place Density of Soils and Base Materials	2
Tex-116-E	Ball Mill Method for the Disintegration of Flexible Base Material	5
Tex-117-E, Part II	Triaxial Compression Tests For Disturbed Soils and Base Materials (Part II)	6
Tex-113-E w/ Tex-117-E	Moisture-Density Relationship of Base Materials with Triaxial Compression Tests For Disturbed Soils and Base Materials (Part II)	10
Tex-140-E	Measuring Thickness of Pavement Layer	2
Tex-145-E	Determining Sulfate Content in Soils - Colorimetric Method	4
	HOT MIX ASPHALT	
Tex-200-F	Sieve Analysis of Fine and Coarse Aggregate (dry, from ignition oven with known correction factors)	1 (Note 2)
Tex-203-F	Sand Equivalent Test	3
Tex-206-F, w/ Tex-207-F, Part I, w/ Tex-227-F	(Lab-Molded Density of Production Mixture – Texas Gyratory) Method of Compacting Test Specimens of Bituminous Mixtures with Density of Compacted Bituminous Mixtures, Part I - Bulk Specific Gravity of Compacted Bituminous Mixtures, with Theoretical Maximum Specific Gravity of Bituminous Mixtures	1 (Note 2)
Tex-207-F, Part I &/or Part VI	(In-Place Air Voids of Roadway Cores) Density of Compacted Bituminous Mixtures, Part I- Bulk Specific Gravity of Compacted Bituminous Mixtures &/or Part VI - Bulk Specific Gravity of Compacted Bituminous Mixtures Using the Vacuum Method	1 (Note 2)
Tex-207-F, Part V	Density of Compacted Bituminous Mixtures, Part V- Determining Mat Segregation using a Density-Testing Gauge	3
Tex-207-F, Part VII	Density of Compacted Bituminous Mixtures, Part VII - Determining Longitudinal Joint Density using a Density-Testing Gauge	4
Tex-212-F	Moisture Content of Bituminous Mixtures	3
Tex-217-F	Deleterious Material and Decantation Test for Coarse Aggregate	4
Tex-221-F	Sampling Aggregate for Bituminous Mixtures, Surface Treatments, and LRA (included in other tests)	
Tex-222-F	Sampling Bituminous Mixtures (included in other tests)	
Tex-224-F	Determination of Flakiness Index	3
Tex-226-F	Indirect Tensile Strength Test (production mix)	4
Tex-235-F	Determining Draindown Characteristics in Bituminous Materials	3
Tex-236-F (Correction Factors)	Asphalt Content from Asphalt Paving Mixtures by the Ignition Method (Determining Correction Factors)	4
Tex-236-F	Asphalt Content from Asphalt Paving Mixtures by the Ignition Method (Production Mixture)	1 (Note 2)
Tex-241-F w/ Tex-207-F, Part I, w/ Tex-227-F	(Lab-Molded Density of Production Mixture – Superpave Gyratory) Superpave Gyratory Compacting of Specimens of Bituminous Mixtures (production mixture) with Density of Compacted Bituminous Mixtures, Part I - Part I - Bulk Specific Gravity of Compacted Bituminous Mixtures, with Theoretical Maximum Specific Gravity of Bituminous Mixtures	1 (Note 2)
Tex-242-F	Hamburg Wheel-Tracking Test (production mix, molded samples)	3
Tex-244-F	Thermal Profile of Hot Mix Asphalt	1
Tex-246-F	Permeability of Water Flow of Hot Mix Asphalt	3
Tex-280-F	Flat and Elongated Particles	3
Tex-530-C	Effect of Water on Bituminous Paving Mixtures (production mix)	4

AGGREGATES							
Tex-400-A Sampling Flexible Base, Stone, Gravel, Sand, and Mineral Aggregates							
Tex-410-A Abrasion of Coarse Aggregate Using the Los Angeles Machine 5							
Tex-411-A	Tex-411-A Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate 12						
Tex-461-A	Tex-461-A Degradation of Coarse Aggregate by Micro-Deval Abrasion						
	CHEMICAL						
Tex-612-J	Acid Insoluble Residue for Fine Aggregate	4					
	GENERAL						
HMA Production Sp	HMA Production Specialist [TxAPA – Level 1-A] (\$/hr)						
HMA Roadway Spec	HMA Roadway Specialist [TxAPA – Level 1-B] (\$/hr)						
Technician Travel/S	Technician Travel/Standby Time (\$/hr)						
Per Diem (\$/day - m	Per Diem (\$/day – meals and lodging)						
Mileage Rate (\$/mile	Mileage Rate (\$/mile from closest CL location)						
Note 1– Turn-Arou	Note 1– Turn-Around Time includes test time and time for travel/sampling and reporting.						

Note 1 – run-Around time includes test time and time for travel/sampling and reporting. Note 2 – These tests require turn-around times meeting the governing specifications. Provide test results within the stated turn-around time. CL is allowed one additional day to provide the signed and sealed report.

Special Provision to Item 6 Control of Materials

Item 6, "Control of Materials" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 6.10., "Hazardous Materials," is voided and replaced by the following:

Comply with the requirements of Article 7.12., "Responsibility for Hazardous Materials."

Notify the Engineer immediately when a visual observation or odor indicates that materials on sites owned or controlled by the Department may contain hazardous materials. Except as noted herein, the Department is responsible for testing, removing, and disposing of hazardous materials not introduced by the Contractor. The Engineer may suspend work wholly or in part during the testing, removing, or disposing of hazardous materials, except in the case where hazardous materials are introduced by the Contractor.

Use materials that are free of hazardous materials. Notify the Engineer immediately if materials are suspected to contain hazardous materials. If materials delivered to the project by the Contractor are suspected to contain hazardous materials, have an approved commercial laboratory test the materials for the presence of hazardous materials as approved. Remove, remediate, and dispose of any of these materials found to contain hazardous materials. The work required to comply with this section will be at the Contractor's expense if materials are found to contain hazardous materials. Working day charges will not be suspended and extensions of working days will not be granted for activities related to handling hazardous material introduced by the Contractor. If suspected materials are not found to contain hazardous materials, the Department will reimburse the Contractor for hazardous materials testing and will adjust working day charges if the Contractor can show that this work impacted the critical path.

10.1. Painted Steel Requirements. Coatings on existing steel contain hazardous materials unless otherwise shown on the plans. Remove paint and dispose of steel coated with paint containing hazardous materials is in accordance with the following:

10.1.1. Removing Paint From Steel For contracts that are specifically for painting steel, Item 446, "Field Cleaning and Painting Steel" will be included as a pay item. Perform work in accordance with that item.

For projects where paint must be removed to allow for the dismantling of steel or to perform other work, the Department will provide for a separate contractor (third party) to remove paint containing hazardous materials prior to or during the Contract. Remove paint covering existing steel shown not to contain hazardous materials in accordance with Item 446, "Field Cleaning and Painting Steel."

10.1.2. Removal and Disposal of Painted Steel. For steel able to be dismantled by unbolting, paint removal will not be performed by the Department. The Department will remove paint, at locations shown on the plans or as agreed, for the Contractor's cutting and dismantling purposes. Utilize Department cleaned locations for dismantling when provided or provide own means of dismantling at other locations.

Painted steel to be retained by the Department will be shown on the plans. For painted steel that contains hazardous materials, dispose of the painted steel at a steel recycling or smelting facility unless otherwise shown on the plans. Maintain and make available to the Engineer invoices and other records obtained from the facility showing the received weight of the steel and the facility name. Dispose of steel that does not contain hazardous material coatings in accordance with federal, state and local regulations.

10.2. Asbestos Requirements. The plans will indicate locations or elements where asbestos containing materials (ACM) are known to be present. Where ACM is known to exist or where previously unknown ACM has been found, the Department will arrange for abatement by a separate contractor prior to or during the Contract. Notify the Engineer of proposed dates of demolition or removal of structural elements with ACM at least 60 days before beginning work to allow the Department sufficient time for abatement.

The Department of State Health Services (DSHS), Asbestos Programs Branch, is responsible for administering the requirements of the National Emissions Standards for Hazardous Air Pollutants, 40 CFR Part 61, Subpart M and the Texas Asbestos Health Protection Rules (TAHPR). Based on EPA guidance and regulatory background information, bridges are considered to be a regulated "facility" under NESHAP. Therefore, federal standards for demolition and renovation apply.

The Department is required to notify the DSHS at least 10 working days (by postmarked date) before initiating demolition or renovation of each structure or load bearing member shown on the plans. If the actual demolition or renovation date is changed or delayed, notify the Engineer in writing of the revised dates in sufficient time to allow for the Department's notification to DSHS to be postmarked at least 10 days in advance of the actual work.

Failure to provide the above information may require the temporary suspension of work under Article 8.4., "Temporary Suspension of Work or Working Day Charges," due to reasons under the control of the Contractor. The Department retains the right to determine the actual advance notice needed for the change in date to address post office business days and staff availability.

10.3. Lead Abatement. Provide traffic control as shown on the plans, and coordinate and cooperate with the third party and the Department for managing or removing hazardous materials. Work for the traffic control shown on the plans and coordination work will not be paid for directly but will be subsidiary to pertinent Items.

Special Provision to Item 7 Legal Relations and Responsibilities

Item 7, "Legal Relations and Responsibilities," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 7.7.2., "Texas Pollutant Discharge Elimination System (TPDES) Permits and Storm Water Pollution Prevention Plans (SWP3)," is voided and replaced by the following:

- 7.2. Texas Pollution Discharge Elimination System (TPDES) Permits and Storm Water Pollution Prevention Plans (SWP3).
- 7.2.1. Projects with less than one acre of soil disturbance including required associated project specific locations (PSL's) per TPDES GP TXR 150000.

No posting or filing will be required for soil disturbances within the right of way. Adhere to the requirements of the SWP3.

7.2.2. Projects with one acre but less than five acres of soil disturbance including required associated PSL's per TPDES GP TXR 150000.

The Department will be considered a primary operator for <u>Operational Control Over Plans and Specifications</u> as defined in TPDES GP TXR 150000 for construction activity in the right of way. The Department will post a small site notice along with other requirements as defined in TPDES GP TXR 150000 as the entity of having operational control over plans and specifications for work shown on the plans in the right of way.

The Contractor will be considered a Primary Operator for <u>Day-to-Day Operational Control</u> as defined in TPDES GP TXR 150000 for construction activity in the right of way. In addition to the Department's actions, the Contractor will post a small site notice along with other requirements as defined in TPDES GP TXR 150000 as the entity of having day-to-day operational control of the work shown on the plans in the right of way. This is in addition to the Contractor being responsible for TPDES GP TXR 150000 requirements for on- right of way and off- right of way PSL's. Adhere to all requirements of the SWP3 as shown on the plans. The Contractor will be responsible for Implement the SWP3 for the project site in accordance with the plans and specifications, TPDES General Permit TXR150000, and as directed.

7.2.3. Projects with 5 acres or more of soil disturbance including required associated PSL's per TPDES GP TXR 150000.

The Department will be considered a primary operator for <u>Operational Control Over Plans and Specifications</u> as defined in TPDES GP TXR 150000 for construction activities in the right of way. The Department will post a large site notice, file a notice of intent (NOI), notice of change (NOC), if applicable, and a notice of termination (NOT) along with other requirements per TPDES GP TXR 150000 as the entity having operational control over plans and specifications for work shown on the plans in the right of way.

The Contractor will be considered a primary operator for <u>Day-to-Day Operational Control</u> as defined in TPDES GP TXR 150000 for construction activities in the right of way. In addition to the Department's actions, the Contractor shall file a NOI, NOC, if applicable, and NOT and post a large site notice along with other requirements as the entity of having day-to-day operational control of the work shown on the plans in the right of way. This is in addition to the Contractor

being responsible for TPDES GP TXR 150000 requirements for on- right of way and off- right of way PSL's. Adhere to all requirements of the SWP3 as shown on the plans.

Special Provision to Item 7 Legal Relations and Responsibilities

Item 7, "Legal Relations and Responsibilities" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 19.1., Minimum Wage Requirements for Federally Funded Contracts. The second paragraph is voided and replaced by the following:

Submit electronic payroll records to the Engineer using the Department's payroll system.

Section 19.2., Minimum Wage Requirements for State Funded Contracts. The second paragraph is voided and replaced by the following:

Submit electronic payroll records to the Engineer using the Department's payroll system.

Special Provision to Item 7 Legal Relations and Responsibilities

Item 7, "Legal Relations and Responsibilities," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 7.2.4., "Public Safety and Convenience." The first paragraph is deleted and replaced by the following.

Ensure the safety and convenience of the public and property as provided in the Contract and as directed. Keep existing roadways open to traffic or construct and maintain detours and temporary structures for safe public travel. Manage construction to minimize disruption to traffic. Maintain the roadway in a good and passable condition, including proper drainage and provide for ingress and egress to adjacent property.

If the construction of the project requires the closing of a highway, as directed, coordinate the closure with the Engineer and work to ensure all lanes and ramps possible are available during peak traffic periods before, during, and after significant traffic generator events to avoid any adverse economic impact on the municipalities during:

- dates or events as shown on the plans, and
- other dates as directed.

Special Provision to Item 007 Legal Relations and Responsibilities

Item 7, "Legal Relations and Responsibilities," of the Standard Specifications is amended with respect to the clauses cited below.

Section 2.6., "Barricades, Signs, and Traffic Handling," the first paragraph is voided and replaced by the following:

2.6. **Barricades, Signs, and Traffic Handling.** Comply with the requirements of Item 502 "Barricades, Signs, and Traffic Handling," and as directed. Provide traffic control devices that conform to the details shown on the plans, the TMUTCD, and the Department's Compliant Work Zone Traffic Control Device List maintained by the Traffic Safety Division. When authorized or directed, provide additional signs or traffic control devices not required by the plans.

Section 2.6.1., "Contractor Responsible Person and Alternative," is voided and replaced by the following:

2.6.1. **Contractor Responsible Person and Alternative.** Designate in writing, a Contractor's Responsible Person (CRP) and an alternate to be the representative of the Contractor who is responsible for taking or directing corrective measures regarding the traffic control. The CRP or alternate must be accessible by phone 24 hr. per day and able to respond when notified. The CRP and alternate must comply with the requirements of Section 2.6.5., "Training."

Section 2.6.2, "Flaggers," the first paragraph is voided and replaced by the following:

2.6.2. **Flaggers.** Designate in writing, a flagger instructor who will serve as a flagging supervisor and is responsible for training and assuring that all flaggers are qualified to perform flagging duties. Certify to the Engineer that all flaggers will be trained and make available upon request a list of flaggers trained to perform flagging duties.

Section 2.6.5, "Training," is voided and replaced by the following:

2.6.5. **Training.** Train workers involved with the traffic control using Department-approved training as shown on the "Traffic Control Training" Material Producer List.

> Coordinate enrollment, pay associated fees, and successfully complete Department-approved training or Contractor-developed training. Training is valid for the period prescribed by the provider. Except for law enforcement personnel training, refresher training is required every 4 yr. from the date of completion unless otherwise specified by the course provider. The Engineer may require training at a frequency instead of the period prescribed based on the Department's needs. Training and associated fees will not be measured or paid for directly but are considered subsidiary to pertinent Items.

> Certify to the Engineer that workers involved in traffic control and other work zone personnel have been trained and make available upon request a copy of the certification of completion to the Engineer. Ensure the following is included in the certification of completion:

- name of provider and course title,
- name of participant,
- date of completion, and
- date of expiration.

Where Contractor-developed training or a Department-approved training course does not produce a certification, maintain a log of attendees. Make the log available upon request. Ensure the log is legible and includes the following:

- printed name and signature of participant,
- name and title of trainer, and
- date of training.
- 2.6.5.1. **Contractor-developed Training.** Develop and deliver Contractor-developed training meeting the minimum requirements established by the Department. The outline for this training must be submitted to the Engineer for approval at the preconstruction meeting. The CRP or designated alternate may deliver the training instead of the Department-approved training. The work performed and materials furnished to develop and deliver the training will not be measured or paid for directly but will be considered subsidiary to pertinent ltems.
- 2.6.5.1.1. Flagger Training Minimum Requirements. A Contractor's certified flagging instructor is permitted to train other flaggers.
- 2.6.5.1.2. **Optional Contractor-developed Training for Other Work Zone Personnel.** For other work zone personnel, the Contractor may provide training meeting the curriculum shown below instead of Department-approved training.

Minimum curriculum for Contractor-provided training is as follows:

Contractor-developed training must provide information on the use of personnel protection equipment, occupational hazards and health risks, and other pertinent topics related to traffic management. The type and amount of training will depend on the job duties and responsibilities. Develop training applicable to the work being performed. Develop training to include the following topics.

- The Life You Save May Be Your Own (or other similar company safety motto).
- Purpose of the training.
 - It's the Law.
 - To make work zones safer for workers and motorist.
 - To understand what is needed for traffic control.
 - To save lives including your own.
- Personal and Co-Worker Safety.
 - High Visibility Safety Apparel. Discuss compliant requirements; inspect regularly for fading and reduced reflective properties; if night operations are required, discuss the additional and appropriate required apparel in addition to special night work risks; if moving operations are underway, discuss appropriate safety measures specific to the situation and traffic control plan.
 - Blind Areas. A blind area is the area around a vehicle or piece of construction equipment not
 visible to the operators, either by line of sight or indirectly by mirrors. Discuss the "Circle of Safety"
 around equipment and vehicles; use of spotters; maintain eye contact with equipment operators;
 and use of hand signals.
 - Runovers and Backovers. Remain alert at all times; keep a safe distance from traffic; avoid turning your back to traffic and if you must then use a spotter; and stay behind protective barriers, whenever possible. Note: It is not safe to sit on or lean against a concrete barrier, these barriers can deflect four plus feet when struck by a vehicle.
 - Look out for each other, warn co-workers.
 - Be courteous to motorists.
 - Do not run across active roadways.
 - Workers must obey traffic laws and drive courteously while operating vehicles in the work zones.
 - Workers must be made aware of company distracted driving policies.
- Night Time Operations. Focus should be placed on projects with a nighttime element.

- **Traffic Control Training.** Basics of Traffic Control.
 - Identify work zone traffic control supervisor and other appropriate persons to report issues to when they arise.
 - Emphasize that work zone traffic control devices must be in clean and in undamaged condition. If devices have been hit but not damaged, put back in their correct place and report to traffic control supervisor. If devices have been damaged, replace with new one and report to traffic control supervisor. If devices are dirty, faded or have missing or damaged reflective tape clean or replace and report to traffic control supervisor. Show examples of non-acceptable device conditions. Discuss various types of traffic control devices to be used and where spacing requirements can be found.
 - **Channelizing Devices and Barricades with Slanted Stripes.** Stripes are to slant in the direction you want traffic to stay or move to; demonstrate this with a device.
 - Traffic Queuing. Workers must be made aware of traffic queuing and the dangers created by it. Workers must be instructed to immediately notify the traffic control supervisor and other supervisory personnel if traffic is queuing beyond advance warning sign and devices or construction limits.
 - Signs. Signs must be straight and not leaning. Report problems to the traffic control supervisor or other as designated for immediate repair. Covered signs must be fully covered. If covers are damaged or out of place, report to traffic control supervisor or other as designated.

Special Provision to Item 7 Legal Relations and Responsibilities

Item 7, "Legal Relations and Responsibilities" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 7.20., "Security Incidents," is added.

- 20.1. Reporting of Security Incidents. Immediately notify the Department's <u>Cyber Security Operations Center</u> (<u>CSOC</u>) via the Report Cybersecurity Incident Page on www.txdot.gov, of any potential cybersecurity incident or breach involving Department data. A breach of system security is the unauthorized acquisition of computerized data that compromises the security, confidentiality, or integrity of sensitive personal information maintained by a person, including data that is encrypted if the person accessing the data has the key required to decrypt the data.
- **20.2.** Liability for costs incurred. The Department reserves the right to hold the Contractor liable for all costs incurred by the Department to resolve a security incident introduced by the Contractor, their Subcontractors, or their Suppliers.

Item 8, "Prosecution and Progress" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 8.1., "Prosecution of Work." The first sentence of the first paragraph is voided and replaced by the following:

Begin work 60 calendar days after the authorization date to begin work. Do not begin work before or after this period unless authorized in writing by the Engineer.

Item 8, "Prosecution and Progress" of the Standard Specification is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 8.2., "Subcontracting," is supplemented by the following paragraph, which is added as paragraph six to this article:

The Contractor certifies by signing the Contract that the Contractor will not enter into any subcontract with a subcontractor that is not registered in the Department of Homeland Security's (DHS) E-Verify system. Require that all subcontractors working on the project register and require that all subcontractors remain active in the DHS E-Verify system until their work is complete on the project.

Item 8, "Prosecution and Progress" of the Standard Specifications is amended with respect to the clause cited below. No other clauses or requirements of this Item are waived or changed.

Article 8.7.2., "Wrongful Default," is revised and replaced by the following:

If it is determined after the Contractor is declared in default, that the Contractor was not in default, the rights and obligations of all parties will be the same as if termination had been issued for the convenience of the public as provided in Article 8.8 "Termination of Contract."

Item 8, "Prosecution and Progress," of the Standard Specifications, is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 8.6., "Failure to Complete Work on Time," is supplemented by the following:

8.6.1. Lane Closure Assessment Fees.

Monetary assessment, as shown on the plans, will be made against the Contractor for any lane closure or obstruction that overlaps into the peak hour traffic for each time increment defined on the plans or portion thereof, per lane, regardless of the length of lane closure or obstruction.

- 8.6.1.1. Definition of Terms. For this Contract, the following definitions apply:
- **8.6.1.1.1. Time increment.** Any continuous defined increment of time period or portion thereof for a period beginning at that point when lanes are closed or obstructed by the Contractor's operations.
- **8.6.1.1.2.** Assessment Fee. The amount shown on the proposal for each defined time increment, representing the average cost of interference and inconvenience to the road user for each lane closed or obstructed during peak hour traffic. The Engineer may allow a proportional fee assessment for closures that do not involve an entire defined time increment.
- **8.6.1.1.3. Closure or Obstruction.** When the Contractor's operations result in a reduced lane width of the travel way or shoulder less than that specified on the plan documents.
- **8.6.1.1.4. Peak Hour Traffic Times.** Schedule of days and times described in the General Notes, when lane closures or obstructions are not allowed.
- 8.6.1.2. Fee Calculation and Collection. The assessment fee will be deducted from the amount due to the Contractor on the monthly construction estimate, and thus retained by the Department. The Engineer will determine the time of overlap of lane closures or obstructions for calculating the assessment fee. The assessment fee is based on road user costs and is assessed not as a penalty, but for added expense incurred by the traveling public.

Item 8, "Prosecution and Progress" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 3., "Computation of Contract Time for Completion." The second paragraph is voided and replaced by the following:

The development of the conceptual time determination is intended to establish the number of working days on the Contract. Upon request, the Engineer will provide the conceptual time determination schedule to the Contractor for informational purposes only. The schedule assumes generic resources, production rates, sequences of construction, and average weather conditions based on historic data. Schedule labor, equipment, procurement of materials, subcontractor work, and all other necessary means to prosecute the work within the number of working days specified by the Contract.

Special Provision to Item 009 Measurement and Payment

Item 009 "Measurement and Payment" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 9.5., "PROGRESS PAYMENTS" is supplemented with the following:

It is the Department's desire to pay a Contractor for work through the last working day of the month; however, the use of early cut-off dates for monthly estimates and MOH is a project management practice to manage workload at the Area Office level. Approval for using early cut-off dates is at the District's discretion. The earliest cut-off date for estimates is the 25th of the month.

Article 9.6., "PAYMENT FOR MATERIAL ON HAND (MOH)" first paragraph is amended as follows:

If payment for MOH is desired, request compensation for the invoice cost of acceptable nonperishable materials that have not been used in the work before the request, and that have been delivered to the work location or are in acceptable storage places. Nonperishable materials are those that do not have a shelf life or whose characteristics do not materially change when exposed to the elements. Include only materials that have been sampled, tested, approved, or certified, and are ready for incorporation into the work. Only materials which are completely constructed or fabricated on the Contractor's order for a specific Contract and are so marked and on which an approved test report has been issued are eligible. Payment for MOH may include the following types of items: concrete traffic barrier, precast concrete box culverts, concrete piling, reinforced concrete pipe, and illumination poles. Any repairs required after fabricated materials have been approved for storage will require approval of the Engineer before being made and will be made at the Contractor's expense. Include only those materials and products, when cumulated under an individual item or similar bid items, that have an invoice cost of at least \$1,000 in the request for MOH payment (e.g. For MOH eligibility, various sizes of conductor are considered similar bid items and may be cumulated to meet the threshold; for small roadside signs, the sign supports, mounting bolts, and the sign face is considered one bid item or similar bid items for more than one pay item for sign supports.) Requests for MOH are to be submitted at least two days before but not later than the estimate cutoff date unless otherwise agreed. If there is a need to request MOH after the established cut-off date, the district can make accommodation as the need arises. This needed accommodation is to be the exception, though, and not the rule.

Special Provision to Item 9 Measurement and Payment

Item 9, "Measurement and Payment" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 7.1.4.3., "Standby Equipment Costs," is voided and replaced by the following:

- 7.1.4.3. **Standby Equipment Costs.** Payment for standby equipment will be made in accordance with Section 9.7.1.4., "Equipment." The 15% markup will be paid when standby is associated with extra work but will not be paid when standby is associated with damages.
- Section 7.1.4.3.1., "Contractor-Owned Equipment," is voided and replaced by the following:

7.1.4.3.1. Contractor-Owned Equipment. For Contractor-owned equipment:

Standby will be paid at 50% of the monthly Rental Rate Blue Book rate after the regional and age adjustment factors have been applied. Operating costs will not be allowed. Calculate the standby rate as follows.

Standby rate = (FHWA hourly rate - operating costs) × 50%

- If an hourly rate is needed, divide the monthly Rental Rate Blue Book rate by 176.
- No more than 8 hr. of standby will be paid during a 24-hr. day period, nor more than 40 hr. per week.
- Standby costs will not be allowed during periods when the equipment would have otherwise been idle.

Special Provision to Item 247 Flexible Base

Item 247, "Flexible Base," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 247.2.1., "Aggregate." This Section is voided and replaced by the following.

Furnish aggregate of the type and grade shown on the plans and meeting the requirements shown in Table 1. Each source must meet Table 1 requirements for liquid limit, plasticity index, and wet ball mill for the grade specified. Do not use additives, such as but not limited to cement, emulsion, foamed asphalt, or lime, to modify aggregates to meet the requirements of Table 1, unless otherwise shown on the plans.

Unless otherwise shown on the plans, the unconfined compressive strength is waived when the flexible base material meets the #200 sieve requirement.

Material Requirements								
Property	Test Method	Grade 1–2 ³	Grade 3	Grade 4	Grade 5 ³			
Master gradation sieve size (cumulative % retained)		-	-		-			
2-1/2"		0	0		0			
1-3/4"		0–10	0–10		0–5			
7/8"	<u>Tex-110-E</u>	10–35	-		10–35			
3/8"		30–65	-		35–65			
#4		45–75	45–75		45–75			
#40		65–90	50-85		70–90			
#200 ^{1, 2}		85–95	-		-			
Liquid limit, % Max	<u>Tex-104-E</u>	40	40	As shown on	35			
Plasticity index, Max		10	12	the plans	10			
Plasticity index, Min	<u>Tex-106-E</u>	As shown on the plans	As shown on the plans		As shown on the plans			
Wet ball mill, % Max		40	-		40			
Wet ball mill, % Max increase passing the #40 sieve	<u>Tex-116-E</u>	20	-		20			
Min compressive strength ² , psi		-	-		-			
lateral pressure 0 psi	Toy 117 E	35	_		-			
lateral pressure 3 psi	<u>Tex-117-E</u>	-	-		90			
lateral pressure 15 psi		175	-		175			

Т	able 1
Material I	Requirements

The #200 sieve test is only required to meet the waiver of the unconfined compressive strength. The #200 sieve
test requirement is only applicable to stockpile samples from Section 247.2.4.

 Compressive strength and #200 sieve test requirements are waived when the flexible base is mixed with or without existing material and treated with cement, emulsion, foamed asphalt, or lime, unless otherwise shown on the plans.

3. Grade 3 may be substituted for Grade 1–2 or Grade 5 when the flexible base is mixed with or without existing material and treated with cement, emulsion, foamed asphalt, or lime, as approved. The Grade 3 flexible base must meet the wet ball mill requirements of Grade 1–2 or Grade 5.

Section 247.2.1.2.4., "Type D." The third sentence is voided and replaced by the following.

Crushed concrete must meet the requirements in Section 247.2.1.3., "Recycled Material," and be managed in a way to provide for uniform quality.

Section 247.2.1.3., "Recycled Material." This Section is voided and replaced by the following.

Reclaimed asphalt pavement (RAP) and other recycled materials may be used as shown on the plans. Request approval to blend two or more sources of recycled materials. When RAP is allowed, do not exceed 20% RAP by weight, unless otherwise shown on the plans. The percentage limitations for other recycled materials are as shown on the plans.

Provide recycled materials, other than RAP, that have a maximum sulfate content of 3,000 ppm when tested in accordance with <u>Tex-145-E</u>. Certify accordance with <u>DMS-11000</u>, "Evaluating and Using Nonhazardous Recyclable Materials Guidelines." In addition, recycled materials must be free of reinforcing steel and other objectionable material and have at most 1.5% deleterious material when tested in accordance with <u>Tex-413-A</u>. The liquid limit, plasticity index, wet ball mill, and compressive strength for all recycled materials are waived. When using RAP, crush RAP so that 100% passes the 2-in. sieve and does not exceed a maximum percent loss from decantation of 5.0% when tested in accordance with <u>Tex-406-A</u>. Test RAP without removing the asphalt. The final product must meet the requirements shown in Table 1 for the grade specified, except when the Department requires a specific amount of Department-furnished RAP be added to the blend, unless otherwise shown on the plans.

The Contractor is responsible for uniformly blending the recycled material with the flexible base material to build a stockpile to meet the percentages required. Any Contractor-furnished surplus of recycled materials must remain the property of the Contractor. Remove Contractor-owned recycled materials from the project, and dispose of them in conformance with federal, state, and local regulations before project acceptance.

Section 247.2.4., "Stockpile Approval." This Section is added.

Stockpile is approved when the Engineer's test results meet the material requirements shown in Table 1.

Section 247.2.4.1., "Sampling." This Section is added.

The Contractor and the Engineer will sample flexible base from completed stockpiles in accordance with <u>Tex-100-A</u>. Personnel conducting sampling must be certified by the Department-approved soils and base certification program.

Sampling stockpiles may be located at the production site or at the project location. The Contractor must witness the Engineer's sampling and sample the stockpile for their own testing, and label as deemed necessary.

Sample the stockpile for the Engineer as shown on the plans. When the Contractor samples the stockpile for the Engineer, the Engineer will witness the sampling of material designated for the Engineer and the Materials and Tests Division (MTD). The Engineer will label their sampling containers as "Engineer" and "MTD," or as deemed necessary.

The Engineer will take immediate possession of the sample containers for the Engineer and MTD. The Engineer will maintain custody of the samples until all testing and reporting are completed.

Section 247.2.4.2., "Referee Testing." This Section is added.

Referee testing is applicable for stockpile testing only. MTD is the referee laboratory. MTD may designate a laboratory from the Department's MPL for *Commercial Laboratories Approved for Flexible Base Referee Requests* as the referee laboratory as deemed necessary. The designated laboratory must not perform any testing under this Item for the Engineer or Contractor.

The Contractor may request referee testing when the Engineer's test results fail to meet any of the material requirements shown in Table 1 and when the Contractor's sample from Section 247.2.4.1., "Sampling," for the same failing Department test passes. The tests must be performed by a laboratory on the Department's MPL for *Commercial Laboratories Approved for Flexible Base Referee Requests*. Submit the request by email within 5 working days after receiving failing test results from the Engineer. Include completed test reports passing the applicable requirements shown in Table 1 in the email.

Record and submit completed test reports electronically on Department-provided templates in their original format meeting the applicable material requirements shown in Table 1. Use Department-provided templates to record and calculate all test data. The Engineer and the Contractor will provide any available test results to the other party when requested.

Section 247.4.3., "Compaction." The first paragraph is voided and replaced by the following.

Compact using density control unless otherwise shown on the plans. Multiple lifts are permitted as shown on the plans or approved. Bring each layer to the moisture content directed. When necessary, sprinkle the material in accordance with Item 204, "Sprinkling." Maintain moisture during compaction within $\pm 2.0\%$ of the optimum moisture content as determined in accordance with Tex-113-E.

Section 247.4.3.2., "Density Control." This Section is voided and replaced by the following.

Compact to at least 100% of the maximum dry density and within $\pm 2.0\%$ of the optimum moisture content as determined in accordance with <u>Tex-113-E</u>, unless otherwise shown on the plans. Provide the Engineer with the beginning and ending station numbers of the area completed for testing. The Engineer will determine roadway density and moisture content of completed sections in accordance with <u>Tex-115-E</u>, Part I. The Engineer will determine random locations for testing in accordance with <u>Tex-115-E</u>, Part IV. Do not achieve density by drying the material after compaction.

When the density is less than 100% of the maximum dry density, the Engineer may perform additional testing to determine the extent of the area to correct. The Engineer may accept the section if no more than one of the five most recent density tests is below the specified density and the failing test is no more than 3 pcf below the specified density.

Section 247.4.3.3., "Miscellaneous and Small Areas." This Section is added.

Miscellaneous areas are those that typically involve handwork or discontinuous paving operations, such as temporary detours, driveways, mailbox turnouts, crossovers, gores, spot level-up areas, and other similar areas. Miscellaneous and small areas are not subject to random sampling procedure but may be tested as directed.

Section 247.4.6., "Ride Quality." This Section is voided and replaced by the following.

Measurement of ride quality only applies to the final travel lanes that receive a one- or two-course surface treatment for the final riding surface, unless otherwise shown on the plans. Measure the ride quality of the base course either before or after the application of the prime coat, as directed, and before placement of the surface treatment. Use a certified profiler operator on the Department's MPL. When requested, furnish the Engineer with documentation for the person certified to operate the profiler.

Provide all profile data to the Engineer in electronic data files within 3 days of measuring the ride quality using the format specified in <u>Tex-1001-S</u>. The Engineer will use Department software to evaluate longitudinal profiles to determine areas requiring corrective action. Correct 0.1-mi. sections with an average international roughness index (IRI) value greater than 100 in. per mile to an IRI value of 100 in. per mile or less, unless otherwise shown on the plans. Re-profile and correct sections that fail to maintain ride quality before the placement of the surface treatment, as directed. Unless ride deterioration is due to environmental impact, traffic, or other incidents outside the Contractor's control, perform this work at no additional expense to the Department, as approved.

Special Provision to Item 300 Asphalt, Oils, and Emulsions

Item 300, "Asphalt, Oils, and Emulsions" of the Standard Specifications is replaced by Special Specification <u>3096</u>, "Asphalts, Oils, and Emulsions." All Item 300 Special Provisions are no longer available, beginning with the April 2022 letting.

Special Provision to Item 302 Aggregates for Surface Treatments

Item 302, "Aggregates for Seal Coats," of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Section 2.1., "Aggregate.	" Tables 2 and 3 are voided and r	replaced by the following.
---------------------------	-----------------------------------	----------------------------

	Table 2 Aggregate Gradation Requirements (Cumulative % Retained ¹)									
	Grade									
Sieve	1	2	3S ²	3S ² 3			4	5S ²	5	
Sieve				Non- Lightweight	Lightweight					
1"	-	-	-	-	-	-	-	-	-	
7/8"	0–2	0	-	-	-	-	-	-	-	
3/4"	20–35	0–2	0	0	0	-	-	-	-	
5/8"	85–100	20–40	0–5	0–5	0–2	0	0	-	-	
1/2"	-	80–100	55–85	20–40	10–25	0–5	0–5	0	0	
3/8"	95–100	95–100	95–100	80–100	60–80	60–85	20–40	0–5	0–5	
1/4"	-	-	-	95–100	95–100	-	-	65–85	-	
#4	-	-	-	-	-	95–100	95–100	95–100	50-80	
#8	99–100	99–100	99–100	98–100	98–100	98–100	98–100	98–100	98–100	

Round test results to the nearest whole number.

2. Single-size gradation.

	T (M (1)	Requirement ¹		
Property	Test Method	Minimum	Maximum	
SAC	AQMP	As shown of	on the plans	
Deleterious Material ² , %	Tex-217-F, Part I	-	2.0	
Decantation, %	<u>Tex-406-A</u>	-	1.5	
Flakiness Index, %	<u>Tex-224-F</u>	-	17	
Gradation	Tex-200-F, Part I	Table 2 Re	equirements	
Los Angeles Abrasion, %	<u>Tex-410-A</u>	-	35	
Magnesium Sulfate Soundness, 5 Cycle, %	<u>Tex-411-A</u>	-	25	
Micro-Deval Abrasion, %	<u>Tex-461-A</u>	Note 3		
Coarse Aggregate Angularity ⁴ , 2 Crushed Faces, %	<u>Tex-460-A</u> , Part I	85 -		
Additic	onal Requirements for L	ightweight Aggregate		
Dry Loose Unit Wt., Ib./cu. ft.	<u>Tex-404-A</u>	35	60	
Pressure Slaking, %	<u>Tex-431-A</u>	-	6.0	
Freeze-Thaw Loss, %	<u>Tex-432-A</u>	-	10.0	
Water Absorption, 24hr., %	Tex-433-A	-	12.0	

Table 3 Aggregate Quality Requirements

1. Material requirements are listed below, unless otherwise shown on the plans.

2. Not required for lightweight aggregate.

3. Used to estimate the magnesium sulfate soundness loss in accordance with Section 2.1.1.

4. Only required for crushed gravel.

Section 2.1.1., "Micro-Deval Abrasion," is added.

The Engineer will perform a minimum of one Micro-Deval abrasion test in accordance with <u>Tex-461-A</u> for each coarse aggregate source per project that has a Rated Source Soundness Magnesium (RSSM) loss value greater than 15 as listed in the BRSQC. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula.

Mg_{est.} = (RSSM)(MD_{act}/RSMD)

where: Mg_{est} = magnesium sulfate soundness loss MD_{act} = actual Micro-Deval percent loss RSMD = Rated Source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved by the Engineer. The Engineer may require additional testing before granting approval.

Section 2.2., "Precoating." The third paragraph is voided and replaced by the following.

The Engineer retains the right to remove precoat material from aggregate samples in accordance with <u>Tex-210-F</u>, or as recommended by the Construction Division, and test the aggregate to verify compliance with Table 2 and Table 3 requirements. Gradation testing may be performed with precoat intact.

Section 2.3., "Sampling," is added.

Personnel who conduct sampling and witnessing of sampling must be certified by the Department-approved certification program. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning construction and when personnel changes are made. At any time during the project, the Engineer may perform production tests as deemed necessary in accordance with Item 5, "Control of the Work."

The Engineer will sample aggregate from stockpiles located at the production site, intermediate distribution site, or project location in accordance with <u>Tex-221-F</u>, Section 3.2.3. The Engineer will split each sample into 2 equal portions in accordance with <u>Tex-200-F</u>, Section 3.3, and label these portions "Engineer" and "Contractor" or "Supplier." Witness the sampling and splitting, and take immediate possession of the samples labeled "Contractor" or "Supplier".

Section 2.4., "Reporting and Responsibilities," is added.

The Engineer will provide test results to the Contractor and Supplier within 10 working days from the date the stockpile was sampled for sources listed on the Department's Bituminous Rated Source Quality Catalog (BRSQC), unless otherwise directed. The Engineer will provide test results for the LA Abrasion (<u>Tex-410-A</u>) and Magnesium Sulfate Soundness (<u>Tex-411-A</u>) tests within 30 calendar days for sources not listed on the BRSQC, or for sources not meeting the requirements of Section 2.1.1., "Micro-Deval Abrasion." The Engineer will report to the other party within 24 hours when any test result does not meet the requirements listed in Table 2 or Table 3.

Special Provision to Item 316 Seal Coat

Item 316, "Seal Coat" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 4.8, "Asphalt Placement" is supplemented by the following:

4.8.5. Collect all samples in accordance with Tex-500-C, "Sampling Bituminous Materials, Pre-Molded Joint Fillers, and Joint Sealers" from the distributor and with witness by the Engineer.

At least once per project, collect split samples of each binder grade and source used. The Engineer will submit one split sample to MTD for testing and retain the other split sample.

In addition, collect one sample of each binder grade and source used on the project for each production day. The Engineer will retain these samples.

The Engineer will keep all retained samples for one yr., for hot-applied binders and cutback asphalts; or for two mo., for emulsified asphalts. The Engineer may submit retained samples to MTD for testing as necessary or as requested by MTD.

Special Provision to Item 334 Hot-Mix Cold-Laid Asphalt Concrete Pavement

Item 334, "Hot-Mix Cold-Laid Asphalt Concrete Pavement," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed hereby.

Section 334.4.1.2., "Job-Mix Formula Approval." Table 5 is voided and replaced by the following:

Table 5 Laboratory Mixture Design Properties							
Property	Test Method	Requirement					
Target laboratory-molded density, % ¹	Tex-207-F	94.0 ± 1.5					
Hveem stability, Min	<u>Tex-208-F</u>	35					
Cantabro loss, %, Max	<u>Tex-245-F</u>	10					
Hydrocarbon-volatile content, %, Max	Tex-213-F	0.6					
Moisture content, %, Max ²	Tex-212-F	1.0					
Boil test, %, Max ³	<u>Tex-530-C</u>	10					

1. Unless otherwise shown on the plans.

2. Unless otherwise approved.

3. Limit may be increased or eliminated when approved.

Special Provision to Item 340 Dense-Graded Hot-Mix (Small Quantity)

Item 340, "Dense-Graded Hot-Mix (Small Quantity)" of the Standard Specifications is replaced by Special Specification <u>3076</u>, "Dense-Graded Hot-Mix Asphalt," Section 4.9.4., "Exempt Production." All Item 340 Special Provisions and bid codes are no longer available, beginning with the February 2022 letting.

Special Provision to Item 341 Dense-Graded Hot-Mix Asphalt

Item 341, "Dense-Graded Hot-Mix Asphalt" of the Standard Specifications is replaced by Special Specification <u>3076</u>, "Dense-Graded Hot-Mix Asphalt." All Item 341 Special Provisions and bid codes are no longer available, beginning with the February 2020 letting.

Special Provision to Item 342 Permeable Friction Course (PFC)

Item 342, "Permeable Friction Course (PFC)" of the Standard Specifications is replaced by Special Specification <u>3079</u>, "Permeable Friction Course." All Item 342 Special Provisions and bid codes are no longer available, beginning with the April 2022 letting.

Special Provision to Item 344 Superpave Mixtures

Item 344, "Superpave Mixtures" of the Standard Specifications is replaced by Special Specification <u>3077</u>, "Superpave Mixtures." All Item 344 Special Provisions and bid codes are no longer available, beginning with the February 2020 letting.

Special Provision to Item 347 Thin Overlay Mixture (TOM)

Item 347, "Thin Overlay Mixture (TOM)" of the Standard Specifications is replaced by Special Specification <u>3081</u>, "Thin Overlay Mixture (TOM). All Item 347 Special Provisions and bid codes are no longer available, beginning with the April 2022 letting.

Special Provision to Item 348 Thin Bonded Friction Courses

Item 348, "Thin Bonded Friction Courses" of the Standard Specifications is replaced by Special Specification <u>3082</u>, "Thin Bonded Friction Courses." All Item 348 Special Provisions and bid codes are no longer available, beginning with the April 2022 letting.

Special Provision to Item 360 Concrete Pavement

Item 360, "Concrete Pavement" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 360.2.1., "Materials," the third paragraph is voided and replaced by the following:

For continuously reinforced concrete pavements, use a coarse aggregate with a rated coefficient of thermal expansion of not more than 5.5 × 10⁻⁶ in./in./°F as listed in the Department's *Concrete Rated Source Quality Catalog*.

Section 360.4.8.3., "Surface Texture," the second paragraph is voided and replaced by the following:

A metal-tine texture finish is required unless otherwise shown on the plans. Provide transverse or longitudinal tining unless otherwise shown on the plans. Immediately following the carpet drag, apply a single coat of evaporation retardant, if needed, at the rate recommended by the manufacturer. Provide the metal-tine finish immediately after the concrete surface has set enough for consistent tining. Operate the metal-tine device to obtain grooves approximately 3/16 in. deep, with a minimum depth of 1/8 in., and approximately 1/12 in. wide. Do not overlap a previously tined area. Use manual methods to achieve similar results on ramps, small or irregular areas, and narrow width sections of pavements. Repair damage to the edge of the slab and joints immediately after texturing. Do not tine pavement that will be overlaid or that is scheduled for blanket diamond grinding or shot blasting.

Special Provision to Item 420 Concrete Substructure

Item 420, "Concrete Substructures" of the Standard Specifications is amended with respect to the clause cited below. No other clauses or requirements of this Item are waived or changed.

Article 420.6., "Payment." The first paragraph is replaced by the following:

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for the class of concrete and element identified and by the special designation when appropriate. This price is full compensation for furnishing, hauling, and mixing concrete materials; furnishing, bending, fabricating, splicing, welding and placing the required reinforcement; clips, blocks, metal spacers, ties, wire, or other materials used for fastening reinforcement in place; placing, finishing, and curing concrete; mass placement controls; applying ordinary surface finish; furnishing and placing drains, metal flashing strips, and expansion-joint material; excavation, subgrade preparation; and forms and falsework, equipment, labor, tools, and incidentals.

Special Provision to Item 421 Hydraulic Cement Concrete

Item 421, "Hydraulic Cement Concrete" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 421.2., "Materials," the second sentence of the first paragraph is voided and replaced by the following.

Provide aggregates from sources listed in the Department's Concrete Rated Source Quality Catalog (CRSQC).

Article 421.2.2., Supplementary Cementing Materials (SCM), is voided and replaced with the following.

Supplementary Cementitious Materials (SCM).

- Coal Ash. Furnish sources of fly ash, , Modified fly ash (MFA), harvested coal ash, and Ground Bottom Ash (GBA) conforming to <u>DMS-4610</u>, "Coal Ash."
- Slag Cement. Furnish Slag Cement in accordance with <u>DMS-4620</u>, "Slag Cement."
- Silica Fume. Furnish silica fume in accordance with <u>DMS-4630</u>, "Silica Fume."
- Natural Pozzolans. Furnish Natural Pozzolans in accordance with <u>DMS-4635</u>, "Natural Pozzolans."

Article 421.3.1.3., "Agitators and Truck and Stationary Mixers," the first paragraph is voided and replaced by the following.

Provide stationary and truck mixers capable of combining the ingredients of the concrete into a thoroughly mixed and uniform mass and capable of discharging the concrete so that the requirements of <u>Tex-472-A</u> are met.

Article 421.3.1.3., "Agitators and Truck and Stationary Mixers," is supplemented with the following.

Truck mixers with automated water and chemical admixture measurement and slump and slump flow monitoring equipment meeting the requirement of ASTM C94 will be allowed. Provide data every 6 mo. substantiating the accuracy of slump, slump flow, temperature, water, and chemical admixture measurements. The slump measured by the automated system must be within 1 in. of the slump measured in accordance with <u>Tex-415-A</u>. The concrete temperature measured by the automated system must be within 1°F of concrete temperature measured in accordance with <u>Tex-422-A</u>. The Engineer will not use the automated measurements for acceptance.

Article 421.4.2., "Mix Design Proportioning," Table 8 is voided and replaced by the following.

Table 8 Concrete Classes							
Class of Concrete	Design Strength,¹ Min f'c (psi)	Max w/cm Ratio	Coarse Aggregate Grades ^{2,3,4}	Cement Types	Mix Design Options	Exceptions to Mix Design Options	General Usage ⁵
A	3,000	0.60	1-4, 8	I, II, I/II, IL,	1, 2, 4, & 7	When the cementitious material content does not exceed 520 lb./cu. yd., any coal ash or natural pozzolan listed in the MPL may be used at a cement	Curb, gutter, curb & gutter, conc. retards, sidewalks, driveways, back-up walls, anchors, non- reinforced drilled shafts
В	2,000	0.60	2–7	IP, IS, IT, V		replacement of 20% to 50%.	Riprap, traffic signal controller foundations, small roadside signs, and anchors
C ₆	3,600	0.45	1–6	I, II, I/II, IP, IL, IS, IT, V	1–8		Drilled shafts, bridge substructure, traffic rail, culverts except top slab of direct traffic culverts, headwalls, wing walls, inlets, manholes, traffic barrier
E	3,000	0.50	2–5	I, II, I/II, IL, IP, IS, IT, V	1–8	When the cementitious material content does not exceed 520 lb./cu. yd., any coal ash or natural pozzolan listed in the MPL may be used at a cement replacement of 20% to 50%.	Seal concrete
F ⁶	Note ⁷	0.45	2–5	I, II, I/II, IP, IL, IS, IT, V			Railroad structures; occasionally for bridge piers, columns, bents, post-tension members
He	Note ⁷	0.45	3–6	I, II, I/II, III, IP, IL, IS, IT, V	1–4. 8	Mix design options 1-8 allowed for cast-in-place concrete and the following precast elements unless otherwise stated in the plans: Bridge Deck Panels, Retaining Wall Systems, Coping, Sound Walls, Wall Columns, Traffic Rail, Traffic Rail, Traffic Barrier, Long/Arch Span Culverts, and precast concrete products included in Item 462, "Concrete Box Culverts and Drains, Item 464, "Reinforced Concrete Pipe," and Item 465, "Junction Boxes, Manholes, and Inlets." Do not use Type III cement in mass placement concrete. Up to 20% of blended cement may be replaced with listed SCMs when Option 4 is used for precast concrete. Options 6, & 7 allowed for cast- in-place Class H concrete.	Precast concrete, post-tension members
S ⁶	4,000	0.45	2–5	I, II, I/II, IP, IL, IS, IT, V	1–8		Bridge slabs, top slabs of direct traffic culverts, approach slabs

Table 8

Class of Concrete	Design Strength,¹ Min f'շ (psi)	Max w/cm Ratio	Coarse Aggregate Grades ^{2,3,4}	Cement Types	Mix Design Options	Exceptions to Mix Design Options	General Usage⁵
Ρ	See Item 360, "Concrete Pavement."	0.50	2–3	I, II, I/II, IL, IP, IS, IT, V	1–8	When the cementitious material content does not exceed 520 lb./cu. yd., any coal ash or natural pozzolan listed in the MPL's may be used at a cement replacement of 20% to 50%.	Concrete pavement
CO ⁶	4,600	0.40	6		4.0		Bridge deck concrete overlay
LMC ⁶	4,000	0.40	6–8		1–8		Latex-modified concrete overlay
SS ⁶	3,600	0.45	4–6	I, II, I/II, IP, IL, IS, IT, V	1-8	Use a Min cementitious material content of 658 lb./cu. yd. of concrete. Limit the alkali loading to 4.0 lbs./cu. yd. or less when using Option 7.	Slurry displacement shafts, underwater drilled shafts
K6	Note ⁷	0.40	Note ⁷	I, II, I/II, III IP, IL, IS, IT, V	1-8		Note ⁷
HES	Note ⁷	0.45	Note ⁷	I, IL, II, I/II, III		Mix design options do not apply. 700 lb. of cementitious material per cubic yard limit does not apply.	Concrete pavement, concrete pavement repair
"X" (HPC) _{6,8,9}	Note ¹⁰	0.45	Note ¹⁰	I, II, I/II, III IP, IL, IS, IT, V	1–4, & 8	Max coal ash replacement for Option 3 may be increased to 50%. Up to 20% of a blended cement may be replaced with listed SCMs for Option 4. Do not use Option 8 for precast concrete.	
"X" (SRC) _{6,8,9}	Note ¹⁰	0.45	Note ¹⁰	I/II, II, IP, IL (MS or HS), IS, IT (MS or HS), V	1–4, & 7	When using coal ash, only use coal ashes allowed for SRC as listed in the Coal Ash MPL. Type III-MS may be used where allowed. Type I, Type IL, and Type III cements may be used when natural pozzolans are used or when coal ashes allowed for SRC as listed in the Coal Ash MPL are used, and with a Max w/cm of 0.40. Up to 20% of blended cement may be replaced with listed SCMs when Option 4 is used for precast concrete. Use Option 7 for precast concrete where allowed.	

1. Design strength must be attained within 56 days.

2. Do not use Grade 1 coarse aggregate except in massive foundations with 4 in. Min clear spacing between reinforcing steel bars, unless otherwise permitted. Do not use Grade 1 aggregate in drilled shafts.

3. Use Grade 8 aggregate in extruded curbs unless otherwise approved.

4. Other grades of coarse aggregate maybe used in non-structural concrete classes when allowed by the Engineer.

5. For information only.

Structural concrete classes.

7. As shown on the plans or specified.

8. "X" denotes class of concrete shown on the plans or specified.

9. (HPC): High Performance Concrete, (SRC): Sulfate Resistant Concrete.

10. Same as class of concrete shown on the plans.

Article 421.4.2.2., "Aggregates," is supplemented by the following.

Use the following equation to determine if the aggregate combination meets the sand equivalency requirement when blending fine aggregate or using an intermediate aggregate:

$$\frac{(SE_1 \times P_1) + (SE_2 \times P_2) + (SE_{ia} \times P_{ia})}{100} \ge 80\%$$

where:

 $SE_1 = \text{sand equivalency (%) of fine aggregate 1} \\ SE_2 = \text{sand equivalency (%) of fine aggregate 2} \\ SE_{ia} = \text{sand equivalency (%) of intermediate aggregate passing the 3/8 in. sieve} \\ P_1 = \text{percent by weight of fine aggregate 1 of the fine aggregate blend} \\ P_2 = \text{percent by weight of fine aggregate 2 of the fine aggregate blend} \\ P_{ia} = \text{percent by weight of intermediate aggregate passing the 3/8 in. sieve} \\ \end{cases}$

Article 421.4.2.3., Chemical Admixtures," the second paragraph is voided and replaced with the following.

Use a 30% calcium nitrite solution when a corrosion-inhibiting admixture is required. Dose the admixture at the rate of gallons of admixture per cubic yard of concrete shown on the plans. Use set retarding admixtures, as needed, to control setting time to ensure concrete containing corrosion inhibiting admixtures remain workable for the entire duration of the concrete placement. Perform setting time testing and slump loss testing during trial batch testing.

Article 421.4.2.5., "Slump," the second paragraph is voided and not replaced. Table 9 is voided and replaced with below:

General Usage	Placement Slump Range, ^{1,2} in.
Walls (over 9 in. thick), caps, columns, piers	3 – 7
Bridge slabs, top slabs of direct traffic culverts, approach slabs, concrete overlays, latex- modified concrete for bridge deck overlays	3 – 6
Inlets, manholes, walls (less than 9 in. thick), bridge railing, culverts, concrete traffic barrier, concrete pavement (formed)	4 – 6
Precast concrete	4 – 9
Underwater concrete placements	6 – 8-1/2
Drilled shafts, slurry displaced and underwater drilled shafts	See Item 416, "Drilled Shaft Foundations."
Curb, gutter, curb and gutter, concrete retards, sidewalk, driveways, seal concrete, anchors, riprap, small roadside sign foundations, concrete pavement repair, concrete repair	As approved

Table 9 Placement Slump Requirement

Max slump values may be increase above these values shown using chemical admixtures, provided the
admixture treated concrete has the same or lower water-to-cementitious ratio and does not exhibit segregation
or excessive bleeding. Request approval to increase slump limits in advance for proper evaluation by the
Engineer.

2. For fiber reinforced concrete, perform slump before addition of fibers.

Article 421.4.2.6., "Mix Design Options," is voided and replaced with the following.

Option 1. Replace cement with at least the minimum dosage listed in the MPL for the coal ash or natural pozzolan used in the mixture. Do not replace more than 50% of the cement. Conduct Option 8 testing as listed on the MPL.

Option 2. Replace 35% to 50% of the cement with slag cement.

Option 3. Replace 35% to 50% of the cement with a combination of coal ash, slag cement, natural pozzolan, or at least 3% silica fume; however, no more than 10% may be silica fume.

Option 4. Use Type IP, Type IS, or Type IT cement as allowed in Table 8 for each class of concrete. When replacing blended cements with additional SCM's, the replacement limits in Option 3 will apply to the final cementitious mixture. When using coal

ash or natural pozzolans not having a minimum dosage listed in the MPL in the final cementitious mixture, perform Option 8 testing.

Option 5. Option 5 is left intentionally blank.

Option 6. Use a lithium nitrate admixture at a minimum dosage determined by testing conducted in accordance with Tex-471-A. Before use of the mix, provide an annual certified test report signed and sealed by a licensed professional engineer, from a laboratory listed on the MPL, certified by the Materials and Tests Division as being capable of testing according to Tex-471-A.

Option 7. Ensure the total alkali contribution from the cement in the concrete does not exceed 3.5 lb. per cubic yard of concrete when using hydraulic cement not containing SCMs calculated as follows:

lb. alkali per cu. yd. = $\frac{(lb. cement per cu. yd.) \times (\% Na_2 O equivalent in cement)}{100}$

In the above calculation, use the maximum cement alkali content reported on the cement mill certificate.

Option 8. Use Table 10 when deviating from Options 1–3 or when required by the Coal Ash MPL. Perform required testing annually and submit results to the Engineer. Laboratories performing ASTM C1260, ASTM C1567, and ASTM C1293 testing must be listed on the MPL. Before use of the mix, provide a certified test report signed and sealed by a licensed professional engineer demonstrating the proposed mixture in accordance with the requirements of Table 10.

Provide a certified test report signed and sealed by a licensed professional engineer, when HPC is required, and less than 20% of the cement is replaced with SCMs, demonstrating ASTM C1876 test results indicate the uniaxial resistivity of the concrete is greater than 15.6 kΩ-cm tested immediately after either of the following curing schedules:

- Moisture cure specimens 56 days at 73°F.
- Moisture cure specimens 7 days at 73°F followed by 21 days at 100°F.

 Table 10

 Option 8 Testing and Mix Design Requirements

ario	ASTM C1260 Result Mix Design Fine Aggregate Coarse Aggregate		Testing Requirements for Mix Design Materials
Scen			or Prescriptive Mix Design Options
A	> 0.10%	> 0.10%	Determine the dosage of SCMs needed to limit the 14-day expansion of each aggregate ¹ to 0.10% when tested individually in accordance with ASTM C1567.
В	≤ 0.10%	≤ 0.10%	Use the Min replacement listed in the Coal Ash MPL, or when Option 8 is listed on the MPL, use a Min of 40% coal ash with a Max CaO ² content of 25%, or use any ternary combination which replaces 35% to 50% of cement.
	≤ 0.10%	ASTM C1293 1 yr. Expansion ≤ 0.04%	Use a minimum of 20% of any coal ash; or Use any ternary combination which replaces 20% to 50% of cement.
C	≤ 0.10%	> 0.10%	Determine the dosage of SCMs needed to limit the 14-day expansion of coarse and intermediate ¹ aggregate to $\leq 0.10\%$ when tested individually in accordance with ASTM C1567.
D	> 0.10%	≤ 0.10%	Use the Min replacement listed in the Coal Ash MPL, or when Option 8 is listed on the MPL, use a Min of 40% coal ash with a Max CaO ² content of 25%, or use any ternary combination which replaces 35% to 50% of cement.
	> 0.10%	ASTM C1293 1 yr. Expansion ≤ 0.04%	Determine the dosage of SCMs needed to limit the 14-day expansion of each fine aggregate to ≤0.10% when individually tested in accordance with ASTM C1567.

1. Intermediate size aggregates will fall under the requirements of mix design coarse aggregate.

2. Average the CaO content from the previous ten values as listed on the test certificate.

Article 421.4.2.7., "Optimized Aggregate Gradation (OAG) Concrete," the first sentence of the first paragraph is voided and replaced by the following.

The gradations requirements in Table 4 and Table 6 do not apply when OAG concrete is specified or used by the Contractor unless otherwise shown on the plans.

The fineness modulus for fine aggregate listed in Table 5, does not apply when OAG concrete is used,

Article 421.4.6.2., Delivering Concrete," the third paragraph is supplemented by the following.

When truck mixers are equipped with automated water or chemical admixture measurement and slump or slump flow monitoring equipment, the addition of water or chemical admixtures during transit is allowed. Reports generated by this equipment must be submitted to the Engineer daily.

Article 421.4.6.2., "Delivering Concrete," the fifth paragraph is voided and replaced with the following. Begin the discharge of concrete delivered in truck mixers within the times listed in Table 14. Concrete delivered after these times, and concrete that has not begun to discharge within these times will be rejected.

Article 421.4.8.3., "Testing of Fresh Concrete," is voided and replaced with the following.

Testing Concrete. The Engineer, unless specified in other Items or shown on the plans, will test the fresh and hardened concrete in accordance with the following methods:

- Slump. <u>Tex-415-A</u>;
- Air Content. <u>Tex-414-A</u> or <u>Tex-416-A</u>;
- Temperature. <u>Tex-422-A;</u>
- Making and Curing Strength Specimens. <u>Tex-447-A;</u>
- Compressive Strength. <u>Tex-418-A</u>;
- Flexural Strength. <u>Tex-448-A</u>; and
- Maturity. <u>Tex-426-A</u>.

Flexural strength and maturity specimens will not be made unless specified in other items or shown on the plans.

Concrete with slump less than minimum required after all addition of water withheld will be rejected, unless otherwise allowed by the Engineer. Concrete with slump exceeding maximum allowed may be used at the Contractor's option. If used, Engineer will make, test, and evaluate strength specimens as specified in Article 421.5., "Acceptance of Concrete." Acceptance of concrete not meeting air content or temperature requirements will be determined by Engineer. Fresh concrete exhibiting segregation and excessive bleeding will be rejected.

Article 421.4.8.3.1., "Job-Control Testing," is voided and not replaced.

Special Provision to Item 438 Cleaning and Sealing Joints

Item 438, "Cleaning and Sealing Joints," of the Standard Specifications, is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

The first paragraph in Article 438.2., "Materials," the first paragraph is voided and replaced with the following:

Use sealants of the class specified on the plans that meet the requirements of DMS-6310, "Joint Sealants and Fillers" except as modified herein. Use primers recommended by the manufacturer of the sealant if required. When a foam-type joint seal is specified, provide one of the listed systems shown on the plans with material meeting the following:

- UV stable polymer impregnated foam body;
- rated for +/-50% contraction/expansion of joint opening;
- adhered to expansion joint surfaces with epoxy adhesive;
- factory attached traffic grade silicone with minimum thickness of 0.07 in. on upper surface;
- compatible field installed silicone caulk to attached silicone top to joint edges and for splicing;
- pre-compressed system for field installation; and
- provide a range of widths of joint seals to ensure the joint seal is in compression after installation is complete.

Article 438.4., "Construction," is amended by the following:

When foam-type joint seal is shown on the plans, provide a technician associated with the joint seal manufacturer for training and installation of the initial joint. Provide written instructions from the manufacturer for joint seal installation. Measure all joint openings and size the width of joint seal in accordance with manufacturer's specifications.

Article 438.6., "Payment," the second paragraph is voided and replaced by the following:

When shown as a pay item, the work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Cleaning and Sealing Existing Joints," "Cleaning and Sealing Joints" of the class, if specified, "Cleaning and Sealing Joints (Foam)," and "Cleaning Existing Joints," and "Resizing and Sealing Joints." This price is full compensation for furnishing all materials; sawing, routing, and cleaning and installing; disposing of debris; and equipment, labor, tools, and incidentals.

Special Provision to Item 440 Reinforcement for Concrete

Item 440, "Reinforcement for Concrete," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 440.2., "Materials," is supplemented with the following.

- 2.7. Welded Deformed Bar Mat Reinforcement. Provide welded deformed bar mats in accordance with ASTM A184 except as otherwise noted in this Specification. Fabricate welded bar mats from deformed steel bars in accordance with ASTM A706 by securely connecting every intersection with a process of electrical resistance welding that employs the principle of fusion combined with pressure. The bars must be assembled by automatic machines or by other suitable mechanical means that will assure accurate spacing and alignment of all bars of the finished product.
- 2.14. **Zinc-Coated, Hot-Dip Galvanized Class I or Class II Steel Reinforcement.** Provide zinc-coated, hot-dip galvanized Class I or Class II steel reinforcement in accordance with ASTM A767, Grade 60 or Grade 75, when shown on the plans and as allowed.
- 2.15. **Continuously Hot-Dip Galvanized Reinforcement (CGR).** Provide CGR in accordance with ASTM A1094 steel reinforcement, Grade 60 or Grade 75, when shown on the plans and as allowed.

Section 440.2.1., "Approved Mills." The second paragraph is voided and not replaced.

Section 440.2.5., "Weldable Reinforcing Steel," is supplemented with the following.

All welding operations must be performed before hot-dip galvanizing.

Section 440.2.8., "Mechanical Couplers," is voided and replaced with the following.

Use couplers of the type specified in <u>DMS-4510</u>, "Mechanical Couplers for Reinforcing Steel," Section 4510.6.1., "General Requirements," when mechanical splices in reinforcing steel bars are shown on the plans.

Furnish only couplers pre-qualified in accordance with <u>DMS-4510</u>, "Mechanical Couplers for Reinforcing Steel." Ensure sleeve-wedge type couplers are not used on coated reinforcing. Sample mechanical couplers in accordance with <u>Tex-743-1</u> for testing before use on individual projects. Test the mechanical couplers for every project in which mechanical couplers are used in accordance with <u>Tex-744-1</u>. Furnish couplers only at locations shown on the plans.

Furnish couplers for stainless reinforcing steel with the same alloy designation as the reinforcing steel.

Provide hot-dip or mechanically galvanized couplers when splicing galvanized reinforcing or CGR.

Section 440.2.11., "Low Carbon/Chromium Reinforcing Steel." The first sentence is voided and replaced by the following.

Provide deformed steel bars in accordance with ASTM A1035, Grade 100, Type CS, when low-carbon, chromium-reinforcing steel is required on the plans. Type CM will be permitted only if specified on the plans.

Section 440.3.1., "Bending," is supplemented with the following.

Do not bend hot-dip galvanized reinforcement. Only minor positioning adjustments are permitted.

Bending of CGR is permitted after galvanizing.

Section 440.3.5., "Placing." The following will be added to the fourth paragraph.

Use Class 1 or Class 1A supports with CGR. Provide epoxy- or plastic-coated tie wires and clips for use with epoxy-coated reinforcing steel.

Section 440.3.6.3., "Repairing Coating," is supplemented with the following:

Repair damaged galvanized surfaces in accordance with Section 445.3.5.2., "Repair Processes."

Special Provision to Item 441 Steel Structures

Item 441, "Steel Structures" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 441.2.2., Approved Electrodes and Flux-Electrode Combinations," is voided and replaced with the following:

Use only electrodes and flux-electrode combinations conforming to AWS A5 specifications, and pertinent classifications for the applicable welding processes. When requested, submit a current Certificate of Conformance (COC) containing all test results as required by the applicable AWS A5 specification and welding code. Provide proof of Buy America compliance for welding consumables when requested. For bridge main member fabrication, submit the COC annually.

Section 441.2.3., "High-Strength Bolts," is revised and replaced by the following:

Use fasteners that meet Item 447, "Structural Bolting." Use galvanized fasteners on field connections of bridge members when ASTM F3125-Grade A325 bolts are specified, and steel is painted.

Section 441.3.1.5.1., "Plants," The second and third paragraphs are voided and replaced with the following:

Fabrication plants that produce the following non-bridge steel members must be approved in accordance with DMS-7380, "Steel Non-Bridge Member Fabrication Plant Qualification."

- Item 610, "Roadway Illumination Poles"
- Item 613, "High Mast Illumination Poles"
- Item 614, "High Mast Rings and Support Assemblies"
- Item 650, "Overhead Sign Support Structures"
- Item 654, "Sign Walkways"
- Item 686, "Traffic Signal Poles"
- Special Specification 6064, "Intelligent Transportation System (ITS) Poles."

The Materials and Tests Division (MTD) maintains a list of approved non-bridge fabrication plants on the Department MPL that produce these members.

Section 441.3.1.6.1., "Erection Drawings," the third paragraph is voided and replaced with the following:

Perform erection engineering evaluation of the structural adequacy and stability of constructing the bridge system for each step of the steel erection.

Section 441.3.1.5.3., "Nondestructive Testing (NDT)," is voided and replaced with the following:

Personnel performing NDT must be qualified in accordance with the applicable AWS code and the employer's Written Practice. Level III personnel who qualifies Level I and Level II technicians must be certified by ASNT for which the NDT Level III is qualified. In addition, NDT technicians must pass hands-on tests that MTD administers. This will remain current provided they continue to perform testing on Department materials as evidenced by test reports requiring their signature. A technician who fails any of the hands-on tests must wait 3 mo. or as approved otherwise before retesting. Qualification to perform NDT will be revoked when the technician's employment is terminated or when the technician goes 6 mo. without performing a test on a Department project. The technician must pass a new hands-on test to be re-certified. Testing of similar weld joints for non-Department projects may be considered by the Engineer instead of re-testing provided enough documentation is submitted with the signature of the project's Engineer. These requirements also apply to testing agencies, and individual third-party contractors.

Section 441.3.1.5.4., "Welding Procedure Specification Qualification Testing," is voided and replaced by the following:

For Fabricators qualified in accordance with DMS-7370, DMS-7380, or DMS-7395, laboratories performing procedure qualification testing for welding procedure specifications (WPSs) must be accredited by a nationally recognized agency that performs testing in accordance with ISO/International Electrotechnical Commission (IEC) 17025 in the mechanical field of testing.

Section 441.3.1.9., "Material Identification," is amended to include the following paragraph:

Low-stress stencil marks must have a radius instead of a sharp point. Acceptable stencils include dot, vibration, and rounded-V stencils. Label these stencils so that they are easily distinguishable from other stencils that are not low-stress.

Section 441.3.2.4.1., "Flange Tilt," the last sentence is voided and replaced with the following:

Minor jacking that does not deform the material will be permitted.

Section 441.3.2.5.3., "Magnetic Particle Testing," is voided and replaced with the following:

Use alternating current (AC) when using the yoke method unless otherwise approved. Welds may be further evaluated with halfwave rectified DC for subsurface indications. Centerline cracking may be detected with aluminum prod method when approved.

Section 441.3.5.8., "Hammering," is added to state the following:

Do not perform hammering on any portion of the member that causes the material to permanently deform. Avoid damage to the material by measures such as use of brass or aluminum hammers or by padding the area to be hammered.

Section 441.3.8.1., "Shop Painting," is amended to include with the following paragraph:

Measure the anchor profile after blast cleaning at random locations along the thermal cut surfaces. If specified anchor profile is not achieved over the entire flame cut surface, grind the edges and re-blast to achieve the required anchor pattern.

Section 441.3.9., "Handling and Storage of Materials," The second sentence of the second paragraphis replaced by the following:

Keep materials clean and avoid damaging of the applied coating.

Special Provision to Item 442 Metal for Structures

Item 442, "Metal for Structures" of the Standard Specifications is amended with respect to the clause cited below. No other clauses or requirements of this Item are waived or changed.

Section 442.2.1.3.3., "Fasteners." The first sentence of the first paragraph is replaced by the following:

Fasteners. Provide high-strength bolts that meet ASTM F3125-Grade A325 unless otherwise shown on the plans.

Section 442.2.1.3.3., "Fasteners." The third paragraph is deleted and not replaced.

Special Provision to Item 446 Field Cleaning and Painting Steel

For this project, Item 446, "Field Cleaning and Painting Steel," of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Section 446.4.1., "Qualification," the first and second paragraphs are voided and replaced by the following:

Submit to the Engineer documentation verifying SSPC QP 1 or NACE NIICAP AS-1 certification for work requiring the removal or application of coatings. Additionally, submit to the Engineer documentation verifying SSPC QP 2 Cat A or NACE NIICAP AS-2 certification when work requires removal of coatings containing hazardous materials. Maintain certifications throughout the project. No work may be performed without current and active certifications unless otherwise shown on the plans. The Engineer may waive certification requirements for minor, touch-up repair work and coating steel members repaired in accordance with Item 784, "Steel Member Repair."

The Engineer may waive certification requirements, when stated on the plans, for the purpose of qualification in either contractor certification program if the project has been accepted as a qualification project as part of the process for obtaining SSPC QP1 Cat A or NACE NIICAP AS-1 certification. Submit certification applications and proof of acceptance before beginning work or provide SSPC QP 7 certification when required on the plans.

Section 446.4.7.3.2., "Classes of Cleaning," is amended with the following:

Prepare all surfaces of painted steel members subsequently exposed from structural operations, such as deck removal or steel repair, in accordance with this Item. Prevent loose or damaged paint from entering the environment.

Special Provision to Item 448 Structural Field Welding

Item 448, "Structural Field Welding" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 448.2., "Materials," the third paragraph is voided and replaced with the following:

Use only electrodes and flux-electrode combinations conforming to AWS A5 specifications and pertinent classifications for the applicable welding processes. When requested, submit a current Certificate of Conformance (COC) containing acceptable wording indicating Buy America compliance and all tests required by the applicable AWS specifications and welding codes. Tests must be conducted on electrodes of the same class, size, and brand; and manufactured by the same process and with the same materials as the electrodes to be furnished.

Special Provision to Item 449 Anchor Bolts

Item 449, "Anchor Bolts" of the Standard Specifications is amended with respect to the clause cited below. No other clauses or requirements of this Item are waived or changed.

	Table 1						
Bolt and Nut Standards							
Specified Anchor Bolt Category	Bolt Standards	Nut Standards					
Mild steel	ASTM A307 Gr. A, F1554 Gr.	ASTM A563					
wind steel	36, or A36						
Madium atranath	ASTM F1554 Gr. 55 with	ASTM A194 Gr. 2 or					
Medium-strength, mild steel	supplementary requirement	A563 Gr. D or better					
inna steer	S1						
Ligh strongth stool	ASTM F3125-Grade A325	ASTM A194 or					
High-strength steel	or ASTM A449 ¹	A563, heavy hex					
Allowated	ASTM A193 Gr. B7 or F1554	ASTM A194 Gr. 2H or					
Alloy steel	Gr. 105	A563 Gr. DH, heavy hex					
1 If beeded belte are an	a difficial ACTNA A 440 h alter mount	ha haarii hari haad					

Section 449.2.1., "Bolts and Nuts." Table 1 is replaced by the following:

1. If headed bolts are specified, ASTM A449 bolts must be heavy hex head.

Section 449.3.3.1,"Anchor Bolt Thread Lubricant Coating," The first sentence of the first paragraph is voided and replaced by the following.

Coat anchor bolt threads before installing nuts with an electrically conducting lubricant compound described in Section 449.3.3.2.1., "Definitions," for traffic signal poles, roadway illumination poles, high mast illumination poles, intelligent transportation system poles, overhead sign support structures, and steel electrical service supports.

Section 449.3.3.2,"Anchor Bolt Tightening Procedure," The first sentence of the first paragraph is voided and replaced by the following.

Tighten anchor bolts for traffic signal poles, shoe base and concrete traffic barrier base roadway illumination poles, high mast illumination poles, intelligent transportation system poles, and overhead sign support structures in accordance with this Section.

Special Provision to Item 450 Railing

Item 450, "Railing" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 450.3.1.2., "Fabrication," is supplemented with the following.

Fabrication plants that produce metal railing (steel and aluminum) must be approved in accordance with DMS-7395, "Metal Railing Fabrication Plant Qualification." This required approval does not include fabricators of chain link fence. The Materials and Tests Division maintains a MPL of approved fabrication plants of metal railing.

Permanently mark each metal railing post base plate, at a visible location when erected, with the fabrication plant's insignia or trademark. For fabricated rail panels, provide this permanent mark on one post base plate, per panel.

Special Provision to Item 502 Barricades, Signs and Traffic Handling

Item 502, "Barricades, Signs and Traffic Handling" of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Article 502.1., "Description," is supplemented by the following:

Temporary work-zone (TWZ) traffic control devices manufactured after December 31, 2019, must have been successfully tested to the crashworthiness requirements of the 2016 edition of the Manual for Assessing Safety Hardware (MASH). Such devices manufactured on or before this date and successfully tested to NCHRP Report 350 or the 2009 edition of MASH may continue to be used throughout their normal service lives. An exception to the manufacture date applies when, based on the project's date of letting, a category of MASH-2016 compliant TWZ traffic control devices are not approved, or are not self-certified after the December 31, 2019, date. In such case, devices that meet NCHRP-350 or MASH-2009 may be used regardless of the manufacture date.

Such TWZ traffic control devices include: portable sign supports, barricades, portable traffic barriers designated exclusively for use in temporary work zones, crash cushions designated exclusively for use in temporary work zones, longitudinal channelizers, truck and trailer mounted attenuators. Category I Devices (i.e., lightweight devices) such as cones, tubular markers and drums without lights or signs attached however, may be self-certified by the vendor or provider, with documentation provided to Department or as are shown on Department's Compliant Work Zone Traffic Control Device List.

Article 502.4., "Payment," is supplemented by the following:

Truck mounted attenuators and trailer attenuators will be paid for under Special Specification, "Truck Mounted Attenuator (TMA) and Trailer Attenuator (TA)." Portable Changeable Message Signs will be paid for under Special Specification, "Portable Changeable Message Sign." Portable Traffic Signals will be paid for under Special Specification, "Portable Traffic Signals."

Special Provision to Item 506 Temporary Erosion, Sedimentation, and Environmental Controls

For this project, Item 506, "Temporary Erosion, Sedimentation, and Environmental Controls," of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Article 506.1., "Description," is voided and replaced by the following:

Install, maintain, and remove erosion, sedimentation, and environmental control measures to prevent or reduce the discharge of pollutants in accordance with the Storm Water Pollution Prevention Plan (SWP3) or as directed. Ensure the installation and maintenance of control measures is performed in accordance with the manufacturer's or designer's specifications. Erosion and sediment control devices must be selected from the "Erosion Control Approved Products" or "Sediment Control Approved Products" lists. Perform work in a manner to prevent degradation of receiving waters, facilitate project construction, and comply with applicable federal, state, and local regulations.

Article 506.3., "Qualifications, Training, and Employee Requirements," is voided and not replaced.

Section 506.4.1., "Contractor Responsibilities," Section 506.4.2., "Implementation," and Section 506.4.3., "General," are voided and replaced by the following:

- 4.1. **Contractor Responsibilities**. Implement the SWP3 for the project site in accordance with the plans and specifications, and as directed. Coordinate storm water management with all other work on the project. Develop and implement an SWP3 for project-specific material supply plants within and outside of the Department's right of way in accordance with the specific or general storm water permit requirements. Prevent water pollution from storm water associated with construction activity from entering any surface water or private property on or adjacent to the project site.
- 4.2. Implementation.
- 4.2.1. **Commencement**. Implement the SWP3 as shown and as directed. Contractor proposed recommendations for changes will be allowed as approved. Do not implement changes until approval has been received and changes have been incorporated into the plans by the Engineer. Minor adjustments to meet field conditions are allowed and will be recorded by the Engineer in the SWP3.

Implement control measures before the commencement of activities that result in soil disturbance. Phase and minimize the soil disturbance to the areas shown on the plans. Coordinate temporary control measures with permanent control measures and all other work activities on the project to assure economical, effective, safe, continuous water pollution prevention. Provide control measures that are appropriate to the construction means, methods, and sequencing allowed by the Contract.

Do not prolong final grading and shaping. Preserve vegetation where possible throughout the project and minimize clearing, grubbing, and excavation within stream banks, bed, and approach sections.

- 4.3. General.
- 4.3.1. **Temporary Alterations or Control Measure Removal**. Altering or removal of control measures is allowed when control measures are restored within the same working day.

- 4.3.2. **Stabilization**. Initiate stabilization for disturbed areas no more than 14 days after the construction activities in that portion of the site has temporarily or permanently ceased. Establish a uniform vegetative cover or use another stabilization practice as approved.
- 4.3.3. Finished Work. Upon the Engineer's acceptance of vegetative cover or other stabilization practice, remove and dispose of all temporary control measures unless otherwise directed. Complete soil disturbing activities and establish a uniform perennial vegetative cover. A project will not be considered for acceptance until a vegetative cover of 70% density of existing adjacent undisturbed areas is obtained or equivalent permanent stabilization is obtained as approved.
- 4.3.4. **Restricted Activities and Required Precautions**. Do not discharge onto the ground or surface waters any pollutants such as chemicals, raw sewage, fuels, lubricants, coolants, hydraulic fluids, bitumens, or any other petroleum product. Operate and maintain equipment on site in a manner as to prevent actual or potential water pollution. Manage, control, and dispose of litter on site such that no adverse impacts to water quality occur. Prevent dust from creating a potential or actual unsafe condition, public nuisance, or condition endangering the value, utility, or appearance of any property. Wash out concrete trucks only in approved contained areas. Use appropriate controls to minimize the offsite transport of suspended sediments and other pollutants if it is necessary to pump or channel standing water (i.e. dewatering). Prevent discharges that would contribute to a violation of Edwards Aquifer Rules, water quality standards, the impairment of a listed water body, or other state or federal law.

Section 506.4.4., "Installation, Maintenance, and Removal Work." The first paragraph is voided and replaced by the following.

Perform work in accordance with the SWP3, and according to the manufacturers' guidelines. Install and maintain the integrity of temporary erosion and sedimentation control devices to accumulate silt and debris until soil disturbing activities are completed and permanent erosion control features are in place or the disturbed area has been adequately stabilized as determined by the Engineer.

Section 506.4.5., "Monitoring and Documentation," is voided and not replaced.

Section 506.6.5.2., "Maintenance Earthwork for Erosion and Sediment Control for Cleaning and/or Restoring Control Measures," is voided and replaced by the following:

Earthwork needed to remove and obliterate of erosion-control features will not be paid for directly but is subsidiary to pertinent Items unless otherwise shown on the plans.

Sprinkling and rolling required by this Item will not be paid for directly but will be subsidiary to this Item.

Special Provision to Item 520 Weighing and Measuring Equipment

Item 520, "Weighing and Measuring Equipment" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 520.2., "Equipment." The third paragraph is voided and replaced by the following.

Calibrate truck scales using weights certified by the Texas Department of Agriculture (TDA) or an equivalent agency as approved. Provide a written calibration report from a scale mechanic for truck scale calibrations. Cease plant operations during the checking operation. Do not use inaccurate or inadequate scales. Bring performance errors as close to zero as practicable when adjusting equipment.

Article 520.2., "Equipment." The fourth paragraph is amended to include the following:

At the Contractors option, an electronic ticket delivery system (e-ticketing) may be used instead of printed tickets. The use of eticketing will require written approval of the Engineer. At a minimum, the approved system will:

- Provide electronic, real-time e-tickets meeting the requirements of the applicable bid items;
- Automatically generate e-tickets using software and hardware fully integrated with the automated scale system used to weigh the material, and be designed in such a way that data input cannot be altered by the Contractor or the Engineer;
- Provide the Engineer access to the e-ticketing data in real-time with a web-based or app-based system compatible with iOS;
- Provide offline capabilities to prevent data loss if power or connectivity is lost;
- Require both the Contractor and the Engineer to accept or reject the e-ticket and provide the ability to record the information required by the applicable bid items, as well as any comments. Record the time of the approval/rejection and include it in the summary spreadsheet described below. Provide each party the capability to edit their respective actions and any entered information;

The Contractor may discontinue use of the e-ticket system and provide printed tickets as needed to meet the requirements of the applicable bid items.

Special Provision to Item 540 Metal Beam Guard Fence

Item 540, "Metal Beam Guard Fence" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Article 540.4.7, "Measurement," is voided and replaced with the following:

Long Span System. Measurement will be by each long span system, complete in place. Each long span system will be from the first CRT to the last CRT in the system.

Special Provision to Item 666 Retroreflectorized Pavement Markings

Item 666, "Retroreflectorized Pavement Markings," of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Section 2.3., "Glass Traffic Beads." The first paragraph is voided and replaced by the following:

Furnish drop-on glass beads in accordance with DMS-8290, "Glass Traffic Beads," or as approved. Furnish a double-drop of Type II and Type III drop-on glass beads for longitudinal pavement markings where each type bead is applied separately in equal portions (by weight), unless otherwise approved. Apply the Type III beads before applying the Type II beads. Furnish Type II beads for work zone pavement markings and transverse markings or symbols.

Section 4.3.1., "Type I Markings.," is supplemented by the following:

4.3.1.3. Spot Striping. Perform spot striping on a callout basis with a minimum callout quantity as shown on the plans.

Section 4.3.2., "Type II Markings.," is supplemented by the following:

4.3.2.1. Spot Striping. Perform spot striping on a callout basis with a minimum callout quantity as shown on the plans.

Section 4.4., "Retroreflectivity Requirements.," is voided and replaced by the following.

Type I markings for Contracts totaling more than 20,000 ft. of pavement markings must meet the following minimum retroreflectivity values for all longitudinal edgeline, centerline or no passing barrier-line, and lane line markings when measured any time after 3 days, but not later than 10 days after application.

- White markings: 250 millicandelas per square meter per lux (mcd/m²/lx)
- Yellow markings: 175 mcd/m²/lx

Retroreflectivity requirements for Type I markings are not required for Contracts with less than 20,000 ft. of pavement markings or Contracts with callout work, unless otherwise shown on the plans.

Section 4.5., "Retroreflectivity Measurements.," is voided and replaced by the following:

Use a mobile retroreflectometer to measure retroreflectivity for Contracts totaling more than 50,000 ft. of pavement markings, unless otherwise shown on the plans. For Contracts with less than 50,000 ft. of pavement markings, mobile or portable retroreflectometers may be used at the Contractor's discretion. Coordinate with and obtain authorization from the Engineer before starting any retroreflectivity data collection.

Section 4.5.1., "Mobile Retroreflectometer Measurements." The last paragraph is voided and replaced by the following.

Restripe again at the Contractor's expense with a minimum of 0.060 in. (60 mils) of Type I marking material if the average of these measurements falls below the minimum retroreflectivity requirements. Take measurements every 0.1 miles a minimum of 10 days after this third application within that mile segment for that series of markings. If the markings do not meet minimum retroreflectivity after this third application, the Engineer may require removal of all existing markings, a new application as initially specified, and a repeat of the application process until minimum retroreflectivity requirements are met.

Section 4.5.2., "Portable Retroreflectometer Measurements." The first and second paragraphs are voided and replaced by the following.

Provide portable measurement averages for every 1.0 mile unless otherwise specified or approved. Take a minimum of 20 measurements for each 1-mi. section of roadway for each series of markings (e.g., edgeline, center skip line, each line of a double line) and direction of traffic flow when using a portable reflectometer. Measure each line in both directions for centerlines on two-way roadways (i.e., measure both double solid lines in both directions and measure all center skip lines in both directions). The spacing between each measurement must be at least 100 ft. The Engineer may decrease the mileage frequency for measurements if the previous measurements provide satisfactory results. The Engineer may require the original number of measurements if concerns arise.

Restripe at the Contractor's expense with a minimum of 0.060 in. (60 mils) of Type I marking material if the averages of these measurements fail. Take a minimum of 10 more measurements after 10 days of this second application within that mile segment for that series of markings. Restripe again at the Contractor's expense with a minimum of 0.060 in. (60 mils) of Type I marking material if the average of these measurements falls below the minimum retroreflectivity requirements. If the markings do not meet minimum retroreflectivity after this third application, the Engineer may require removal of all existing markings, a new application as initially specified, and a repeat of the application process until minimum retroreflectivity requirements are met.

Section 4.6. "Performance Period." The first sentence is voided and replaced by the following:

All longitudinal markings must meet the minimum retroreflectivity requirements within the time frame specified. All markings must meet all other performance requirements of this specification for at least 30 calendar days after installation.

Article 6. "Payment." The first two paragraphs are voided and replaced by the following.

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Pavement Sealer" of the size specified; "Retroreflectorized Pavement Markings" of the type and color specified and the shape, width, size, and thickness (Type I markings only) specified, as applicable; "Retroreflectorized Pavement Markings with Retroreflective Requirements" of the types, colors, sizes, widths, and thicknesses specified; "Retroreflectorized Profile Pavement Markings" of the various types, colors, shapes, sizes, and widths specified; or "Reflectorized Pavement Marking (Call Out)" of the shape, width, size, and thickness (Type I markings only) specified, as applicable; or "Pavement Sealer (Call Out)" of the size specified.

This price is full compensation for materials, application of pavement markings, equipment, labor, tools, and incidentals.

Special Provision to Item 721 Fiber Reinforced Polymer Patching Material

Item 721, "Fiber Reinforced Polymer Patching Material" of the Standard Specifications is amended with respect to the clauses cited below. No other clauses or requirements of this Item are waived or changed.

Table 1 Patching Material Properties					
Property	Test Method	Requirement			
Resilience	<u>Tex-547-C</u>	50% Min			
Tensile Strain to Failure	<u>Tex-548-C</u>	20% Min			
Maximum Tensile Stress	<u>Tex-548-C</u>	50 psi Min			
Cone Flow	<u>Tex-549-C</u>	12% Max (asphalt based) 4% Max (polymer based)			
Flexibility	<u>Tex-550-C</u>	pass ¹			
Settlement	<u>Tex-551-C</u>	3 mm, Max			

Article 3., "Materials," Table 1 is voided and replaced by the following:

1. No evidence of cracking of the sample.

Section 3.1., "Sampling and Testing," is voided and replaced by the following:

3.1. **Sampling and Testing.** Provide material that has been preapproved by the Department in accordance with <u>Tex-538-C</u>, "Quality Monitoring for Rubber Asphalt Crack Sealers and Related Materials." Submit blended samples of patching material for preapproval or field evaluation when requested.

Special Provision to Special Specification 3096 Asphalts, Oils, and Emulsions

Special Specification 3096, "Asphalts, Oils, and Emulsions," is amended with respect to the clause cited below. No other clause or requirements of this Item are waived or changed.

Section 3096.2.2., Table 3 Polymer-Modified Asphalt Cement has been voided and replaced by the following:

		Poly	mer-Mo	dified A	sphalt C	ement							
Property	Test				Po	lymer-M	odified	l Viscos	ity Gra	de			
	Procedure	AC-12	2-5TR	NT	·HA ¹	AC-	15P	AC-2	0XP	AC-10	-2TR	AC-2	0-5TR
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Polymer		T	R	-	-	SB	S	SE	S	TI	۲	Т	R
Polymer content, % (solids basis)	Tex-533-C	5.0	-	-	-	3.0	-	-	-	2.0	-	5.0	-
	or <u>Tex-</u> <u>553-C</u>												
Dynamic shear, G*/sin δ , 82°C, 10 rad/s, kPa	T 315	-	-	1.0	-	-	-	-	-	-	-	-	-
Dynamic shear, G*/sin δ , 64°C, 10 rad/s, kPa	T 315	-	-	-	-	-	-	1.0	-	-	_	1.0	-
Dynamic shear, G*/sin δ , 58°C, 10 rad/s, kPa	T 315	1.0	-	-	-	-	_	-	-	1.0	_	-	-
Viscosity													
140°F, poise	T 202	1,200	- 1	-	-	1,500	-	2,000	-	1,000	-	2,000	-
275°F, poise	T 202	-	- 1	-	_	-	8.0	-	_	-	8.0	-	10.0
275°F, Pa-s	T 316	-	-	-	4.0	-	-	-	-	-	-	-	-
Penetration, 77°F, 100 g, 5 sec.	T 49	110	150	-	25	100	150	75	115	95	130	75	115
Elastic recovery, 50°F, %	Tex-539-C	55				55	-	55	-	30	-	55	-
Polymer separation	Tex-540-C	No	ne	-	_	Noi	ne	No	ne	No	ne	No	ne
Flash point, C.O.C., °F	T 48	425		425		425	-	425	-	425	-	425	-
Tests on residue from RTFOT	T 240												
aging and pressure aging:	and R 28												
Creep stiffness	T 313												
Ś, -18°C, MPa		-	300	-	-	-	300	-	300	-	300	-	300
m-value, -18°C		0.300	-	-	-	0.300	- 1	0.300	_	0.300	-	0.300	-

Table 3
olymer-Modified Asphalt Ceme
Polyma

1. This is a hot-applied TRAIL product.

Section 3096.2.5., Diluted Emulsions tables has been added.

Diluted Emulsions. Provide emulsified asphalt that is homogeneous, does not separate after thorough mixing, and meets the requirements for the specified type and grade in Tables 12A, and 12B, where the suffixes 50/50, 40/60, and 30/70 mean 50% emulsion diluted with 50% water; 40% emulsion diluted with 60% water, and 30% emulsion diluted with 70% water, respectively. For example, CSS-1H 40/60 means 40% CSS-1H diluted with 60% water and AE-P 30/70 means 30% AE-P diluted with 70% water.

Diluted CSS-1H								
		Type-Grade Test Diluted Slow-Setting						
Description	Test							
Property	Procedure	CSS-1	H 50/50	CSS-1	H 40/60	CSS-1H 30/70		
		Min	Max	Min	Max	Min	Max	
Viscosity, Saybolt Furol								
77°F, sec.	T 72	Repo	rt Only	Report Only		Report Only		
Distillation test:								
Residue by distillation, % by wt.	T 59	30	-	24	-	18	-	
Oil distillate, % by volume of emulsion		-	0.5	-	0.5	-	0.5	
Tests on residue from distillation:								
Penetration, 77°F, 100 g, 5 sec.	T 49	40	110	40	110	40	110	
Solubility, %	T 44	97.5	-	97.5	-	97.5	-	
Ductility, 77°F, 5 cm/min., cm	T 51	80	-	80	-	80	-	

Table 12A

Table 12B Diluted AE-P

		Type–Grade							
Bronorty	Test	Diluted Slow-Setting							
Property	Procedure	AE-P	50/50	AE-P 40/60		AE-P	30/70		
		Min	Max	Min	Min	Max	Min		
Viscosity, Saybolt Furol	T 72								
122°F, sec.		Report Only		y Report Only		Report Only			
Asphalt emulsion distillation to 500°F									
followed by Cutback asphalt distillation of	T 59 & T 78								
residue to 680°F:									
Residue after both distillations, % by wt.		20	-	16	-	12	-		
Total oil distillate from both distillations, %		12.5	20	10.0	16	7.5	12		
by volume of emulsion									
Tests on residue after all distillations:									
Solubility, %	T 44	97.5	-	97.5	-	97.5	-		
Float test, 122°F, sec.	T 50	50	200	50	200	50	200		

Special Provision to Special Specification 6185 Truck Mounted Attenuator (TMA) and Trailer Attenuator (TA)

Item 6185, "Truck Mounted Attenuator (TMA) and Trailer Attenuator (TA)" of the Standard Specifications, is hereby amended with respect to the clauses cited below, and no other clauses or requirements of this Item are waived or changed hereby.

Article 4. "Measurement", is voided and replaced by the following:

- 4.1. **Truck Mounted Attenuator/Trailer Attenuator (Stationary).** This Item will be measured by the day. TMA/TAs must be set up in a work area and operational before a calendar day can be considered measureable. A day will be measured for each TMA/TA set up and operational on the worksite.
- 4.2. **Truck Mounted Attenuator/Trailer Attenuator (Mobile Operation).** This Item will be measured by the hour or by the day. The time begins once the TMA/TA is ready for operation at the predetermined site and stops when notified by the Engineer. When measurement by the hour is specified, a minimum of 4 hr. will be paid each day for each operating TMA/TA used in a mobile operation. When measurement by the day is specified, a day will be measured for each TMA/TA set up and operational on the worksite.

Special Specification 3076 Dense-Graded Hot-Mix Asphalt

1. DESCRIPTION

Construct a hot-mix asphalt (HMA) pavement layer composed of a compacted, dense-graded mixture of aggregate and asphalt binder mixed hot in a mixing plant. Payment adjustments will apply to HMA placed under this specification unless the HMA is deemed exempt in accordance with Section 3076.4.9.4., "Exempt Production."

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met when the Contractor makes a source or formulation change, and may require a new laboratory mixture design, trial batch, or both. The Engineer may sample and test project materials at any time during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. Aggregate. Furnish aggregates from sources that conform to the requirements shown in Table 1 and as specified in this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse, intermediate, or fine aggregate. Aggregate from reclaimed asphalt pavement (RAP) is not required to meet Table 1 requirements unless otherwise shown on the plans. Supply aggregates that meet the definitions in Tex-100-E for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests listed in Table 1. Document all test results on the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis given in Tex-200-F, Part II.
- 2.1.1. **Coarse Aggregate**. Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for hot-mix listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in hot-mix asphalt.

For sources not listed on the Department's BRSQC:

- build an individual stockpile for each material;
- request the Department test the stockpile for specification compliance; and
- once approved, do not add material to the stockpile unless otherwise approved.

Provide aggregate from non-listed sources only when tested by the Engineer and approved before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements only apply to aggregates used on the surface of travel lanes. SAC requirements apply to aggregates used on surfaces other than travel lanes when shown on the plans. The SAC for sources on the Department's *Aggregate Quality Monitoring Program* (AQMP) (Tex-499-A) is listed in the BRSQC.

2.1.1.1. Blending Class A and Class B Aggregates. Class B aggregate meeting all other requirements in Table 1 may be blended with a Class A aggregate to meet requirements for Class A materials, unless otherwise shown on the plans. Ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source when blending Class A and B aggregates to meet a Class A requirement unless otherwise shown on the plans. Blend by volume if the bulk specific gravities of the Class A and B aggregates differ by more than 0.300. Coarse aggregate from RAP and Recycled Asphalt Shingles (RAS) will be considered as Class B aggregate for blending purposes.

The Engineer may perform tests at any time during production, when the Contractor blends Class A and B aggregates to meet a Class A requirement, to ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks using the gradations supplied by the Contractor on the mixture design report as an input for the template; however, a failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.1.2. **Micro-Deval Abrasion**. The Engineer will perform a minimum of one Micro-Deval abrasion test in accordance with <u>Tex-461-A</u> for each coarse aggregate source used in the mixture design that has a Rated Source Soundness Magnesium (RSSM) loss value greater than 15 as listed in the BRSQC. The Engineer will perform testing before the start of production and may perform additional testing at any time during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula:

Mg_{est.} = (RSSM)(MD_{act.}/RSMD)

where: $Mg_{est.}$ = magnesium sulfate soundness loss $MD_{act.}$ = actual Micro-Deval percent loss RSMD = Rated Source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Soils and Aggregates Section of the Materials and Tests Division, and additional testing may be required before granting approval.

2.1.2. Intermediate Aggregate. Aggregates not meeting the definition of coarse or fine aggregate will be defined as intermediate aggregate. Supply intermediate aggregates, when used that are free from organic impurities. The Engineer may test the intermediate aggregate in accordance with <u>Tex-408-A</u> to verify the material is free from organic impurities. Supply intermediate aggregate from coarse aggregate sources, when used that meet the requirements shown in Table 1 unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve, and verify that it meets the requirements in Table 1 for crushed face count ($\underline{\text{Tex-}460-\text{A}}$) and flat and elongated particles ($\underline{\text{Tex-}280-\text{F}}$).

2.1.3. Fine Aggregate. Fine aggregates consist of manufactured sands, screenings, and field sands. Fine aggregate stockpiles must meet the gradation requirements in Table 2. Supply fine aggregates that are free from organic impurities. The Engineer may test the fine aggregate in accordance with <u>Tex-408-A</u> to verify the material is free from organic impurities. Unless otherwise shown on the plans, up to 10% of the total aggregate may be field sand or other uncrushed fine aggregate. Use fine aggregate, with the exception of field sand, from coarse aggregate sources that meet the requirements shown in Table 1 unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve and verify that it meets the requirements in Table 1 for crushed face count (<u>Tex-460-A</u>) and flat and elongated particles (<u>Tex-280-F</u>).

Aggregate quality Requirements					
Property	Test Method	Requirement			
Coarse A	Aggregate				
SAC	<u>Tex-499-A</u> (AQMP)	As shown on the plans			
Deleterious material, %, Max	<u>Tex-217-F</u> , Part I	1.5			
Decantation, %, Max	<u>Tex-217-F</u> , Part II	1.5			
Micro-Deval abrasion, %	<u>Tex-461-A</u>	Note 1			
Los Angeles abrasion, %, Max	<u>Tex-410-A</u>	40			
Magnesium sulfate soundness, 5 cycles, %, Max	<u>Tex-411-A</u>	30			
Crushed face count, ² %, Min	Tex-460-A, Part I	85			
Flat and elongated particles @ 5:1, %, Max	<u>Tex-280-F</u>	10			
Fine Ag	ggregate				
Linear shrinkage, %, Max	<u>Tex-107-E</u>	3			
Sand equivalent, %, Min	<u>Tex-203-F</u>	45			
Sand equivalent, %, Min	<u>Tex-203-F</u>	45			

	Table	1
Anaroasto	Quality	Requiremente

 Used to estimate the magnesium sulfate soundness loss in accordance with Section 3076.2.1.1.2., "Micro-Deval Abrasion."

2. Only applies to crushed gravel.

Table 2 Gradation Requirements for Fine Aggregate

Oradation Requirements for Time Aggregate					
Sieve Size	% Passing by Weight or Volume				
3/8"	100				
#8	70–100				
#200	0–30				

2.2.

Mineral Filler. Mineral filler consists of finely divided mineral matter such as agricultural lime, crusher fines, hydrated lime, or fly ash. Mineral filler is allowed unless otherwise shown on the plans. Use no more than 2% hydrated lime or fly ash unless otherwise shown on the plans. Use no more than 1% hydrated lime if a substitute binder is used unless otherwise shown on the plans or allowed. Test all mineral fillers except hydrated lime and fly ash in accordance with <u>Tex-107-E</u> to ensure specification compliance. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:

- is sufficiently dry, free-flowing, and free from clumps and foreign matter as determined by the Engineer;
- does not exceed 3% linear shrinkage when tested in accordance with <u>Tex-107-E</u>; and
- meets the gradation requirements in Table 3, unless otherwise shown on the plans.

Table 3					
Gradation Requirements for Mineral Filler					
Sieve Size % Passing by Weight or Volume					
#8	100				
#200	55–100				

- 2.3. **Baghouse Fines**. Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.
- 2.4. **Asphalt Binder**. Furnish the type and grade of performance-graded (PG) asphalt specified on the plans.

3076

- 2.5. **Tack Coat.** Furnish CSS-1H, SS-1H, or a PG binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300, "Asphalts, Oils, and Emulsions." Specialized tack coat materials listed on the Department's MPL are allowed or required when shown on the plans. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use.
- 2.6. **Additives.** Use the type and rate of additive specified when shown on the plans. Additives that facilitate mixing, compaction, or improve the quality of the mixture are allowed when approved. Provide the Engineer with documentation such as the bill of lading showing the quantity of additives used in the project unless otherwise directed.
- 2.6.1. **Lime and Liquid Antistripping Agent**. When lime or a liquid antistripping agent is used, add in accordance with Item 301, "Asphalt Antistripping Agents." Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.
- 2.6.2. Warm Mix Asphalt (WMA). Warm Mix Asphalt (WMA) is defined as HMA that is produced within a target temperature discharge range of 215°F and 275°F using approved WMA additives or processes from the Department's MPL.

WMA is allowed for use on all projects and is required when shown on the plans. When WMA is required, the maximum placement or target discharge temperature for WMA will be set at a value below 275°F.

Department-approved WMA additives or processes may be used to facilitate mixing and compaction of HMA produced at target discharge temperatures above 275°F; however, such mixtures will not be defined as WMA.

2.6.3. **Compaction Aid.** Compaction Aid is defined as a chemical warm mix additive that is used to produce an asphalt mixture at a discharge temperature greater than 275°F.

Compaction Aid is allowed for use on all projects and is required when shown on the plans.

2.7. Recycled Materials. Use of RAP and RAS is permitted unless otherwise shown on the plans. Use of RAS is restricted to only intermediate and base mixes unless otherwise shown on the plans. Do not exceed the maximum allowable percentages of RAP and RAS shown in Table 4. The allowable percentages shown in Table 4 may be decreased or increased when shown on the plans. Determine the asphalt binder content and gradation of the RAP and RAS stockpiles for mixture design purposes in accordance with <u>Tex-236-F</u>, Part I. The Engineer may verify the asphalt binder content of the stockpiles at any time during production. Perform other tests on RAP and RAS when shown on the plans. Asphalt binder from RAP and RAS is designated as recycled asphalt binder. Calculate and ensure that the ratio of the recycled asphalt binder to total binder does not exceed the percentages shown in Table 5 during mixture design and HMA production when RAP or RAS is used. Use a separate cold feed bin for each stockpile of RAP and RAS during HMA production.

Surface, intermediate, and base mixes referenced in Tables 4 and 5 are defined as follows:

- Surface. The final HMA lift placed at the top of the pavement structure or placed directly below mixtures produced in accordance with Items 316, 342, 347, or 348;
- Intermediate. Mixtures placed below an HMA surface mix and less than or equal to 8.0 in. from the riding surface; and
- Base. Mixtures placed greater than 8.0 in. from the riding surface. Unless otherwise shown on the plans, mixtures used for bond breaker are defined as base mixtures.
- 2.7.1. **RAP**. RAP is salvaged, milled, pulverized, broken, or crushed asphalt pavement. Fractionated RAP is defined as a stockpile that contains RAP material with a minimum of 95.0% passing the 3/8-in. or 1/2-in. sieve, before burning in the ignition oven, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8-in. or 1/2-in. screen to fractionate the RAP.

Use of Contractor-owned RAP including HMA plant waste is permitted unless otherwise shown on the plans. Department-owned RAP stockpiles are available for the Contractor's use when the stockpile locations are shown on the plans. If Department-owned RAP is available for the Contractor's use, the Contractor may use Contractor-owned fractionated RAP and replace it with an equal quantity of Department-owned RAP. Department-owned RAP generated through required work on the Contractor is available for the Contractor's use when shown on the plans. Perform any necessary tests to ensure Contractor- or Department-owned RAP is appropriate for use. The Department will not perform any tests or assume any liability for the quality of the Department-owned RAP unless otherwise shown on the plans. The Contractor will retain ownership of RAP generated on the project when shown on the plans.

Do not use Department- or Contractor-owned RAP contaminated with dirt or other objectionable materials. Do not use Department- or Contractor-owned RAP if the decantation value exceeds 5% and the plasticity index is greater than 8. Test the stockpiled RAP for decantation in accordance with <u>Tex-406-A</u>, Part I. Determine the plasticity index in accordance with <u>Tex-106-E</u> if the decantation value exceeds 5%. The decantation and plasticity index requirements do not apply to RAP samples with asphalt removed by extraction or ignition.

Do not intermingle Contractor-owned RAP stockpiles with Department-owned RAP stockpiles. Remove unused Contractor-owned RAP material from the project site upon completion of the project. Return unused Department-owned RAP to the designated stockpile location.

Table 4						
Maximum Allowable Amounts of RAP ¹						
M	Maximum Allowable					
Fra	ctionated RAP (%)				
Surface	Intermediate	Base				
15.0 25.0 30.0						
1. Must also meet the recycled binder to total						

binder ratio shown in Table 5.

2.7.2. **RAS**. Use of post-manufactured RAS or post-consumer RAS (tear-offs) is not permitted in surface mixtures unless otherwise shown on the plans. RAS may be used in intermediate and base mixtures unless otherwise shown on the plans. Up to 3% RAS may be used separately or as a replacement for fractionated RAP in accordance with Table 4 and Table 5. RAS is defined as processed asphalt shingle material from manufacturing of asphalt roofing shingles or from re-roofing residential structures. Post-manufactured RAS is processed manufacturer's shingle scrap by-product. Post-consumer RAS is processed shingle scrap removed from residential structures. Comply with all regulatory requirements stipulated for RAS by the TCEQ. RAS may be used separately or in conjunction with RAP.

Process the RAS by ambient grinding or granulating such that 100% of the particles pass the 3/8 in. sieve when tested in accordance with <u>Tex-200-F</u>, Part I. Perform a sieve analysis on processed RAS material before extraction (or ignition) of the asphalt binder.

Add sand meeting the requirements of Table 1 and Table 2 or fine RAP to RAS stockpiles if needed to keep the processed material workable. Any stockpile that contains RAS will be considered a RAS stockpile and be limited to no more than 3.0% of the HMA mixture in accordance with Table 4.

Certify compliance of the RAS with <u>DMS-11000</u>, "Evaluating and Using Nonhazardous Recyclable Materials Guidelines." Treat RAS as an established nonhazardous recyclable material if it has not come into contact with any hazardous materials. Use RAS from shingle sources on the Department's MPL. Remove substantially all materials before use that are not part of the shingle, such as wood, paper, metal, plastic, and felt paper. Determine the deleterious content of RAS material for mixture design purposes in accordance with <u>Tex-217-F</u>, Part III. Do not use RAS if deleterious materials are more than 0.5% of the stockpiled RAS unless otherwise approved. Submit a sample for approval before submitting the mixture design. The Department will perform the testing for deleterious material of RAS to determine specification compliance.

3076

2.8.

Substitute Binders. Unless otherwise shown on the plans, the Contractor may use a substitute PG binder listed in Table 5 instead of the PG binder originally specified, if using recycled materials, and if the substitute PG binder and mixture made with the substitute PG binder meet the following:

- the substitute binder meets the specification requirements for the substitute binder grade in accordance with Section 300.2.10., "Performance-Graded Binders;" and
- the mixture has less than 10.0 mm of rutting on the Hamburg Wheel test (Tex-242-F) after the number of passes required for the originally specified binder. Use of substitute PG binders may only be allowed at the discretion of the Engineer if the Hamburg Wheel test results are between 10.0 mm and 12.5 mm.

Table 5

	Allowable Substitute PG Binders and Maximum Recycled Binder Ratios								
Originally	Allowable Substitute PG Binder for	Allowable Substitute PG Binder for		Ratio of Recycle Total Binder (%					
Specified PG Binder	Surface Mixes	Intermediate and Base Mixes	Surface	Intermediate	Base				
76-22 ^{4,5}	70-22	70-22	10.0	20.0	25.0				
70-22 ^{2,5}	N/A	64-22	10.0	20.0	25.0				
64-22 ^{2,3}	N/A	N/A	10.0	20.0	25.0				
76-28 ^{4,5}	70-28	70-28	10.0	20.0	25.0				
70-28 ^{2,5}	N/A	64-28	10.0	20.0	25.0				
64-28 ^{2,3}	N/A	N/A	10.0	20.0	25.0				

Combined recycled binder from RAP and RAS. RAS is not permitted in surface mixtures unless 1 otherwise shown on the plans.

Binder substitution is not allowed for surface mixtures. 2

3. Binder substitution is not allowed for intermediate and base mixtures.

- Use no more than 10.0% recycled binder in surface mixtures when using this originally specified PG 4. binder.
- 5. Use no more than 20.0% recycled binder when using this originally specified PG binder for intermediate mixtures. Use no more than 25.0% recycled binder when using this originally specified PG binder for base mixtures.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement."

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required by the specification, Contractors may perform other QC tests as deemed necessary. At any time during the project, the Engineer may perform production and placement tests as deemed necessary in accordance with Item 5. "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1. Certification. Personnel certified by the Department-approved hot-mix asphalt certification program must conduct all mixture designs, sampling, and testing in accordance with Table 6. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2 certified specialist. Provide Level 1A certified specialists at the plant during production operations. Provide Level 1B certified specialists to conduct placement tests. Provide AGG101 certified specialists for aggregate testing.

Test Description	, Test Responsibility, and Test Method	Contractor	Engineer	Level ¹
	1. Aggregate and Recycled			
ampling	Tex-221-F	√	✓	1A/AGG101
ry sieve	Tex-200-F, Part I	✓	✓	1A/AGG101
/ashed sieve	Tex-200-F, Part II	✓	\checkmark	1A/AGG101
eleterious material	Tex-217-F, Parts I & III	✓	✓	AGG101
ecantation	<u>Tex-217-F</u> , Part II	✓	✓	AGG101
os Angeles abrasion	<u>Tex-410-A</u>		✓	TxDOT
agnesium sulfate soundness	Tex-411-A		✓	TxDOT
licro-Deval abrasion	Tex-461-A		✓	AGG101
rushed face count	Tex-460-A	✓	✓	AGG101
lat and elongated particles	Tex-280-F	✓	✓	AGG101
near shrinkage	Tex-107-E	· · · · · · · · · · · · · · · · · · ·	· ✓	AGG101
and equivalent	Tex-203-F	· · · · · · · · · · · · · · · · · · ·	· ·	AGG101
rganic impurities	Tex-408-A	• •	✓ ✓	AGG101 AGG101
rgane inpunies	2. Asphalt Binder & Tack	Coat Sampling	·	AGGIUT
sphalt binder sampling	Tex-500-C, Part II		\checkmark	1A/1B
ack coat sampling	Tex-500-C, Part III	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1A/1B
ack coat sampling	3. Mix Design & Ve		v	IAVID
esign and JMF changes	Tex-204-F		\checkmark	2
lixing	<u>Tex-205-F</u>	 ✓	✓ ✓	2
lolding (TGC)	Tex-206-F	✓ ✓	✓ ✓	1A
lolding (SGC)		 ✓	×	1A 1A
aboratory-molded density	<u>Tex-241-F</u>	 ✓	✓ ✓	
	Tex-207-F, Parts I & VI	✓ ✓	✓ ✓	1A
ice gravity	Tex-227-F, Part II	 ✓	✓ ✓	1A
nition oven correction factors ² direct tensile strength	Tex-236-F, Part II			2
	Tex-226-F	✓ ✓	✓ ✓	1A
amburg Wheel test	<u>Tex-242-F</u>	 ✓	✓ ✓	1A
oil test	Tex-530-C		v	1A
alasting production random numbers	4. Production T	esting	\checkmark	1 4
electing production random numbers	<u>Tex-225-F</u> , Part I			1A
lixture sampling	<u>Tex-222-F</u>	<u>√</u>	✓	1A/1B
Iolding (TGC)	<u>Tex-206-F</u>	✓	✓	1A
lolding (SGC)	<u>Tex-241-F</u>	✓	 ✓ 	1A
aboratory-molded density	Tex-207-F, Parts I & VI	✓	 ✓ 	1A
ice gravity	Tex-227-F, Part II	✓	 ✓ 	1A
radation & asphalt binder content ²	Tex-236-F, Part I	✓	 ✓ 	1A
ontrol charts	<u>Tex-233-F</u>	✓	 ✓ 	1A
oisture content	Tex-212-F, Part II	✓	~	1A/AGG101
amburg Wheel test	<u>Tex-242-F</u>	\checkmark	 ✓ 	1A
icro-Deval abrasion	<u>Tex-461-A</u>		\checkmark	AGG101
oil test	<u>Tex-530-C</u>	✓	✓	1A
bson recovery	<u>Tex-211-F</u>		✓	TxDOT
	5. Placement Te	esting		
electing placement random numbers	Tex-225-F, Part II		~	1B
rimming roadway cores	Tex-251-F, Parts I & II	✓	~	1A/1B
-place air voids	Tex-207-F, Parts I & VI	✓	✓	1A
-place density (nuclear method)	Tex-207-F, Part III	\checkmark		1B
stablish rolling pattern	<u>Tex-207-F</u> , Part IV	\checkmark		1B
ontrol charts	<u>Tex-233-F</u>	\checkmark	\checkmark	1A
ide quality measurement	Tex-1001-S	\checkmark	\checkmark	Note 3
egregation (density profile)	Tex-207-F, Part V	\checkmark	\checkmark	1B
ongitudinal joint density	Tex-207-F, Part VII	\checkmark	✓	1B
hermal profile	Tex-244-F	✓	√	1B
hear Bond Strength Test	Tex-249-F		\checkmark	TxDOT

Table 6 et Mothada, Tast D vol

Refer to Section 3076.4.9.2.3., "Production Testing," for exceptions to using an ignition oven. Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when Surface Test Type B is specified. 2. 3.

Reporting and Responsibilities. Use Department-provided templates to record and calculate all test data, including mixture design, production and placement QC/QA, control charts, thermal profiles, segregation density profiles, and longitudinal joint density. Obtain the current version of the templates at http://www.txdot.gov/inside-txdot/forms-publications/consultants-contractors/forms/site-manager.html or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The maximum allowable time for the Contractor and Engineer to exchange test data is as given in Table 7 unless otherwise approved. The Engineer and the Contractor will immediately report to the other party any test result that requires suspension of production or placement, a payment adjustment less than 1.000, or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department-provided templates.

Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

Table 7

		able 7 ng Schedule		
Description	Reported By	Reported To	To Be Reported Within	
• · · · · · · · · · · · · · · · · · · ·	Production	Quality Control		
Gradation ¹				
Asphalt binder content ¹			1 working day of completion of	
Laboratory-molded density ²	Contractor	Engineer	1 working day of completion of the sublot	
Moisture content ³				
Boil test ³				
	Production Q	uality Assurance	·	
Gradation ³				
Asphalt binder content ³				
Laboratory-molded density ¹	Fasiasas	Contractor	1 working day of completion of	
Hamburg Wheel test ⁴	Engineer	Contractor	the sublot	
Boil test ³				
Binder tests ⁴				
	Placement	Quality Control		
In-place air voids ²				
Segregation ¹	Contractor	Engineer	1 working day of completion of	
Longitudinal joint density ¹	Contractor		the lot	
Thermal profile ¹				
	Placement Qu	ality Assurance	· ·	
In-place air voids ¹			1 working day after receiving the trimmed cores ⁵	
Segregation ³	Engineer Contractor			
Longitudinal joint density ³	Engineer	Contractor	1 working day of completion of	
Thermal profile ³			the lot	
Aging ratio ⁴				
Payment adjustment summary	Engineer	Contractor	2 working days of performing all required tests and receiving Contractor test data	

1. These tests are required on every sublot.

4.2.

2. Optional test. When performed on split samples, report the results as soon as they become available.

3. To be performed at the frequency specified in Table 16 or as shown on the plans.

4. To be reported as soon as the results become available.

5. 2 days are allowed if cores cannot be dried to constant weight within 1 day.

The Engineer will use the Department-provided template to calculate all payment adjustment factors for the lot. Sublot samples may be discarded after the Engineer and Contractor sign off on the payment adjustment summary documentation for the lot.

Use the procedures described in <u>Tex-233-F</u> to plot the results of all quality control (QC) and quality assurance (QA) testing. Update the control charts as soon as test results for each sublot become available. Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

4.3. Quality Control Plan (QCP). Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

Submit a written QCP before the mandatory pre-paving meeting. Receive approval of the QCP before beginning production. Include the following items in the QCP:

4.3.1. **Project Personnel**. For project personnel, include:

- a list of individuals responsible for QC with authority to take corrective action;
- current contact information for each individual listed; and
- current copies of certification documents for individuals performing specified QC functions.

4.3.2. **Material Delivery and Storage**. For material delivery and storage, include:

- the sequence of material processing, delivery, and minimum quantities to assure continuous plant operations;
- aggregate stockpiling procedures to avoid contamination and segregation;
- frequency, type, and timing of aggregate stockpile testing to assure conformance of material requirements before mixture production; and
- procedure for monitoring the quality and variability of asphalt binder.

4.3.3. **Production**. For production, include:

- loader operation procedures to avoid contamination in cold bins;
- procedures for calibrating and controlling cold feeds;
- procedures to eliminate debris or oversized material;
- procedures for adding and verifying rates of each applicable mixture component (e.g., aggregate, asphalt binder, RAP, RAS, lime, liquid antistrip, WMA);
- procedures for reporting job control test results; and
- procedures to avoid segregation and drain-down in the silo.
- 4.3.4. **Loading and Transporting**. For loading and transporting, include:
 - type and application method for release agents; and
 - truck loading procedures to avoid segregation.

4.3.5. Placement and Compaction. For placement and compaction, include:

- proposed agenda for mandatory pre-paving meeting, including date and location;
- proposed paving plan (e.g., paving widths, joint offsets, and lift thicknesses);
- type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils;
- procedures for the transfer of mixture into the paver, while avoiding segregation and preventing material spillage;
- process to balance production, delivery, paving, and compaction to achieve continuous placement operations and good ride quality;
- paver operations (e.g., operation of wings, height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and
- procedures to construct quality longitudinal and transverse joints.

3076

4.4. Mixture Design.

- 4.4.1. **Design Requirements**. The Contractor will design the mixture using a Superpave Gyratory Compactor (SGC). A Texas Gyratory Compactor (TGC) may be used when shown on the plans. Use the dense-graded design procedure provided in <u>Tex-204-F</u>. Design the mixture to meet the requirements listed in Tables 1, 2, 3, 4, 5, 8, 9, and 10.
- 4.4.1.1. **Design Number of Gyrations (Ndesign) When The SGC Is Used**. Design the mixture at 50 gyrations (Ndesign). Use a target laboratory-molded density of 96.0% to design the mixture; however, adjustments can be made to the Ndesign value as noted in Table 9. The Ndesign level may be reduced to at least 35 gyrations at the Contractor's discretion.

Use an approved laboratory from the Department's MPL to perform the Hamburg Wheel test, and provide results with the mixture design, or provide the laboratory mixture and request that the Department perform the Hamburg Wheel test. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel test results on the laboratory mixture design.

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design at any time during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor can begin production.

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report:

- the combined aggregate gradation, source, specific gravity, and percent of each material used;
- asphalt binder content and aggregate gradation of RAP and RAS stockpiles;
- the target laboratory-molded density (or Ndesign level when using the SGC);
- results of all applicable tests;
- the mixing and molding temperatures;
- the signature of the Level 2 person or persons that performed the design;
- the date the mixture design was performed; and
- a unique identification number for the mixture design.

Master Gradation Limits (// Passing by Weight of Volume) and VMA Rec				
Sieve	В	С	D	F
Size	Fine	Coarse	Fine	Fine
Size	Base	Surface	Surface	Mixture
2"	_	-	_	_
1-1/2"	100.0 ¹	-	_	_
1"	98.0-100.0	100.0 ¹	_	_
3/4"	84.0-98.0	95.0-100.0	100.0 ¹	-
1/2"	-	-	98.0-100.0	100.0 ¹
3/8"	60.0-80.0	70.0-85.0	85.0-100.0	98.0-100.0
#4	40.0-60.0	43.0-63.0	50.0-70.0	70.0-90.0
#8	29.0-43.0	32.0-44.0	35.0-46.0	38.0-48.0
#30	13.0-28.0	14.0-28.0	15.0–29.0	12.0-27.0
#50	6.0-20.0	7.0–21.0	7.0–20.0	6.0–19.0
#200	2.0-7.0	2.0-7.0	2.0-7.0	2.0-7.0
Design VMA, % Minimum				
_	13.0	14.0	15.0	16.0
	Production (Pla	ant-Produced) \	/MA, % Minimu	m
-	12.5	13.5	14.5	15.5

Table 8	
Master Gradation Limits (% Passing by Weight or Volume) and VMA Requirements	

1. Defined as maximum sieve size. No tolerance allowed.

Laboratory Mixture Design Properties			
Mixture Property	Test Method	Requirement	
Target laboratory-molded density, % (SGC)	<u>Tex-207-F</u>	96.0	
Design gyrations (Ndesign for SGC)	<u>Tex-241-F</u>	50 ¹	
Indirect tensile strength (dry), psi	Tex-226-F	85–200 ²	
Boil test ³	<u>Tex-530-C</u>	-	

Table 9 aboratory Mixture Design Properties.

1. Adjust within a range of 35–100 gyrations when shown on the plans or specification or when mutually agreed between the Engineer and Contractor.

- 2. The Engineer may allow the IDT strength to exceed 200 psi if the corresponding Hamburg Wheel rut depth is greater than 3.0 mm and less than 12.5 mm.
- 3. Used to establish baseline for comparison to production results. May be waived when approved.

Tab	le 10
Hamburg Wheel 1	Fest Requirements

High-Temperature Binder Grade Test Method Minimum # of Passes @ 12.5 mm ¹ Rut Depth, Tested @ 50°				
	10,000 ²			
<u>Tex-242-F</u>	15,000 ³			
	20,000			
	Test Method			

 When the rut depth at the required minimum number of passes is less than 3 mm, the Engineer may require the Contractor to increase the target laboratory-molded density (TGC) by 0.5% to no more than 97.5% or lower the Ndesign level (SGC) to at least 35 gyrations.

2. May be decreased to at least 5,000 passes when shown on the plans.

3. May be decreased to at least 10,000 passes when shown on the plans.

- 4.4.1.2. **Target Laboratory-Molded Density When The TGC Is Used**. Design the mixture at a 96.5% target laboratory-molded density. Increase the target laboratory-molded density to 97.0% or 97.5% at the Contractor's discretion or when shown on the plans or specification.
- 4.4.2. **Job-Mix Formula Approval**. The job-mix formula (JMF) is the combined aggregate gradation, target laboratory-molded density (or Ndesign level), and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch. When WMA is used, JMF1 may be designed and submitted to the Engineer without including the WMA additive. When WMA is used, document the additive or process used and recommended rate on the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The Department may require the Contractor to reimburse the Department for verification tests if more than 2 trial batches per design are required.

4.4.2.1. Contractor's Responsibilities.

- 4.4.2.1.1. **Providing Gyratory Compactor**. Use a SGC calibrated in accordance with <u>Tex-241-F</u> to design the mixture in accordance with <u>Tex-204-F</u>, Part IV, for molding production samples. Locate the SGC, if used, at the Engineer's field laboratory and make the SGC available to the Engineer for use in molding production samples. Furnish a TGC calibrated in accordance with <u>Tex-914-K</u> when shown on the plans to design the mixture in accordance with <u>Tex-204-F</u>, Part I, for molding production samples.
- 4.4.2.1.2. **Gyratory Compactor Correlation Factors**. Use <u>Tex-206-F</u>, Part II, to perform a gyratory compactor correlation when the Engineer uses a different gyratory compactor. Apply the correlation factor to all subsequent production test results.
- 4.4.2.1.3. **Submitting JMF1**. Furnish a mix design report (JMF1) with representative samples of all component materials and request approval to produce the trial batch. Provide approximately 10,000 g of the design mixture if opting to have the Department perform the Hamburg Wheel test on the laboratory mixture, and request that the Department perform the test.

- 4.4.2.1.4. **Supplying Aggregates**. Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.
- 4.4.2.1.5. **Supplying Asphalt**. Provide at least 1 gal. of the asphalt material and enough quantities of any additives proposed for use.
- 4.4.2.1.6. **Ignition Oven Correction Factors**. Determine the aggregate and asphalt correction factors from the ignition oven in accordance with <u>Tex-236-F</u>, Part II. Provide correction factors that are not more than 12 months old. Provide the Engineer with split samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for QA testing during production. Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used, unless otherwise directed.
- 4.4.2.1.7. **Boil Test**. Perform the test and retain the tested sample from <u>Tex-530-C</u> until completion of the project or as directed. Use this sample for comparison purposes during production. The Engineer may waive the requirement for the boil test.
- 4.4.2.1.8. **Trial Batch Production**. Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch, including the WMA additive or process if applicable, for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements in Table 4, Table 5, and Table 11. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.
- 4.4.2.1.9. **Trial Batch Production Equipment**. Use only equipment and materials proposed for use on the project to produce the trial batch.
- 4.4.2.1.10. **Trial Batch Quantity**. Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.
- 4.4.2.1.11. **Number of Trial Batches**. Produce trial batches as necessary to obtain a mixture that meets the specification requirements.
- 4.4.2.1.12. **Trial Batch Sampling**. Obtain a representative sample of the trial batch and split it into 3 equal portions in accordance with <u>Tex-222-F</u>. Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.
- 4.4.2.1.13. **Trial Batch Testing**. Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements in Table 11. Ensure the trial batch mixture is also in compliance with the Hamburg Wheel requirement in Table 10. Use a Department-approved laboratory to perform the Hamburg Wheel test on the trial batch mixture or request that the Department perform the Hamburg Wheel test. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.
- 4.4.2.1.14. Development of JMF2. Evaluate the trial batch test results after the Engineer grants full approval of JMF1 based on results from the trial batch, determine the optimum mixture proportions, and submit as JMF2. Adjust the asphalt binder content or gradation to achieve the specified target laboratory-molded density. The asphalt binder content established for JMF2 is not required to be within any tolerance of the optimum asphalt binder content established for JMF1; however, mixture produced using JMF2 must meet the voids in mineral aggregates (VMA) requirements for production shown in Table 8. If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform Tex-226-F on Lot 1 production to confirm the indirect tensile strength does not exceed 200 psi. Verify that JMF2 meets the mixture requirements in Table 5.
- 4.4.2.1.15. **Mixture Production**. Use JMF2 to produce Lot 1 as described in Section 3076.4.9.3.1.1., "Lot 1 Placement," after receiving approval for JMF2 and a passing result from the Department's or a Department-approved

laboratory's Hamburg Wheel test on the trial batch. If desired, proceed to Lot 1 production, once JMF2 is approved, at the Contractor's risk without receiving the results from the Department's Hamburg Wheel test on the trial batch.

Notify the Engineer if electing to proceed without Hamburg Wheel test results from the trial batch. Note that the Engineer may require up to the entire sublot of any mixture failing the Hamburg Wheel test to be removed and replaced at the Contractor's expense.

- 4.4.2.1.16. **Development of JMF3**. Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.
- 4.4.2.1.17. **JMF Adjustments**. If JMF adjustments are necessary to achieve the specified requirements, make the adjustments before beginning a new lot. The adjusted JMF must:
 - be provided to the Engineer in writing before the start of a new lot;
 - be numbered in sequence to the previous JMF;
 - meet the mixture requirements in Table 4 and Table 5;
 - meet the master gradation limits shown in Table 8; and
 - be within the operational tolerances of JMF2 listed in Table 11.
- 4.4.2.1.18. **Requesting Referee Testing**. Use referee testing, if needed, in accordance with Section 3076.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Table 11 Operational Tolerances				
Description	Test Method	Allowable Difference Between Trial Batch and JMF1 Target	Allowable Difference from Current JMF Target	Allowable Difference between Contractor and Engineer ¹
Individual % retained for #8 sieve and larger	Так 200 Г	Must be Within	±5.0 ^{2,3}	±5.0
Individual % retained for sieves smaller than #8 and larger than #200	<u>Tex-200-F</u> or	Must be Within Master Grading Limits in Table 8	±3.0 ^{2,3}	±3.0
% passing the #200 sieve	<u>Tex-236-F</u>	In Table o	±2.0 ^{2,3}	±1.6
Asphalt binder content, %	Tex-236-F	±0.5	±0.3 ³	±0.3
Laboratory-molded density, %		±1.0	±1.0	±1.0
In-place air voids, %	Tex-207-F	N/A	N/A	±1.0
Laboratory-molded bulk specific gravity]	N/A	N/A	±0.020
VMA, %, min	<u>Tex-204-F</u>	Note ⁴	Note ⁴	N/A
Theoretical maximum specific (Rice) gravity	Tex-227-F	N/A	N/A	±0.020

1. Contractor may request referee testing only when values exceed these tolerances.

2. When within these tolerances, mixture production gradations may fall outside the master grading limits; however, the % passing the #200 will be considered out of tolerance when outside the master grading limits.

3. Only applies to mixture produced for Lot 1 and higher.

4. Test and verify that Table 8 requirements are met.

4.4.2.2. Engineer's Responsibilities.

4.4.2.2.1. **Gyratory Compactor**. For SGC mixtures designed in accordance with <u>Tex-204-F</u>, Part IV, the Engineer will use a Department SGC, calibrated in accordance with <u>Tex-241-F</u>, to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the field laboratory or provide and use a Department SGC at an alternate location. The Engineer will make the Contractor-provided SGC in the Department field laboratory available to the Contractor for molding verification samples.

For TGC mixtures designed in accordance with <u>Tex-204-F</u>, Part I, the Engineer will use a Department TGC, calibrated in accordance with <u>Tex-914-K</u>, to mold samples for trial batch and production testing. The Engineer will make the Department TGC and the Department field laboratory available to the Contractor for molding verification samples, if requested by the Contractor.

4.4.2.2.2. Conditional Approval of JMF1 and Authorizing Trial Batch. The Engineer will review and verify conformance of the following information within 2 working days of receipt:

- the Contractor's mix design report (JMF1);
- the Contractor-provided Hamburg Wheel test results;
- all required materials including aggregates, asphalt, additives, and recycled materials; and
- the mixture specifications.

The Engineer will grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg Wheel test results with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on the test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with Section 3076.2.1.1.2., "Micro-Deval Abrasion." If the Engineer's test results are pending after two working days, conditional approval of JMF1 will still be granted within two working days of receiving JMF1. When the Engineer's test results become available, they will be used for specification compliance.

After conditionally approving JMF1, including either Contractor- or Department-supplied Hamburg Wheel test results, the Contractor is authorized to produce a trial batch.

- 4.4.2.2.3. **Hamburg Wheel Testing of JMF1**. If the Contractor requests the option to have the Department perform the Hamburg Wheel test on the laboratory mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg Wheel test requirement in Table 10.
- 4.4.2.2.4. **Ignition Oven Correction Factors**. The Engineer will use the split samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven used for QA testing during production in accordance with <u>Tex-236-F</u>, Part II. Provide correction factors that are not more than 12 months old.
- 4.4.2.2.5. **Testing the Trial Batch**. Within 1 full working day, the Engineer will sample and test the trial batch to ensure that the mixture meets the requirements in Table 11. If the Contractor requests the option to have the Department perform the Hamburg Wheel test on the trial batch mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg Wheel test requirement in Table 10.

The Engineer will have the option to perform the following tests on the trial batch:

- Tex-226-F, to verify that the indirect tensile strength meets the requirement shown in Table 9; and
- <u>Tex-530-C</u>, to retain and use for comparison purposes during production.
- 4.4.2.2.6. **Full Approval of JMF1**. The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements in Table 11. The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.
- 4.4.2.2.7. **Approval of JMF2**. The Engineer will approve JMF2 within one working day if the mixture meets the requirements in Table 5 and the gradation meets the master grading limits shown in Table 8. The asphalt binder content established for JMF2 is not required to be within any tolerance of the optimum asphalt binder content established for JMF1; however, mixture produced using JMF2 must meet the VMA requirements shown in Table 8. If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform <u>Tex-226-F</u> on Lot 1 production to confirm the indirect tensile strength does not exceed 200 psi.

4.4.2.2.8. Approval of Lot 1 Production. The Engineer will authorize the Contractor to proceed with Lot 1 production (using JMF2) as soon as a passing result is achieved from the Department's or a Department-approved laboratory's Hamburg Wheel test on the trial batch. The Contractor may proceed at its own risk with Lot 1 production without the results from the Hamburg Wheel test on the trial batch.

> If the Department's or Department-approved laboratory's sample from the trial batch fails the Hamburg Wheel test, the Engineer will suspend production until further Hamburg Wheel tests meet the specified values. The Engineer may require up to the entire sublot of any mixture failing the Hamburg Wheel test be removed and replaced at the Contractor's expense.

- 4.4.2.2.9. Approval of JMF3 and Subsequent JMF Changes. JMF3 and subsequent JMF changes are approved if they meet the mixture requirements shown in Table 4, Table 5, and the master grading limits shown in Table 8, and are within the operational tolerances of JMF2 shown in Table 11.
- 4.5. **Production Operations.** Perform a new trial batch when the plant or plant location is changed. Take corrective action and receive approval to proceed after any production suspension for noncompliance to the specification. Submit a new mix design and perform a new trial batch when the asphalt binder content of:
 - any RAP stockpile used in the mix is more than 0.5% higher than the value shown on the mixture design report: or
 - RAS stockpile used in the mix is more than 2.0% higher than the value shown on the mixture design report.
- Storage and Heating of Materials. Do not heat the asphalt binder above the temperatures specified in 4.5.1. Item 300, "Asphalts, Oils, and Emulsions," or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and hot-mix asphalt discharge temperatures (in legible and discernible increments) in accordance with Item 320, "Equipment for Asphalt Concrete Pavement," unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.
- 4.5.2. Mixing and Discharge of Materials. Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed the maximum production temperatures listed in Table 12 (or 275°F for WMA). The Department will not pay for or allow placement of any mixture produced above the maximum production temperatures listed in Table 12.

Table 12

Maximum Production Temperature		
High-Temperature Binder Grade ¹ Maximum Production Temperat		
PG 64	325°F	
PG 70	335°F	
PG 76	345°F	

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

Produce WMA within the target discharge temperature range of 215°F and 275°F when WMA is required. Take corrective action any time the discharge temperature of the WMA exceeds the target discharge range. The Engineer may suspend production operations if the Contractor's corrective action is not successful at controlling the production temperature within the target discharge range. Note that when WMA is produced, it may be necessary to adjust burners to ensure complete combustion such that no burner fuel residue remains in the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with

<u>Tex-212-F</u>, Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck, and perform the test promptly.

4.6. **Hauling Operations**. Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent shown on the Department's MPL to coat the inside bed of the truck when necessary.

Use equipment for hauling as defined in Section 3076.4.7.3.3., "Hauling Equipment." Use other hauling equipment only when allowed.

4.7. Placement Operations. Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour, or as directed. Use a hand-held thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture as discharged from the truck or Material Transfer Device (MTD) before or as the mix enters the paver and an approximate station number or GPS coordinates on each ticket. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot-mix by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide with lane lines and are not placed in the wheel path, or as directed. Ensure that all finished surfaces will drain properly. Place the mixture at the rate or thickness shown on the plans. The Engineer will use the guidelines in Table 13 to determine the compacted lift thickness of each layer when multiple lifts are required. The thickness determined is based on the rate of 110 lb./sq. yd. for each inch of pavement unless otherwise shown on the plans.

Compacted Lift Thickness and Required Core Height						
Mixture	Compacted Lift Th	ickness Guidelines	Minimum Untrimmed Core			
Туре	Minimum (in.)	Maximum (in.)	Height (in.) Eligible for Testing			
В	2.50	5.00	1.75			
С	2.00	4.00	1.50			
D	1.50	3.00	1.25			
F	1.25	2.50	1.25			

Table 13 Compacted Lift Thickness and Required Core Height

4.7.1. Weather Conditions.

4.7.1.1. When Using a Thermal Imaging System. Place mixture when the roadway surface is dry and the roadway surface temperature is at or above the temperatures listed in Table 14A. The Engineer may restrict the Contractor from paving surface mixtures if the ambient temperature is likely to drop below 32°F within 12 hr. of paving. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 3076.4.7.3.1.2., "Thermal Imaging System."

Minimum Favement Surface Temperatures					
Lich Tomporature	Minimum Pavement Surface Temperatures (°F)				
High-Temperature Binder Grade ¹	Subsurface Layers or Night Paving Operations	Surface Layers Placed in Daylight Operations			
PG 64	35	40			
PG 70	45 ²	50 ²			
PG 76	45 ²	50 ²			

Table 14A Minimum Pavement Surface Temperatures

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

4.7.1.2. When Not Using a Thermal Imaging System. When using a thermal camera instead of the thermal imaging system, place mixture when the roadway surface temperature is at or above the temperatures listed in Table 14B unless otherwise approved or as shown on the plans. Measure the roadway surface temperature with a hand-held thermal camera or infrared thermometer. The Engineer may allow mixture placement to begin before the roadway surface reaches the required temperature if conditions are such that the roadway surface will reach the required temperature within 2 hr. of beginning placement operations. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. The Engineer may restrict the Contractor from paving if the ambient temperature is likely to drop below 32°F within 12 hr. of paving.

Link Townsroture	Minimum Pavement Su	rface Temperatures (°F)	
High-Temperature Binder Grade ¹	Subsurface Layers or Night Paving Operations	Surface Layers Placed in Daylight Operations	
PG 64	45	50	
PG 70	55 ²	60 ²	
PG 76	60 ²	60 ²	

Table 14B Minimum Pavement Surface Temperatures

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

2. Contractors may pave at temperatures 10°F lower than these values when a chemical WMA additive is used as a compaction aid in the mixture, when using WMA, or utilizing a paving process with equipment that eliminates thermal segregation. In such cases, for each sublot and in the presence of the Engineer, use a hand-held thermal camera operated in accordance with <u>Tex-244-F</u> to demonstrate to the satisfaction of the Engineer that the uncompacted mat has no more than 10°F of thermal segregation.

4.7.2. Tack Coat.

- 4.7.2.1. **Application.** Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 and 0.10 gal. of residual asphalt per square yard of surface area. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply the tack coat to all surfaces that will come in contact with the subsequent HMA placement, unless otherwise directed. Allow adequate time for emulsion to break completely before placing any material. Prevent splattering of tack coat when placed adjacent to curb, gutter, and structures. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use.
- 4.7.2.2. **Sampling.** The Engineer will obtain at least one sample of the tack coat binder per project in accordance with <u>Tex-500-C</u>, Part III, and test it to verify compliance with Item 300, "Asphalts, Oils, and Emulsions." The Engineer will notify the Contractor when the sampling will occur and will witness the collection of the sample from the asphalt distributor immediately before use.

For emulsions, the Engineer may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in Item 300, "Asphalts, Oils, and Emulsions."

3076

Contractors may pave at temperatures 10°F lower than these values when a chemical WMA additive is used as a compaction aid in the mixture or when using WMA.

4.7.3. **Lay-Down Operations**. Use the placement temperatures in Table 15 to establish the minimum placement temperature of the mixture delivered to the paver.

Table 15

Minimum Mixture Placement Temperature			
High-Temperature Minimum Placement Temperature			
Binder Grade ¹	(Before Entering Paver) ^{2,3}		
PG 64	260°F		
PG 70	270°F		
PG 76	280°F		

- 1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.
- Minimum placement temperatures may be reduced 10°F if using a chemical WMA additive as a compaction aid.
- 3. When using WMA, the minimum placement temperature is 215°F.
- 4.7.3.1. **Thermal Profile**. Use a hand-held thermal camera or a thermal imaging system to obtain a continuous thermal profile in accordance with <u>Tex-244-F</u>. Thermal profiles are not applicable in areas described in Section 3076.4.9.3.1.4., "Miscellaneous Areas."
- 4.7.3.1.1. Thermal Segregation.
- 4.7.3.1.1.1. **Moderate**. Any areas that have a temperature differential greater than 25°F, but not exceeding 50°F, are deemed as moderate thermal segregation.
- 4.7.3.1.1.2. **Severe**. Any areas that have a temperature differential greater than 50°F are deemed as severe thermal segregation.
- 4.7.3.1.2. **Thermal Imaging System**. Review the output results when a thermal imaging system is used, and provide the automated report described in <u>Tex-244-F</u> to the Engineer daily unless otherwise directed. Modify the paving process as necessary to eliminate any recurring (moderate or severe) thermal segregation identified by the thermal imaging system. The Engineer may suspend paving operations if the Contractor cannot successfully modify the paving process to eliminate recurring severe thermal segregation. Density profiles are not required and not applicable when using a thermal imaging system. Provide the Engineer with electronic copies of all daily data files that can be used with the thermal imaging system software to generate temperature profile plots daily or upon completion of the project or as requested by the Engineer.
- 4.7.3.1.3. Thermal Camera. When using a thermal camera instead of the thermal imaging system, take immediate corrective action to eliminate recurring moderate thermal segregation when a hand-held thermal camera is used. Evaluate areas with moderate thermal segregation by performing density profiles in accordance with Section 3076.4.9.3.3.2.. "Segregation (Density Profile)." Provide the Engineer with the thermal profile of every sublot within one working day of the completion of each lot. When requested by the Engineer, provide the thermal images generated using the thermal camera. Report the results of each thermal profile in accordance with Section 3076.4.2., "Reporting and Responsibilities." The Engineer will use a hand-held thermal camera to obtain a thermal profile at least once per project. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that contains severe thermal segregation. Suspend operations and take immediate corrective action to eliminate severe thermal segregation unless otherwise directed. Resume operations when the Engineer determines that subsequent production will meet the requirements of this Section. Evaluate areas with severe thermal segregation by performing density profiles in accordance with Section 3076.4.9.3.3.2., "Segregation (Density Profile)." Remove and replace the material in any areas that have both severe thermal segregation and a failing result for Segregation (Density Profile) unless otherwise directed. The sublot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.
- 4.7.3.2. **Windrow Operations**. Operate windrow pickup equipment so that when hot-mix is placed in windrows, substantially all the mixture deposited on the roadbed is picked up and loaded into the paver.

- 4.7.3.3. **Hauling Equipment**. Use belly dumps, live bottom, or end dump trucks to haul and transfer mixture; however, with exception of paving miscellaneous areas, end dump trucks are only allowed when used in conjunction with an MTD with remixing capability or when a thermal imaging system is used unless otherwise allowed.
- 4.7.3.4. **Screed Heaters**. Turn off screed heaters to prevent overheating of the mat if the paver stops for more than 5 min. The Engineer may evaluate the suspect area in accordance with Section 3076.4.9.3.3.4., "Recovered Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the paver is stopped.
- 4.8. **Compaction**. Compact the pavement uniformly to contain between 3.8% and 8.5% in-place air voids. Take immediate corrective action to bring the operation within 3.8% and 8.5% when the in-place air voids exceed the range of these tolerances. The Engineer will allow paving to resume when the proposed corrective action is likely to yield between 3.8% and 8.5% in-place air voids.

Obtain cores in areas placed under Exempt Production, as directed, at locations determined by the Engineer. The Engineer may test these cores and suspend operations or require removal and replacement if the inplace air voids are less than 2.7% or more than 9.9%. Areas defined in Section 3076.4.9.3.1.4., "Miscellaneous Areas," are not subject to in-place air void determination.

Furnish the type, size, and number of rollers required for compaction as approved. Use additional rollers as required to remove any roller marks. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

Use the control strip method shown in <u>Tex-207-F</u>, Part IV, on the first day of production to establish the rolling pattern that will produce the desired in-place air voids unless otherwise directed.

Use tamps to thoroughly compact the edges of the pavement along curbs, headers, and similar structures and in locations that will not allow thorough compaction with rollers. The Engineer may require rolling with a trench roller on widened areas, in trenches, and in other limited areas.

Complete all compaction operations before the pavement temperature drops below 160°F unless otherwise allowed. The Engineer may allow compaction with a light finish roller operated in static mode for pavement temperatures below 160°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

4.9. Acceptance Plan. Payment adjustments for the material will be in accordance with Article 3076.6., "Payment."

Sample and test the hot-mix on a lot and sublot basis. Suspend production until test results or other information indicates to the satisfaction of the Engineer that the next material produced or placed will result in payment factors of at least 1.000, if the production payment factor given in Section 3076.6.1., "Production Payment Adjustment Factors," for two consecutive lots or the placement pay factor given in Section 3076.6.2., "Placement Payment Adjustment Factors," for two consecutive lots is below 1.000.

4.9.1. **Referee Testing**. The Materials and Tests Division is the referee laboratory. The Contractor may request referee testing if a "remove and replace" condition is determined based on the Engineer's test results, or if the differences between Contractor and Engineer test results exceed the maximum allowable difference shown in Table 11 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within five working days after receiving test results and cores from the Engineer. Referee tests will be performed only on the sublot in question and only for the particular tests in question. Allow 10 working days from the time the referee laboratory receives the samples for test results to

The Materials and Tests Division will determine the laboratory-molded density based on the molded specific gravity and the maximum theoretical specific gravity of the referee sample. The in-place air voids will be determined based on the bulk specific gravity of the cores, as determined by the referee laboratory and the Engineer's average maximum theoretical specific gravity for the lot. With the exception of "remove and replace" conditions, referee test results are final and will establish payment adjustment factors for the sublot in question. The Contractor may decline referee testing and accept the Engineer's test results when the placement payment adjustment factor for any sublot results in a "remove and replace" condition. Placement sublots subject to be removed and replaced will be further evaluated in accordance with Section 3076.6.2.2., "Placement Sublots Subject to Removal and Replacement."

4.9.2. **Production Acceptance**.

4.9.2.1. **Production Lot.** A production lot consists of four equal sublots. The default quantity for Lot 1 is 1,000 tons; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 4,000 tons. The Engineer will select subsequent lot sizes based on the anticipated daily production such that approximately three to four sublots are produced each day. The lot size will be between 1,000 tons and 4,000 tons. The Engineer may change the lot size before the Contractor begins any lot.

If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform <u>Tex-226-F</u> on Lot 1 to confirm the indirect tensile strength does not exceed 200 psi. Take corrective action to bring the mixture within specification compliance if the indirect tensile strength exceeds 200 psi unless otherwise directed.

4.9.2.1.1. **Incomplete Production Lots.** If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Adjust the payment for the incomplete lot in accordance with Section 3076.6.1., "Production Payment Adjustment Factors." Close all lots within five working days unless otherwise allowed.

4.9.2.2. Production Sampling.

- 4.9.2.2.1. **Mixture Sampling**. Obtain hot-mix samples from trucks at the plant in accordance with <u>Tex-222-F</u>. The sampler will split each sample into three equal portions in accordance with <u>Tex-200-F</u> and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" until the Department's testing is completed.
- 4.9.2.2.1.1. **Random Sample**. At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with <u>Tex-225-F</u>. Take one sample for each sublot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.
- 4.9.2.2.1.2. **Blind Sample**. For one sublot per lot, the Engineer will obtain and test a "blind" sample instead of the random sample collected by the Contractor. Test either the "blind" or the random sample; however, referee testing (if applicable) will be based on a comparison of results from the "blind" sample. The location of the Engineer's "blind" sample will not be disclosed to the Contractor. The Engineer's "blind" sample may be randomly selected in accordance with <u>Tex-225-F</u> for any sublot or selected at the discretion of the Engineer. The Engineer will use the Contractor's split sample for sublots not sampled by the Engineer.
- 4.9.2.2.2. Informational Shear Bond Strength Testing. Select one random sublot from Lot 2 or higher for shear bond strength testing. Obtain full depth cores in accordance with <u>Tex-249-F</u>. Label the cores with the Control Section Job (CSJ), producer of the tack coat, mix type, shot rate, lot, and sublot number and provide to the

3076

Engineer. The Engineer will ship the cores to the Materials and Tests Division or district laboratory for shear bond strength testing. Results from these tests will not be used for specification compliance.

4.9.2.2.3. Asphalt Binder Sampling. Obtain a 1-qt. sample of the asphalt binder witnessed by the Engineer for each lot of mixture produced. The Contractor will notify the Engineer when the sampling will occur. Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill and upstream from the introduction of any additives in accordance with <u>Tex-500-C</u>, Part II. Label the can with the corresponding lot and sublot numbers, producer, producer facility location, grade, district, date sampled, and project information including highway and CSJ. The Engineer will retain these samples for one year. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder sample and upon request of the Contractor, the Engineer will split a sample of the asphalt binder with the Contractor.

At least once per project, the Engineer will collect split samples of each binder grade and source used. The Engineer will submit one split sample to MTD to verify compliance with Item 300, "Asphalts, Oils, and Emulsions" and will retain the other split sample for one year.

4.9.2.3. **Production Testing**. The Contractor and Engineer must perform production tests in accordance with Table 16. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances listed in Table 11 for all sublots.

Take immediate corrective action if the Engineer's laboratory-molded density on any sublot is less than 95.0% or greater than 97.0% to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

The Engineer may allow alternate methods for determining the asphalt binder content and aggregate gradation if the aggregate mineralogy is such that <u>Tex-236-F</u>, Part I does not yield reliable results. Provide evidence that results from <u>Tex-236-F</u>, Part I are not reliable before requesting permission to use an alternate method unless otherwise directed. Use the applicable test procedure as directed if an alternate test method is allowed.

Table 16	
Production and Placement Testing	Frequen

~~

Production and Placement Testing Frequency					
Description	Test Method	Minimum Contractor Testing Frequency	Minimum Engineer Testing Frequency		
Individual % retained for #8 sieve and larger Individual % retained for sieves smaller than #8 and larger than #200 % passing the #200 sieve	<u>Tex-200-F</u> or <u>Tex-236-F</u>	1 per sublot	1 per 12 sublots ¹		
Laboratory-molded density Laboratory-molded bulk specific gravity In-place air voids VMA	<u>Tex-207-F</u> Tex-204-F	N/A	1 per sublot ¹		
Segregation (density profile) ² Longitudinal joint density	<u>Tex-207-F</u> , Part V <u>Tex-207-F</u> , Part VII	1 per sublot	1 per project		
Moisture content Theoretical maximum specific (Rice) gravity	<u>Tex-212-F</u> , Part II <u>Tex-227-F</u>	When directed N/A	1 per sublot ¹		
Asphalt binder content	Tex-236-F	1 per sublot	1 per lot ¹		
Hamburg Wheel test	Tex-242-F	N/A			
Recycled Asphalt Shingles (RAS) ³	<u>Tex-217-F</u> , Part III	N/A			
Thermal profile ²	<u>Tex-244-F</u>	1 per sublot			
Asphalt binder sampling and testing	<u>Tex-500-C</u> , Part II	1 per lot (sample only) ⁴	1 per project		
Tack coat sampling and testing	<u>Tex-500-C</u> , Part III	N/A			
Boil test ⁵	<u>Tex-530-C</u>	1 per lot			
Shear Bond Strength Test ⁶	<u>Tex-249-F</u>	1 per project (sample only)			

1. For production defined in Section 3076.4.9.4., "Exempt Production," the Engineer will test one per day if 100 tons or more are produced. For Exempt Production, no testing is required when less than 100 tons are produced.

2. Not required when a thermal imaging system is used.

3. Testing performed by the Materials and Tests Division or designated laboratory.

4. Obtain witnessed by the Engineer. The Engineer will retain these samples for one year.

5. The Engineer may reduce or waive the sampling and testing requirements based on a satisfactory test history.

6. Testing performed by the Materials and Tests Division or District for informational purposes only.

- 4.9.2.4. **Operational Tolerances**. Control the production process within the operational tolerances listed in Table 11. When production is suspended, the Engineer will allow production to resume when test results or other information indicates the next mixture produced will be within the operational tolerances.
- 4.9.2.4.1. **Gradation**. Suspend operation and take corrective action if any aggregate is retained on the maximum sieve size shown in Table 8. A sublot is defined as out of tolerance if either the Engineer's or the Contractor's test results are out of operational tolerance. Suspend production when test results for gradation exceed the operational tolerances in Table 11 for three consecutive sublots on the same sieve or four consecutive sublots on any sieve unless otherwise directed. The consecutive sublots may be from more than one lot.
- 4.9.2.4.2. **Asphalt Binder Content.** A sublot is defined as out of operational tolerance if either the Engineer's or the Contractor's test results exceed the values listed in Table 11. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that is out of operational tolerance for asphalt binder content. Suspend production and shipment of the mixture if the Engineer's or the Contractor's asphalt binder content deviates from the current JMF by more than 0.5% for any sublot.
- 4.9.2.4.3. Voids in Mineral Aggregates (VMA). The Engineer will determine the VMA for every sublot. For sublots when the Engineer does not determine asphalt binder content, the Engineer will use the asphalt binder content results from QC testing performed by the Contractor to determine VMA.

Take immediate corrective action if the VMA value for any sublot is less than the minimum VMA requirement for production listed in Table 8. Suspend production and shipment of the mixture if the Engineer's VMA results on two consecutive sublots are below the minimum VMA requirement for production listed in Table 8. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that does not

meet the minimum VMA requirement for production listed in Table 8 based on the Engineer's VMA determination.

Suspend production and shipment of the mixture if the Engineer's VMA result is more than 0.5% below the minimum VMA requirement for production listed in Table 8. In addition to suspending production, the Engineer may require removal and replacement or may allow the sublot to be left in place without payment.

4.9.2.4.4. **Hamburg Wheel Test**. The Engineer may perform a Hamburg Wheel test at any time during production, including when the boil test indicates a change in quality from the materials submitted for JMF1. In addition to testing production samples, the Engineer may obtain cores and perform Hamburg Wheel tests on any areas of the roadway where rutting is observed. Suspend production until further Hamburg Wheel tests meet the specified values when the production or core samples fail the Hamburg Wheel test criteria in Table 10. Core samples, if taken, will be obtained from the center of the finished mat or other areas excluding the vehicle wheel paths. The Engineer may require up to the entire sublot of any mixture failing the Hamburg Wheel test to be removed and replaced at the Contractor's expense.

If the Department's or Department approved laboratory's Hamburg Wheel test results in a "remove and replace" condition, the Contractor may request that the Department confirm the results by re-testing the failing material. The Materials and Tests Division will perform the Hamburg Wheel tests and determine the final disposition of the material in question based on the Department's test results.

4.9.2.5. Individual Loads of Hot-Mix. The Engineer can reject individual truckloads of hot-mix. When a load of hotmix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances shown in Table 11, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.3. Placement Acceptance.

- 4.9.3.1. **Placement Lot**. A placement lot consists of four placement sublots. A placement sublot consists of the area placed during a production sublot.
- 4.9.3.1.1. Lot 1 Placement. Placement payment adjustments greater than 1.000 for Lot 1 will be in accordance with Section 3076.6.2., "Placement Payment Adjustment Factors"; however, no placement adjustment less than 1.000 will be assessed for any sublot placed in Lot 1 when the in-place air voids are greater than or equal to 2.7% and less than or equal to 9.9%. Remove and replace any sublot with in-place air voids less than 2.7% or greater than 9.9%.
- 4.9.3.1.2. Incomplete Placement Lots. An incomplete placement lot consists of the area placed as described in Section 3076.4.9.2.1.1., "Incomplete Production Lots," excluding areas defined in Section 3076.4.9.3.1.4., "Miscellaneous Areas." Placement sampling is required if the random sample plan for production resulted in a sample being obtained from an incomplete production sublot.
- 4.9.3.1.3. **Shoulders, Ramps, Etc.** Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are subject to in-place air void determination and payment adjustments unless designated on the plans as not eligible for in-place air void determination. Intersections may be considered miscellaneous areas when determined by the Engineer.
- 4.9.3.1.4. **Miscellaneous Areas**. Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations, such as temporary detours, driveways, mailbox turnouts, crossovers, gores, spot level-up areas, and other similar areas. Temporary detours are subject to in-place air void determination when shown on the plans. Miscellaneous areas also include level-ups and thin overlays when the layer thickness specified on the plans is less than the minimum untrimmed core height eligible for testing shown in Table 13. The specified layer thickness is based on the rate of 110 lb./sq. yd. for each inch of

pavement unless another rate is shown on the plans. When "level up" is listed as part of the item bid description code, a payment adjustment factor of 1.000 will be assigned for all placement sublots as described in Article 3076.6, "Payment." Miscellaneous areas are not eligible for random placement sampling locations. Compact miscellaneous areas in accordance with Section 3076.4.8., "Compaction." Miscellaneous areas are not subject to in-place air void determination, thermal profiles testing, segregation (density profiles), or longitudinal joint density evaluations.

4.9.3.2. **Placement Sampling**. The Engineer will select random numbers for all placement sublots at the beginning of the project. The Engineer will provide the Contractor with the placement random numbers immediately after the sublot is completed. Mark the roadway location at the completion of each sublot and record the station number. Determine one random sample location for each placement sublot in accordance with <u>Tex-225-F</u>. Adjust the random sample location by no more than necessary to achieve a 2-ft. clearance if the location is within 2 ft. of a joint or pavement edge.

Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are always eligible for selection as a random sample location; however, if a random sample location falls on one of these areas and the area is designated on the plans as not subject to in-place air void determination, cores will not be taken for the sublot and a 1.000 pay factor will be assigned to that sublot.

Provide the equipment and means to obtain and trim roadway cores on site. On-site is defined as in close proximity to where the cores are taken. Obtain the cores within one working day of the time the placement sublot is completed unless otherwise approved. Obtain two 6-in. diameter cores side-by-side from within 1 ft. of the random location provided for the placement sublot. For Type D and Type F mixtures, 4-in. diameter cores are allowed. Mark the cores for identification, measure and record the untrimmed core height, and provide the information to the Engineer. The Engineer will witness the coring operation and measurement of the core thickness. Visually inspect each core and verify that the current paving layer is bonded to the underlying layer. Take corrective action if an adequate bond does not exist between the current and underlying layer to ensure that an adequate bond will be achieved during subsequent placement operations.

Trim the cores immediately after obtaining the cores from the roadway in accordance with <u>Tex-251-F</u> if the core heights meet the minimum untrimmed value listed in Table 13. Trim the cores on site in the presence of the Engineer. Use a permanent marker or paint pen to record the lot and sublot numbers on each core as well as the designation as Core A or B. The Engineer may require additional information to be marked on the core and may choose to sign or initial the core. The Engineer will take custody of the cores immediately after witnessing the trimming of the cores and will retain custody of the cores until the Department's testing is completed. Before turning the trimmed cores over to the Engineer, the Contractor may wrap the trimmed cores or secure them in a manner that will reduce the risk of possible damage occurring during transport by the Engineer. After testing, the Engineer will return the cores to the Contractor.

The Engineer may have the cores transported back to the Department's laboratory at the HMA plant via the Contractor's haul truck or other designated vehicle. In such cases where the cores will be out of the Engineer's possession during transport, the Engineer will use Department-provided security bags and the Roadway Core Custody protocol located at http://www.txdot.gov/business/specifications.htm to provide a secure means and process that protects the integrity of the cores during transport.

Decide whether to include the pair of cores in the air void determination for that sublot if the core height before trimming is less than the minimum untrimmed value shown in Table 13. Trim the cores as described above before delivering to the Engineer if electing to have the cores included in the air void determination. Deliver untrimmed cores to the Engineer and inform the Engineer of the decision to not have the cores included in air void determination if electing to not have the cores included in air void determination. The placement pay factor for the sublot will be 1.000 if cores will not be included in air void determination.

Instead of the Contractor trimming the cores on site immediately after coring, the Engineer and the Contractor may mutually agree to have the trimming operations performed at an alternate location such as a field laboratory or other similar location. In such cases, the Engineer will take possession of the cores

immediately after they are obtained from the roadway and will retain custody of the cores until testing is completed. Either the Department or Contractor representative may perform trimming of the cores. The Engineer will witness all trimming operations in cases where the Contractor representative performs the trimming operation.

Dry the core holes and tack the sides and bottom immediately after obtaining the cores. Fill the hole with the same type of mixture and properly compact the mixture. Repair core holes with other methods when approved.

- 4.9.3.3. **Placement Testing**. Perform placement tests in accordance with Table 16. After the Engineer returns the cores, the Contractor may test the cores to verify the Engineer's test results for in-place air voids. The allowable differences between the Contractor's and Engineer's test results are listed in Table 11.
- 4.9.3.3.1. In-Place Air Voids. The Engineer will measure in-place air voids in accordance with <u>Tex-207-F</u> and <u>Tex-227-F</u>. Before drying to a constant weight, cores may be pre-dried using a CoreDry or similar vacuum device to remove excess moisture. The Engineer will average the values obtained for all sublots in the production lot to determine the theoretical maximum specific gravity. The Engineer will use the average air void content for in-place air voids.

The Engineer will use the vacuum method to seal the core if required by <u>Tex-207-F</u>. The Engineer will use the test results from the unsealed core to determine the placement payment adjustment factor if the sealed core yields a higher specific gravity than the unsealed core. After determining the in-place air void content, the Engineer will return the cores and provide test results to the Contractor.

4.9.3.3.2. **Segregation (Density Profile)**. Test for segregation using density profiles in accordance with <u>Tex-207-F</u>, Part V when using a thermal camera insead of the thermal imaging system. Density profiles are not required and are not applicable when using a thermal imaging system. Density profiles are not applicable in areas described in Section 3076.4.9.3.1.4., "Miscellaneous Areas."

Perform a minimum of one density profile per sublot. Perform additional density profiles when any of the following conditions occur, unless otherwise approved:

- the paver stops due to lack of material being delivered to the paving operations and the temperature of the uncompacted mat before the initial break down rolling is less than the temperatures shown in Table 17;
- areas that are identified by either the Contractor or the Engineer with thermal segregation;,
- any visibly segregated areas that exist.

Minimum Oncompacieu Mat Temperature Requiring a Segregation Pro			
High-Temperature	Minimum Temperature of the Uncompacted Mat		
Binder Grade ¹	Allowed Before Initial Break Down Rolling ^{2,3,4}		
PG 64	<250°F		
PG 70	<260°F		
PG 76	<270°F		

Table 17 Mimimum Uncompacted Mat Temperature Requiring a Segregation Profile

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

- 2. Segregation profiles are required in areas with moderate and severe thermal segregation as described in Section 3076.4.7.3.1.3.
- 3. Minimum uncompacted mat temperature requiring a segregation profile may be reduced 10°F if using a chemical WMA additive as a compaction aid.

Provide the Engineer with the density profile of every sublot in the lot within one working day of the completion of each lot. Report the results of each density profile in accordance with Section 3076.4.2., "Reporting and Responsibilities."

The density profile is considered failing if it exceeds the tolerances in Table 18. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that contains a failing density profile. When a hand-held thermal camera is used instead of a thermal imaging system, the Engineer will measure the density profile at least once per project. The Engineer's density profile results will be used when available. The Engineer may require the Contractor to remove and replace the area in question if the area fails the density profile and has surface irregularities as defined in Section 3076.4.9.3.3.5., "Irregularities." The sublot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.

Investigate density profile failures and take corrective actions during production and placement to eliminate the segregation. Suspend production if 2 consecutive density profiles fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Segregation (Density Profile) Acceptance Criteria					
Mixture Type	Maximum Allowable Density Range (Highest to Lowest)	Maximum Allowable Density Range (Average to Lowest)			
Туре В	8.0 pcf	5.0 pcf			
Type C, Type D & Type F	6.0 pcf	3.0 pcf			

Table 18

4.9.3.3.3. Longitudinal Joint Density.

- 4.9.3.3.3.1. Informational Tests. Perform joint density evaluations while establishing the rolling pattern and verify that the joint density is no more than 3.0 pcf below the density taken at or near the center of the mat. Adjust the rolling pattern, if needed, to achieve the desired joint density. Perform additional joint density evaluations, at least once per sublot, unless otherwise directed.
- 4.9.3.3.3.2. **Record Tests.** Perform a joint density evaluation for each sublot at each pavement edge that is or will become a longitudinal joint. Joint density evaluations are not applicable in areas described in Section 3076.4.9.3.1.4., "Miscellaneous Areas." Determine the joint density in accordance with Tex-207-F, Part VII. Record the joint density information and submit results on Department forms to the Engineer. The evaluation is considered failing if the joint density is more than 3.0 pcf below the density taken at the core random sample location and the correlated joint density is less than 90.0%. The Engineer will make independent joint density verification at least once per project and may make independent joint density verifications at the random sample locations. The Engineer's joint density test results will be used when available.

^{4.} When using WMA, the minimum uncompacted mat temperature requiring a segregation profile is 215°F.

Investigate joint density failures and take corrective actions during production and placement to improve the joint density. Suspend production if the evaluations on two consecutive sublots fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

- 4.9.3.3.4. **Recovered Asphalt Dynamic Shear Rheometer (DSR)**. The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Materials and Tests Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T 315 at the specified high temperature performance grade of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with <u>Tex-211-F</u>.
- 4.9.3.3.5. **Irregularities**. Identify and correct irregularities including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities. The Engineer may also require the Contractor to remove and replace (at the Contractor to remove and replace (at the Contractor's expense) areas where the mixture does not bond to the existing pavement.

If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than one day while the Contractor is taking appropriate corrective action.

4.9.4. **Exempt Production**. The Engineer may deem the mixture as exempt production for the following conditions:

- anticipated daily production is less than 500 tons;
- total production for the project is less than 5,000 tons;
- when mutually agreed between the Engineer and the Contractor; or
- when shown on the plans.

For exempt production, the Contractor is relieved of all production and placement sampling and testing requirements, except for coring operations when required by the Engineer. The production and placement pay factors are 1.000 if the specification requirements listed below are met, all other specification requirements are met, and the Engineer performs acceptance tests for production and placement listed in Table 16 when 100 tons or more per day are produced.

- produce, haul, place, and compact the mixture in compliance with the specification and as directed;
- control mixture production to yield a laboratory-molded density that is within ±1.0% of the target laboratory-molded density as tested by the Engineer;
- compact the mixture in accordance with Section 3076.4.8., "Compaction;" and
- when a thermal imaging system is not used, the Engineer may perform segregation (density profiles) and thermal profiles in accordance with the specification.
- 4.9.5. **Ride Quality**. Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

- 5.1. **Dense Graded Hot-Mix Asphalt.** Hot mix will be measured by the ton of composite hot-mix, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520, "Weighing and Measuring Equipment."
- 5.2. **Tack Coat.** Tack coat will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the calibrated distributor. The Engineer will witness all strapping operations for volume determination. All tack, including emulsions, will be measured by the gallon applied.

The Engineer may allow the use of a metering device to determine asphalt volume used and application rate if the device is accurate within 1.5% of the strapped volume.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Section 3076.5.1, "Measurement," will be paid for at the unit bid price for "Dense Graded Hot-Mix Asphalt" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Article 3076.5.2, "Measurement," will be paid for at the unit bid price for "Tack Coat" of the tack coat provided. These prices are full compensation for materials, placement, equipment, labor, tools, and incidentals. Payment adjustments will be applied as determined in this Item; however, a payment adjustment factor of 1.000 will be assigned for all placement sublots for "level ups" only when "level up" is listed as part of the item bid description code. A payment adjustment factor of 1.000 will be assigned to all production and placement sublots when "exempt" is listed as part of the item bid description code, and all testing requirements are met.

Payment for each sublot, including applicable payment adjustments greater than 1.000, will only be paid for sublots when the Contractor supplies the Engineer with the required documentation for production and placement QC/QA, thermal profiles, segregation density profiles, and longitudinal joint densities in accordance with Section 3076.4.2., "Reporting and Responsibilities." When a thermal imaging system is used, documentation is not required for thermal profiles or segregation density profiles on individual sublots; however, the thermal imaging system automated reports described in <u>Tex-244-F</u> are required.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585, "Ride Quality for Pavement Surfaces."

6.1. **Production Payment Adjustment Factors**. The production payment adjustment factor is based on the laboratory-molded density using the Engineer's test results. The bulk specific gravities of the samples from each sublot will be divided by the Engineer's maximum theoretical specific gravity for the sublot. The individual sample densities for the sublot will be averaged to determine the production payment adjustment factor in accordance with Table 19 for each sublot, using the deviation from the target laboratory-molded density defined in Table 9. The production payment adjustment factor for completed lots will be the average of the payment adjustment factors for the four sublots sampled within that lot.

Production Payment Adjustment Factors for Laboratory-Molded Density ¹			
Absolute Deviation from	Production Payment Adjustment Factor		
Target Laboratory-Molded Density	(Target Laboratory-Molded Density)		
0.0	1.050		
0.1	1.050		
0.2	1.050		
0.3	1.044		
0.4	1.038		
0.5	1.031		
0.6	1.025		
0.7	1.019		
0.8	1.013		
0.9	1.006		
1.0	1.000		
1.1	0.965		
1.2	0.930		
1.3	0.895		
1.4	0.860		
1.5	0.825		
1.6	0.790		
1.7	0.755		
1.8	0.720		
> 1.8	Remove and replace		

 Table 19

 Production Payment Adjustment Factors for Laboratory-Molded Density1

 If the Engineer's laboratory-molded density on any sublot is less than 95.0% or greater than 98.0%, take immediate corrective action to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

6.1.1. **Payment for Incomplete Production Lots**. Production payment adjustments for incomplete lots, described under Section 3076.4.9.2.1.1., "Incomplete Production Lots," will be calculated using the average production payment factors from all sublots sampled.

A production payment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any samples within the first sublot.

- 6.1.2. **Production Sublots Subject to Removal and Replacement**. If after referee testing, the laboratory-molded density for any sublot results in a "remove and replace" condition as listed in Table 19, the Engineer may require removal and replacement or may allow the sublot to be left in place without payment. The Engineer may also accept the sublot in accordance with Section 3076.5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.
- 6.2. **Placement Payment Adjustment Factors**. The placement payment adjustment factor is based on in-place air voids using the Engineer's test results. The bulk specific gravities of the cores from each sublot will be divided by the Engineer's average maximum theoretical specific gravity for the lot. The individual core densities for the sublot will be averaged to determine the placement payment adjustment factor in accordance with Table 20 for each sublot that requires in-place air void measurement. A placement payment adjustment factor of 1.000 will be assigned to the entire sublot when the random sample location falls in an area designated on the plans as not subject to in-place air void determination. A placement payment adjustment factor of 1.000 will be assigned to quantities placed in areas described in Section 3076.4.9.3.1.4., "Miscellaneous Areas." The placement payment adjustment factor for completed lots will be the average of the placement payment adjustment factors for up to four sublots within that lot.

Placement Payment Adjustment Factors for In-Place Air Voids					
In-Place	Placement Pay	In-Place	Placement Pay		
Air Voids	Adjustment Factor	Air Voids	Adjustment Factor		
< 2.7	Remove and Replace	6.4	1.042		
2.7	0.710	6.5	1.040		
2.8	0.740	6.6	1.038		
2.9	0.770	6.7	1.036		
3.0	0.800	6.8	1.034		
3.1	0.830	6.9	1.032		
3.2	0.860	7.0	1.030		
3.3	0.890	7.1	1.028		
3.4	0.920	7.2	1.026		
3.5	0.950	7.3	1.024		
3.6	0.980	7.4	1.022		
3.7	0.998	7.5	1.020		
3.8	1.002	7.6	1.018		
3.9	1.006	7.7	1.016		
4.0	1.010	7.8	1.014		
4.1	1.014	7.9	1.012		
4.2	1.018	8.0	1.010		
4.3	1.022	8.1	1.008		
4.4	1.026	8.2	1.006		
4.5	1.030	8.3	1.004		
4.6	1.034	8.4	1.002		
4.7	1.038	8.5	1.000		
4.8	1.042	8.6	0.998		
4.9	1.046	8.7	0.996		
5.0	1.050	8.8	0.994		
5.1	1.050	8.9	0.992		
5.2	1.050	9.0	0.990		
5.3	1.050	9.1	0.960		
5.4	1.050	9.2	0.930		
5.5	1.050	9.3	0.900		
5.6	1.050	9.4	0.870		
5.7	1.050	9.5	0.840		
5.8	1.050	9.6	0.810		
5.9	1.050	9.7	0.780		
6.0	1.050	9.8	0.750		
6.1	1.048	9.9	0.720		
6.2	1.046	> 9.9	Remove and Replace		
6.3	1.044				

Table 20 Placement Payment Adjustment Factors for In-Place Air Voids

6.2.1. **Payment for Incomplete Placement Lots**. Payment adjustments for incomplete placement lots described under Section 3076.4.9.3.1.2., "Incomplete Placement Lots," will be calculated using the average of the placement payment factors from all sublots sampled and sublots where the random location falls in an area designated on the plans as not eligible for in-place air void determination.

If the random sampling plan results in production samples, but not in placement samples, the random core location and placement adjustment factor for the sublot will be determined by applying the placement random number to the length of the sublot placed.

If the random sampling plan results in placement samples, but not in production samples, no placement adjustment factor will apply for that sublot placed.

A placement payment adjustment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any production samples.

The bulk specific gravity of the cores from each sublot will be divided by the Engineer's average maximum theoretical specific gravity for the lot. The individual core densities for the sublot will be averaged to determine the new payment adjustment factor of the sublot in question. If the new payment adjustment factor is 0.700 or greater, the new payment adjustment factor will apply to that sublot. If the new payment adjustment factor is 0.700, no payment will be made for the sublot. Remove and replace the failing sublot, or the Engineer may allow the sublot to be left in place without payment. The Engineer may also accept the sublot in accordance with Section 3076.5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.

6.3. **Total Adjusted Pay Calculation**. Total adjusted pay (TAP) will be based on the applicable payment adjustment factors for production and placement for each lot.

TAP = (A+B)/2

where:

A = Bid price × production lot quantity × average payment adjustment factor for the production lot
 B = Bid price × placement lot quantity × average payment adjustment factor for the placement lot + (bid price × quantity placed in miscellaneous areas × 1.000)

Production lot quantity = Quantity actually placed - quantity left in place without payment

Placement lot quantity = Quantity actually placed - quantity left in place without payment - quantity placed in miscellaneous areas

Special Specification 3077 Superpave Mixtures

1. DESCRIPTION

Construct a hot-mix asphalt (HMA) pavement layer composed of a compacted, Superpave (SP) mixture of aggregate and asphalt binder mixed hot in a mixing plant. Payment adjustments will apply to HMA placed under this specification unless the HMA is deemed exempt in accordance with Section 3077.4.9.4., "Exempt Production."

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met when the Contractor makes a source or formulation change and may require a new laboratory mixture design, trial batch, or both. The Engineer may sample and test project materials at any time during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. Aggregate. Furnish aggregates from sources that conform to the requirements shown in Table 1 and as specified in this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse, intermediate, or fine aggregate. Aggregate from reclaimed asphalt pavement (RAP) is not required to meet Table 1 requirements unless otherwise shown on the plans. Supply aggregates that meet the definitions in <u>Tex-100-E</u> for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests listed in Table 1. Document all test results on the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis given in <u>Tex-200-F</u>, Part II.
- 2.1.1. **Coarse Aggregate**. Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for hot-mix listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in hot-mix asphalt.

For sources not listed on the Department's BRSQC:

- build an individual stockpile for each material;
- request the Department test the stockpile for specification compliance; and
- once approved, do not add material to the stockpile unless otherwise approved.

Provide aggregate from non-listed sources only when tested by the Engineer and approved before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements only apply to aggregates used on the surface of travel lanes. SAC requirements apply to aggregates used on surfaces other than travel lanes when shown on the plans. The SAC for sources on the Department's *Aggregate Quality Monitoring Program* (AQMP) (Tex-499-A) is listed in the BRSQC.

2.1.1.1. Blending Class A and Class B Aggregates. Class B aggregate meeting all other requirements in Table 1 may be blended with a Class A aggregate to meet requirements for Class A materials, unless otherwise shown on the plans. Ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source when blending Class A and B aggregates to meet a Class A requirement unless otherwise shown on the plans. Blend by volume if the bulk specific gravities of the Class A and B aggregates differ by more than 0.300. Coarse aggregate from RAP and Recycled Asphalt Shingles (RAS) will be considered as Class B aggregate for blending purposes.

The Engineer may perform tests at any time during production, when the Contractor blends Class A and B aggregates to meet a Class A requirement, to ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks using the gradations supplied by the Contractor on the mixture design report as an input for the template; however, a failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.1.2. **Micro-Deval Abrasion**. The Engineer will perform a minimum of one Micro-Deval abrasion test in accordance with <u>Tex-461-A</u> for each coarse aggregate source used in the mixture design that has a Rated Source Soundness Magnesium (RSSM) loss value greater than 15 as listed in the BRSQC. The Engineer will perform testing before the start of production and may perform additional testing at any time during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula:

Mgest. = (RSSM)(MDact/RSMD)

where: $Mg_{est.}$ = magnesium sulfate soundness loss $MD_{act.}$ = actual Micro-Deval percent loss RSMD = Rated Source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Soils and Aggregates Section of the Materials and Tests Division, and additional testing may be required before granting approval.

2.1.2. Intermediate Aggregate. Aggregates not meeting the definition of coarse or fine aggregate will be defined as intermediate aggregate. Supply intermediate aggregates, when used that are free from organic impurities. The Engineer may test the intermediate aggregate in accordance with <u>Tex-408-A</u> to verify the material is free from organic impurities. Supply intermediate aggregate from coarse aggregate sources, when used that meet the requirements shown in Table 1 unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve, and verify that it meets the requirements in Table 1 for crushed face count (<u>Tex-460-A</u>) and flat and elongated particles (<u>Tex-280-F</u>).

2.1.3. Fine Aggregate. Fine aggregates consist of manufactured sands, screenings, and field sands. Fine aggregate stockpiles must meet the gradation requirements in Table 2. Supply fine aggregates that are free from organic impurities. The Engineer may test the fine aggregate in accordance with <u>Tex-408-A</u> to verify the material is free from organic impurities. Unless otherwise shown on the plans, up to 10% of the total aggregate may be field sand or other uncrushed fine aggregate. Use fine aggregate, with the exception of field sand, from coarse aggregate sources that meet the requirements shown in Table 1 unless otherwise approved.

Test the stockpile if 10% or more of the stockpile is retained on the No. 4 sieve and verify that it meets the requirements in Table 1 for crushed face count (<u>Tex-460-A</u>) and flat and elongated particles (<u>Tex-280-F</u>).

Aggreg	ate Quality Requirements	
Property	Test Method	Requirement
	Coarse Aggregate	
SAC	<u>Tex-499-A</u> (AQMP)	As shown on the plans
Deleterious material, %, Max	Tex-217-F, Part I	1.0
Decantation, %, Max	Tex-217-F, Part II	1.5
Micro-Deval abrasion, %	<u>Tex-461-A</u>	Note 1
Los Angeles abrasion, %, Max	<u>Tex-410-A</u>	35 ²
Magnesium sulfate soundness, 5 cycles, %, Max	<u>Tex-411-A</u>	25 ³
Crushed face count, ⁴ %, Min	Tex-460-A, Part I	85
Flat and elongated particles @ 5:1, %, Max	Tex-280-F	10
	Fine Aggregate	
Linear shrinkage, %, Max	<u>Tex-107-E</u>	3
Sand equivalent, %, Min	Tex-203-F	45
Sand equivalent, %, Min	Tex-203-F	

	Т	able	e 1	
	-		_	

1. Used to estimate the magnesium sulfate soundness loss in accordance with Section 3077.2.1.1.2., "Micro-Deval Abrasion."

2. For base mixtures defined in Section 3077.2.7., "Recycled Materials," the Los Angeles abrasion may be increased to a maximum of 40%.

3. For base mixtures defined in Section 3077.2.7., "Recycled Materials," the magnesium sulfate soundness, five cycles, may be increased to a maximum of 30%.

4. Only applies to crushed gravel.

Table 2 Gradation Requirements for Fine Aggregate

Oradation Requirements for Time Aggregate			
% Passing by Weight or Volume			
100			
70–100			
0–30			

2.2.

Mineral Filler. Mineral filler consists of finely divided mineral matter such as agricultural lime, crusher fines, hydrated lime, or fly ash. Mineral filler is allowed unless otherwise shown on the plans. Use no more than 2% hydrated lime or fly ash unless otherwise shown on the plans. Use no more than 1% hydrated lime if a substitute binder is used unless otherwise shown on the plans or allowed. Test all mineral fillers except hydrated lime and fly ash in accordance with <u>Tex-107-E</u> to ensure specification compliance. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:

- is sufficiently dry, free-flowing, and free from clumps and foreign matter as determined by the Engineer;
- does not exceed 3% linear shrinkage when tested in accordance with Tex-107-E; and
- meets the gradation requirements in Table 3, unless otherwise shown on the plans.

Table 3			
Gradation Requirements for Mineral Filler			
Sieve Size % Passing by Weight or Volume			
#8	100		
#200	55–100		

2.3.

Baghouse Fines. Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.

- 2.4. **Asphalt Binder**. Furnish the type and grade of performance-graded (PG) asphalt specified on the plans.
- 2.5. **Tack Coat**. Furnish CSS-1H, SS-1H, or a PG binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300, "Asphalts, Oils, and Emulsions." Specialized tack coat materials listed on the Department's MPL are allowed or required when shown on the plans. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use.
- 2.6. Additives. Use the type and rate of additive specified when shown on the plans. Additives that facilitate mixing, compaction, or improve the quality of the mixture are allowed when approved. Provide the Engineer with documentation such as the bill of lading showing the quantity of additives used in the project unless otherwise directed.
- 2.6.1. Lime and Liquid Antistripping Agent. When lime or a liquid antistripping agent is used, add in accordance with Item 301, "Asphalt Antistripping Agents." Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.
- 2.6.2. Warm Mix Asphalt (WMA). Warm Mix Asphalt (WMA) is defined as HMA that is produced within a target temperature discharge range of 215°F and 275°F using approved WMA additives or processes from the Department's MPL.

WMA is allowed for use on all projects and is required when shown on the plans. When WMA is required, the maximum placement or target discharge temperature for WMA will be set at a value below 275°F.

Department-approved WMA additives or processes may be used to facilitate mixing and compaction of HMA produced at target discharge temperatures above 275°F; however, such mixtures will not be defined as WMA.

2.6.3. **Compaction Aid.** Compaction Aid is defined as a chemical warm mix additive that is used to produce an asphalt mixture at a discharge temperature greater than 275°F.

Compaction Aid is allowed for use on all projects and is required when shown on the plans.

2.7. Recycled Materials. Use of RAP and RAS is permitted unless otherwise shown on the plans. Use of RAS is restricted to only intermediate and base mixes unless otherwise shown on the plans. Do not exceed the maximum allowable percentages of RAP and RAS shown in Table 4. The allowable percentages shown in Table 4 may be decreased or increased when shown on the plans. Determine the asphalt binder content and gradation of the RAP and RAS stockpiles for mixture design purposes in accordance with <u>Tex-236-F</u>, Part I. The Engineer may verify the asphalt binder content of the stockpiles at any time during production. Perform other tests on RAP and RAS when shown on the plans. Asphalt binder from RAP and RAS is designated as recycled asphalt binder. Calculate and ensure that the ratio of the recycled asphalt binder to total binder does not exceed the percentages shown in Table 5 during mixture design and HMA production when RAP or RAS is used. Use a separate cold feed bin for each stockpile of RAP and RAS during HMA production.

Surface, intermediate, and base mixes referenced in Tables 4 and 5 are defined as follows:

- Surface. The final HMA lift placed at the top of the pavement structure or placed directly below mixtures produced in accordance with Items 316, 342, 347, or 348;
- Intermediate. Mixtures placed below an HMA surface mix and less than or equal to 8.0 in. from the riding surface; and
- Base. Mixtures placed greater than 8.0 in. from the riding surface. Unless otherwise shown on the plans, mixtures used for bond breaker are defined as base mixtures.
- 2.7.1. **RAP**. RAP is salvaged, milled, pulverized, broken, or crushed asphalt pavement. Fractionated RAP is defined as a stockpile that contains RAP material with a minimum of 95.0% passing the 3/8-in. or 1/2-in.

sieve, before burning in the ignition oven, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8-in. or 1/2-in. screen to fractionate the RAP.

Use of Contractor-owned RAP including HMA plant waste is permitted unless otherwise shown on the plans. Department-owned RAP stockpiles are available for the Contractor's use when the stockpile locations are shown on the plans. If Department-owned RAP is available for the Contractor's use, the Contractor may use Contractor-owned fractionated RAP and replace it with an equal quantity of Department-owned RAP. Department-owned RAP generated through required work on the Contractor is available for the Contractor's use when shown on the plans. Perform any necessary tests to ensure Contractor- or Department-owned RAP is appropriate for use. The Department will not perform any tests or assume any liability for the quality of the Department-owned RAP unless otherwise shown on the plans. The Contractor will retain ownership of RAP generated on the project when shown on the plans.

Do not use Department- or Contractor-owned RAP contaminated with dirt or other objectionable materials. Do not use Department- or Contractor-owned RAP if the decantation value exceeds 5% and the plasticity index is greater than eight. Test the stockpiled RAP for decantation in accordance with <u>Tex-406-A</u>, Part I. Determine the plasticity index in accordance with <u>Tex-106-E</u> if the decantation value exceeds 5%. The decantation and plasticity index requirements do not apply to RAP samples with asphalt removed by extraction or ignition.

Do not intermingle Contractor-owned RAP stockpiles with Department-owned RAP stockpiles. Remove unused Contractor-owned RAP material from the project site upon completion of the project. Return unused Department-owned RAP to the designated stockpile location.

Table 4					
Maximum Allowable Amounts of RAP ¹					
	Maximum Allowable				
	Fractionated RAP (%)				
S	Surface Intermediate Base				
	20.0	30.0	35.0		
1. Must also meet the recycled binder to total					
binder ratio shown in Table 5.					

2.7.2.

RAS. Use of post-manufactured RAS or post-consumer RAS (tear-offs) is not permitted in surface mixtures unless otherwise shown on the plans. RAS may be used in intermediate and base mixtures unless otherwise shown on the plans. Up to 3% RAS may be used separately or as a replacement for fractionated RAP in accordance with Table 4 and Table 5. RAS is defined as processed asphalt shingle material from manufacturing of asphalt roofing shingles or from re-roofing residential structures. Post-manufactured RAS is processed manufacturer's shingle scrap by-product. Post-consumer RAS is processed shingle scrap removed from residential structures. Comply with all regulatory requirements stipulated for RAS by the TCEQ. RAS may be used separately or in conjunction with RAP.

Process the RAS by ambient grinding or granulating such that 100% of the particles pass the 3/8 in. sieve when tested in accordance with <u>Tex-200-F</u>, Part I. Perform a sieve analysis on processed RAS material before extraction (or ignition) of the asphalt binder.

Add sand meeting the requirements of Table 1 and Table 2 or fine RAP to RAS stockpiles if needed to keep the processed material workable. Any stockpile that contains RAS will be considered a RAS stockpile and be limited to no more than 3.0% of the HMA mixture in accordance with Table 4.

Certify compliance of the RAS with <u>DMS-11000</u>, "Evaluating and Using Nonhazardous Recyclable Materials Guidelines." Treat RAS as an established nonhazardous recyclable material if it has not come into contact with any hazardous materials. Use RAS from shingle sources on the Department's MPL. Remove substantially all materials before use that are not part of the shingle, such as wood, paper, metal, plastic, and felt paper. Determine the deleterious content of RAS material for mixture design purposes in accordance with <u>Tex-217-F</u>, Part III. Do not use RAS if deleterious materials are more than 0.5% of the stockpiled RAS unless

otherwise approved. Submit a sample for approval before submitting the mixture design. The Department will perform the testing for deleterious material of RAS to determine specification compliance.

2.8.

Substitute Binders. Unless otherwise shown on the plans, the Contractor may use a substitute PG binder listed in Table 5 instead of the PG binder originally specified if using recycled materials, and if the substitute PG binder and mixture made with the substitute PG binder meet the following:

- the substitute binder meets the specification requirements for the substitute binder grade in accordance with Section 300.2.10., "Performance-Graded Binders;" and
- the mixture has less than 10.0 mm of rutting on the Hamburg Wheel test (<u>Tex-242-F</u>) after the number of passes required for the originally specified binder. Use of substitute PG binders may only be allowed at the discretion of the Engineer if the Hamburg Wheel test results are between 10.0 mm and 12.5 mm.

Originally Specified	Allowable Substitute PG Binder for	Allowable Substitute PG Binder for		Ratio of Recycle Total Binder (%	
PG Binder	Surface Mixes	Intermediate and Base Mixes	Surface	Intermediate	Base
76-22 ^{4,5}	70-22	70-22	15.0	25.0	30.0
70-22 ^{2,5}	N/A	64-22	15.0	25.0	30.0
64-22 ^{2,3}	N/A	N/A	15.0	25.0	30.0
76-28 ^{4,5}	70-28	70-28	15.0	25.0	30.0
70-28 ^{2,5}	N/A	64-28	15.0	25.0	30.0
64-28 ^{2,3}	N/A	N/A	15.0	25.0	30.0

Allowable Substitute PG Binders and Maximum Recycled Binder Ratios	

1. Combined recycled binder from RAP and RAS. RAS is not permitted in surface mixtures unless otherwise shown on the plans.

2. Binder substitution is not allowed for surface mixtures.

3. Binder substitution is not allowed for intermediate and base mixtures.

- 4. Use no more than 15.0% recycled binder in surface mixtures when using this originally specified PG binder.
- Use no more than 25.0% recycled binder when using this originally specified PG binder for intermediate mixtures. Use no more than 30.0% recycled binder when using this originally specified PG binder for base mixtures.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement."

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required by the specification, Contractors may perform other QC tests as deemed necessary. At any time during the project, the Engineer may perform production and placement tests as deemed necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1. Certification. Personnel certified by the Department-approved hot-mix asphalt certification program must conduct all mixture designs, sampling, and testing in accordance with Table 6. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel

changes are made. Provide a mixture design developed and signed by a Level 2 certified specialist. Provide Level 1A certified specialists at the plant during production operations. Provide Level 1B certified specialists to conduct placement tests. Provide AGG101 certified specialists for aggregate testing.

Test Methods, Test Responsibility, and Minimum Certification Levels				
Test Description	Test Method	Contractor	Engineer	Level ¹
	Aggregate and Recycled		,	4.0/0.00404
Sampling	<u>Tex-221-F</u>	√	✓	1A/AGG101
Dry sieve	<u>Tex-200-F</u> , Part I	√	✓	1A/AGG101
Washed sieve	Tex-200-F, Part II	 ✓ 	✓	1A/AGG101
Deleterious material	Tex-217-F, Parts I & III	 ✓ 	✓	AGG101
Decantation	Tex-217-F, Part II	✓	✓	AGG101
Los Angeles abrasion	<u>Tex-410-A</u>		✓	TxDOT
Magnesium sulfate soundness	<u>Tex-411-A</u>		✓	TxDOT
Micro-Deval abrasion	<u>Tex-461-A</u>		✓	AGG101
Crushed face count	<u>Tex-460-A</u>	✓	✓	AGG101
Flat and elongated particles	<u>Tex-280-F</u>	✓	\checkmark	AGG101
Linear shrinkage	<u>Tex-107-E</u>	✓	✓	AGG101
Sand equivalent	<u>Tex-203-F</u>	✓	✓	AGG101
Bulk specific gravity	<u>Tex-201-F</u>	✓	✓	AGG101
Unit weight	<u>Tex-404-A</u>	✓	✓	AGG101
Organic impurities	<u>Tex-408-A</u>	✓	✓	AGG101
	2. Asphalt Binder & Tack	Coat Sampling		
Asphalt binder sampling	<u>Tex-500-C</u> , Part II	✓	✓	1A/1B
Tack coat sampling	Tex-500-C, Part III	\checkmark	✓	1A/1B
	3. Mix Design & Ver	rification		
Design and JMF changes	<u>Tex-204-F</u>	✓	✓	2
Mixing	<u>Tex-205-F</u>	✓	✓	2
Molding (SGC)	<u>Tex-241-F</u>	\checkmark	\checkmark	1A
Laboratory-molded density	Tex-207-F, Parts I & VI	\checkmark	\checkmark	1A
Rice gravity	Tex-227-F, Part II	✓	\checkmark	1A
Ignition oven correction factors ²	Tex-236-F, Part II	✓	√	2
Indirect tensile strength	<u>Tex-226-F</u>	✓	\checkmark	1A
Hamburg Wheel test	Tex-242-F	✓	\checkmark	1A
Boil test	Tex-530-C	✓	\checkmark	1A
	4. Production Te	esting		
Selecting production random numbers	Tex-225-F, Part I		✓	1A
Mixture sampling	Tex-222-F	✓	\checkmark	1A/1B
Molding (SGC)	<u>Tex-241-F</u>	✓	\checkmark	1A
Laboratory-molded density	Tex-207-F, Parts I & VI	✓	✓	1A
Rice gravity	Tex-227-F, Part II	✓	✓	1A
Gradation & asphalt binder content ²	Tex-236-F, Part I	✓	✓	1A
Control charts	Tex-233-F	✓	✓	1A
Moisture content	Tex-212-F, Part II	\checkmark	√	1A/AGG101
Hamburg Wheel test	Tex-242-F	✓	✓	1A
Micro-Deval abrasion	Tex-461-A		√	AGG101
Boil test	Tex-530-C	✓	✓	1A
Abson recovery	Tex-211-F		✓	TxDOT
···· · · · · · · · · · · · · · · · · ·	5. Placement Te	sting		-
Selecting placement random numbers	Tex-225-F, Part II	Ĭ	✓	1B
Trimming roadway cores	Tex-251-F, Parts I & II	✓	✓	1A/1B
In-place air voids	Tex-207-F, Parts I & VI	✓	✓	1A
In-place density (nuclear method)	Tex-207-F, Part III	✓		1B
Establish rolling pattern	Tex-207-F, Part IV	✓		1B
Control charts	<u>Tex-233-F</u>	✓	✓	1A
Ride quality measurement	<u>Tex-1001-S</u>	✓	✓	Note 3
Segregation (density profile)	Tex-207-F, Part V	✓	✓ ·	1B
Longitudinal joint density	Tex-207-F, Part VII	√	· · · · · · · · · · · · · · · · · · ·	1B
Thermal profile	<u>Tex-244-F</u>	✓ ✓	· · · · · · · · · · · · · · · · · · ·	1B 1B
Shear Bond Strength Test	Tex-249-F	•		TxDOT
1. Level 1A, 1B, AGG101, and 2 are		huidh a llad Miu Ann	•	

Table 6 sibility and Minimum Certification Levels Tast Mathada Tast D

Level 1A, 1B, AGG101, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program.
 Refer to Section 3077.4.9.2.3., "Production Testing," for exceptions to using an ignition oven.
 Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when Surface Test Type B is specified.

Reporting and Responsibilities. Use Department-provided templates to record and calculate all test data, including mixture design, production and placement QC/QA, control charts, thermal profiles, segregation density profiles, and longitudinal joint density. Obtain the current version of the templates at http://www.txdot.gov/inside-txdot/forms-publications/consultants-contractors/forms/site-manager.html or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The maximum allowable time for the Contractor and Engineer to exchange test data is as given in Table 7 unless otherwise approved. The Engineer and the Contractor or placement, a payment adjustment less than 1.000, or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department-provided templates.

Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

Table 7

	Re	porting Schedule	
Description	Reported By	Reported To	To Be Reported Within
•		ction Quality Contro	
Gradation ¹			
Asphalt binder content ¹			
Laboratory-molded density ²	Contractor	Engineer	1 working day of completion of the sublot
Moisture content ³			
Boil test ³			
	Product	ion Quality Assuran	ce
Gradation ³			
Asphalt binder content ³			
Laboratory-molded density ¹	Engineer	Contractor	1 working day of completion of the publict
Hamburg Wheel test ⁴	Engineer	Contractor	1 working day of completion of the sublot
Boil test ³			
Binder tests ⁴			
	Placer	ment Quality Control	
In-place air voids ²			
Segregation ¹	Contractor	Engineer	1 working day of completion of the let
Longitudinal joint density ¹	Contractor	Engineer	1 working day of completion of the lot
Thermal profile ¹			
	Placem	ent Quality Assurance	ce
In-place air voids ¹			1 working day after receiving the trimmed cores ⁵
Segregation ³ Longitudinal joint density ³	Engineer	Contractor	1 working day of completion of the let
Thermal profile ³ Aging ratio ⁴			1 working day of completion of the lot
Payment adjustment summary	Engineer	Contractor	2 working days of performing all required tests and receiving Contractor test data

1. These tests are required on every sublot.

4.2.

2. Optional test. When performed on split samples, report the results as soon as they become available.

3. To be performed at the frequency specified in Table 17 or as shown on the plans.

4. To be reported as soon as the results become available.

5. Two days are allowed if cores cannot be dried to constant weight within 1 day.

The Engineer will use the Department-provided template to calculate all payment adjustment factors for the lot. Sublot samples may be discarded after the Engineer and Contractor sign off on the payment adjustment summary documentation for the lot.

Use the procedures described in <u>Tex-233-F</u> to plot the results of all quality control (QC) and quality assurance (QA) testing. Update the control charts as soon as test results for each sublot become available.

Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

4.3. Quality Control Plan (QCP). Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

Submit a written QCP before the mandatory pre-paving meeting. Receive approval of the QCP before beginning production. Include the following items in the QCP:

4.3.1. **Project Personnel**. For project personnel, include:

- a list of individuals responsible for QC with authority to take corrective action;
- current contact information for each individual listed; and
- current copies of certification documents for individuals performing specified QC functions.

4.3.2. **Material Delivery and Storage**. For material delivery and storage, include:

- the sequence of material processing, delivery, and minimum quantities to assure continuous plant operations;
- aggregate stockpiling procedures to avoid contamination and segregation;
- frequency, type, and timing of aggregate stockpile testing to assure conformance of material requirements before mixture production; and
- procedure for monitoring the quality and variability of asphalt binder.

4.3.3. **Production**. For production, include:

- loader operation procedures to avoid contamination in cold bins;
- procedures for calibrating and controlling cold feeds;
- procedures to eliminate debris or oversized material;
- procedures for adding and verifying rates of each applicable mixture component (e.g., aggregate, asphalt binder, RAP, RAS, lime, liquid antistrip, WMA);
- procedures for reporting job control test results; and
- procedures to avoid segregation and drain-down in the silo.

4.3.4. **Loading and Transporting**. For loading and transporting, include:

- type and application method for release agents; and
- truck loading procedures to avoid segregation.

4.3.5. **Placement and Compaction**. For placement and compaction, include:

- proposed agenda for mandatory pre-paving meeting, including date and location;
- proposed paving plan (e.g., paving widths, joint offsets, and lift thicknesses);
- type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils;
- procedures for the transfer of mixture into the paver, while avoiding segregation and preventing material spillage;
- process to balance production, delivery, paving, and compaction to achieve continuous placement operations and good ride quality;
- paver operations (e.g., operation of wings, height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and
- procedures to construct quality longitudinal and transverse joints.

4.4. Mixture Design.

4.4.1. **Design Requirements**. Use the SP design procedure provided in <u>Tex-204-F</u>, unless otherwise shown on the plans. Design the mixture to meet the requirements listed in Tables 1, 2, 3, 4, 5, 8, 9, 10, and 11.

Design the mixture at 50 gyrations (Ndesign). Use a target laboratory-molded density of 96.0% to design the mixture; however, adjustments can be made to the Ndesign value as noted in Table 10. The Ndesign level may be reduced to at least 35 gyrations at the Contractor's discretion.

Use an approved laboratory from the Department's MPL to perform the Hamburg Wheel test and provide results with the mixture design, or provide the laboratory mixture and request that the Department perform the Hamburg Wheel test. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel test results on the laboratory mixture design.

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design at any time during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor can begin production.

The aggregate gradation may pass below or through the reference zone shown in Table 9 unless otherwise shown on the plans. Design a mixture with a gradation that has stone-on-stone contact and passes below the reference zone shown in Table 9 when shown on the plans. Verify stone-on-stone contact using the method given in the SP design procedure in <u>Tex-204-F</u>, Part IV.

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report:

- the combined aggregate gradation, source, specific gravity, and percent of each material used;
- asphalt binder content and aggregate gradation of RAP and RAS stockpiles;
- the Ndesign level used;
- results of all applicable tests;
- the mixing and molding temperatures;
- the signature of the Level 2 person or persons that performed the design;

Table 8

- the date the mixture design was performed; and
- a unique identification number for the mixture design.

Master Gradation Limits (% Passing by Weight or Volume) and VMA Requirements				
Sieve	SP-B	SP-C	SP-D	
Size	Intermediate	Surface	Fine Mixture	
2"	-	-	-	
1-1/2"	100.0 ¹	-	-	
1"	98.0-100.0	100.0 ¹	-	
3/4"	90.0-100.0	98.0-100.0	100.0 ¹	
1/2"	Note ²	90.0-100.0	98.0-100.0	
3/8"	-	Note ²	90.0-100.0	
#4	23.0-90.0	28.0-90.0	32.0-90.0	
#8	23.0-34.6	28.0-37.0	32.0-40.0	
#16	2.0-28.3	2.0-31.6	2.0-37.6	
#30	2.0-20.7	2.0-23.1	2.0-27.5	
#50	2.0-13.7	2.0–15.5	2.0-18.7	
#200	2.0-8.0	2.0-10.0	2.0-10.0	
_	14.0	15.0	16.0]
Production (Plant-Produced) VMA, % Minimum				
-	13.5	14.5	15.5	J

1. Defined as maximum sieve size. No tolerance allowed.

2. Must retain at least 10% cumulative.

Sieve	SP-B	SP-C	SP-D
Size	Intermediate	Surface	Fine Mixture
2"	_	-	_
1-1/2"	_	-	_
1"	-	-	-
3/4"	-	-	-
1/2"	_	-	_
3/8"	_	-	_
#4	_	-	_
#8	34.6-34.6	39.1-39.1	47.2-47.2
#16	22.3-28.3	25.6-31.6	31.6-37.6
#30	16.7-20.7	19.1-23.1	23.5-27.5
#50	13.7–13.7	15.5–15.5	18.7–18.7
#200	-	-	-

Table 9 Reference Zones (% Passing by Weight or Volume)

Та	ble	10	
	-		

Laboratory Mixture Design Properties

Mixture Property	Test Method	Requirement
Target laboratory-molded density, %	<u>Tex-207-F</u>	96.0
Design gyrations (Ndesign)	<u>Tex-241-F</u>	50 ¹
Indirect tensile strength (dry), psi	<u>Tex-226-F</u>	85–200 ²
Dust/asphalt binder ratio ³	-	0.6–1.4
Boil test ⁴	<u>Tex-530-C</u>	-

 Adjust within a range of 35–100 gyrations when shown on the plans or specification or mutually agreed between the Engineer and Contractor.

3. Defined as % passing #200 sieve divided by asphalt binder content.

 Used to establish baseline for comparison to production results. May be waived when approved.

Table 11	
Hamburg Wheel Test Require	ments

High-Temperature Binder Grade	Test Method	Minimum # of Passes @ 12.5 mm ¹ Rut Depth, Tested @ 50°C
PG 64 or lower		10,000 ²
PG 70	Tex-242-F	15,000 ³
PG 76 or higher		20,000

1. When the rut depth at the required minimum number of passes is less than 3 mm, the Engineer may require the Contractor to lower the Ndesign level to at least 35 gyrations.

May be decreased to at least 5,000 passes when shown on the plans.

May be decreased to at least 10,000 passes when shown on the plans.

4.4.2. **Job-Mix Formula Approval**. The job-mix formula (JMF) is the combined aggregate gradation, Ndesign level, and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch. When WMA is used, JMF1 may be designed and submitted to the Engineer without including the WMA additive. When WMA is used, document the additive or process used and recommended rate on the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The Department may require the Contractor to reimburse the Department for verification tests if more than two trial batches per design are required.

4.4.2.1. Contractor's Responsibilities.

4.4.2.1.1. **Providing Superpave Gyratory Compactor (SGC)**. Furnish an SGC calibrated in accordance with <u>Tex-241-F</u> for molding production samples. Locate the SGC at the Engineer's field laboratory and make the SGC available to the Engineer for use in molding production samples.

^{2.} The Engineer may allow the IDT strength to exceed 200 psi if the corresponding Hamburg Wheel rut depth is greater than 3.0 mm and less than 12.5 mm.

- 4.4.2.1.2. **Gyratory Compactor Correlation Factors**. Use <u>Tex-206-F</u>, Part II, to perform a gyratory compactor correlation when the Engineer uses a different SGC. Apply the correlation factor to all subsequent production test results.
- 4.4.2.1.3. **Submitting JMF1**. Furnish a mix design report (JMF1) with representative samples of all component materials and request approval to produce the trial batch. Provide approximately 10,000 g of the design mixture if opting to have the Department perform the Hamburg Wheel test on the laboratory mixture, and request that the Department perform the test.
- 4.4.2.1.4. **Supplying Aggregates**. Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.
- 4.4.2.1.5. **Supplying Asphalt**. Provide at least 1 gal. of the asphalt material and enough quantities of any additives proposed for use.
- 4.4.2.1.6. **Ignition Oven Correction Factors**. Determine the aggregate and asphalt correction factors from the ignition oven in accordance with <u>Tex-236-F</u>, Part II. Provide correction factors that are not more than 12 months old. Provide the Engineer with split samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for QA testing during production. Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used, unless otherwise directed.
- 4.4.2.1.7. **Boil Test**. Perform the test and retain the tested sample from <u>Tex-530-C</u> until completion of the project or as directed. Use this sample for comparison purposes during production. The Engineer may waive the requirement for the boil test.
- 4.4.2.1.8. **Trial Batch Production**. Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch, including the WMA additive or process if applicable, for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements in Table 4, Table 5, and Table 12. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.
- 4.4.2.1.9. **Trial Batch Production Equipment**. Use only equipment and materials proposed for use on the project to produce the trial batch.
- 4.4.2.1.10. **Trial Batch Quantity**. Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.
- 4.4.2.1.11. **Number of Trial Batches**. Produce trial batches as necessary to obtain a mixture that meets the specification requirements.
- 4.4.2.1.12. **Trial Batch Sampling**. Obtain a representative sample of the trial batch and split it into 3 equal portions in accordance with <u>Tex-222-F</u>. Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.
- 4.4.2.1.13. **Trial Batch Testing**. Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements in Table 12. Ensure the trial batch mixture is also in compliance with the Hamburg Wheel-requirement in Table 11. Use a Department-approved laboratory to perform the Hamburg Wheel test on the trial batch mixture or request that the Department perform the Hamburg Wheel test.

The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.

4.4.2.1.14. **Development of JMF2**. Evaluate the trial batch test results after the Engineer grants full approval of JMF1 based on results from the trial batch, determine the optimum mixture proportions, and submit as JMF2.

Adjust the asphalt binder content or gradation to achieve the specified target laboratory-molded density. The asphalt binder content established for JMF2 is not required to be within any tolerance of the optimum asphalt binder content established for JMF1; however, mixture produced using JMF2 must meet the voids in mineral aggregates (VMA) requirements for production shown in Table 8. If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform <u>Tex-226-F</u> on Lot 1 production to confirm the indirect tensile strength does not exceed 200 psi. Verify that JMF2 meets the mixture requirements in Table 4 and Table 5.

4.4.2.1.15. **Mixture Production**. Use JMF2 to produce Lot 1 as described in Section 3077.4.9.3.1.1., "Lot 1 Placement," after receiving approval for JMF2 and a passing result from the Department's or a Department-approved laboratory's Hamburg Wheel test on the trial batch. If desired, proceed to Lot 1 production, once JMF2 is approved, at the Contractor's risk without receiving the results from the Department's Hamburg Wheel test on the trial batch.

Notify the Engineer if electing to proceed without Hamburg Wheel test results from the trial batch. Note that the Engineer may require up to the entire sublot of any mixture failing the Hamburg Wheel test to be removed and replaced at the Contractor's expense.

- 4.4.2.1.16. **Development of JMF3**. Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.
- 4.4.2.1.17. **JMF Adjustments**. If JMF adjustments are necessary to achieve the specified requirements, make the adjustment before beginning a new lot. The adjusted JMF must:
 - be provided to the Engineer in writing before the start of a new lot;
 - be numbered in sequence to the previous JMF;
 - meet the mixture requirements in Table 4 and Table 5;
 - meet the master gradation limits shown in Table 8; and
 - be within the operational tolerances of JMF2 listed in Table 12.
- 4.4.2.1.18. **Requesting Referee Testing**. Use referee testing, if needed, in accordance with Section 3077.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Operational Tolerances Tract Allowable Difference Allowable Difference Allowable Difference					
Description	Test Method	Between Trial Batch and JMF1 Target	from Current JMF Target	between Contractor and Engineer ¹	
Individual % retained for #8 sieve and larger	Тах 200 Г	Must he Within Master	±5.0 ^{2,3}	±5.0	
Individual % retained for sieves smaller than #8 and larger than #200	<u>Tex-200-F</u> or <u>Tex-236-F</u>	Must be Within Master Grading Limits in Table 8	±3.0 ^{2,3}	±3.0	
% passing the #200 sieve			±2.0 ^{2,3}	±1.6	
Asphalt binder content, %	<u>Tex-236-F</u>	±0.5	±0.3 ³	±0.3	
Dust/asphalt binder ratio ⁴	-	Note 5	Note 5	N/A	
Laboratory-molded density, %		±1.0	±1.0	±0.5	
In-place air voids, %	Tex-207-F	N/A	N/A	±1.0	
Laboratory-molded bulk specific gravity	<u>167-201-L</u>	N/A	N/A	±0.020	
VMA, % min	Tex-204-F	Note 6	Note 6	N/A	
Theoretical maximum specific (Rice) gravity	<u>Tex-227-F</u>	N/A	N/A	±0.020	

Table 12

1. Contractor may request referee testing only when values exceed these tolerances.

2. When within these tolerances, mixture production gradations may fall outside the master grading limits; however, the % passing the #200 will be considered out of tolerance when outside the master grading limits.

3. Only applies to mixture produced for Lot 1 and higher.

4. Defined as % passing #200 sieve divided by asphalt binder content.

5. Verify that Table 10 requirement is met.

6. Verify that Table 8 requirements are met.

4.4.2.2. Engineer's Responsibilities.

4.4.2.2.1. **Gyratory Compactor**. The Engineer will use a Department SGC, calibrated in accordance with <u>Tex-241-F</u>, to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the field laboratory or provide and use a Department SGC at an alternate location. The Engineer will make the Contractor-provided SGC in the Department field laboratory available to the Contractor for molding verification samples.

4.4.2.2.2. **Conditional Approval of JMF1 and Authorizing Trial Batch**. The Engineer will review and verify conformance of the following information within two working days of receipt:

- the Contractor's mix design report (JMF1);
- the Contractor-provided Hamburg Wheel test results;
- all required materials including aggregates, asphalt, additives, and recycled materials; and
- the mixture specifications.

The Engineer will grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg Wheel test results with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on the test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with Section 3077.2.1.1.2., "Micro-Deval Abrasion." If the Engineer's test results are pending after two working days, conditional approval of JMF1 will still be granted within 2 working days of receiving JMF1. When the Engineer's test results become available, they will be used for specification compliance.

After conditionally approving JMF1, including either Contractor- or Department-supplied Hamburg Wheel test results, the Contractor is authorized to produce a trial batch.

- 4.4.2.2.3. Hamburg Wheel Testing of JMF1. If the Contractor requests the option to have the Department perform the Hamburg Wheel test on the laboratory mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg Wheel test requirement in Table 11.
- 4.4.2.2.4. **Ignition Oven Correction Factors**. The Engineer will use the split samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven used for QA testing during production in accordance with <u>Tex-236-F</u>, Part II. Provide correction factors that are not more than 12 months old.
- 4.4.2.2.5. **Testing the Trial Batch**. Within 1 full working day, the Engineer will sample and test the trial batch to ensure that the mixture meets the requirements in Table 12. If the Contractor requests the option to have the Department perform the Hamburg Wheel test on the trial batch mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg Wheel test requirement in Table 11.

The Engineer will have the option to perform the following tests on the trial batch:

- <u>Tex-226-F</u>, to verify that the indirect tensile strength meets the requirement shown in Table 10; and
- <u>Tex-530-C</u>, to retain and use for comparison purposes during production.
- 4.4.2.2.6. **Full Approval of JMF1**. The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements in Table 12. The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.
- 4.4.2.2.7. **Approval of JMF2**. The Engineer will approve JMF2 within one working day if the mixture meets the requirements in Table 5 and the gradation meets the master grading limits shown in Table 8. The asphalt binder content established for JMF2 is not required to be within any tolerance of the optimum asphalt binder content established for JMF1; however, mixture produced using JMF2 must meet the VMA requirements shown in Table 8. If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform <u>Tex-226-F</u> on Lot 1 production to confirm the indirect tensile strength does not exceed 200 psi.
- 4.4.2.2.8. **Approval of Lot 1 Production**. The Engineer will authorize the Contractor to proceed with Lot 1 production (using JMF2) as soon as a passing result is achieved from the Department's or a Department-approved laboratory's Hamburg Wheel test on the trial batch. The Contractor may proceed at its own risk with Lot 1 production without the results from the Hamburg Wheel test on the trial batch.

If the Department's or Department-approved laboratory's sample from the trial batch fails the Hamburg Wheel test, the Engineer will suspend production until further Hamburg Wheel tests meet the specified values. The Engineer may require up to the entire sublot of any mixture failing the Hamburg Wheel test be removed and replaced at the Contractor's expense.

- 4.4.2.2.9. **Approval of JMF3 and Subsequent JMF Changes**. JMF3 and subsequent JMF changes are approved if they meet the mixture requirements shown in Table 4, Table 5, and the master grading limits shown in Table 8, and are within the operational tolerances of JMF2 shown in Table 12.
- 4.5. **Production Operations**. Perform a new trial batch when the plant or plant location is changed. Take corrective action and receive approval to proceed after any production suspension for noncompliance to the specification. Submit a new mix design and perform a new trial batch when the asphalt binder content of:
 - any RAP stockpile used in the mix is more than 0.5% higher than the value shown on the mixture design report; or
 - RAS stockpile used in the mix is more than 2.0% higher than the value shown on the mixture design report.

- 4.5.1. Storage and Heating of Materials. Do not heat the asphalt binder above the temperatures specified in Item 300, "Asphalts, Oils, and Emulsions," or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and hot-mix asphalt discharge temperatures (in legible and discernible increments) in accordance with Item 320, "Equipment for Asphalt Concrete Pavement," unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.
- 4.5.2. Mixing and Discharge of Materials. Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed the maximum production temperatures listed in Table 13 (or 275°F for WMA). The Department will not pay for or allow placement of any mixture produced above the maximum production temperatures listed in Table 13.

Maximum Production Temperature			
High-Temperature Binder Grade ¹ Maximum Production Temperature			
PG 64	325°F		
PG 70	335°F		
PG 76	345°F		
1010	0401		

		Та	able 13	6			
Maxin	num F	Prod	uction	Те	mpe	rature	
emperature			_			_	

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

Produce WMA within the target discharge temperature range of 215°F and 275°F when WMA is required. Take corrective action any time the discharge temperature of the WMA exceeds the target discharge range. The Engineer may suspend production operations if the Contractor's corrective action is not successful at controlling the production temperature within the target discharge range. Note that when WMA is produced, it may be necessary to adjust burners to ensure complete combustion such that no burner fuel residue remains in the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with Tex-212-F, Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck, and perform the test promptly.

4.6. Hauling Operations. Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent shown on the Department's MPL to coat the inside bed of the truck when necessary.

> Use equipment for hauling as defined in Section 3077.4.7.3.3., "Hauling Equipment." Use other hauling equipment only when allowed.

4.7. Placement Operations. Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour or as directed. Use a hand-held thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture as discharged from the truck or Material Transfer Device (MTD) before or as the mix enters the paver and an approximate station number or GPS coordinates on each ticket. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

> Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot-mix by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide with lane lines and are not placed in the wheel path, or as directed. Ensure that all finished surfaces will drain properly. Place the

mixture at the rate or thickness shown on the plans. The Engineer will use the guidelines in Table 14 to determine the compacted lift thickness of each layer when multiple lifts are required. The thickness determined is based on the rate of 110 lb./sg. yd. for each inch of pavement unless otherwise shown on the plans.

Compacted Lift Thickness and Required Core Height				
Mixture	Compacted Lift Thickness Guidelines		Minimum Untrimmed Core	
Туре	Minimum (in.)	Maximum (in.)	Height (in.) Eligible for Testing	
SP-B	2.50	4.0	2.00	
SP-C	2.00	3.0	1.25	
SP-D	1.25	2.0	1.25	

Table 14

4.7.1. Weather Conditions.

4.7.1.1. When Using a Thermal Imaging System. Place mixture when the roadway is dry and the roadway surface temperature is at or above the temperatures listed in Table 15A. The Engineer may restrict the Contractor from paving surface mixtures if the ambient temperature is likely to drop below 32°F within 12 hr. of paving. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 3077.4.7.3.1.2., "Thermal Imaging System."

Minimum Pavement Surface Temperatures			
Link Townsteins	Minimum Pavement Surface Temperatures (°F)		
High-Temperature Binder Grade ¹	Subsurface Layers or Night Paving Operations	Surface Layers Placed in Daylight Operations	
PG 64	35	40	
PG 70	45 ²	50 ²	
PG 76	45 ²	50 ²	
1 The high temperature hinder grade refers to the high temperature grade of the virgin			

	Table 15A
Ν	Iinimum Pavement Surface Temperatures
	Minimum Dovoment Surface Tempere

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

2. Contractors may pave at temperatures 10°F lower than these values when a chemical WMA additive is used as a compaction aid in the mixture or when using WMA.

4.7.1.2. When Not Using a Thermal Imaging System. When using a thermal camera instead of the thermal imaging system, place mixture when the roadway surface temperature is at or above the temperatures listed in Table 15B unless otherwise approved or as shown on the plans. Measure the roadway surface temperature with a hand-held thermal camera or infrared thermometer. The Engineer may allow mixture placement to begin before the roadway surface reaches the required temperature if conditions are such that the roadway surface will reach the required temperature within 2 hr. of beginning placement operations. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. The Engineer may restrict the Contractor from paving if the ambient temperature is likely to drop below 32°F within 12 hr. of paving.

	Minimum Pavement Surface Temperatures (°F)		
High-Temperature Binder Grade ¹	Subsurface Layers or Night Paving Operations	Surface Layers Placed in Daylight Operations	
PG 64	45	50	
PG 70	55 ²	60 ²	
PG 76	60 ²	60 ²	

Table 15B Minimum Pavement Surface Temperatures

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

2. Contractors may pave at temperatures 10°F lower than these values when a chemical WMA additive is used as a compaction aid in the mixture, when using WMA, or utilizing a paving process with equipment that eliminates thermal segregation. In such cases, for each sublot and in the presence of the Engineer, use a hand-held thermal camera operated in accordance with Tex-244-F to demonstrate to the satisfaction of the Engineer that the uncompacted mat has no more than 10°F of thermal segregation.

4.7.2. Tack Coat.

- 4.7.2.1. Application. Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 and 0.10 gal. of residual asphalt per square yard of surface area. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply the tack coat to all surfaces that will come in contact with the subsequent HMA placement, unless otherwise directed. Allow adequate time for emulsion to break completely before placing any material. Prevent splattering of tack coat when placed adjacent to curb, gutter, and structures. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use.
- 4.7.2.2. Sampling. The Engineer will obtain at least one sample of the tack coat binder per project in accordance with Tex-500-C, Part III, and test it to verify compliance with Item 300, "Asphalts, Oils, and Emulsions." The Engineer will notify the Contractor when the sampling will occur and will witness the collection of the sample from the asphalt distributor immediately before use.

For emulsions, the Engineer may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in Item 300, "Asphalts, Oils, and Emulsions."

4.7.3. Lay-Down Operations. Use the placement temperatures in Table 16 to establish the minimum placement temperature of mixture delivered to the paver.

Minimum Mixture Placement Temperature			
High-Temperature Minimum Placement Temperature			
Binder Grade ¹	(Before Entering Paver) ^{2,3}		
PG 64	260°F		
PG 70	270°F		
PG 76	280°F		

	Table 16	
Minimum	Mixture Placement	Temperature

1. The high-temperature binder grade refers to the high-temperature arade of the virgin asphalt binder used to produce the mixture.

Minimum placement temperatures may be reduced 10°F if using a chemical WMA additive as a compaction aid.

3. When using WMA, the minimum placement temperature is 215°F.

- 4.7.3.1 Thermal Profile. Use a hand-held thermal camera or a thermal imaging system to obtain a continuous thermal profile in accordance with Tex-244-F. Thermal profiles are not applicable in areas described in Section 3077.4.9.3.1.4., "Miscellaneous Areas."
- 4.7.3.1.1. Thermal Segregation.

- 4.7.3.1.1.1. **Moderate**. Any areas that have a temperature differential greater than 25°F, but not exceeding 50°F, are deemed as moderate thermal segregation.
- 4.7.3.1.1.2. **Severe**. Any areas that have a temperature differential greater than 50°F are deemed as severe thermal segregation.
- 4.7.3.1.2. **Thermal Imaging System**. Review the output results when a thermal imaging system is used, and provide the automated report described in <u>Tex-244-F</u> to the Engineer daily unless otherwise directed. Modify the paving process as necessary to eliminate any recurring (moderate or severe) thermal segregation identified by the thermal imaging system. The Engineer may suspend paving operations if the Contractor cannot successfully modify the paving process to eliminate recurring severe thermal segregation. Density profiles are not required and not applicable when using a thermal imaging system. Provide the Engineer with electronic copies of all daily data files that can be used with the thermal imaging system software to generate temperature profile plots daily or upon completion of the project or as requested by the Engineer.
- 4.7.3.1.3. Thermal Camera. When using a thermal camera instead of the thermal imaging system, take immediate corrective action to eliminate recurring moderate thermal segregation when a hand-held thermal camera is used. Evaluate areas with moderate thermal segregation by performing density profiles in accordance with Section 3077.4.9.3.3.2., "Segregation (Density Profile)." Provide the Engineer with the thermal profile of every sublot within one working day of the completion of each lot. When requested by the Engineer, provide the thermal images generated using the thermal camera. Report the results of each thermal profile in accordance with Section 3077.4.2., "Reporting and Responsibilities." The Engineer will use a hand-held thermal camera to obtain a thermal profile at least once per project. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that contains severe thermal segregation. Suspend operations and take immediate corrective action to eliminate severe thermal segregation unless otherwise directed. Resume operations when the Engineer determines that subsequent production will meet the requirements of this Section. Evaluate areas with severe thermal segregation by performing density profiles in accordance with Section 3077.4.9.3.3.2., "Segregation (Density Profile)." Remove and replace the material in any areas that have both severe thermal segregation and a failing result for Segregation (Density Profile) unless otherwise directed. The sublot in guestion may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.
- 4.7.3.2. **Windrow Operations**. Operate windrow pickup equipment so that when hot-mix is placed in windrows, substantially all the mixture deposited on the roadbed is picked up and loaded into the paver.
- 4.7.3.3. **Hauling Equipment**. Use belly dumps, live bottom, or end dump trucks to haul and transfer mixture; however, with exception of paving miscellaneous areas, end dump trucks are only allowed when used in conjunction with an MTD with remixing capability or when a thermal imaging system is used unless otherwise allowed.
- 4.7.3.4. **Screed Heaters**. Turn off screed heaters to prevent overheating of the mat if the paver stops for more than 5 min. The Engineer may evaluate the suspect area in accordance with Section 3077.4.9.3.3.4., "Recovered Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the paver is stopped.
- 4.8. **Compaction**. Compact the pavement uniformly to contain between 3.7% and 7.5% in-place air voids. Take immediate corrective action to bring the operation within 3.7% and 7.5% when the in-place air voids exceed the range of these tolerances. The Engineer will allow paving to resume when the proposed corrective action is likely to yield between 3.7% and 7.5% in-place air voids.

Obtain cores in areas placed under Exempt Production, as directed, at locations determined by the Engineer. The Engineer may test these cores and suspend operations or require removal and replacement if the inplace air voids are less than 2.7% or more than 9.0%. Areas defined in Section 3077.4.9.3.1.4., "Miscellaneous Areas," are not subject to in-place air void determination. Use the control strip method shown in <u>Tex-207-F</u>, Part IV, on the first day of production to establish the rolling pattern that will produce the desired in-place air voids unless otherwise directed.

Use tamps to thoroughly compact the edges of the pavement along curbs, headers, and similar structures and in locations that will not allow thorough compaction with rollers. The Engineer may require rolling with a trench roller on widened areas, in trenches, and in other limited areas.

Complete all compaction operations before the pavement temperature drops below 160°F unless otherwise allowed. The Engineer may allow compaction with a light finish roller operated in static mode for pavement temperatures below 160°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

4.9. Acceptance Plan. Payment adjustments for the material will be in accordance with Article 3077.6., "Payment."

Sample and test the hot-mix on a lot and sublot basis. Suspend production until test results or other information indicates to the satisfaction of the Engineer that the next material produced or placed will result in pay factors of at least 1.000 if the production pay factor given in Section 3077.6.1., "Production Payment Adjustment Factors," for two consecutive lots or the placement pay factor given in Section 3077.6.2., "Placement Payment Adjustment Factors," for two consecutive lots is below 1.000.

4.9.1. **Referee Testing**. The Materials and Tests Division is the referee laboratory. The Contractor may request referee testing if a "remove and replace" condition is determined based on the Engineer's test results, or if the differences between Contractor and Engineer test results exceed the maximum allowable difference shown in Table 12 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within 5 working days after receiving test results and cores from the Engineer. Referee tests will be performed only on the sublot in question and only for the particular tests in question. Allow 10 working days from the time the referee laboratory receives the samples for test results to be reported. The Department may require the Contractor to reimburse the Department for referee tests if more than three referee tests per project are required and the Engineer's test results are closer to the referee test results than the Contractor's test results.

The Materials and Tests Division will determine the laboratory-molded density based on the molded specific gravity and the maximum theoretical specific gravity of the referee sample. The in-place air voids will be determined based on the bulk specific gravity of the cores, as determined by the referee laboratory and the Engineer's average maximum theoretical specific gravity for the lot. With the exception of "remove and replace" conditions, referee test results are final and will establish payment adjustment factors for the sublot in question. The Contractor may decline referee testing and accept the Engineer's test results when the placement payment adjustment factor for any sublot results in a "remove and replace" condition. Placement sublots subject to be removed and replaced will be further evaluated in accordance with Section 3077.6.2.2., "Placement Sublots Subject to Removal and Replacement."

4.9.2. **Production Acceptance**.

4.9.2.1. **Production Lot**. A production lot consists of four equal sublots. The default quantity for Lot 1 is 1,000 tons; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 4,000 tons. The Engineer will select subsequent lot sizes based on the anticipated daily production such

3077

that approximately three to four sublots are produced each day. The lot size will be between 1,000 tons and 4,000 tons. The Engineer may change the lot size before the Contractor begins any lot.

If the optimum asphalt binder content for JMF2 is more than 0.5% lower than the optimum asphalt binder content for JMF1, the Engineer may perform or require the Contractor to perform <u>Tex-226-F</u> on Lot 1 to confirm the indirect tensile strength does not exceed 200 psi. Take corrective action to bring the mixture within specification compliance if the indirect tensile strength exceeds 200 psi unless otherwise directed.

4.9.2.1.1. **Incomplete Production Lots**. If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Adjust the payment for the incomplete lot in accordance with Section 3077.6.1., "Production Payment Adjustment Factors." Close all lots within five working days unless otherwise allowed.

4.9.2.2. **Production Sampling**.

- 4.9.2.2.1. **Mixture Sampling**. Obtain hot-mix samples from trucks at the plant in accordance with <u>Tex-222-F</u>. The sampler will split each sample into three equal portions in accordance with <u>Tex-200-F</u> and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" until the Department's testing is completed.
- 4.9.2.2.1.1. **Random Sample**. At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with <u>Tex-225-F</u>. Take one sample for each sublot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.
- 4.9.2.2.1.2. **Blind Sample**. For one sublot per lot, the Engineer will obtain and test a "blind" sample instead of the random sample collected by the Contractor. Test either the "blind" or the random sample; however, referee testing (if applicable) will be based on a comparison of results from the "blind" sample. The location of the Engineer's "blind" sample will not be disclosed to the Contractor. The Engineer's "blind" sample may be randomly selected in accordance with <u>Tex-225-F</u> for any sublot or selected at the discretion of the Engineer. The Engineer will use the Contractor's split sample for sublots not sampled by the Engineer.
- 4.9.2.2.2. Informational Shear Bond Strength Testing. Select one random sublot from Lot 2 or higher for shear bond strength testing. Obtain full depth cores in accordance with <u>Tex-249-F</u>. Label the cores with the Control Section Job (CSJ), producer of the tack coat, mix type, shot rate, lot, and sublot number and provide to the Engineer. The Engineer will ship the cores to the Materials and Tests Division or district laboratory for shear bond strength testing. Results from these tests will not be used for specification compliance.
- 4.9.2.2.3. **Asphalt Binder Sampling**. Obtain a 1-qt. sample of the asphalt binder witnessed by the Engineer for each lot of mixture produced. The Contractor will notify the Engineer when the sampling will occur. Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill and upstream from the introduction of any additives in accordance with <u>Tex-500-C</u>, Part II. Label the can with the corresponding lot and sublot numbers, producer, producer facility location, grade, district, date sampled, and project information including highway and CSJ. The Engineer will retain these samples for one year. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder sample and upon request of the Contractor, the Engineer will split a sample of the asphalt binder with the Contractor.

At least once per project, the Engineer will collect split samples of each binder grade and source used. The Engineer will submit one split sample to MTD to verify compliance with Item 300, "Asphalts, Oils, and Emulsions" and will retain the other split sample for one year.

4.9.2.3. **Production Testing**. The Contractor and Engineer must perform production tests in accordance with Table 17. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances listed in Table 12 for all sublots.

Take immediate corrective action if the Engineer's laboratory-molded density on any sublot is less than 95.0% or greater than 97.0% to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

The Engineer may allow alternate methods for determining the asphalt binder content and aggregate gradation if the aggregate mineralogy is such that <u>Tex-236-F</u>, Part I does not yield reliable results. Provide evidence that results from <u>Tex-236-F</u>, Part I are not reliable before requesting permission to use an alternate method unless otherwise directed. Use the applicable test procedure as directed if an alternate test method is allowed.

Description	Test Method	Minimum Contractor Testing Frequency	Minimum Engineer Testing Frequency
Individual % retained for #8 sieve and larger Individual % retained for sieves smaller than #8 and larger than #200 % passing the #200 sieve	- <u>Tex-200-F</u> or <u>Tex-236-F</u>	1 per sublot	1 per 12 sublots ¹
Laboratory-molded density Laboratory-molded bulk specific gravity In-place air voids	<u>Tex-207-F</u>	N/A	1 per sublot ¹
VMA Segregation (density profile) Longitudinal joint density	<u>Tex-204-F</u> <u>Tex-207-F</u> , Part V <u>Tex-207-F</u> , Part VII	1 per sublot ²	1 per project
Moisture content Theoretical maximum specific (Rice) gravity Asphalt binder content	<u>Tex-212-F</u> , Part II <u>Tex-227-F</u> Tex-236-F	When directed N/A 1 per sublot	1 per sublot ¹ 1 per lot ¹
Hamburg Wheel test Recycled Asphalt Shingles (RAS) ³ Thermal profile	<u>Tex-242-F</u> <u>Tex-217-F</u> , Part III Tex-244-F	N/A N/A 1 per sublot ²	
Asphalt binder sampling and testing	Tex-500-C, Part II	1 per lot (sample only) ⁴	1 per project
Tack coat sampling and testing Boil test ⁵	<u>Tex-500-C</u> , Part III <u>Tex-530-C</u>	N/A 1 per lot	-
Shear Bond Strength Test ⁶	<u>Tex-249-F</u>	1 per project (sample only)	

Table 17 Production and Placement Testing Frequency

1. For production defined in Section 3077.4.9.4., "Exempt Production," the Engineer will test one per day if 100 tons or more are produced. For Exempt Production, no testing is required when less than 100 tons are produced.

2. To be performed in the presence of the Engineer, unless otherwise approved. Not required when a thermal imaging system is used.

3. Testing performed by the Materials and Tests Division or designated laboratory.

4. Obtain samples witnessed by the Engineer. The Engineer will retain these samples for one year.

5. The Engineer may reduce or waive the sampling and testing requirements based on a satisfactory test history.

6. Testing performed by the Materials and Tests Division or District for informational purposes only.

- 4.9.2.4. **Operational Tolerances**. Control the production process within the operational tolerances listed in Table 12. When production is suspended, the Engineer will allow production to resume when test results or other information indicates the next mixture produced will be within the operational tolerances.
- 4.9.2.4.1. **Gradation**. Suspend operation and take corrective action if any aggregate is retained on the maximum sieve size shown in Table 8. A sublot is defined as out of tolerance if either the Engineer's or the Contractor's test results are out of operational tolerance. Suspend production when test results for gradation exceed the operational tolerances in Table 12 for three consecutive sublots on the same sieve or four consecutive sublots on any sieve unless otherwise directed. The consecutive sublots may be from more than one lot.
- 4.9.2.4.2. **Asphalt Binder Content**. A sublot is defined as out of operational tolerance if either the Engineer's or the Contractor's test results exceed the values listed in Table 12. No production or placement payment

4.9.2.4.3. Voids in Mineral Aggregates (VMA). The Engineer will determine the VMA for every sublot. For sublots when the Engineer does not determine asphalt binder content, the Engineer will use the asphalt binder content results from QC testing performed by the Contractor to determine VMA.

Take immediate corrective action if the VMA value for any sublot is less than the minimum VMA requirement for production listed in Table 8. Suspend production and shipment of the mixture if the Engineer's VMA results on two consecutive sublots are below the minimum VMA requirement for production listed in Table 8. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that does not meet the minimum VMA requirement for production listed in Table 8 based on the Engineer's VMA determination.

Suspend production and shipment of the mixture if the Engineer's VMA result is more than 0.5% below the minimum VMA requirement for production listed in Table 8. In addition to suspending production, the Engineer may require removal and replacement or may allow the sublot to be left in place without payment.

4.9.2.4.4. **Hamburg Wheel Test**. The Engineer may perform a Hamburg Wheel test at any time during production, including when the boil test indicates a change in quality from the materials submitted for JMF1. In addition to testing production samples, the Engineer may obtain cores and perform Hamburg Wheel tests on any areas of the roadway where rutting is observed. Suspend production until further Hamburg Wheel tests meet the specified values when the production or core samples fail the Hamburg Wheel test criteria in Table 11. Core samples, if taken, will be obtained from the center of the finished mat or other areas excluding the vehicle wheel paths. The Engineer may require up to the entire sublot of any mixture failing the Hamburg Wheel test to be removed and replaced at the Contractor's expense.

If the Department's or Department approved laboratory's Hamburg Wheel test results in a "remove and replace" condition, the Contractor may request that the Department confirm the results by re-testing the failing material. The Materials and Tests Division will perform the Hamburg Wheel tests and determine the final disposition of the material in question based on the Department's test results.

4.9.2.5. Individual Loads of Hot-Mix. The Engineer can reject individual truckloads of hot-mix. When a load of hotmix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances shown in Table 12, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.3. Placement Acceptance.

- 4.9.3.1. **Placement Lot**. A placement lot consists of four placement sublots. A placement sublot consists of the area placed during a production sublot.
- 4.9.3.1.1. Lot 1 Placement. Placement payment adjustments greater than 1.000 for Lot 1 will be in accordance with Section 3077.6.2., "Placement Payment Adjustment Factors;" however, no placement adjustment less than 1.000 will be assessed for any sublot placed in Lot 1 when the in-place air voids are greater than or equal to 2.7% and less than or equal to 9.0%. Remove and replace any sublot with in-place air voids less than 2.7% or greater than 9.0%.
- 4.9.3.1.2. Incomplete Placement Lots. An incomplete placement lot consists of the area placed as described in Section 3077.4.9.2.1.1., "Incomplete Production Lot," excluding areas defined in Section 3077.4.9.3.1.4., "Miscellaneous Areas." Placement sampling is required if the random sample plan for production resulted in a sample being obtained from an incomplete production sublot.

- 4.9.3.1.3. **Shoulders, Ramps, Etc.** Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are subject to in-place air void determination and payment adjustments unless designated on the plans as not eligible for in-place air void determination. Intersections may be considered miscellaneous areas when determined by the Engineer.
- 4.9.3.1.4. **Miscellaneous Areas**. Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations, such as temporary detours, driveways, mailbox turnouts, crossovers, gores, spot level-up areas, and other similar areas. Temporary detours are subject to in-place air void determination when shown on the plans. Miscellaneous areas also include level-ups and thin overlays when the layer thickness specified on the plans is less than the minimum untrimmed core height eligible for testing shown in Table 14. The specified layer thickness is based on the rate of 110 lb./sq. yd. for each inch of pavement unless another rate is shown on the plans. When "level up" is listed as part of the item bid description code, a payment adjustment factor of 1.000 will be assigned for all placement sublots as described in Article3077.6, "Payment." Miscellaneous areas are not eligible for random placement sampling locations. Compact miscellaneous areas in accordance with Section 3077.4.8., "Compaction." Miscellaneous areas are not subject to in-place air void determination, thermal profiles testing, segregation (density profiles), or longitudinal joint density evaluations.
- 4.9.3.2. **Placement Sampling**. The Engineer will select random numbers for all placement sublots at the beginning of the project. The Engineer will provide the Contractor with the placement random numbers immediately after the sublot is completed. Mark the roadway location at the completion of each sublot and record the station number. Determine one random sample location for each placement sublot in accordance with <u>Tex-225-F</u>. Adjust the random sample location by no more than necessary to achieve a 2-ft. clearance if the location is within 2 ft. of a joint or pavement edge.

Shoulders, ramps, intersections, acceleration lanes, deceleration lanes, and turn lanes are always eligible for selection as a random sample location; however, if a random sample location falls on one of these areas and the area is designated on the plans as not subject to in-place air void determination, cores will not be taken for the sublot and a 1.000 pay factor will be assigned to that sublot.

Provide the equipment and means to obtain and trim roadway cores on-site. On-site is defined as in close proximity to where the cores are taken. Obtain the cores within one working day of the time the placement sublot is completed unless otherwise approved. Obtain two 6-in. diameter cores side-by-side from within 1 ft. of the random location provided for the placement sublot. For SP-C and SP-D mixtures, 4-in. diameter cores are allowed. Mark the cores for identification, measure and record the untrimmed core height, and provide the information to the Engineer. The Engineer will witness the coring operation and measurement of the core thickness. Visually inspect each core and verify that the current paving layer is bonded to the underlying layer. Take corrective action if an adequate bond does not exist between the current and underlying layer to ensure that an adequate bond will be achieved during subsequent placement operations.

Trim the cores immediately after obtaining the cores from the roadway in accordance with <u>Tex-251-F</u> if the core heights meet the minimum untrimmed value listed in Table 14. Trim the cores on-site in the presence of the Engineer. Use a permanent marker or paint pen to record the lot and sublot numbers on each core as well as the designation as Core A or B. The Engineer may require additional information to be marked on the core and may choose to sign or initial the core. The Engineer will take custody of the cores immediately after witnessing the trimming of the coresand will retain custody of the cores until the Department's testing is completed. Before turning the trimmed cores over to the Engineer, the Contractor may wrap the trimmed cores or secure them in a manner that will reduce the risk of possible damage occurring during transport by the Engineer. After testing, the Engineer will return the cores to the Contractor.

The Engineer may have the cores transported back to the Department's laboratory at the HMA plant via the Contractor's haul truck or other designated vehicle. In such cases where the cores will be out of the Engineer's possession during transport, the Engineer will use Department-provided security bags and the Roadway Core Custody protocol located at http://www.txdot.gov/business/specifications.htm to provide a secure means and process that protects the integrity of the cores during transport.

Decide whether to include the pair of cores in the air void determination for that sublot if the core height before trimming is less than the minimum untrimmed value shown in Table 14. Trim the cores as described above before delivering to the Engineer if electing to have the cores included in the air void determination. Deliver untrimmed cores to the Engineer and inform the Engineer of the decision to not have the cores included in air void determination if electing to not have the cores included in air void determination. The placement pay factor for the sublot will be 1.000 if cores will not be included in air void determination.

Instead of the Contractor trimming the cores on-site immediately after coring, the Engineer and the Contractor may mutually agree to have the trimming operations performed at an alternate location such as a field laboratory or other similar location. In such cases, the Engineer will take possession of the cores immediately after they are obtained from the roadway and will retain custody of the cores until testing is completed. Either the Department or Contractor representative may perform trimming of the cores. The Engineer will witness all trimming operations in cases where the Contractor representative performs the trimming operation.

Dry the core holes and tack the sides and bottom immediately after obtaining the cores. Fill the hole with the same type of mixture and properly compact the mixture. Repair core holes with other methods when approved.

- 4.9.3.3. **Placement Testing**. Perform placement tests in accordance with Table 17. After the Engineer returns the cores, the Contractor may test the cores to verify the Engineer's test results for in-place air voids. The allowable differences between the Contractor's and Engineer's test results are listed in Table 12.
- 4.9.3.3.1. **In-Place Air Voids**. The Engineer will measure in-place air voids in accordance with <u>Tex-207-F</u> and <u>Tex-227-F</u>. Before drying to a constant weight, cores may be pre-dried using a CoreDry or similar vacuum device to remove excess moisture. The Engineer will average the values obtained for all sublots in the production lot to determine the theoretical maximum specific gravity. The Engineer will use the average air void content for in-place air voids.

The Engineer will use the vacuum method to seal the core if required by <u>Tex-207-F</u>. The Engineer will use the test results from the unsealed core to determine the placement payment adjustment factor if the sealed core yields a higher specific gravity than the unsealed core. After determining the in-place air void content, the Engineer will return the cores and provide test results to the Contractor.

4.9.3.3.2. Segregation (Density Profile). Test for segregation using density profiles in accordance with <u>Tex-207-F</u>, Part V when using a thermal camera instead of the thermal imaging system. Density profiles are not required and are not applicable when using a thermal imaging system. Density profiles are not applicable in areas described in Section 3077.4.9.3.1.4., "Miscellaneous Areas."

Perform a minimum of one density profile per sublot. Perform additional density profiles when any of the following conditions occur, unless otherwise approved:

- the paver stops due to lack of material being delivered to the paving operations and the temperature of the uncompacted mat before the initial break down rolling is less than the temperatures shown in Table 18;
- areas that are identified by either the Contractor or the Engineer with thermal segregation;
- any visibly segregated areas that exist.

Minimum Uncompacted Mat Temperature Requiring a Segregation Profile				
High-Temperature	Minimum Temperature of the Uncompacted Mat			
Binder Grade ¹	Allowed Before Initial Break Down Rolling ^{2,3,4}			
PG 64	<250°F			
PG 70	<260°F			
PG 76	<270°F			

Table 18			
Minimum Uncompacted Mat Temperature Requiring a Segregation Profile			
High-Temperature	Minimum Temperature of the Uncompacted Mat		
Binder Grade ¹	Allowed Before Initial Break Down Rolling ^{2,3,4}		
DO 04			

 The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

- 2. Segregation profiles are required in areas with moderate and severe thermal segregation as described in Section 3077.4.7.3.1.3.
- 3. Minimum uncompacted mat temperature requiring a segregation profile may be reduced 10°F if using a chemical WMA additive as a compaction aid.
- 4. When using WMA, the minimum uncompacted mat temperature requiring a segregation profile is 215°F.

Provide the Engineer with the density profile of every sublot in the lot within one working day of the completion of each lot. Report the results of each density profile in accordance with Section 3077.4.2., "Reporting and Responsibilities."

The density profile is considered failing if it exceeds the tolerances in Table 19. No production or placement payment adjustments greater than 1.000 will be paid for any sublot that contains a failing density profile. When a hand-held thermal camera is used instead of a thermal imaging system, the Engineer will measure the density profile at least once per project. The Engineer's density profile results will be used when available. The Engineer may require the Contractor to remove and replace the area in question if the area fails the density profile and has surface irregularities as defined in Section 3077.4.9.3.3.5., "Irregularities." The sublot in question may receive a production and placement payment adjustment greater than 1.000, if applicable, when the defective material is successfully removed and replaced.

Investigate density profile failures and take corrective actions during production and placement to eliminate the segregation. Suspend production if two consecutive density profiles fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Segregation (Density Profile) Acceptance Criteria				
Mixture Type	Maximum Allowable Density Range (Highest to Lowest)	Maximum Allowable Density Range (Average to Lowest)		
SP-B	8.0 pcf	5.0 pcf		
SP-C & SP-D	6.0 pcf	3.0 pcf		

Table 19

4.9.3.3.3. Longitudinal Joint Density.

- 4.9.3.3.3.1. **Informational Tests**. Perform joint density evaluations while establishing the rolling pattern and verify that the joint density is no more than 3.0 pcf below the density taken at or near the center of the mat. Adjust the rolling pattern, if needed, to achieve the desired joint density. Perform additional joint density evaluations at least once per sublot unless otherwise directed.
- 4.9.3.3.3.2. Record Tests. Perform a joint density evaluation for each sublot at each pavement edge that is or will become a longitudinal joint. Joint density evaluations are not applicable in areas described in Section 3077.4.9.3.1.4., "Miscellaneous Areas." Determine the joint density in accordance with Tex-207-F, Part VII. Record the joint density information and submit results on Department forms to the Engineer. The evaluation is considered failing if the joint density is more than 3.0 pcf below the density taken at the core random sample location and the correlated joint density is less than 90.0%. The Engineer will make independent joint density verification at least once per project and may make independent joint density

verifications at the random sample locations. The Engineer's joint density test results will be used when available.

Provide the Engineer with the joint density of every sublot in the lot within one working day of the completion of each lot. Report the results of each joint density in accordance with Section 3077.4.2., "Reporting and Responsibilities."

Investigate joint density failures and take corrective actions during production and placement to improve the joint density. Suspend production if the evaluations on two consecutive sublots fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

- 4.9.3.3.4. **Recovered Asphalt Dynamic Shear Rheometer (DSR)**. The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Materials and Tests Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T 315 at the specified high temperature performance grade of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with <u>Tex-211-F</u>.
- 4.9.3.3.5. **Irregularities**. Identify and correct irregularities including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities. The Engineer may also require the Contractor to remove and replace (at the Contractor to remove and replace (at the Contractor's expense) areas where the mixture does not bond to the existing pavement.

If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than one day while the Contractor is taking appropriate corrective action.

4.9.4. **Exempt Production**. The Engineer may deem the mixture as exempt production for the following conditions:

- anticipated daily production is less than 500 tons;
- total production for the project is less than 5,000 tons;
- when mutually agreed between the Engineer and the Contractor; or
- when shown on the plans.

For exempt production, the Contractor is relieved of all production and placement QC/QA sampling and testing requirements, except for coring operations when required by the Engineer. The production and placement pay factors are 1.000 if the specification requirements listed below are met, all other specification requirements are met, and the Engineer performs acceptance tests for production and placement listed in Table 17 when 100 tons or more per day are produced:

- produce, haul, place, and compact the mixture in compliance with the specification and as directed;
- control mixture production to yield a laboratory-molded density that is within ±1.0% of the target laboratory-molded density as tested by the Engineer;
- compact the mixture in accordance with Section 3077.4.8., "Compaction"; and
- when a thermal imaging system is not used, the Engineer may perform segregation (density profiles) and thermal profiles in accordance with the specification.
- 4.9.5. **Ride Quality**. Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

- 5.1. **Superpave Mixtures.** Hot mix will be measured by the ton of composite hot-mix, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520, "Weighing and Measuring Equipment."
- 5.2. **Tack Coat.** Tack coat will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the calibrated distributor. The Engineer will witness all strapping operations for volume determination. All tack, including emulsions, will be measure by the gallon applied.

The Engineer may allow the use of a metering device to determine the asphalt volume used and application rate if the device is accurate within 1.5% of the strapped volume.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Article 3077.5.1, "Measurement," will be paid for at the unit bid price for "Superpave Mixtures" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Article 3077.5.2, "Measurement," will be paid for at the unit bid price for "Tack Coat" of the tack coat provided. These prices are full compensation for materials, placement, equipment, labor, tools, and incidentals. Payment adjustments will be applied as determined in this Item; however, a payment adjustment factor of 1.000 will be assigned for all placement sublots for "level ups" only when "level up" is listed as part of the item bid description code. A payment adjustment factor of 1.000 will be assigned to all production and placement sublots when "exempt" is listed as part of the item bid description code, and all testing requirements are met.

Payment for each sublot, including applicable payment adjustments greater than 1.000, will only be paid for sublots when the Contractor supplies the Engineer with the required documentation for production and placement QC/QA, thermal profiles, segregation density profiles, and longitudinal joint densities in accordance with Section 3077.4.2., "Reporting and Responsibilities." When a thermal imaging system is used, documentation is not required for thermal profiles or segregation density profiles on individual sublots; however, the thermal imaging system automated reports described in <u>Tex-244-F</u> are required.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585, "Ride Quality for Pavement Surfaces."

6.1. **Production Payment Adjustment Factors**. The production payment adjustment factor is based on the laboratory-molded density using the Engineer's test results. The bulk specific gravities of the samples from each sublot will be divided by the Engineer's maximum theoretical specific gravity for the sublot. The individual sample densities for the sublot will be averaged to determine the production payment adjustment factor in accordance with Table 20 for each sublot using the deviation from the target laboratory-molded density defined in Table 10. The production payment adjustment factor for completed lots will be the average of the payment adjustment factors for the four sublots sampled within that lot.

Production Payment Adjustment Factor (Target Laboratory-Molded Density) 1.075
4.075
1.075
1.075
1.066
1.057
1.047
1.038
1.029
1.019
1.010
1.000
0.900
0.800
0.700
Remove and replace

 Table 20

 Production Payment Adjustment Factors for Laboratory-Molded Density¹

 If the Engineer's laboratory-molded density on any sublot is less than 95.0% or greater than 97.0%, take immediate corrective action to bring the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

6.1.1. **Payment for Incomplete Production Lots**. Production payment adjustments for incomplete lots, described under Section 3077.4.9.2.1.1., "Incomplete Production Lots," will be calculated using the average production pay factors from all sublots sampled.

A production payment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any samples within the first sublot.

- 6.1.2. **Production Sublots Subject to Removal and Replacement**. If after referee testing, the laboratory-molded density for any sublot results in a "remove and replace" condition as listed in Table 20, the Engineer may require removal and replacement or may allow the sublot to be left in place without payment. The Engineer may also accept the sublot in accordance with Section 3077.5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.
- 6.2. **Placement Payment Adjustment Factors**. The placement payment adjustment factor is based on in-place air voids using the Engineer's test results. The bulk specific gravities of the cores from each sublot will be divided by the Engineer's average maximum theoretical specific gravity for the lot. The individual core densities for the sublot will be averaged to determine the placement payment adjustment factor in accordance with Table 21 for each sublot that requires in-place air void measurement. A placement payment adjustment factor of 1.000 will be assigned to the entire sublot when the random sample location falls in an area designated on the plans as not subject to in-place air void determination. A placement payment adjustment factor of 1.000 will be assigned to quantities placed in areas described in Section 3077.4.9.3.1.4., "Miscellaneous Areas." The placement payment adjustment factor for completed lots will be the average of the placement payment adjustment factors for up to four sublots within that lot.

Placer	Placement Payment Adjustment Factors for In-Place Air Voids				
In-Place	Placement Payment	In-Place	Placement Payment		
Air Voids	Adjustment Factor	Air Voids	Adjustment Factor		
< 2.7	Remove and Replace	5.9	1.048		
2.7	0.710	6.0	1.045		
2.8	0.740	6.1	1.042		
2.9	0.770	6.2	1.039		
3.0	0.800	6.3	1.036		
3.1	0.830	6.4	1.033		
3.2	0.860	6.5	1.030		
3.3	0.890	6.6	1.027		
3.4	0.920	6.7	1.024		
3.5	0.950	6.8	1.021		
3.6	0.980	6.9	1.018		
3.7	1.000	7.0	1.015		
3.8	1.015	7.1	1.012		
3.9	1.030	7.2	1.009		
4.0	1.045	7.3	1.006		
4.1	1.060	7.4	1.003		
4.2	1.075	7.5	1.000		
4.3	1.075	7.6	0.980		
4.4	1.075	7.7	0.960		
4.5	1.075	7.8	0.940		
4.6	1.075	7.9	0.920		
4.7	1.075	8.0	0.900		
4.8	1.075	8.1	0.880		
4.9	1.075	8.2	0.860		
5.0	1.075	8.3	0.840		
5.1	1.072	8.4	0.820		
5.2	1.069	8.5	0.800		
5.3	1.066	8.6	0.780		
5.4	1.063	8.7	0.760		
5.5	1.060	8.8	0.740		
5.6	1.057	8.9	0.720		
5.7	1.054	9.0	0.700		
5.8	1.051	> 9.0	Remove and Replace		

Table 21 Placement Payment Adiustment Factors for In-Place Air Voids

6.2.1. **Payment for Incomplete Placement Lots**. Payment adjustments for incomplete placement lots described under Section 3077.4.9.3.1.2., "Incomplete Placement Lots," will be calculated using the average of the placement pay factors from all sublots sampled and sublots where the random location falls in an area designated on the plans as not eligible for in-place air void determination.

If the random sampling plan results in production samples, but not in placement samples, the random core location and placement adjustment factor for the sublot will be determined by applying the placement random number to the length of the sublot placed.

If the random sampling plan results in placement samples, but not in production samples, no placement adjustment factor will apply for that sublot placed.

A placement payment adjustment factor of 1.000 will be assigned to any lot when the random sampling plan did not result in collection of any production samples.

6.2.2. **Placement Sublots Subject to Removal and Replacement**. If after referee testing, the placement payment adjustment factor for any sublot results in a "remove and replace" condition as listed in Table 21, the Engineer will choose the location of two cores to be taken within 3 ft. of the original failing core location. The Contractor will obtain the cores in the presence of the Engineer. The Engineer will take immediate possession of the untrimmed cores and submit the untrimmed cores to the Materials and Tests Division,

3077

The bulk specific gravity of the cores from each sublot will be divided by the Engineer's average maximum theoretical specific gravity for the lot. The individual core densities for the sublot will be averaged to determine the new payment adjustment factor of the sublot in question. If the new payment adjustment factor is 0.700 or greater, the new payment adjustment factor will apply to that sublot. If the new payment adjustment factor is 0.700, no payment will be made for the sublot. Remove and replace the failing sublot, or the Engineer may allow the sublot to be left in place without payment. The Engineer may also accept the sublot in accordance with Section 3077.5.3.1., "Acceptance of Defective or Unauthorized Work." Replacement material meeting the requirements of this Item will be paid for in accordance with this Section.

6.3. **Total Adjusted Pay Calculation**. Total adjusted pay (TAP) will be based on the applicable payment adjustment factors for production and placement for each lot.

TAP = (A+B)/2

where:

A = Bid price × production lot quantity × average payment adjustment factor for the production lot
 B = Bid price × placement lot quantity × average payment adjustment factor for the placement lot + (bid price × quantity placed in miscellaneous areas × 1.000)

Production lot quantity = Quantity actually placed - quantity left in place without payment

Placement lot quantity = Quantity actually placed - quantity left in place without payment - quantity placed in miscellaneous areas

Special Specification 3079 Permeable Friction Course

1. DESCRIPTION

Construct a hot-mix asphalt (HMA) surface course composed of a compacted permeable mixture of aggregate, asphalt binder, and additives mixed hot in a mixing plant.

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met when the Contractor makes a source or formulation change, and may require a new laboratory mixture design, trial batch, or both. The Engineer may sample and test project materials at any time during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. Aggregate. Furnish aggregates from sources that conform to the requirements in accordance with Table 1 and as specified in this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse aggregate. Do not use intermediate or fine aggregate in permeable friction course (PFC) mixtures. Supply aggregates that meet the definitions in <u>Tex-100-E</u> for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests in accordance with Table 1. Document all test results on the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis given in <u>Tex-200-F</u>, Part II.
- 2.1.1. **Coarse Aggregate.** Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for hot-mix listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in hot-mix asphalt.

For sources not listed on the Department's BRSQC:

- build an individual stockpile for each material;
- request the Department test the stockpile for specification compliance;
- approved only when tested by the Engineer;
- once approved, do not add material to the stockpile unless otherwise approved; and
- allow 30 calendar days for the Engineer to sample, test, and report results.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements only apply to aggregates used on the surface of travel lanes, unless otherwise shown on the plans. SAC requirements apply to aggregates used on surfaces other than travel lanes when shown on the plans. The SAC for sources on the Department's *Aggregate Quality Monitoring Program* (AQMP) (<u>Tex-499-A</u>) is listed in the BRSQC.

2.1.1.1. Blending Class A and Class B Aggregates. To prevent crushing of the Class B aggregate when blending, Class B aggregate may be blended with a Class A aggregate to meet requirements for Class A materials if the Department's BRSQC rated source soundness magnesium (RSSM) rating for the Class B aggregate is less than the Class A aggregate or if the RSSM rating for the Class B aggregate is less than or equal to 10%. Use the rated values for hot mix asphaltic concrete (HMAC) published in the BRSQC. When blending Class A and B aggregates to meet a Class A requirement, ensure that at least 50% by weight, or volume if required, of all the aggregates used in the mixture design retained on the No. 4 sieve comes from the Class A aggregate source, unless otherwise shown on the plans. Blend by volume if the bulk specific gravities of the Class A and B aggregates differ by more than 0.300. Class B aggregate may be disallowed when shown on the plans.

> The Engineer may perform tests at any time during production, when the Contractor blends Class A and B aggregates to meet a Class A requirement, to ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks using the gradations supplied by the Contractor on the mixture design report as an input for the template; however, a failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.1.2. Micro-Deval Abrasion. The Engineer will perform a minimum of one Micro-Deval abrasion test in accordance with Tex-461-A for each coarse aggregate source used in the mixture design that has a Rated Source Soundness Magnesium (RSSM) loss value greater than 10 as listed in the BRSQC, unless otherwise directed. The Engineer will perform testing before the start of production and may perform additional testing at any time during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

> The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula:

Mgest. = (RSSM)(MDact/RSMD)

where:

*Mg*_{est} = magnesium sulfate soundness loss RSSM = Rated Source Soundness Magnesium *MD_{act}* = actual Micro-Deval percent loss RSMD = Rated Source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Soils and Aggregates Section of the Materials and Tests Division, and additional testing may be required before granting approval.

Coarse Aggregate Quality Requirements					
nt					
e plans					
•					

Table 1

1. Used to estimate the magnesium sulfate soundness loss in accordance with Section 3079.2.1.1.2., "Micro-Deval Abrasion."

2 - 19

Only applies to crushed gravel.

- 2.2. **Baghouse Fines.** Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.
- 2.3. **Asphalt Binder.** Furnish the type and grade of binder specified on the plans that meets the requirements of Item 300, "Asphalts, Oils, and Emulsions."
- 2.3.1. **Performance-Graded (PG) Binder.** Provide an asphalt binder with a high-temperature grade of PG 76 and low-temperature grade as shown on the plans in accordance with Section 300.2.10., "Performance-Graded Binders," when PG binder is specified.
- 2.3.2. Asphalt-Rubber (A-R) Binder. Provide A-R binder that meets the Type I or Type II requirements of Section 300.2.9., "Asphalt-Rubber Binders," when A-R is specified unless otherwise shown on the plans. Use at least 15.0% by weight of Crumb Rubber Modifier (CRM) that meets the Grade B or Grade C requirements of Section 300.2.7., "Crumb Rubber Modifier," unless otherwise shown on the plans. Provide the Engineer the A-R binder blend design with the mix design (JMF1) submittal. Provide the Engineer with documentation such as the bill of lading showing the quantity of CRM used in the project unless otherwise directed.
- 2.4. **Tack Coat.** Furnish CSS-1H, SS-1H, EBL, or a PG binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300, "Asphalts, Oils, and Emulsions." Specialized tack coat materials listed on the Department's Tracking Resistant Asphalt Interlayer (TRAIL) MPL may be allowed or required when shown on the plans. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use.
- 2.5. **Additives.** Provide the Engineer with documentation such as the bill of lading showing the quantity of additives used in the project unless otherwise directed.
- 2.5.1. **Fibers.** Provide cellulose or mineral fibers when PG binder is specified. Do not use fibers when A-R binder is specified. Submit written certification to the Engineer that the fibers proposed for use meet the requirements of DMS-9204, "Fiber Additives for Bituminous Mixtures." Fibers may be pre-blended into the binder at the asphalt supply terminal unless otherwise shown on the plans.
- 2.5.2. Lime Mineral Filler. Add lime as mineral filler at a rate of 1.0% by weight of the total dry aggregate in accordance with Item 301, "Asphalt Antistripping Agents," unless otherwise shown on the plans or waived by the Engineer based on Hamburg Wheel test results. Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.
- 2.5.3. Lime and Liquid Antistripping Agent. When lime or a liquid antistripping agent is used, add in accordance with Item 301, "Asphalt Antistripping Agents." Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum. When the plans require lime to be added as an antistripping agent, lime added as mineral filler will count towards the total quantity of lime specified.
- 2.5.4. **Compaction Aid.** Compaction aid is defined as a Department-approved chemical warm mix additive denoted as "chemical additive" on the Department's materials producer list (MPL) that is used to facilitate mixing and compaction of HMA.

Compaction aid is allowed for use on all projects. Compaction aid is required when shown on the plans or as required in Section 3079.4.7.1., "Weather Conditions."

Warm mix foaming processes, denoted as "foaming process" on the Department-approved MPL, may be used to facilitate mixing and compaction of HMA; however warm mix foaming processes are not defined as a Compaction aid.

2.6. Recycled Materials. Recycled materials are not allowed for use.

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement." When A-R binder is specified, equip the hot-mix plant with an in-line viscosity-measuring device located between the blending unit and the mixing drum. Provide a means to calibrate the asphalt mass flow meter on-site when a meter is used.

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required by the specification, Contractors may perform other QC tests as deemed necessary. At any time during the project, the Engineer may perform production and placement tests as deemed necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1. **Certification.** Personnel certified by the Department-approved hot-mix asphalt certification program must conduct all mixture designs, sampling, and testing in accordance with Table 2. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2 certified specialist. Provide Level 1A certified specialists at the plant during production operations. Provide Level 1B certified specialists to conduct placement tests. Provide Level AGG101 certified specialists for aggregate testing.

Test Methods, Test Responsibility, and Minimum Certification Levels							
Test Description	Test Method	Contractor	Engineer	Level ¹			
1. Aggregate Testing							
Sampling	Tex-221-F	✓	\checkmark	1A/AGG101			
Dry sieve	Tex-200-F, Part I	✓	\checkmark	1A/AGG101			
Washed sieve	Tex-200-F, Part II	✓	\checkmark	1A/AGG101			
Deleterious material	Tex-217-F, Parts I & III	✓	✓	AGG101			
Decantation	Tex-217-F, Part II	✓	✓	AGG101			
Los Angeles abrasion	<u>Tex-410-A</u>		✓	Department			
Magnesium sulfate soundness	Tex-411-A		✓	Department			
Micro-Deval abrasion	Tex-461-A		✓	AGG101			
Crushed face count	Tex-460-A	✓	✓	AGG101			
Flat and elongated particles	Tex-280-F	✓	✓	AGG101			
	2. Asphalt Binder & Tack	Coat Sampli	ng				
Asphalt binder sampling	Tex-500-C, Part II	 ✓ 	✓	1A/1B			
Tack coat sampling	Tex-500-C, Part III	✓	✓	1A/1B			
	3. Mix Design & Ve	erification					
Design and JMF changes	Tex-204-F	\checkmark	\checkmark	2			
Mixing	Tex-205-F	✓	✓	2			
Molding (SGC)	Tex-241-F	✓	✓	1A			
Laboratory-molded density	Tex-207-F, Parts I, VI, & VIII	\checkmark	\checkmark	1A			
Rice gravity	Tex-227-F, Part II	✓	✓	1A			
Ignition oven correction factors ²	Tex-236-F, Part II	✓	✓	2			
Drain-down	Tex-235-F	✓	✓	1A			
Hamburg Wheel test	Tex-242-F	✓	\checkmark	1A			
Boil test ⁴	Tex-530-C	✓	✓	1A			
Cantabro loss	Tex-245-F	✓	\checkmark	1A			
	4. Production T	esting					
Control charts	Tex-233-F	\checkmark	✓	1A			
Mixture sampling	Tex-222-F	✓	✓	1A/1B			
Gradation & asphalt binder content ²	<u>Tex-236-F</u> , Part I	✓	✓	1A			
Moisture content	Tex-212-F, Part II	✓	\checkmark	1A/AGG101			
Micro-Deval abrasion	Tex-461-A		✓	AGG101			
Drain-down	Tex-235-F	✓	✓	1A			
Boil test ⁴	Tex-530-C	✓	✓	1A			
Abson recovery	Tex-211-F		✓	Department			
5. Placement Testing							
Control charts	Tex-233-F	✓ ✓	✓	1A			
Ride quality measurement	Tex-1001-S	✓	✓	Note 3			
Thermal profile	Tex-244-F	✓	✓	1B			
Water flow test	Tex-246-F	✓	✓	1B			
Shear bond strength test	Tex-249-F		✓	Department			
1. Level 1A, 1B, AGG101, and 2		d by the Hot M	ix Asphalt Cente				

Table 2 st Methods. Test Responsibility, and Minimum Certification Lev

1. Level 1A, 1B, AGG101, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program.

2. Refer to Section 3079.4.9.2.3., "Production Testing," for exceptions to using an ignition oven.

3. Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when Surface Test Type B is specified.

4. When shown on the plans.

Reporting and Responsibilities. Use Department-provided templates to record and calculate all test data, including mixture design, production and placement tests, control charts, and thermal profiles. Obtain the current version of the templates at https://www.txdot.gov/inside-txdot/forms-publications/consultants-contractors/forms/site-manager.html or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The maximum allowable time for the Contractor and Engineer to exchange test data is given in Table 3. The Engineer and the Contractor will immediately report to the other party any test result that requires suspension of production or placement or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department-provided templates.

Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Article 5.3., "Conformity with Plans, Specifications, and Special Provisions."

	Reporting S	chedule		
Description	Reported By	Reported To	To Be Reported Within	
	Production Qua	lity Control		
Gradation ¹				
Asphalt binder content ¹				
Laboratory-molded density ¹		_	1 working day of completion of the sublot	
Moisture content ²	Contractor	Engineer		
Drain-down ¹				
Boil test ⁴				
	Production Quali	ty Assurance		
Gradation ²		Contractor		
Asphalt binder content ²			1 working day of completion of	
Laboratory-molded density ²				
Hamburg Wheel test ³	Engineer		1 working day of completion of the sublot	
Boil test ⁴				
Drain-down ²				
Binder tests ³				
	Placement Qua	lity Control		
Thermal profile ¹	Contractor	Engineer	1 working day of completion of	
Water flow ¹	Contractor	Engineer	the lot	
	Placement Qualit	y Assurance		
Thermal profile ²			1 working day of completion of	
Aging ratio ³	Engineer	Contractor	1 working day of completion of the lot	
Water flow ²			the lot	

Table 3

1. These tests are required on every sublot.

2. To be performed at the frequency in accordance with Table 9 or as shown on the plans.

3. To be reported as soon as the results become available.

4. When shown on the plans

Use the procedures described in <u>Tex-233-F</u> to plot the results of all production and placement testing, when directed. Update the control charts as soon as test results for each sublot become available. Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

4.3. Quality Control Plan (QCP). Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

Submit a written QCP before the mandatory pre-paving meeting when directed. Receive approval of the QCP before pre-paving meeting. Include the following items in the QCP:

4.3.1. **Project Personnel.** For project personnel, include:

a list of individuals responsible for QC with authority to take corrective action;

6 - 19

• current contact information for each individual listed; and

current copies of certification documents for individuals performing specified QC functions.

4.3.2. Material Delivery and Storage. For material delivery and storage, include:

- the sequence of material processing, delivery, and minimum quantities to assure continuous plant operations;
- aggregate stockpiling procedures to avoid contamination and segregation;
- frequency, type, and timing of aggregate stockpile testing to assure conformance of material requirements before mixture production; and
- procedure for monitoring the quality and variability of asphalt binder.

4.3.3. **Production.** For production, include:

- loader operation procedures to avoid contamination in cold bins;
- procedures for calibrating and controlling cold feeds;
- procedures to eliminate debris or oversized material;
- procedures for adding and verifying rates of each applicable mixture component (e.g., aggregate, asphalt binder, lime, liquid antistrip, compaction aid, foaming process, fibers);
- procedures for reporting job control test results; and
- procedures to avoid segregation and drain-down in the silo.

4.3.4. **Loading and Transporting.** For loading and transporting, include:

- type and application method for release agents; and
- truck loading procedures to avoid segregation.

4.3.5. Placement and Compaction. For placement and compaction, include:

- proposed agenda for mandatory pre-paving meeting, including date and location;
- proposed paving plan (e.g., production rate, paving widths, joint offsets, and lift thicknesses);
- type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils;
- procedures for the transfer of mixture into the paver, while avoiding physical and thermal segregation and preventing material spillage;
- process to balance production, delivery, paving, and compaction to achieve continuous placement operations and good ride quality;
- paver operations (e.g., speed, operation of wings, height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and
- procedures to construct quality longitudinal and transverse joints.

4.4. Mixture Design.

4.4.1. **Design Requirements.** Use the PFC design procedure provided in <u>Tex-204-F</u>, unless otherwise shown on the plans. Design the mixture to meet the requirements in accordance with Tables 1, 4, 5, and 6. Use a Superpave Gyratory Compactor (SGC) at 50 gyrations as the design number of gyrations (Ndesign).

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design at any time during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor can begin production.

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report:

- the combined aggregate gradation, source, specific gravity, and percent of each material used;
- results of all applicable tests;
- the mixing and molding temperatures;
- the signature of the Level 2 person or persons that performed the design;

- the date the mixture design was performed; and
- a unique identification number for the mixture design.

	Master Gradation L	imits (% Passir.	ng by Weight or	Volume)		
	PG 76 M	PG 76 Mixtures		A-R Mixtures		
Sieve Size	Fine (PFC-F)	Coarse (PFC-C)	Fine (PFCR-F)	Coarse (PFCR-C)	Test Procedure	
3/4"	_	100.0 ¹	100.0 ¹	100.0 ¹		
1/2"	100.0 ¹	80.0-100.0	95.0-100.0	80.0–100.0		
3/8"	95.0-100.0	35.0-60.0	50.0-80.0	35.0-60.0	Tox 200 E	
#4	20.0-55.0	1.0-20.0	0.0-8.0	0.0-20.0	<u>Tex-200-F</u>	
#8	1.0-10.0	1.0-10.0	0.0-4.0	0.0-10.0		
#200	1.0-4.0	1.0-4.0	0.0-4.0	0.0-4.0		

Table 4 ster Gradation Limits (% Passing by Weight or V

1. Defined as maximum sieve size. No tolerance allowed.

Mixture Design Properties					
	PG 76 Mixtures		A-R Mixtures		
Mix Property	Fine (PFC-F) Requirements	Coarse (PFC-C) Requirements	Fine (PFCR-F) Requirements	Coarse (PFCR-C) Requirements	Test Procedure
Design gyrations (Ndesign)	50	50	50	50	<u>Tex-241-F</u>
Lab-molded density, %	78.0 Max	82.0 Max	82.0 Max	82.0 Max	<u>Tex-207-F</u>
Asphalt Binder Content, %	6.0–7.0	6.0–7.0	8.0–10.0	7.0–9.0	
Hamburg Wheel test, ¹ passes at 12.5 mm rut depth	10,000 Min ²	Note 3	Note 3	Note 3	<u>Tex-242-F</u>
Drain-down, %	0.10 Max	0.10 Max	0.10 Max	0.10 Max	<u>Tex-235-F</u>
Fiber content, % by wt. of total PG 76 mixture	0.20–0.50	0.20–0.50	-	-	Calculated
Lime content, % by wt. of total aggregate	1.0 ⁴	1.04	_	-	Calculated
CRM content, % by wt. of A-R binder	_	-	15.0 Min	15.0 Min	Calculated
Boil test ⁵	-	-	-	-	<u>Tex-530-C</u>
Cantabro loss, %	20.0 Max	20.0 Max	20.0 Max	20.0 Max	<u>Tex-245-F</u>

	Table	5	
Mixture	Design	Pro	pertie

1. Mold test specimens to Ndesign at the optimum asphalt binder content.

2. May be decreased when shown on the plans.

3. No specification value is required unless otherwise shown on the plans.

4. Unless otherwise shown on the plans or waived by the Engineer based on Hamburg Wheel results.

- 5. When shown on the plans. Used to establish baseline for comparison to production results.
- 4.4.2. **Job-Mix Formula Approval.** The job-mix formula (JMF) is the combined aggregate gradation, Ndesign level, and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch. When a compaction aid or foaming process is used, JMF1 may be designed and submitted to the Engineer without including the compaction aid or foaming process. When a compaction aid or foaming process is used, document the compaction aid or foaming process used and recommended rate on the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The Department may require the Contractor to reimburse the Department for verification tests if more than two trial batches per design are required.

4.4.2.1. Contractor's Responsibilities.

3079

- 4.4.2.1.1. **Providing Gyratory Compactor.** Furnish an SGC calibrated in accordance with <u>Tex-241-F</u> for molding production samples. Locate the SGC at the Engineer's field laboratory or make the SGC available to the Engineer for use in molding production samples.
- 4.4.2.1.2. **Gyratory Compactor Correlation Factors.** Use <u>Tex-206-F</u>, Part II, to perform a gyratory compactor correlation when the Engineer uses a different SGC. Apply the correlation factor to all subsequent production test results.
- 4.4.2.1.3. **Submitting JMF1.** Furnish a mix design report (JMF1) with representative samples of all component materials and request approval to produce the trial batch. Provide an additional 25 lb. of the design mixture if opting to have the Department perform the Hamburg Wheel test on the laboratory mixture when required in accordance with Table 5, and request that the Department perform the test.
- 4.4.2.1.4. **Supplying Aggregates.** Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.
- 4.4.2.1.5. **Supplying Asphalt.** Provide at least 1 gal. of the asphalt material and enough quantities of any additives proposed for use.
- 4.4.2.1.6. **Ignition Oven Correction Factors.** Determine the aggregate and asphalt correction factors from the ignition oven in accordance with <u>Tex-236-F</u>, Part II. Provide correction factors that are not more than 12 mo. old. Note that the asphalt content correction factor takes into account the percent fibers in the mixture so that the fibers are excluded from the binder content determination. Provide the Engineer with split samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for quality assurance (QA) testing during production. Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used and the correction factors are not more than 12 mo. old, unless otherwise directed.
- 4.4.2.1.7. **Boil Test.** When shown on the plans, perform the test and retain the tested sample from <u>Tex-530-C</u> until completion of the project or as directed. Use this sample for comparison purposes during production. Add lime or liquid antistripping agent, as directed, if signs of stripping exist.
- 4.4.2.1.8. **Trial Batch Production.** Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch including the compaction aid or foaming process, if applicable, for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements in accordance with Table 6. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.
- 4.4.2.1.9. **Trial Batch Production Equipment.** Use only equipment and materials proposed for use on the project to produce the trial batch. Provide documentation to verify the calibration or accuracy of the asphalt mass flow meter to measure the binder content. Verify that asphalt mass flow meter meets the requirements of 0.4% accuracy, when required, in accordance with Item 520, "Weighing and Measuring Equipment." The Engineer may require that the accuracy of the mass flow meter be verified based on quantities used.
- 4.4.2.1.10. **Trial Batch Quantity.** Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.
- 4.4.2.1.11. **Number of Trial Batches.** Produce trial batches as necessary to obtain a mixture that meets the specification requirements.
- 4.4.2.1.12. **Trial Batch Sampling.** Obtain a representative sample of the trial batch and split it into three equal portions in accordance with <u>Tex-222-F</u>. Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.
- 4.4.2.1.13. **Trial Batch Testing.** Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements in accordance with Table 6. Ensure the trial batch mixture is also in compliance with the requirements in accordance with Table 5. Use a Department-approved laboratory listed on the MPL to perform

the Hamburg Wheel test on the trial batch mixture or request that the Department perform the Hamburg Wheel test. Provide an additional 25 lb. of the trial batch mixture if opting to have the Department perform the Hamburg Wheel test, if applicable, and request that the Department perform the test. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.

- 4.4.2.1.14. **Development of JMF2.** Evaluate the trial batch test results, determine the target mixture proportions, and submit as JMF2 after the Engineer grants full approval of JMF1 based on results from the trial batch. The mixture produced using JMF2 must meet the requirements in accordance with Tables 4 and 5. Verify that JMF2 meets the operational tolerances in accordance with Table 6.
- 4.4.2.1.15. Mixture Production. Use JMF2 to produce Lot 1 after receiving approval for JMF2.
- 4.4.2.1.16. **Development of JMF3.** Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.
- 4.4.2.1.17. **JMF Adjustments.** If JMF adjustments are necessary to achieve the specified requirements, make the adjustments before beginning a new lot. The adjusted JMF must:
 - be provided to the Engineer in writing before the start of a new lot;
 - be numbered in sequence to the previous JMF;
 - meet the master gradation limits in accordance with Table 4; and
 - be within the operational tolerances of JMF2 in accordance with Table 6.
- 4.4.2.1.18. **Requesting Referee Testing.** Use referee testing, if needed, in accordance with Section 3079.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Operational Tolerances				
Test Description	Test Method	Allowable Difference between JMF2 and JMF1 Target ¹	Allowable Difference from Current JMF and JMF2 ²	Allowable Difference between Contractor and Engineer ³
Individual % retained for sieve sized larger than #200	Tex-200-F	Must be Within Master Grading Limits in	±3.04	±5.0 ⁴
% passing the #200 sieve		accordance with Table 4		±2.04
Laboratory-molded density, %	<u>Tex-207-F</u> , Part VIII	±1.0	±1.0	±1.0
Asphalt binder content, %	<u>Tex-236-F</u> , Part I⁵	±0.3 ^{6,7}	±0.3 ^{4,6,7}	±0.3 ^{6,7}
Drain-down, %	<u>Tex-235-F</u>	Note 8	Note 8	N/A
Boil test	<u>Tex-530-C</u>	Note 9	Note 9	N/A

Table 6

 JMF1 is the approved laboratory mixture design used for producing the trial batch. JMF2 is the approved mixture design developed from the trial batch used to produce Lot 1.

Current JMF is JMF3 or higher. JMF3 is the approved mixture design used to produce Lot 2.

Contractor may request referee testing only when values exceed these tolerances.

- 4. Only applies to mixture produced for Lot 1 and higher. Aggregate gradation is not allowed to be outside the limits shown in Table 4.
- 5. Ensure the binder content determination excludes fibers.
- 6. May be obtained from asphalt mass flow meter readouts as determined by the Engineer.
- 7. Binder content is not allowed to be outside the limits in accordance with Table 5.
- 8. Verify that Table 5 requirements are met.
- 9. When shown on the plans.

4.4.2.2. Engineer's Responsibilities.

4.4.2.2.1. **Superpave Gyratory Compactor.** The Engineer will use a Department SGC calibrated in accordance with <u>Tex-241-F</u> to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the

field laboratory or provide and use a Department SGC at an alternate location.

4.4.2.2.2. Conditional Approval of JMF1 and Authorizing Trial Batch. The Engineer will review and verify conformance of the following information within two working days of receipt:

- the Contractor's mix design report (JMF1);
- the Contractor-provided Hamburg Wheel test results;
- all required materials including aggregates, asphalt, and additives; and
- the mixture specifications.

The Engineer will grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg Wheel test with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on the test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with Section 3079.2.1.1.2., "Micro-Deval Abrasion." If the Engineer's test results are pending after two working days, conditional approval of JMF1 will still be granted within two working days of receiving JMF1. When the Engineer's test results become available, they will be used for specification compliance.

The Contractor is authorized to produce a trial batch after the Engineer grants conditional approval of JMF1.

- 4.4.2.2.3. **Hamburg Wheel Testing.** At the Contractor's request, the Department will perform the Hamburg Wheel test on the laboratory mixture in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg Wheel test requirement in accordance with Table 5. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel test results on the laboratory mixture design.
- 4.4.2.2.4. **Ignition Oven Correction Factors.** The Engineer will use the split samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven used for QA testing during production in accordance with <u>Tex-236-F</u>, Part II. Provide correction factors that are not more than 12 mo. old. The Engineer will verify that the asphalt content correction factor takes into account the percent fibers in the mixture so that the fibers are excluded from the binder content determination.
- 4.4.2.2.5. **Testing the Trial Batch.** Within one full working day, the Engineer will sample and test the trial batch to ensure that the mixture meets the requirements in accordance with Table 6. If the Contractor requests the option to have the Department perform the Hamburg Wheel test on the trial batch mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg Wheel test requirement in accordance with Table 5.

The Engineer will have the option to perform <u>Tex-530-C</u> on the trial batch when shown on the plans. These results may be retained and used for comparison purposes during production.

4.4.2.2.6. **Full Approval of JMF1.** The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements in accordance with Table 5.

The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.

4.4.2.2.7. **Approval of JMF2.** The Engineer will approve JMF2 within one working day if the mixture meets the requirements in accordance with Tables 4, 5, and 6.

- 4.4.2.2.8. **Approval of Lot 1 Production.** The Engineer will authorize the Contractor to proceed with Lot 1 production (using JMF2).
- 4.4.2.2.9. **Approval of JMF3 and Subsequent JMF Changes.** JMF3 and subsequent JMF changes are approved if they meet the master grading limits in accordance with Table 4, the asphalt binder content in accordance with Table 5, and are within the operational tolerances of JMF2 in accordance with Table 6.
- 4.4.2.2.10. **Binder Content Adjustments.** For JMF2 and above, the Engineer may require the Contractor to adjust the target binder content by no more than 0.3% from the current JMF.
- 4.5. **Production Operations.** Perform a new trial batch when the plant or plant location is changed. Take corrective action and receive approval to proceed after any production suspension for noncompliance to the specification.
- 4.5.1. **Storage and Heating of Materials.** Do not heat the asphalt binder above the temperatures specified in Item 300, "Asphalts, Oils, and Emulsions," or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and hot-mix asphalt discharge temperatures (in legible and discernible increments) in accordance with Item 320, "Equipment for Asphalt Concrete Pavement," unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.
- 4.5.2. **Mixing and Discharge of Materials.** Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed the maximum production temperatures in accordance with Table 7. The Department will not pay for or allow placement of any mixture produced above the maximum production temperatures in accordance with Table 7.

Maximum Production Temperature
345°F
345°F

Table 7 Maximum Production Temperature

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with <u>Tex-212-F</u>, Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck and perform the test promptly.

4.6. **Hauling Operations.** Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent, when necessary, shown on the Department's MPL to coat the inside bed of the truck. Do not use diesel or any release agent not shown on the Department's MPL.

Use equipment for hauling as defined in Section 3079.4.7.3.3., "Hauling Equipment." Use other hauling equipment only when allowed.

4.7. **Placement Operations.** Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour or as directed. Use a hand-held thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture as discharged from the truck or Material Transfer Device (MTD) before or as the mix enters the paver and an approximate station number or GPS coordinates on each ticket. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from

3079

pavement edges. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot-mix by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide within 6-in. of lane lines and are not placed in the wheel path, or as directed. Ensure that all finished surfaces will drain properly.

4.7.1. Weather Conditions.

4.7.1.1. When Using a Thermal Imaging System. The Contractor may pave any time the roadway is dry and the roadway surface temperature is at least 60°F unless otherwise approved or as shown on the plans; however, the Engineer may restrict the Contractor from paving if the ambient temperature is likely to drop below 32°F within 12 hr. of paving. Place mixtures when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 3079.4.7.3.1.2., "Thermal Imaging System."

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.1.1.1 When Not Using a Thermal Imaging System. When using a thermal camera instead of the thermal imaging system, place mixture when the roadway surface temperature is at or above 70°F unless otherwise approved or as shown on the plans. Measure the roadway surface temperature with a hand-held thermal camera or infrared thermometer. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. The Engineer may restrict the Contractor from paving if the air temperature is 60°F and falling.

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.2. Tack Coat.

- 4.7.2.1. **Application.** Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 and 0.10 gal. of residual asphalt per square yard of surface area. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply adequate overlap of the tack coat in the longitudinal direction during the placement of the mat to ensure bond of adjacent PFC mats, unless otherwise directed. Unless otherwise directed, avoid tacking the vertical faces of adjacent PFC mats in the longitudinal direction to avoid restricting lateral drainage. Apply tack coat to all transverse joints. Allow adequate time for emulsion to break completely before placing any material. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use.
- 4.7.2.2. **Sampling.** The Engineer will obtain at least one sample of the tack coat binder per project in accordance with <u>Tex-500-C</u>, Part III, and test it to verify compliance with Item 300, "Asphalts, Oils, and Emulsions." The Engineer will notify the Contractor when the sampling will occur and will witness the collection of the sample from the asphalt distributor immediately before use. Label the can with the corresponding lot and sublot numbers, producer, producer facility, grade, district, date sampled, and project information including highway and CSJ. For emulsions, the Engineer may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in Item 300, "Asphalts, Oils, and Emulsions."
- 4.7.3. **Lay-Down Operations.** Use the placement temperature in accordance with Table 8 to establish the minimum placement temperature of the mixture delivered to the paving operation.

 Table 8

 Minimum Mixture Placement Temperature

High-Temperature Binder Grade ¹	Minimum Placement Temperature (Before Entering Paving Operation) ^{2,3}
PG 76	280°F
A-R Binder	280°F

- 1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.
- 2. The mixture temperature must be measured using a hand-held thermal camera or infrared thermometer nearest to the point of entry of the paving operation.
- 3. Minimum placement temperatures may be reduced 10°F if using a compaction aid.
- 4.7.3.1. **Thermal Profile.** Use a hand-held thermal camera or a thermal imaging system to obtain a continuous thermal profile in accordance with <u>Tex-244-F</u>. Thermal profiles are not applicable in areas described in Section 3079.4.9.3.2., "Miscellaneous Areas."

4.7.3.1.1. Thermal Segregation.

- 4.7.3.1.1.1. Moderate. Any areas that have a temperature differential greater than 25°F, but not exceeding 50°F.
- 4.7.3.1.1.2. **Severe.** Any areas that have a temperature differential greater than 50°F.
- 4.7.3.1.2. **Thermal Imaging System.** Review the output results when a thermal imaging system is used, and provide the report described in <u>Tex-244-F</u> to the Engineer daily. Modify the paving process as necessary to eliminate any recurring (moderate or severe) thermal segregation identified by the thermal imaging system.-

The Engineer may suspend subsequent paving operations if the Contractor cannot successfully modify the paving process to eliminate recurring severe or moderate thermal segregation.

Provide the Engineer with electronic copies of all daily data files that can be used with the thermal imaging system software to generate temperature profile plots daily or as requested by the Engineer.

- 4.7.3.1.2.1. **Thermal Camera.** When using a thermal camera instead of the thermal imaging system, take immediate corrective action to eliminate recurring moderate thermal segregation when a hand-held thermal camera is used. Provide the Engineer with the thermal profile of every sublot within one working day of the completion of each lot. When requested by the Engineer, provide the electronic files generated using the thermal camera. Report the results of each thermal profile in accordance with Section 3079.4.2., "Reporting and Responsibilities." The Engineer will use a hand-held thermal camera to obtain a thermal profile at least once per project. Suspend operations and take immediate corrective action to eliminate severe thermal segregation unless otherwise directed. Resume operations when the Engineer determines that subsequent production will meet the requirements of this Section.
- 4.7.3.2. **Windrow Operations.** Operate windrow pickup equipment so that when hot-mix is placed in windrows, substantially all the mixture deposited on the roadbed is picked up and loaded into the paver.
- 4.7.3.3. **Hauling Equipment.** Use belly dumps, live bottom, or end dump trucks to haul and transfer mixture; however, with exception of paving miscellaneous areas, end dump trucks are only allowed when used in conjunction with an MTD with remixing capability or when a thermal imaging system is used unless otherwise allowed.
- 4.7.3.4. **Screed Heaters.** Turn off screed heaters to prevent overheating of the mat if the paver stops for more than 5 min. The Engineer may evaluate the suspect area in accordance with Section 3079.4.9.3.3., "Recovered Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the paver is stopped.
- 4.8. **Compaction.** Roll the freshly placed PFC with as many steel-wheeled rollers as necessary, operated in static mode, to seat the mixture without excessive breakage of the aggregate and to provide a smooth surface and uniform texture. Do not use pneumatic rollers. Moisten the roller drums thoroughly with a soap and water solution to prevent adhesion. Use only water or an approved release agent on rollers, tamps, and

other compaction equipment unless otherwise directed.

Use <u>Tex-246-F</u> to test and verify that the compacted mixture has adequate permeability. Measure the water flow once per sublot at locations directed by the Engineer. The water flow rate must be less than 20 sec. Investigate the cause of the water flow rate test failures and take corrective actions during production and placement to ensure the water flow rate is less than 20 sec. Suspend production if two consecutive water flow rate tests fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Complete all compaction operations before the pavement temperature drops below 180°F unless otherwise allowed. The Engineer may allow compaction with a light finish roller operated in static mode for pavement temperatures below 180°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

- 4.9. Acceptance Plan. Sample and test the hot-mix on a lot and sublot basis.
- 4.9.3. **Referee Testing.** The Materials and Tests Division is the referee laboratory. The Contractor may request referee testing if the differences between Contractor and Engineer test results exceed the operational tolerances in accordance with Table 6 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within five working days after receiving test results and cores from the Engineer. Referee tests will be performed only on the sublot in question and only for the particular tests in question. Allow 10 working days from the time the referee laboratory receives the samples for test results to be reported. The Department may require the Contractor to reimburse the Department for referee tests if more than three referee tests per project are required and the Engineer's test results are closer to the referee test results than the Contractor's test results.

4.9.4. **Production Acceptance**.

- 4.9.4.1. **Production Lot.** A production lot consists of four equal sublots. The default quantity for Lot 1 is 1,000 ton; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 2,000 ton. The Engineer will select subsequent lot sizes based on the anticipated daily production such that approximately three to four sublots are produced each day. The lot size will be between 1,000 ton and 4,000 ton. The Engineer may change the lot size before the Contractor begins any lot.
- 4.9.4.1.1. **Incomplete Production Lots.** If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Close all lots within five working days unless otherwise allowed.

4.9.4.2. **Production Sampling**.

- 4.9.4.2.1. **Mixture Sampling.** Obtain hot-mix samples from trucks at the plant in accordance with <u>Tex-222-F</u>. The sampler will split each sample into three equal portions in accordance with <u>Tex-200-F</u> and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" until the Department's testing is completed.
- 4.9.4.2.1.1. **Random Sample.** At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with <u>Tex-225-F</u>. Take one sample for each sublot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.
- 4.9.4.2.1.2. **Blind Sample.** For one sublot per lot, the Engineer will obtain and test a "blind" sample instead of the random sample collected by the Contractor. Test either the "blind" or the random sample; however, referee testing (if applicable) will be based on a comparison of results from the "blind" sample. The location of the Engineer's "blind" sample will not be disclosed to the Contractor. The Engineer's "blind" sample may be randomly selected in accordance with <u>Tex-225-F</u> for any sublot or selected at the discretion of the Engineer. The

Engineer will use the Contractor's split sample for sublots not sampled by the Engineer.

- 4.9.4.2.2. Informational Shear Bond Strength Testing. Select one random sublot from Lot 2 or higher for shear bond strength testing. Obtain full depth cores in accordance with <u>Tex-249-F</u>. Label the cores with the Control Section Job (CSJ), producer of the tack coat, mix type, shot rate, lot, and sublot number and provide to the Engineer. The Engineer will ship the cores to the Materials and Tests Division or district laboratory for shear bond strength testing. Results from these tests will not be used for specification compliance.
- 4.9.4.2.3. Informational Hamburg and Overlay Testing. Select one random sublot from Lot 2 or higher for Hamburg and Overlay testing during the first week of production. Obtain and provide the Engineer with approximately 90 lb. of mixture, sampled in accordance with <u>Tex-222-F</u>, in sealed containers, boxes, or bags labeled with the Control-Section-Job (CSJ), mixture type, lot, and sublot number. The Engineer will ship the mixture to the Materials and Tests Division for Hamburg and Overlay testing. Results from these tests will not be used for specification compliance.
- 4.9.4.2.4. **Asphalt Binder Sampling.** Obtain a 1 qt. (1 gal. for A-R binder) sample of the asphalt binder witness by the Engineer for each lot of mixture produced. The Contractor will notify the Engineer when the sampling will occur. Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill and upstream from the introduction of any additives in accordance with <u>Tex-500-C</u>, Part II. Label the can with the corresponding lot and sublot numbers, producer, producer facility, grade, district, date sampled, and project information including highway and CSJ. The Engineer will retain these samples for one year. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder sample and upon request of the Contractor, the Engineer will split a sample of the asphalt binder with the Contractor

At least once per project, the Engineer will collect split samples of each binder grade and source used. The Engineer will submit one split sample to the Materials and Tests Division to verify compliance with Item 300, "Asphalts, Oils, and Emulsions" and will retain the other split sample for one year.

4.9.4.3. **Production Testing.** The Contractor and Engineer must perform production tests in accordance with Table 9. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances in accordance with Table 6 for all sublots.

At any time during production, the Engineer may require the Contractor to verify the following based on quantities used:

- lime content (within ±0.1% of JMF), when PG binder is specified;
- fiber content (within ±0.03% of JMF), when PG binder is specified; and
- CRM content (within ±1.5% of JMF), when A-R binder is specified.

Maintain the in-line measuring device when A-R binder is specified to verify the A-R binder viscosity between 2,500 and 4,000 centipoise at 350°F unless otherwise approved. Record A-R binder viscosity at least once per hour and provide the Engineer with a daily summary unless otherwise directed.

If the aggregate mineralogy is such that <u>Tex-236-F</u>, Part I does not yield reliable results, the Engineer may allow alternate methods for determining the asphalt content and aggregate gradation. The Engineer will require the Contractor to provide evidence that results from <u>Tex-236-F</u>, Part I are not reliable before permitting an alternate method unless otherwise allowed. Use the applicable test procedure as directed if an alternate test method is allowed.

3079

Table 9
Production and Placement Testing Frequency

Description	Test Method	Minimum Contractor Testing Frequency	Minimum Engineer Testing Frequency	
Individual % retained for sieve sized larger than #200 % passing the #200 sieve	<u>Tex-200-F</u>	1 per sublot	1 per 12 sublots	
Laboratory-molded density, %	Tex-207-F, Part VIII	1 per sublot	1 per lot	
Asphalt binder content ¹ , %	<u>Tex-236-F</u> , Part I ²	1 per sublot	1 per lot	
Drain-down, %	<u>Tex-235-F</u>	1 per sublot	1 per 12 sublots	
Boil test ³	<u>Tex-530-C</u>	1 per project	1 per project	
Moisture content	Tex-212-F, Part II	When directed	1 per project	
Cantabro loss, %	<u>Tex-245-F</u>	1 per project (sample only)	1 per project	
Overlay test	<u>Tex-248-F</u>	1 per project (sample only)	1 per project ^{4,9}	
Hamburg Wheel test	<u>Tex-242-F</u>	1 per project (sample only)	1 per project ^{4,9}	
Water flow test	Tex-246-F	1 per sublot	1 per project	
Asphalt binder sampling	<u>Tex-500-C</u> , Part II	1 per lot (sample only)⁵	1 per project	
Tack coat sampling and testing	<u>Tex-500-C</u> , Part III	N/A	1 per project	
Thermal profile	<u>Tex-244-F</u>	1 per sublot, ^{6,7,8}	1 per project ⁷	

1. May be obtained from t mass flow meter readouts as determined by the Engineer.

2. Ensure the binder content determination excludes fibers.

3. When shown on the plans.

- 4. Testing performed by the Materials and Tests Division on sample obtained from Lot 2 or higher.
- 5. Obtain samples witness by the Engineer. The Engineer will retain these samples for one year.
- 6. To be performed in the presence of the Engineer when using the thermal camera, unless otherwise approved.
- 7. Not required when a thermal imaging system is used.
- 8. When using the thermal imaging system, the test report must include the temperature measurements taken in accordance with Tex-244-F.
- 9. Testing performed by the Materials and Tests Division for informational purposes only.
- 4.9.4.4. **Operational Tolerances.** Control the production process within the operational tolerances in accordance with Table 6. Suspend production and placement operations when production or placement test results exceed the tolerances in accordance with Table 6 unless otherwise allowed. When production is suspended, the Engineer will allow production to resume when test results or other information indicates the next mixture produced will be within the operational tolerances.
- 4.9.4.5. Individual Loads of Hot-Mix. The Engineer can reject individual truckloads of hot-mix. When a load of hot-mix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances in accordance with Table 6, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.5. Placement Acceptance.

- 4.9.5.1. **Placement Lot.** A placement lot consists of four placement sublots. A placement sublot consists of the area placed during a production sublot.
- 4.9.5.2. Miscellaneous Areas. Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations such as driveways, mailbox turnouts, crossovers, gores, spot level-up

areas, and other similar areas. The specified layer thickness is based on the rate of 90 lb. per square yard for each inch of pavement unless another rate is shown on the plans. Miscellaneous areas are not subject to thermal profiles testing.

- 4.9.5.3. **Recovered Asphalt Dynamic Shear Rheometer (DSR).** The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Materials and Tests Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T 315 at the specified high temperature performance grade of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with <u>Tex-211-F</u>.
- 4.9.5.4. **Irregularities.** Identify and correct irregularities, including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor's expense) areas of the pavement that contain irregularities. The Engineer may also require the Contractor to remove and replace (at the Contractor to remove and replace (at the Contractor's expense) areas where the mixture does not bond to the existing pavement.

If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than one day while the Contractor is taking appropriate corrective action.

- 4.9.6. **Exempt Production.** When the anticipated daily production is less than 100 ton, all QC and QA sampling and testing are waived. The Engineer may deem the mixture as exempt production for the following conditions:
 - anticipated daily production is more than 100 ton but less than 250 ton;
 - total production for the project is less than 2,500 ton;
 - when mutually agreed between the Engineer and the Contractor; or
 - when shown on the plans.

For exempt production, the Contractor is relieved of all production and placement sampling and testing requirements. All other specification requirements apply, and the Engineer will perform acceptance tests for production and placement in accordance with Table 9.

For exempt production:

- produce, haul, place, and compact the mixture as directed by the Engineer; and
- control mixture production to yield a laboratory-molded density that is within ±1.0% of the target density as tested by the Engineer.
- 4.9.7. **Ride Quality.** Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

- 5.1. **PFC Hot-Mix Asphalt.** Permeable friction course (PFC) hot-mix will be measured by the ton of composite mixture which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520, "Weighing and Measuring Equipment.
- 5.2. **Tack Coat.** Tack coat will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the calibrated distributor. The Engineer will witness all strapping operations for volume determination. All tack, including emulsions, will be measured by the gallon applied.

The Engineer may allow the use of a metering device to determine asphalt volume used and application rate if the device is accurate to within 1.5% of the strapped volume.

PAYMENT

6.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 3079.5.1., "PFC Hot-Mix Asphalt," will be paid for at the unit bid price for "Permeable friction course Hot Mix Asphalt" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 3079.5.2., "Tack Coat," will be paid for at the unit bid price for "Tack Coat" of the tack coat provided. These prices are full compensation for materials, placement, equipment, labor, tools, and incidentals.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585, "Ride Quality for Pavement Surfaces."

Special Specification 3081 Thin Overlay Mixtures

1. DESCRIPTION

Construct a thin surface course composed of a compacted mixture of aggregate and asphalt binder mixed hot in a mixing plant. Produce a thin overlay mixture (TOM) with a minimum lift thickness of 1/2 in. for a Type F mixture and 3/4 in. for a Type C mixture.

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met when the Contractor makes a source or formulation change, and may require a new laboratory mixture design, trial batch, or both. The Engineer may sample and test project materials at any time during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. **Aggregate.** Furnish aggregates from sources that conform to the requirements in accordance with Table 1 and as specified in this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse, intermediate, or fine aggregate. Do not use reclaimed asphalt pavement (RAP) or recycled asphalt shingles (RAS). Supply aggregates that meet the definitions in accordance with <u>Tex-100-E</u> for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests in accordance with Table 1. Documentall test results on the mixture design report. The Engineer may perform tests on independentor split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis in accordance with <u>Tex-200-F</u>, Part II.
- 2.1.1. **Coarse Aggregate.** Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for hot-mix listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in hot-mix asphalt.

For sources not listed on the Department's BRSQC:

- build an individual stockpile for each material;
- request the Department test the stockpile for specification compliance;
- approved only when tested by the Engineer;
- once approved, do not add material to the stockpile unless otherwise approved; and
- allow 30 calendar days for the Engineer to sample, test, and report results.
- 2.1.1.1. Blending Class A and Class B Aggregates. Class B aggregate meeting all other requirements in blending Class A and B aggregates to meet a Class A requirement, ensure that at least 50% by weight, or volume if required, of all aggregates used in the mixture design retained on the No. 8 sieve comes from the Class A

aggregate source, unless otherwise shown on the plans. Blend by volume if the bulk specific gravities of the Class A and B aggregates differ by more than 0.300. Class B aggregate may be disallowed when shown on the plans.

The Engineer may perform tests at any time during production, when the Contractor blends Class A and B aggregates to meet a Class A requirement, to ensure that at least 50% by weight, or volume if required, of the material retained on the No.8 sieve comes from the Class A aggregate source. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 8 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks using the gradations supplied by the Contractor on the mixture design report as an input for the template; however, a failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.1.2. **Micro-Deval Abrasion.** The Engineer will perform a minimum of one Micro-Deval abrasion test in accordance with <u>Tex-461-A</u> for each coarse aggregate source used in the mixture design that has a Rated Source Soundness Magnesium (RSSM) loss value greater than 15 as listed in the BRSQC, unless otherwise directed. The Engineer will perform testing before the start of production and may perform additional testing at any time during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula:

 $Mg_{est.} = (RSSM)(MD_{act.}/RSMD)$

where:

 Mg_{est} = magnesium sulfate soundness loss RSSM = Rated Source Soundness Magnesium MD_{act} = actual Micro-Deval percent loss RSMD = Rated Source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Soils and Aggregates Section of the Materials and Tests Division, and additional testing may be required before granting approval.

2.1.2. Intermediate Aggregate. Aggregates not meeting the definition of coarse or fine aggregate will be defined as intermediate aggregate. Supply intermediate aggregates, when used that are free from organic impurities. The Engineer may test the intermediate aggregate in accordance with <u>Tex-408-A</u> to verify the material is free from organic impurities. Supply intermediate aggregate from coarse aggregate sources, when used that meet the requirements in accordance with Table 1 unless otherwise approved.

If 10% or more of the stockpile is retained on the No. 4 sieve, verify that it meets the requirements in accordance with Table 1 for crushed face count (Tex-460-A) and flat and elongated particles (Tex-280-F).

2.1.3. Fine Aggregate. Fine aggregates consist of manufactured sands and screenings. Natural sands are not allowed in any mixture. Fine aggregate stockpiles must meet the fine aggregate properties in accordance with Table 1 and the gradation requirements in accordance with Table 2. Supply fine aggregates that are free from organic impurities. The Engineer may test the fine aggregate in accordance with <u>Tex-408-A</u> to verify the material is free from organic impurities. Use fine aggregate from coarse aggregate sources that meet the requirements in accordance with Table 1 unless otherwise approved.

A garoa ete Quelit		
Aggregate Quality Property	Test Method	Requirement
Coarse Ag	gregate	. 1
SAC	Tex-499-A	A ¹
Deleterious material, %, Max	Tex-217-F, Part I	1.5
Decantation, %, Max	Tex-217-F, Part I	1.5
Micro-Deval abrasion, %	<u>Tex-461-A</u>	Note ^r
Los Angeles abrasion, %, Max	<u>Tex-410-A</u>	30
Magnesium sulfate soundness, 5 cycles, %, Max	<u>Tex-411-A</u>	20
Crushed face count, ³ %, Min	<u>Tex-460-A</u> , Part I	95
Flat and elongated particles @ 5:1, %, Max	<u>Tex-280-F</u>	10
Fine Agg	regate	
Linear shrinkage, %, Max	<u>Tex-107-E</u>	3
Sand equivalent, %, Min	<u>Tex-203-F</u>	45
1 Surface Aggregate Classification of "A" is required	Luplace athenvise chow	n on the plans

Table 1

Surface Aggregate Classification of "A" is required unless otherwise shown on the plans. 1.

2. Used to estimate the magnesium sulfate soundness loss in accordance with

Section 3081.2.1.1.2., "Micro-Deval Abrasion."

3. Only applies to crushed gravel.

Gradation Requirements for Fine Aggregate		
Sieve Size	% Passing by Weight or Volume	
3/8"	100	
#8	70–100	
#200	0–30	

Table 2

2.2.

Mineral Filler. Mineral filler consists of finely divided mineral matter such as agricultural lime, crusher fines, or hydrated lime. Mineral filler is allowed unless otherwise shown on the plans. Fly ash is not permitted unless otherwise shown on the plans. Use no more than 2% hydrated lime unless otherwise shown on the plans. Test all mineral fillers except hydrated lime and fly ash in accordance with Tex-107-E to ensure specification compliance. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:

- is sufficiently dry, free-flowing, and free from clumps and foreign matter as determined by the Engineer,
- does not exceed 3% linear shrinkage when tested in accordance with Tex-107-E; and
- meets the gradation requirements in Table 3, unless otherwise shown on the plans.

Т	ab	le	3
---	----	----	---

Gradation Requirements for Mineral Filler		
% Passing by Weight or Volume		
100		
55–100		

- 2.3. Baghouse Fines. Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.
- 2.4. Asphalt Binder. Fumish performance-graded (PG) asphalt binder with a high temperature grade of PG 76 unless otherwise shown in the plans and a low temperature grade as shown on the plans, in accordance with Section 300.2.10., "Performance-Graded Binders."
- 2.5. Tack Coat. Furnish CSS-1H, SS-1H, EBL, or a PG binder with a minimum high-temperature grade of PG 58 for tack coat binder in accordance with Item 300, "Asphalts, Oils, and Emulsions." Specialized tack coat materials listed on the Department's Tracking Resistant Asphalt Interlayer (TRAIL) MPL may be allowed or required when shown on the plans. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use.

3081

- 2.6. **Additives.** Provide the Engineer with documentation such as the bill of lading showing the quantity of additives used in the project unless otherwise directed.
- 2.6.1. Lime and Liquid Antistripping Agent. When lime or a liquid antistripping agent is used, add in accordance with Item 301, "Asphalt Antistripping Agents." Use no more than 1% hydrated lime when using crushed gravel. Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.
- 2.6.2. **Compaction Aid.** Compaction Aid is defined as a department-approved chemical warm mix additive denoted as "chemical additive" on the Department's materials producer list (MPL) that is used to facilitate mixing and compaction of HMA.

Compaction Aid is allowed for use on all projects. Compaction aid is required when shown on the plans or as required in Section 3081.4.7.1., "Weather Conditions."

Warm mix foaming processes, denoted as "foaming process" on the Department-approved MPL, may be used to facilitate mixing and compaction of HMA; however warm mix foaming processes are not defined as a Compaction Aid.

2.7. Recycled Materials. Recycled materials are not allowed for use.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement."

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required by the specification, Contractors may perform other QC tests as deemed necessary. At any time during the project, the Engineer may perform production and placement tests as deemed necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1. **Certification.** Personnel certified by the Department-approved hot-mix asphalt certification program must conduct all mixture designs, sampling, and testing in accordance with Table 4. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2 certified specialist. Provide Level 1A certified specialists at the plant during production operations. Provide Level 1B certified specialists to conduct placement tests. Provide AGG101 certified specialists for aggregate testing.

Test Description	Test Method	Contractor	Engineer	Level ¹
•	1. Aggregate Te	esting	2	
Sampling	Tex-221-F	 ✓ 	\checkmark	1A/AGG101
Dry sieve	Tex-200-F, Part I	\checkmark	\checkmark	1A/AGG101
Vashed sieve	Tex-200-F, Part II	\checkmark	\checkmark	1A/AGG101
Deleterious material	Tex-217-F. Part	✓	\checkmark	AGG101
Decantation	Tex-217-F, Part II	✓	✓	AGG101
Los Angeles abrasion	Tex-410-A		\checkmark	Department
Magnesium sulfate soundness	Tex-411-A		✓	Department
Vicro-Deval abrasion	Tex-461-A		\checkmark	AGG101
Crushed face count	Tex-460-A	✓	~	AGG101
Flat and elongated particles	Tex-280-F	✓	✓	AGG101
Sand equivalent	Tex-203-F	· · · · · · · · · · · · · · · · · · ·	· ✓	AGG101
Organic impurities	Tex-408-A	· ✓	~	AGG101
Methylene blue test	Tex-252-F	•	· ✓	Department
	2. Asphalt Binder & Tack	Coat Sampling	•	Department
Asphalt binder sampling	Tex-500-C, Part II	√	✓	1A/1B
Tack coat sampling		×		1A/1B
rack coat sampling	Tex-500-C, Part III	•	v	IA/ID
	3. Mix Design & Ve		/	0
Design and JMF changes	<u>Tex-204-F</u>	✓ ✓	<u>√</u>	2
Mixing	<u>Tex-205-F</u>	✓ ✓	✓	2
Molding (TGC)	<u>Tex-206-F</u>	 ✓ 	✓	1A
Molding (SGC)	<u>Tex-241-F</u>	\checkmark	\checkmark	1A
Laboratory-molded density	Tex-207-F, Parts I & VI	\checkmark	✓	1A
Rice gravity	<u>Tex-227-F</u> , Part II	\checkmark	✓	1A
Drain-down	<u>Tex-235-F</u>	\checkmark	✓	1A
Ignition oven correction factors ²	<u>Tex-236-F</u> , Part II	\checkmark	\checkmark	2
Indirect tensile strength	<u>Tex-226-F</u>	\checkmark	\checkmark	1A
Overlay test	<u>Tex-248-F</u>		\checkmark	Department
Hamburg Wheel test	<u>Tex-242-F</u>	✓	\checkmark	1A
Boil test ⁴	<u>Tex-530-C</u>	\checkmark	\checkmark	1A
	4. Production T	esting		-
Selecting production random numbers	Tex-225-F, Part I	-	\checkmark	1A
Mixture sampling	Tex-222-F	\checkmark	\checkmark	1A/1B
Molding (TGC)	Tex-206-F	✓	✓	1A
Molding (SGC)	Tex-241-F	✓	\checkmark	1A
Laboratory-molded density	Tex-207-F, Parts I & VI	✓	\checkmark	1A
Rice gravity	Tex-227-F, Part II	\checkmark	✓	1A
Gradation & asphalt binder content ²	Tex-236-F, Part I	\checkmark	✓	1A
Drain-down	Tex-235-F	\checkmark	1	1A
Control charts	Tex-233-F	✓	✓	1A
Moisture content	Tex-212-F, Part II	\checkmark	~	1A/AGG101
Hamburg Wheel test	<u>Tex-242-F</u>	√ 	 ✓	1A
Overlay test	Tex-248-F	↓	 ✓	Department
Micro-Deval abrasion	Tex-461-A	-	✓ ✓	AGG101
Boil test ⁴	Tex-530-C	~	~~~~	1A
	Tex-211-F	•	 ✓	
Abson recovery		oting	v	Department
Establish rolling pattern	5. Placement To			1B
	Tex-207-F, Part IV	✓ ✓		
n-place density (nuclear method)	<u>Tex-207-F</u> , Part III	✓ ✓	,	1B
Control charts	<u>Tex-233-F</u>	✓ ✓	✓	1A
Ride quality measurement	<u>Tex-1001-S</u>	✓	✓	Note 3
Thermal profile	<u>Tex-244-F</u>	\checkmark	✓	1B
Water flow test	Tex-246-F	✓	✓	1B

	Table 4
est Methods,	Test Responsibility, and Minimum Certification Levels

1. Level 1A, 1B, AGG101, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program.

2. Refer to Section 3081.4.9.2.3., "Production Testing," for exceptions to using an ignition oven.

3. Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when Surface Test Type B is specified.

4. When shown on the plans.

Reporting and Responsibilities. Use Department-provided templates to record and calculate all test data, including mixture design, production and placement QC/QA, control charts, and thermal profiles. Obtain the current version of the templates at https://www.txdot.gov/inside-txdot/forms-publications/consultantscontractors/forms/site-manager.html or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The maximum allowable time for the Contractor and Engineer to exchange test data is as given in Table 5 unless otherwise approved. The Engineer and the Contractor will immediately report to the other party any test result that requires suspension of production or placement or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department-provided templates.

> Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Section 5.3., "Conformity with Plans, Specifications, and Special Provisions."

> > Table 5

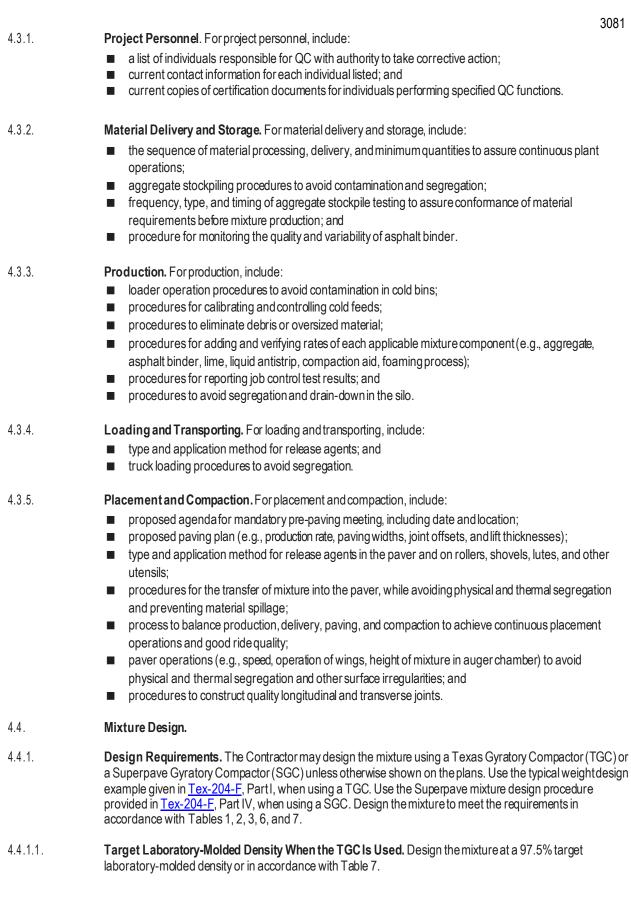
	Reporting S		
Description	Reported By	Reported To	To Be Reported Within
	Production Qua	ality Control	
Gradation ¹			
Asphalt binder content ¹			
Laboratory-molded density ²		Engineer	1 working day of completion of
Moisture content ³	Contractor	, i i i i i i i i i i i i i i i i i i i	the sublot
Boil test ⁵			
	Production Quali	ty Assurance	
Gradation ³			
Asphalt binder content ³			
Laboratory-molded density ¹			1 working day of completion of
Hamburg Wheel test ⁴	Engineer	Contractor	1 working day of completion of the sublot
Overlay test ⁴			the subiot
Boil test ⁵			
Binder tests ⁴			
	Placement Qual	lity Control	
Thermal profile ¹	Contractor	Engineer	1 working day of completion of
Water flow ¹	Contractor	Engineer	the lot
	Placement Qualit	y Assurance	
Thermal profile ³			1 working day of completion of
Aging ratio ⁴	Engineer	Contractor	1 working day of completion of the lot
Water flow			the lot

1. These tests are required on every sublot.

2. Optional test. When performed on split samples, report the results as soon as they become available.

To be performed at the frequency specified and in accordance with Table 13 or as shown on the plans. 3.

4. To be reported as soon as the results become available.


5. When shown on the plans.

Use the procedures described in Tex-233-F to plot the results of all quality control (QC) and quality assurance (QA) testing. Update the control charts as soon as test results for each sublot become available. Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

4.3. Quality Control Plan (QCP). Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

> Submit a written QCP before the mandatory pre-paving meeting. Receive approval of the QCP before prepaving meeting. Include the following items in the QCP:

4.2.

4.4.1.2. **Design Number of Gyrations (Ndesign) When the SGC Is Used.** Design the mixture at 50 gyrations (Ndesign). Use a target laboratory-molded density of 96.0% to design the mixture; however, adjustments can be made to the Ndesign value as noted in Table 7. The Ndesign level may be reduced to no less than 35 gyrations at the Contractor's discretion.

Use an approved laboratory from the Department's MPL to perform the Hamburg Wheel test, and the Department will perform the Overlay test and provide results with the mixture design, or provide the laboratory mixture and request that the Department perform the Hamburg Wheel test and Overlay test. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel test and Overlay test results on the laboratory mixture design.

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design at any time during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor can begin production.

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report:

- the combined aggregate gradation, source, specific gravity, and percent of each material used;
- the target laboratory-molded density (or Ndesign level when using the SGC);
- results of all applicable tests;
- the mixing and molding temperatures;
- the signature of the Level 2 person or persons that performed the design;
- the date the mixture design was performed; and
- a unique identification number for the mixture design.

Master Gradation Limits (% Passing by Weight or Volume) an	d Volumetric Requirements
Sieve Size	Coarse (TOM-C)	Fine (TOM-F)
1/2"	100.0 ¹	100.0 ¹
3/8"	95.0-100.0	98.0-100.0
#4	40.0-60.0	70.0–95.0
#8	17.0–27.0	40.0-65.0
#16	5.0–27.0	20.0-45.0
#30	5.0–27.0	10.0–35.0
#50	5.0–27.0	10.0–20.0
#200	5.0–9.0	2.0–12.0
	Asphalt Binder Content, ² % Min	
-	6.0	6.5
	Design VMA, ³ % Min	
-	16.0	16.5
Pro	oduction (Plant-Produced) VMA, ³ %	Min
-	15.5	16.0

1. Defined as maximum sieve size. No tolerance allowed.

2. Unless otherwise shown on the plans or approved by the Engineer.

3. Voids in Mineral Aggregates (VMA).

Table 7 Mixture Design Properties

mixture Design Properties			
Mixture Property	Test Method	Requirement	
Target laboratory-molded density, % (TGC)	<u>Tex-207- F</u>	97.5 ¹	
Design gyrations (Ndesign for SGC)	<u>Tex-241-F</u>	50 ²	
Hamburg Wheel test, passes at 12.5 mm rut depth for PG 76 mixtures	<u>Tex-242-F</u>	20,000 Min	
Overlay test, Critical Fracture Energy, lbin/sq.in	<u>Tex-248-F</u>	1.5 Min	
Overlay test, Crack Progression Rate	<u>Tex-248-F</u>	0.40 Max	
Drain-down, %	<u>Tex-235-F</u>	0.20 Max	

1. Unless otherwise shown on the plans or approved by the Engineer. Laboratory-molded density requirement using the TGC may be waived when approved by the Engineer.

- 2. May be adjusted within the range of 35–100 gyrations when shown on the plans or specification or when mutually agreed between the Engineer and Contractor. Laboratory-molded density requirement using the SGC may be waived when approved by the Engineer.
- 4.4.1 **Job-Mix Formula Approval.** The job-mix formula (JMF) is the combined aggregate gradation, target laboratory-molded density (or Ndesign level), and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch. When a compaction aid or foaming process is used, JMF1 may be designed and submitted to the Engineer without including the compaction aid or foaming process. When a compaction aid or foaming process used and recommended rate on the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The Department may require the Contractor to reimburse the Department for verification tests if more than two trial batches per design are required.

4.4.2.1. Contractor's Responsibilities.

- 4.4.2.1.1. **Providing Gyratory Compactor.** Use a TGC calibrated in accordance with <u>Tex-914-K</u> when electing or required to design the mixture in accordance with <u>Tex-204-F</u>, Part I, for molding production samples. Furnish an SGC calibrated in accordance with <u>Tex-241-F</u> when electing or required to design the mixture in accordance with <u>Tex-204-F</u>, Part IV, for molding production samples. Locate the SGC if used, at the Engineer's field laboratory or make the SGC available to the Engineer for use in molding production samples.
- 4.4.2.1.2. **Gyratory Compactor Correlation Factors.** Use <u>Tex-206-F</u>, Part II, to perform a gyratory compactor correlation when the Engineer uses a different gyratory compactor. Apply the correlation factor to all subsequent production test results.
- 4.4.2.1.3. **Submitting JMF1.** Furnish a mix design report (JMF1) with representative samples of all component materials and request approval to produce the trial batch. Provide approximately 25 lb. of the design mixture if opting to have the Department perform the Hamburg Wheel test on the laboratory mixture, and request that the Department perform the test. Provide approximately 60 lb. of the design mixture to perform the Overlay test.
- 4.4.2.1.4. **Supplying Aggregates.** Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.
- 4.4.2.1.5. **Supplying Asphalt.** Provide at least 1 gal. of the asphalt material and enough quantities of any additives proposed for use.
- 4.4.2.1.6. Ignition Oven Correction Factors. Determine the aggregate and asphalt correction factors from the ignition oven in accordance with <u>Tex-236-F</u>, Part II. Provide correction factors that are not more than 12 mo. old. Provide the Engineer with split samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for QA testing during production. Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used and the correction factors are not more than 12 mo. old, unless otherwise directed.
- 4.4.2.1.7. **Boil Test.** When shown on the plans, perform the test and retain the tested sample from <u>Tex-530-C</u> until completion of the project or as directed. Use this sample for comparison purposes during production.
- 4.4.2.1.8. **Trial Batch Production.** Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch, including the compaction aid or foaming process, if applicable, for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements in accordance with Table 8. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.

- 4.4.2.1.9. **Trial Batch Production Equipment.** Use only equipment and materials proposed for use on the project to produce the trial batch.
- 4.4.2.1.10. **Trial Batch Quantity.** Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.
- 4.4.2.1.11. **Number of Trial Batches.** Produce trial batches as necessary to obtain a mixture that meets the specification requirements.
- 4.4.2.1.12. **Trial Batch Sampling.** Obtain a representative sample of the trial batch and split it into three equal portions in accordance with <u>Tex-222-F</u>. Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.
- 4.4.2.1.13. **Trial Batch Testing.** Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements in accordance with Table 8. Ensure the trial batch mixture is also in compliance with the requirements in accordance with Tables 6 and 7. Use a Department-approved laboratory listed on the MPL to perform the Hamburg Wheel test on the trial batch mixture or request that the Department perform the Hamburg Wheel test. Provide approximately 25 lb. of the trial batch mixture if opting to have the Department perform the Hamburg Wheel test, and request that the Department perform the test. Obtain and provide approximately 60 lb. of trial batch mixture in sealed containers, boxes, or bags labeled with the CSJ, mixture type, lot, and sublot number in accordance with <u>Tex-222-F</u> for the Overlay test. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel test and Overlay test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.
- 4.4.2.1.14. **Development of JMF2.** Evaluate the trial batch test results after the Engineer grants full approval of JMF1 based on results from the trial batch, determine the optimum mixture proportions, and submit as JMF2. Adjust the asphalt binder content or gradation to achieve the specified target laboratory-molded density. The mixture produced using JMF2 must meet the requirements in accordance with Tables 6 and 7. Verify that JMF2 meets the operation tolerances of JMF1 in accordance with Table 8.
- 4.4.2.1.15. **Mixture Production.** Use JMF2 to produce Lot 1 after receiving approval for JMF2 and a passing result from the Department's or a Department-approved laboratory's Hamburg Wheel test and the Department's Overlay test on the trial batch. If desired, proceed to Lot 1 production, once JMF2 is approved, at the Contractor's risk without receiving the results from either the Department's Hamburg Wheel test or Overlay test on the trial batch.

Notify the Engineer if electing to proceed without Hamburg Wheel test and Overlay test results from the trial batch. Note that the Engineer may require up to the entire sublot of any mixture failing the Hamburg Wheel test or Overlay test to be removed and replaced at the Contractor's expense.

- 4.4.2.1.16. **Development of JMF3.** Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.
- 4.4.2.1.17. **JMF Adjustments.** If JMF adjustments are necessary to achieve the specified requirements, make the adjustments before beginning a new lot. The adjusted JMF must:
 - be provided to the Engineer in writing before the start of a new lot;
 - be numbered in sequence to the previous JMF;
 - meet the master gradation limits in accordance with Table 6; and
 - be within the operational tolerances of JMF2 in accordance with Table 8.
- 4.4.2.1.18. **Requesting Referee Testing.** Use referee testing, if needed, in accordance with Section 3081.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Description	Test Method	Allowable Difference between JMF2 and JMF1 Target ¹	Allowable Difference from Current JMF and JMF2 ²	Allowable Difference between Contractor and Engineer ³
Individual % retained for #8 sieve and larger		Must be Within	±3.0 ^{4,5}	±5.0
Individual % retained for sieves smaller than #8 and larger than #200	or	Master Grading Limits in	±3.0 ^{4,5}	±3.0
% passing the #200 sieve		accordance with Table 6	±2.0 ^{4,5}	±1.6
Asphalt binder content, % ⁶	<u>Tex-236-F</u>	±0.3	±0.3 ⁵	±0.3
Laboratory-molded density, %		±1.0	±1.0	±1.0
Laboratory-molded bulk specific gravity	<u>Tex-207-F</u>	N/A	N/A	±0.020
VMA, % Min	<u>Tex-204-F</u>	Note 7	Note 7	N/A
Theoretical Max specific (Rice) gravity	<u>Tex-227-F</u>	N/A	N/A	±0.020
Drain-down, %	<u>Tex-235-F</u>	Note 8	Note 8	N/A

Table 8 Operational Tolerances

 JMF1 is the approved laboratory mixture design used for producing the trial batch. JMF2 is the approved mixture design developed from the trial batch used to produce Lot 1.

- 2. Current JMF is JMF3 or higher. JMF3 is the approved mix design used to produce Lot 2.
- 3. Contractor may request referee testing only when values exceed these tolerances.

4. When within these tolerances, mixture production gradations may fall outside the master grading limits; however, the % passing the #200 will be considered out of tolerance when outside the master grading limits.

- 5. Only applies to mixture produced for Lot 1 and higher.
- 6. Binder content is not allowed to be outside the limits in accordance with Table 6. May be obtained from asphalt meter readouts as determined by the Engineer.
- 7. Verify that Table 6 requirements are met.
- 8. Verify that Table 7 requirements are met.

4.4.2.2. Engineer's Responsibilities.

4.4.2.2.1. **Gyratory Compactor.** For mixtures designed in accordance with <u>Tex-204-F</u>, Part I, the Engineer will use a Department TGC, calibrated in accordance with <u>Tex-914-K</u>, to mold samples for trial batch and production testing.

For mixtures designed in accordance with <u>Tex-204-F</u>, Part IV, the Engineer will use a Department SGC, calibrated in accordance with <u>Tex-241-F</u>, to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the field laboratory or provide and use a Department SGC at an alternate location.

4.4.2.2.2. Conditional Approval of JMF1 and Authorizing Trial Batch. The Engineer will review and verify conformance of the following information within two working days of receipt

- the Contractor's mix design report (JMF1);
- the Department-provided Overlay test results;
- the Contractor-provided Hamburg Wheel test results;
- all required materials including aggregates, asphalt, and additives; and
- the mixture specifications.

The Engineer will grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg Wheel test and department provided Overlay test results with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with

Section 3081.2.1.1., "Micro-Deval Abrasion." If the Engineer's test results are pending after two working days, conditional approval of JMF1 will still be granted within two working days of receiving JMF1. When the Engineer's test results become available, they will be used for specification compliance.

The Contractor is authorized to produce a trial batch after the Engineer grants conditional approval of JMF1.

- 4.4.2.2.3. Hamburg Wheel and Overlay Testing of JMF1. If the Contractor requests the option to have the Department perform the Hamburg Wheel test on the laboratory mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg Wheel test requirement in Table 7. The Engineer will perform the Overlay test and mold samples in accordance with <u>Tex-248-F</u> to verify compliance with the Overlay test requirements in Table 7. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel and Overlay test results on the laboratory mixture design.
- 4.4.2.2.4. **Ignition Oven Correction Factors.** The Engineer will use the split samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven used for QA testing during production in accordance with <u>Tex-236-F</u>, Part II. Provide correction factors that are not more than 12 mo. old.
- 4.4.2.2.5. **Testing the Trial Batch.** Within one full working day, the Engineer will sample and test the trial batch to ensure that the mixture meets the requirements in accordance with Table 8. The Engineer will mold samples in accordance with <u>Tex-242-F</u> if the Contractor requests the option to have the Department perform the Hamburg Wheel test on the trial batch mixture to verify compliance with <u>Tex-248-F</u> to verify compliance with the Overlay test requirement in Table 7.

The Engineer will have the option to perform <u>Tex-530-C</u> on the trial batch when shown on the plans. These results may be retained and used for comparison purposes during production.

- 4.4.2.2.6. **Full Approval of JMF1.** The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements in accordance with Tables 6 and 7. The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.
- 4.4.2.2.7. **Approval of JMF2.** The Engineer will approve JMF2 within one working day if the mixture meets the requirements in accordance with Table 6, 7, and 8.
- 4.4.2.2.8. **Approval of Lot 1 Production.** The Engineer will authorize the Contractor to proceed with Lot 1 production (using JMF2) as soon as a passing result is achieved from the Department's or a Department-approved laboratory's Hamburg Wheel test and the Department's Overlay test on the trial batch. The Contractor may proceed at its own risk with Lot 1 production without the results from the Hamburg Wheel test or Overlay test on the trial batch.

If the Department's or Department-approved laboratory's sample from the trial batch fails the Hamburg Wheel test or Overlay test, the Engineer will suspend production until further Hamburg Wheel tests or Overlay tests meet the specified values. The Engineer may require up to the entire sublot of any mixture failing the Hamburg Wheel test or Overlay test to be removed and replaced at the Contractor's expense.

- 4.4.2.2.9. Approval of JMF3 and Subsequent JMF Changes. JMF3 and subsequent JMF changes are approved if they meet the master grading limits and asphalt binder content shown in Table 6 and are within the operational tolerances of JMF2 shown in accordance with Table 8.
- 4.5. **Production Operations.** Perform a new trial batch when the plant or plant location is changed. Take corrective action and receive approval to proceed after any production suspension for noncompliance to the specification.

- 4.5.1. **Storage and Heating of Materials.** Do not heat the asphalt binder above the temperatures specified in Item 300, "Asphalts, Oils, and Emulsions," or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and hot-mix asphalt discharge temperatures (in legible and discernible increments) in accordance with Item 320, "Equipment for Asphalt Concrete Pavement," unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.
- 4.5.2. **Mixing and Discharge of Materials.** Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed the maximum production temperatures in accordance with Table 9. The Department will not pay for or allow placement of any mixture produced above the maximum production temperatures listed in Table 9.

Table 9 Maximum Production Temperature		
High-Temperature Binder Grade ¹ Max Production Temperature		
PG 76	345°F	
1 The high-temperature hinder grade refers to the high-temperature grade of the virgin		

 The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with <u>Tex-212-F</u>, Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck and perform the test promptly.

4.6. **Hauling Operations.** Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent shown on the Department's MPL to coat the inside bed of the truck when necessary. Do not use diesel or any release agent not shown on the Department's MPL.

Use equipment for hauling as defined in Section 3081.4.7.3.3., "Hauling Equipment." Use other hauling equipment only when allowed.

4.7. **Placement Operations.** Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour, or as directed. Use a hand-held thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture as discharged from the truck or Material Transfer Device (MTD) before or as the mix enters the paver and an approximate station number or GPS coordinates on each ticket. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Place mixture so that longitudinal joints on the surface course coincide within 6-in. of lane lines and are not placed in the wheel path, or as directed, and offset longitudinal joints of successive courses of hot-mix by at least 6-in. Ensure that all finished surfaces will drain properly. Place the mixture at the rate or thickness shown on the plans. The Engineer will use the guidelines in Table 10 to determine the compacted lift thickness. The thickness determined is based on the rate of 110–115 lb. per square inch. for each inch of pavement unless otherwise shown on the plans.

Compacted Lift Thickness			
Mixture Ture Compacted Lift Thickness ¹		ift Thickness ¹	
N	lixture Type	Min (in.)	Max (in.)
	TOM-C	0.75	1.25
	TOM-F	0.5	1.00
1 Con	apacted torget lift thick	need will be aposified on the plane	

Та	b	le	10	
hotoen	L.	ift	Th	ickno

Compacted target lift thickness will be specified on the plans.

4.7.1. Weather Conditions.

4.7.1.1. When Using a Thermal Imaging System. The Contractor may pave any time the roadway is dry and the roadway surface temperature is at least 60°F unless otherwise approved or as shown on the plans; however, the Engineer may restrict the Contractor from paving surface mixtures if the ambient temperature is likely to drop below 32°F within 12 hr. of paving. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 3081.4.7.3.1.2., "Thermal Imaging System."

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling

4.7.1.2. When Not Using a Thermal Imaging System. When using a thermal camera instead the thermal imaging system, place mixture when the roadway surface temperature is at or above 70°F unless otherwise approved or as shown on the plans. Measure the roadway surface temperature with a hand-held thermal camera or infrared thermometer. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. The Engineer may restrict the Contractor from paving if the air temperature is 70°F and falling.

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.2. **Tack Coat.**

- 4.7.2.1. **Application.** Clean the surface before placing the tack coat. The Engineer will set the rate between 0.04 and 0.10 gal. of residual asphalt per square yard of surface area, unless otherwise specified on the plans. Apply a uniform tack coat at the specified rate unless otherwise directed. Apply the tack coat in a uniform manner to avoid streaks and other irregular patterns. Apply the tack coat to all surfaces that will come in contact with the subsequent HMA placement unless otherwise directed. Apply adequate overlap of the tack coat in the longitudinal direction during placement of the mat to ensure bond of adjacent mats, unless otherwise directed. Allow adequate time for emulsion to break completely before placing any material. Prevent splattering of tack coat when placed adjacent to curb, gutter, and structures. The Engineer may suspend paving operations until there is adequate coverage. Do not dilute emulsified asphalts at the terminal, in the field, or at any other location before use.
- 4.7.2.2. Sampling. The Engineer will obtain at least one sample of the tack coat binder per project in accordance with <u>Tex-500-C</u>, Part III, and test it to verify compliance with Item 300, "Asphalts, Oils, and Emulsions." The Engineer will notify the Contractor when the sampling will occur and will witness the collection of the sample from the asphalt distributor immediately before use. Label the can with the corresponding lot and sublot numbers, producer, producer facility, grade, district, date sampled, and project information including highway and CSJ. For emulsions, the Engineer may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in Item 300, "Asphalts, Oils, and Emulsions."
- 4.7.3. **Lay-Down Operations.** Use the placement temperatures in accordance with Table 11 to establish the minimum placement temperature of mixture delivered to the paving operation.

Table 11 Minimum Mixture Placement Temperature

High-Temperature Binder Grade ¹	Min Placement Temperature (Before Entering Paving Operation)2,3
PG 76	280°F

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

2. The mixture temperature must be measured using a hand-held thermal camera or infrared thermometer nearest to the point of entry of the paving operation.

- 3. Minimum placement temperatures may be reduced 10°F if using a compaction aid.
- 4.7.3.1. **Thermal Profile.** Use a hand-held thermal camera or a thermal imaging system to obtain a continuous thermal profile in accordance with <u>Tex-244-F</u>.
- 4.7.3.1.1. Thermal Segregation.
- 4.7.3.1.1.1. **Moderate.** Any areas that have a temperature differential greater than 25°F, but not exceeding 50°F.
- 4.7.3.1.1.2. Severe. Any areas that have a temperature differential greater than 50°F.
- 4.7.3.1.2. **Thermal Imaging System.** Review the output results when a thermal imaging system is used, and provide the report described in accordance with <u>Tex-244-F</u> to the Engineer daily. Modify the paving process as necessary to eliminate any recurring (moderate or severe) thermal segregation identified by the thermal imaging system.

The Engineer may suspend subsequent paving operations if the Contractor cannot successfully modify the paving process to eliminate recurring severe or moderate thermal segregation.

Provide the Engineer with electronic copies of all daily data files that can be used with the thermal imaging system software to generate temperature profile plots daily or as requested by the Engineer.

- 4.7.3.1.3. **Thermal Camera.** When using a themal camera instead of the themal imaging system, take immediate corrective action to eliminate recurring moderate thermal segregation when a hand-held thermal camera is used. Evaluate areas with moderate thermal segregation by performing water flow testing in accordance with <u>Tex-246-F</u> and verify the water flow is greater than 120 sec. Provide the Engineer with the thermal profile of every sublot within one working day of the completion of each lot. When requested by the Engineer, provide the electronic files generated using the thermal camera. Report the results of each thermal profile in accordance with Section 3081.4.2., "Reporting and Responsibilities." The Engineer will use a hand-held thermal camera to obtain a thermal profile at least once per project, unless the thermal imaging system is used. Suspend operations and take immediate corrective action to eliminate severe thermal segregation unless otherwise directed. Resume operations when the Engineer determines that subsequent production will meet the requirements of this Section. Evaluate areas with severe thermal segregation by performing water flow testing in accordance with <u>Tex-246-F</u> and verify the water flow is greater than 120 sec. Remove and replace the material in any areas that have both severe thermal segregation and a failing result for water flow test unless otherwise directed.
- 4.7.3.2. Windrow Operations. Operate windrow pickup equipment so that when hot-mix is placed in windrows, substantially all the mixture deposited on the roadbed is picked up and loaded into the paver.
- 4.7.3.3. **Hauling Equipment.** Use belly dumps, live bottom, or end dump trucks to haul and transfer mixture. End dump trucks are only allowed when used in conjunction with an MTD with remixing capability unless otherwise allowed.
- 4.7.3.4. **Screed Heaters.** Turn off screed heaters to prevent overheating of the mat if the paver stops for more than 5 min. The Engineer may evaluate the suspect area in accordance with Section 3081.4.9.3.1.1., "Recovered Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the paver is stopped.

Compaction. Roll the freshly placed mixture with as many steel-wheeled rollers as necessary to ensure adequate compaction without excessive breakage of the aggregate and to provide a smooth surface and uniform texture. Operate each roller in static mode for TOM-F mixtures only. Do not use pneumatic-tire rollers. Use the control strip method given in accordance with <u>Tex-207-F</u>, Part IV, to establish the rolling pattern. Thoroughly moisten the roller drums with a soap and water solution to prevent adhesion. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

4.8.

Use tamps to thoroughly compact the edges of the pavementalong curbs, headers, and similar structures and in locations that will not allow thorough compaction with rollers. The Engineer may require rolling with a trench roller on widened areas, in trenches, and in other limited areas.

Use <u>Tex-246-F</u> to measure water flow to verify the mixture is adequately compacted. Measure the water flow once per sublot at locations directed by the Engineer. Take additional water flow measurements when the minimum temperature of the uncompacted matis below the temperature requirements in accordance with Table 12.

ا ما تقاد ا Minimum Uncompacted Mat Temperature Requiring Additional Water Flow Measurements		
High-Temperature Binder Grade ¹	Min Temperature of the Uncompacted Mat Allowed Before Initial Break Down Rolling ^{2,3}	
PG 76	<270°F	

Table 40

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

2. The surface of the uncompacted mat must be measured using a hand-held thermometer or infrared thermometer.

3. Minimum uncompacted mat temperature requiring a water flow measurement may be reduced 10°F if using a compaction aid.

Use <u>Tex-246-F</u> to measure water flow to verify the mixture is adequately compacted at confined longitudinal joints as directed by the Engineer.

The water flow rate should be greater than 120 sec. Investigate the cause of the water flow rate test failures and take corrective actions during production and placement to ensure the water flow rate is greater than 120 sec. Suspend production if two consecutive water flow rate tests fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Complete all compaction operations before the pavement temperature drops below 180°F unless otherwise allowed. The Engineer may allow compaction with a light finish roller operated in static mode for pavement temperatures below 180°F when approved.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

- 4.9. Acceptance Plan. Sample and test the hot-mix asphalt on a lot and sublot basis.
- 4.9.1. **Referee Testing.** The Materials and Tests Division is the referee laboratory. The Contractor may request referee testing if the differences between Contractor and Engineer test results exceed the maximum allowable difference in accordance with Table 8 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within five working days after receiving test results from the Engineer. Referee tests will be performed only on the sublot in question and only for the particular tests in question. Allow 10 working days from the time the referee laboratory receives the samples for test results to be reported. The Department may require the Contractor to reimburse the Department for referee tests if more than three referee tests per project are required and the Engineer's test results are closer to the referee test results than the Contractor's test results.

The Materials and Tests Division will determine the laboratory-molded density based on the molded specific gravity and the maximum theoretical specific gravity of the referee sample.

16 – 21

4.9.2. Production Acceptance.

- 4.9.2.1. **Production Lot.** A production lot consists of four equal sublots. The default quantity for Lot 1 is 500 ton; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 2,000 ton. The Engineer will select subsequent lot sizes based on the anticipated daily production such that approximately three to four sublots are produced each day. The lot size will be between 500 ton and 2,000 ton. The Engineer may change the lot size before the Contractor begins any lot.
- 4.9.2.1.1. **Incomplete Production Lots.** If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Close all lots within five working days unless otherwise allowed.

4.9.2.2. Production Sampling.

- 4.9.2.2.1. **Mixture Sampling.** Obtain hot-mix samples from trucks at the plant in accordance with <u>Tex-222-F</u>. The sampler will split each sample into three equal portions in accordance with <u>Tex-200-F</u> and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will the Department's testing is completed.
- 4.9.2.2.1.1. **Random Sample.** At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with <u>Tex-225-F</u>. Take one sample for each sublot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.
- 4.9.2.2.1.2. **Blind Sample.** For one sublot per lot, the Engineer will obtain and test a "blind" sample instead of the random sample collected by the Contractor. Test either the "blind" or the random sample; however, referee testing (if applicable) will be based on a comparison of results from the "blind" sample. The location of the Engineer's "blind" sample will not be disclosed to the Contractor. The Engineer's "blind" sample may be randomly selected in accordance with <u>Tex-225-F</u> for any sublot or selected at the discretion of the Engineer. The Engineer will use the Contractor's split sample for sublots not sampled by the Engineer.
- 4.9.2.2.2. Informational Methylene Blue Testing. During the project and at random, obtain and provide the Engineer with approximately 50 lb. of each fine aggregate and approximately 20 lb. of all mineral fillers used to produce the mixture. Label the samples with the Control Section Job (CSJ), mixture type, and approximate lot and sublot number corresponding to when the sample was taken. The Engineer will ship the samples to the Materials and Tests Division for Methylene Blue testing in accordance with <u>Tex-252-F</u>. Results from these tests will not be used for specification compliance.
- 4.9.2.2.3. Asphalt Binder Sampling. Obtain a 1-qt sample of the asphalt binder witnessed by the Engineer for each lot of mixture produced. The Contractor will notify the Engineer when the sampling will occur. Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill and upstream from the introduction of any additives in accordance with <u>Tex-500-C</u>, Part II. Label the can with the corresponding lot and sublot numbers, producer, producer facility location, grade, district, date sampled, and project information including highway and CSJ. The Engineer will retain these samples for one year. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder sample and upon request of the Contractor, the Engineer will split a sample of the asphalt binder with the Contractor.

At least once per project, the Engineer will collect split samples of each binder grade and source used. The Engineer will submit one split sample to the Materials and Tests Division to verify compliance with Item 300, "Asphalts, Oils, and Emulsions," and will retain the other split sample for 1 yr.

4.9.2.3. **Production Testing.** The Contractor and Engineer must perform production tests in accordance with Table 13. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances listed in accordance with Table 8 for all sublots. Take immediate corrective action if the Engineer's laboratory-molded density on any sublot is less than 95.0% or greater than 98.0% when using the SGC or less than 96.5% or greater than 98.5% when using the TGC, to bring

the mixture within these tolerances. The Engineer may suspend operations if the Contractor's corrective actions do not produce acceptable results. The Engineer will allow production to resume when the proposed corrective action is likely to yield acceptable results.

The Engineer may allow alternate methods for determining the asphalt binder content and aggregate gradation if the aggregate mineralogy is such that <u>Tex-236-F</u>, Part I does not yield reliable results. Provide evidence that results from <u>Tex-236-F</u>, Part I are not reliable before requesting permission to use an alternate method unless otherwise directed. Use the applicable test procedure as directed if an alternate test method is allowed.

Description	Test Method	Min Contractor Testing	Min Engineer Testing
Individual % retained for #8 sieve and larger Individual % retained for sieves smaller than #8 and larger than #200 % passing the #200 sieve	<u>Tex-200-F</u> or <u>Tex-236-F</u>	1 per sublot	1 per 12 sublots ¹
Laboratory-molded density Laboratory-molded bulk specific gravity VMA Moisture content	<u>Tex-207-F</u> <u>Tex-204-F</u> <u>Tex-212-F</u> , Part II	N/A When directed	1 per sublot ¹
Theoretical maximum specific (Rice) gravity	Tex-227-F, Part II	N/A	1 per sublot ¹
Asphalt binder content ² Overlay test ³	<u>Tex-236-F</u> , Part I <u>Tex-248-F</u>	1 per sublot N/A	1 per lot ¹ 1 per project
Hamburg Wheel test Thermal profile	<u>Tex-242-F</u> <u>Tex-244-F</u>	N/A 1 per sublot ^{4,5,6}	1 per project 1 per project ⁵
Asphalt binder sampling and testing	<u>Tex-500-C</u> , Part II	1 per lot (sample only) ⁷	1 per project
Tack coat sampling and testing	<u>Tex-500-C</u> , Part III	N/A	1 per project
Boil test ⁸ Water flow	<u>Tex-530-C</u> <u>Tex-246-F</u>	1 per sublot ⁹	
Methylene blue test ¹⁰	<u>Tex-252-F</u>	1 per project (sample only)	1 per project

Table 13 Production and Placement Testing Frequency

1. For production defined in Section 3081.4.9.4., "Exempt Production," the Engineer will test one per day if 100 ton or more are produced. For Exempt Production, no testing is required with less than 100 ton are produced.

2. May be obtained from asphalt flow meter readout as determined by the Engineer.

3. Testing performed by the Materials and Tests Division on sample obtained from Lot 2 or higher.

4. To be performed in the presence of the Engineer when a thermal camera is used, unless otherwise approved.

5. Not required when a thermal imaging system is used.

- 6. When using the thermal imaging system, the test report must include the temperature measurements taken in accordance with <u>Tex-244-F</u>.
- 7. Obtain samples witnessed by the Engineer. The Engineer will retain these samples for 1 yr.

8. When shown on the plans.

9. To be performed in the presence of the Engineer, unless otherwise directed.

10. Testing performed by the Materials and Tests Division for informational purposes only.

- 4.9.2.4. **Operational Tolerances.** Control the production process within the operational tolerances in accordance with Table 8. When production is suspended, the Engineer will allow production to resume when test results or other information indicates the next mixture produced will be within the operational tolerances.
- 4.9.2.4.1. **Gradation.** Suspend operation and take corrective action if any aggregate is retained on the maximum sieve size in accordance with Table 6. A sublot is defined as out of tolerance if either the Engineer's or the Contractor's test results are out of operational tolerance. Suspend production when test results for gradation exceed the operational tolerances in accordance with Table 8 for three consecutive sublots on the same sieve or four consecutive sublots on any sieve unless otherwise directed. The consecutive sublots may be from more than one lot.
- 4.9.2.4.2. **Asphalt Binder Content.** A sublot is defined as out of operational tolerance if either the Engineer's or the Contractor's test results exceed the values in accordance with Table 8. Suspend production when two or

more sublots within a lot are out of operational tolerance or below the minimum asphalt binder content specified in accordance with Table 6 unless otherwise directed. Suspend production and shipment of mixture if the Engineer's or Contractor's asphalt binder content deviates from the current JMF by more than 0.5% for any sublot or is less than the minimum asphalt content allowed in accordance with Table 6.

4.9.2.4.3. Voids in Mineral Aggregates (VMA). The Engineer will determine the VMA for every sublot. For sublots when the Engineer does not determine asphalt binder content, the Engineer will use the asphalt binder content results from QC testing performed by the Contractor to determine VMA.

Take immediate corrective action if the VMA value for any sublot is less than the minimum VMA requirement for production in accordance with Table 6. Suspend production and shipment of the mixture if the Engineer's VMA results on two consecutive sublots are below the minimum VMA requirement for production in accordance with Table 6.

Suspend production and shipment of the mixture if the Engineer's VMA result is more than 0.5% below the minimum VMA requirement for production in accordance with Table 6. In addition to suspending production, the Engineer may require removal and replacement or may allow the sublot to be left in place without payment.

4.9.2.4.4. **Hamburg Wheel.** The Engineer may perform a Hamburg Wheel on plant produced mixture at any time during production. In addition to testing production samples, the Engineer may obtain cores and perform the Hamburg Wheel test on any area of the roadway where rutting is observed. Suspend production until further Hamburg Wheel meet the specified values when the production or core samples fail to meet the Hamburg Wheel criteria in accordance with Table 7. Core samples, if taken, will be obtained from the center of the finished mat or other areas excluding the vehicle wheel paths. The Engineer may require up to the entire sublot of any mixture failing the Hamburg Wheel to be removed and replaced at the Contractor's expense.

If the Department's or Department-approved laboratory's Hamburg Wheel test results in a "remove and replace" condition, the Contractor may request that the Department confirm the results by re-testing the failing material. The Materials and Tests Division will perform the Hamburg Wheel and determine the final disposition of the material in question based on the Department's test results.

4.9.2.5. Individual Loads of Hot-Mix. The Engineer can reject individual truckloads of hot-mix. When a load of hotmix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances in accordance with Table 8, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.3. Placement Acceptance.

- 4.9.3.1. **Placement Lot.** A placement lot consists of four placement sublots. A placement sublot consists of the area placed during a production sublot.
- 4.9.3.1.1. **Recovered Asphalt Dynamic Shear Rheometer (DSR).** The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Materials and Tests Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T 315 at the specified high temperature performance grade of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with <u>Tex-211-F</u>.
- 4.9.3.1.2. Irregularities. Identify and correct irregularities including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. The Engineer may require the Contractor to remove and replace (at the

Contractor's expense) areas of the pavement that contain irregularities if the Engineer determines that the irregularity will adversely affect pavement performance. The Engineer may also require the Contractor to remove and replace (at the Contractor's expense) areas where the mixture does not bond to the existing pavement.

The Engineer may require the Contractor to immediately suspend operations if irregularities are detected or may allow the Contractor to continue operations for no more than one day while the Contractor is taking appropriate corrective action.

- 4.9.4. **Exempt Production.** When the anticipated daily production is less than 100 ton, all QC and QA sampling and testing are waived. The Engineer may deem the mixture as exempt production for the following conditions:
 - anticipated daily production is more than 100 ton but less than 250 ton;
 - total production for the project is less than 2,500 ton;
 - when mutually agreed between the Engineer and the Contractor; or
 - when shown on the plans.

For exempt production, the Contractor is relieved of all production and placement sampling and testing requirements. All other specification requirements apply, and the Engineer will perform acceptance tests for production and placement in accordance with Table 13. For exempt production:

- produce, haul, place, and compact the mixture as directed by the Engineer; and
- control mixture production to yield a laboratory-molded density that is within ±1.0% of the target density as tested by the Engineer.
- 4.9.5. **Ride Quality.** Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

- 5.1. **TOM Hot-Mix Asphalt.** TOM hot-mix will be measured by the ton of composite mixture, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520, "Weighing and Measuring Equipment."
- 5.2. **Tack Coat.** Tack coat will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the calibrated distributor. The Engineer will witness all strapping operations for volume determination. All tack, including emulsions, will be measured by the gallon applied.

The Engineer may allow the use of a metering device to determine asphalt volume used and application rate if the device is accurate within 1.5% of the strapped volume.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Section 3081.5.1., "TOM Hot-Mix Asphalt," will be paid for at the unit bid price for "Thin Overlay Mixture" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, removing pavement marking and markers, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 3081.5.2., "Tack Coat," will be paid for at the unit bid price for "Tack Coat" of the tack coat provided. These prices are full compensation for materials, placement, equipment, labor, tools, and incidentals.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585, "Ride Quality for Pavement Surfaces."

Special Specification 3082 Thin Bonded Friction Courses

1. DESCRIPTION

Construct a hot-mix asphalt (HMA) surface course composed of a warm spray-applied polymer modified emulsion membrane followed immediately with a compacted permeable mixture of aggregate, asphalt binder, and additives mixed hot in a mixing plant.

2. MATERIALS

Furnish uncontaminated materials of uniform quality that meet the requirements of the plans and specifications.

Notify the Engineer of all material sources and before changing any material source or formulation. The Engineer will verify that the specification requirements are met when the Contractor makes a source or formulation change, and may require a new laboratory mixture design, trial batch, or both. The Engineer may sample and test project materials at any time during the project to verify specification compliance in accordance with Item 6, "Control of Materials."

- 2.1. **Aggregate.** Furnish aggregates from sources that conform to the requirements shown in Table 1 and as specified in this Section. Aggregate requirements in this Section, including those shown in Table 1, may be modified or eliminated when shown on the plans. Additional aggregate requirements may be specified when shown on the plans. Provide aggregate stockpiles that meet the definitions in this Section for coarse or fine aggregate. Do not use intermediate or fine aggregate in PFC mixtures. Supply aggregates that meet the definitions in <u>Tex-100-E</u> for crushed gravel or crushed stone. The Engineer will designate the plant or the quarry as the sampling location. Provide samples from materials produced for the project. The Engineer will establish the Surface Aggregate Classification (SAC) and perform Los Angeles abrasion, magnesium sulfate soundness, and Micro-Deval tests. Perform all other aggregate quality tests listed in accordance with Table 1. Document all test results on the mixture design report. The Engineer may perform tests on independent or split samples to verify Contractor test results. Stockpile aggregates for each source and type separately. Determine aggregate gradations for mixture design and production testing based on the washed sieve analysis given in Tex-200-F, Part II.
- 2.1.1. **Coarse Aggregate.** Coarse aggregate stockpiles must have no more than 20% material passing the No. 8 sieve. Aggregates from sources listed in the Department's *Bituminous Rated Source Quality Catalog* (BRSQC) are preapproved for use. Use only the rated values for hot-mix listed in the BRSQC. Rated values for surface treatment (ST) do not apply to coarse aggregate sources used in hot-mix asphalt.

For sources not listed on the Department's BRSQC:

- build an individual stockpile for each material;
- request the Department test the stockpile for specification compliance;
- approved only when tested by the Engineer;
- once approved, do not add material to the stockpile unless otherwise approved; and
- allow 30 calendar days for the Engineer to sample, test, and report results.

Provide coarse aggregate with at least the minimum SAC shown on the plans. SAC requirements only apply to aggregates used on the surface of travel lanes, unless otherwise shown on the plans. SAC requirements apply to aggregates used on surfaces other than travel lanes when shown on the plans. The SAC for sources on the Department's *Aggregate Quality Monitoring Program* (AQMP) (<u>Tex-499-A</u>) is listed in the BRSQC.

2.1.1.1. Blending Class A and Class B Aggregates. To prevent crushing of the Class B aggregate when blending, Class B aggregate may be blended with a Class A aggregate to meet requirements for Class A materials if the Department's BRSQC rated source soundness magnesium (RSSM) rating for the Class B aggregate is less than the Class A aggregate or if the RSSM rating for the Class B aggregate is less than or equal to 10%. Use the rated values for hot mix asphaltic concrete (HMAC) published in the BRSQC. When blending Class A and B aggregates to meet a Class A requirement, ensure that at least 50% by weight, or volume if required, of all the aggregates used in the mixture design retained on the No. 4 sieve comes from the Class A aggregate source, unless otherwise shown on the plans. Blend by volume if the bulk specific gravities of the Class A and B aggregates differ by more than 0.300. Class B aggregate may be disallowed when shown on the plans.

The Engineer may perform tests at any time during production, when the Contractor blends Class A and B aggregates to meet a Class A requirement, to ensure that at least 50% by weight, or volume if required, of the material retained on the No. 4 sieve comes from the Class A aggregate source. The Engineer will use the Department's mix design template, when electing to verify conformance, to calculate the percent of Class A aggregate retained on the No. 4 sieve by inputting the bin percentages shown from readouts in the control room at the time of production and stockpile gradations measured at the time of production. The Engineer may determine the gradations based on either washed or dry sieve analysis from samples obtained from individual aggregate cold feed bins or aggregate stockpiles. The Engineer may perform spot checks using the gradations supplied by the Contractor on the mixture design report as an input for the template; however, a failing spot check will require confirmation with a stockpile gradation determined by the Engineer.

2.1.1.2. **Micro-Deval Abrasion.** The Engineer will perform a minimum of one Micro-Deval abrasion test in accordance with <u>Tex-461-A</u> for each coarse aggregate source used in the mixture design that has a Rated Source Soundness Magnesium (RSSM) loss value greater than 15 as listed in the BRSQC, unless otherwise directed. The Engineer will perform testing before the start of production and may perform additional testing at any time during production. The Engineer may obtain the coarse aggregate samples from each coarse aggregate source or may require the Contractor to obtain the samples. The Engineer may waive all Micro-Deval testing based on a satisfactory test history of the same aggregate source.

The Engineer will estimate the magnesium sulfate soundness loss for each coarse aggregate source, when tested, using the following formula:

Mg_{est.} = (RSSM)(MD_{act.}/RSMD)

where:

Mg_{est} = magnesium sulfate soundness loss *RSSM* = Rated Source Soundness Magnesium *MD_{act}* = actual Micro-Deval percent loss *RSMD* = Rated Source Micro-Deval

When the estimated magnesium sulfate soundness loss is greater than the maximum magnesium sulfate soundness loss specified, the coarse aggregate source will not be allowed for use unless otherwise approved. The Engineer will consult the Soils and Aggregates Section of the Materials and Tests Division, and additional testing may be required before granting approval.

2.1.2. Fine Aggregate. Fine aggregates consist of manufactured sands and screenings. Fine aggregate stockpiles must meet the fine aggregate properties in accordance with Table 1 and the gradation requirements in accordance with Table 2. Supply fine aggregates that are free from organic impurities. The Engineer may test the fine aggregate in accordance with <u>Tex-408-A</u> to verify the material is free from organic impurities. Do not use field sand or other uncrushed fine aggregate. Use fine aggregate from coarse aggregate sources that meet the requirements shown in accordance with Table 1 unless otherwise approved.

Property	Test Method	Requirement
SAC	Tex-499-A (AQMP)	As shown on the plans
Deleterious material, %, Max	Tex-217-F, Part I	1.0
Decantation, %, Max	Tex-217-F, Part II	1.5
Micro-Deval abrasion, %	<u>Tex-461-A</u>	Note 1
Los Angeles abrasion, %, Max	<u>Tex-410-A</u>	30
Magnesium sulfate soundness, 5 cycles, %, Max	<u>Tex-411-A</u>	20
Crushed face count ² , %, Min	<u>Tex-460-A</u> , Part I	95
Flat and elongated particles @ 5:1, %, Max	<u>Tex-280-F</u>	10
Fine Agg	regate Properties	
Sand Equivalent, %, Min	Tex-203-F	45
Methylene Blue, mg/g, Max	<u>Tex-252-F</u>	10.0

 Table 1

 Coarse Aggregate Quality Requirements

1. Used to estimate the magnesium sulfate soundness loss in accordance with section 3082.2.1.1.2., "Micro-Deval Abrasion."

2. Only applies to crushed gravel.

2.2.

Table 2 Gradation Requirements for Fine Aggregate

Sieve Size	% Passing by Weight or Volume
3/8"	100
#8	70–100
#200	0–30

Mineral Filler. Mineral filler consists of finely divided mineral matter such as agricultural lime, crusher fines, or hydrated lime. Fly ash is not allowed unless otherwise shown on the plans. Mineral filler is allowed unless otherwise shown on the plans. Use no more than 2% hydrated lime, unless otherwise shown on the plans. Test all mineral fillers except hydrated lime and fly ash in accordance with <u>Tex-252-F</u> to ensure specification compliance. The plans may require or disallow specific mineral fillers. Provide mineral filler, when used, that:

- is sufficiently dry, free-flowing, and free from clumps and foreign matter as determined by the Engineer;
- does not exceed 3% linear shrinkage when tested in accordance with Tex-107-E; and
- meets the gradation requirements in accordance with Table 3, unless otherwise shown on the plans.

Table 3 Gradation Requirements for Mineral Filler Sieve Size % Passing by Weight or Volume #8 100 #200 55–100

- 2.3. **Baghouse Fines.** Fines collected by the baghouse or other dust-collecting equipment may be reintroduced into the mixing drum.
- 2.4. **Asphalt Binder.** Furnish the type and grade of binder specified on the plans that meets the requirements of Item 300, "Asphalts, Oils, and Emulsions."
- 2.4.1. **Performance-Graded (PG) Binder.** Provide an asphalt binder with a high-temperature grade of PG 76 and low-temperature grade as shown on the plans in accordance with Section 300.2.10., "Performance-Graded Binders," when PG binder is specified.
- 2.4.2. Asphalt-Rubber (A-R) Binder. Provide A-R binder that meets the Type I or Type II requirements of Section 300.2.9., "Asphalt-Rubber Binders," when A-R is specified unless otherwise shown on the plans. Use at least 15.0% by weight of Crumb Rubber Modifier (CRM) that meets the Grade B or Grade C requirements of Section 300.2.7., "Crumb Rubber Modifier," unless otherwise shown on the plans. Provide the Engineer the A-R binder blend design with the mix design (JMF1) submittal. Provide the Engineer with documentation such as the bill of lading showing the quantity of CRM used in the project unless otherwise directed.
- 2.5. **Membrane.** Provide a smooth and homogeneous polymer modified emulsion meeting the requirements in accordance with Table 4.

3 - 20

01-22 Statewide

Table 4				
Polymer Modified	Emulsion	Requirements		

Polymer Modified Emulsion Requirements							
Test on Emulsion	Test Method	Min	Max				
Viscosity @ 77°F, SSF	T 72	20	100				
Storage Stability,1 %	T 59		1				
Demulsibility (for anionic emulsions), 35 mL of 0.02 N CaCl2, %	T 59	55					
Demulsibility (for cationic emulsions), 35 mL 0.8% Sodium dioctyl sulfosuccinate, %	T 59	55					
Sieve Test, ² %	T 59		0.05				
Distillation Test: ³ Residue by distillation, % by wt. Oil portion of distillate, % by vol.	T 59	63	0.5				
Test on Residue from Distillation	Test Method	Min	Max				
Elastic Recovery @ 50°F, 50 mm/min., %	<u>Tex-539-C</u>	60					
Penetration @ 77°F, 100 g, 5 sec, 0.1 mm	T 49	100	150				

1. After standing undisturbed for 24 hr., the surface must be smooth, must not exhibit a

white or milky colored substance, and must be a homogeneous color throughout.May be required by the Engineer only when the emulsion cannot be easily applied in the

field.
The temperature on the lower thermometer should be brought slowly to 350°F ±10°F and maintained at this temperature for 20 min. The total distillation should be complete in 60 ±5 min. from the first application of heat.

2.6. **Additives.** Provide the Engineer with documentation such as the bill of lading showing the quantity of additives used in the project unless otherwise directed.

- 2.6.1. **Fibers.** Provide cellulose or mineral fibers when PG binder is specified. Do not use fibers when A-R binder is specified. Submit written certification to the Engineer that the fibers proposed for use meet the requirements of DMS-9204, "Fiber Additives for Bituminous Mixtures." Fibers may be pre-blended into the binder at the asphalt supply terminal unless otherwise shown on the plans.
- 2.6.2. Lime Mineral Filler. Add lime as mineral filler at a rate of 1.0% by weight of the total dry aggregate in accordance with Item 301, "Asphalt Antistripping Agents," unless otherwise shown on the plans or waived by the Engineer based on Hamburg Wheel test results. Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum.
- 2.6.3. **Lime and Liquid Antistripping Agent.** When lime or a liquid antistripping agent is used, add in accordance with Item 301, "Asphalt Antistripping Agents." Do not add lime directly into the mixing drum of any plant where lime is removed through the exhaust stream unless the plant has a baghouse or dust collection system that reintroduces the lime into the drum. Lime added as mineral filler will count towards the total quantity of lime specified when the plans require lime to be added as an antistripping agent.
- 2.6.4. **Compaction Aid.** Compaction Aid is defined as a Department-approved chemical warm mix additive denoted as "chemical additive" on the Department's material producer list (MPL) that is used to facilitate mixing and compaction of HMA.

Compaction aid is allowed for use on all projects. Compaction aid is required when shown on the plans or as required in Section 3082.4.7.1., "Weather Conditions."

Warm mix foaming processes, denoted as "foaming process" on the Department-approved MPL, may be used to facilitate mixing and compaction of HMA; however warm mix processes are not defined as a Compaction Aid.

2.7. Recycled Materials. Recycled materials are not allowed for use.

3. EQUIPMENT

Provide required or necessary equipment in accordance with Item 320, "Equipment for Asphalt Concrete Pavement." When A-R binder is specified, equip the hot-mix plant with an in-line viscosity-measuring device located between the blending unit and the mixing drum. Provide a means to calibrate the asphalt mass flow meter on-site when a meter is used.

- 3.1. **Placement Equipment.** Provide a paver that meets all the requirements listed below.
- 3.1.1. **Paver.** Furnish a paver that will spray the membrane, apply the PFC mixture, and level the surface of the mat in a single pass. Configure the paver so that the mixture is placed no more than 5 sec. after the membrane is applied. Ensure the paver does not support the weight of any portion of hauling equipment other than the connection. Provide loading equipment that does not transmit vibrations or other motions to the paver that adversely affects the finished pavement quality. Equip the paver with an automatic dual longitudinal-grade control system and an automatic transverse-grade control system.
- 3.1.1.1. **Tractor Unit.** Supply a tractor unit that can push or propel vehicles, dumping directly into the finishing machine to obtain the desired lines and grades to eliminate any hand finishing. Equip the unit with a hitch to maintain contact between the hauling equipment's rear wheels and the finishing machine's pusher rollers while mixture is unloaded.
- 3.1.1.2. **Membrane Storage Tank and Distribution System.** Equip the paver with an insulated storage tank with a minimum capacity of 900 gal. Provide a metered mechanical pressure sprayer on the paver to apply a uniform membrane at the specified rate. Locate the spray bar on the paver so that the membrane is applied immediately in front of the screed unit. Provide a read-out device on the paver to monitor the membrane application rate.

Furnish a volumetric calibration and strap stick for the tank in accordance with <u>Tex-922-K</u>, Part I, unless otherwise directed. Calibrate the tank within the previous 5 yr. of the date first used on the project. The Engineer may verify calibration accuracy in accordance with <u>Tex-922-K</u>, Part II.

- 3.1.1.3. **Screed.** Provide a variable width vibratory screed that meets Item 320, "Equipment for Asphalt Concrete Pavement."
- 3.1.2. **Material Transfer Device (MTD).** Provide the specified type of MTD when shown on the plans. Ensure MTDs provide a continuous, uniform mixture flow to the asphalt paver.
- 3.1.3. **Rollers.** Provide steel-wheel rollers meeting the requirements of Item 210, "Rolling," except provide rollers weighing a minimum of 10 ton for each roller required. Operate rollers in static (non-vibrating) mode unless otherwise allowed.

4. CONSTRUCTION

Produce, haul, place, and compact the specified paving mixture. In addition to tests required by the specification, Contractors may perform other QC tests as deemed necessary. At any time during the project, the Engineer may perform production and placement tests as deemed necessary in accordance with Item 5, "Control of the Work." Schedule and participate in a mandatory pre-paving meeting with the Engineer on or before the first day of paving unless otherwise shown on the plans.

4.1. **Certification.** Personnel certified by the Department-approved hot-mix asphalt certification program must conduct all mixture designs, sampling, and testing in accordance with Table 5. Supply the Engineer with a list of certified personnel and copies of their current certificates before beginning production and when personnel changes are made. Provide a mixture design developed and signed by a Level 2 certified specialist. Provide Level 1A certified specialists at the plant during production operations. Provide Level 1B certified specialists to conduct placement tests. Provide AGG101 certified specialists for aggregate testing.

Test Description	ds, Test Responsibility, and Min Test Method	Contractor	Engineer	Level ¹
• •	1. Aggregate Testi	ng	•	
Sampling	<u>Tex-221-F</u>	✓	✓	1A/AGG101
Dry sieve	Tex-200-F, Part I	✓	✓	1A/AGG101
Vashed sieve	Tex-200-F, Part II	✓	✓	1A/AGG101
Deleterious material	Tex-217-F, Parts I & III	✓	✓	AGG101
Decantation	Tex-217-F, Part II	✓	✓	AGG101
os Angeles abrasion	Tex-410-A		\checkmark	Department
Magnesium sulfate soundness	Tex-411-A		\checkmark	Department
Micro-Deval abrasion	Tex-461-A		✓	AGG101
Crushed face count	Tex-460-A	✓	\checkmark	AGG101
Flat and elongated particles	Tex-280-F	✓	\checkmark	AGG101
Methylene blue test	Tex-252-F		✓	Department
	2. Asphalt Binder & Tack Co	at Sampling	II_	·
Asphalt binder sampling	Tex-500-C, Part II	✓ ×	✓	1A/1B
Membrane sampling	Tex-500-C, Part III	✓	✓	1A/1B
· •	3. Mix Design & Verific	ation	L I	
Design and JMF changes	Tex-204-F	✓	\checkmark	2
Aixing	Tex-205-F	✓	✓	2
Molding (SGC)	Tex-241-F	✓	✓	1A
_aboratory-molded density	Tex-207-F, Parts I, VI, & VIII	✓	✓	1A
Rice gravity	Tex-227-F, Part II	✓	✓	1A
gnition oven correction factors ²	Tex-236-F, Part II	✓	✓	2
Drain-down	Tex-235-F	✓	✓	1A
Hamburg Wheel test	Tex-242-F	✓	✓	1A
Boil test ⁴	Tex-530-C	✓	✓	1A
Cantabro loss	Tex-245-F	✓	✓	1A
	4. Production Testi	ng	L I	
Control charts	<u>Tex-233-F</u>	√	\checkmark	1A
Mixture sampling	Tex-222-F	✓	✓	1A/1B
Gradation & asphalt binder content ²	Tex-236-F, Part I	✓	\checkmark	1A
Moisture content	Tex-212-F, Part II	✓	\checkmark	1A/AGG101
Micro-Deval abrasion	Tex-461-A		✓	AGG101
Drain-down	Tex-235-F	✓	✓	1A
Boil test ⁴	Tex-530-C	✓	✓	1A
Abson recovery	Tex-211-F		✓	Department
-	5. Placement Testi	ng	ι Ι.	·
Control charts	<u>Tex-233-F</u>	✓ ✓	✓	1A
Ride quality measurement	Tex-1001-S	✓	✓	Note 3
Thermal profile	Tex-244-F	✓	✓	1B
Nater flow test	Tex-246-F	✓	✓	1B

Table 5

1. Level 1A, 1B, AGG101, and 2 are certification levels provided by the Hot Mix Asphalt Center certification program.

2. Refer to Section 3082.4.5., "Production Operations," for exceptions to using an ignition oven.

3. Profiler and operator are required to be certified at the Texas A&M Transportation Institute facility when Surface Test Type B is specified.

4. When shown on the plans.

4.2.

Reporting and Responsibilities. Use Department-provided templates to record and calculate all test data, including mixture design, production and placement tests, control charts, and thermal profiles. Obtain the current version of the templates at https://www.txdot.gov/inside-txdot/forms-publications/consultants-contractors/forms/site-manager.html or from the Engineer. The Engineer and the Contractor will provide any available test results to the other party when requested. The Contractor and Engineer must exchange test data within the maximum allowable time in accordance with Table 6 unless otherwise approved. The Engineer and the

Contractor will immediately report to the other party any test result that requires suspension of production or placement or that fails to meet the specification requirements. Record and electronically submit all test results and pertinent information on Department-provided templates.

Subsequent sublots placed after test results are available to the Contractor, which require suspension of operations, may be considered unauthorized work. Unauthorized work will be accepted or rejected at the discretion of the Engineer in accordance with Section 5.3., "Conformity with Plans, Specifications, and Special Provisions."

T-1-1- C

	Table	-	
	Reporting S	chedule	
Description	Reported By	Reported To	To Be Reported Within
	Production Qua	ality Control	
Gradation ¹			
Asphalt binder content ¹			
Laboratory-molded density ¹			1 working day of completion of
Moisture content ²	Contractor	Engineer	the sublot
Drain-down ¹			
Boil test ⁴			
	Production Quali	ty Assurance	
Gradation ²			
Asphalt binder content ²		Contractor	
Laboratory-molded density ²			1 working day of completion of
Hamburg Wheel test ³	Engineer		1 working day of completion of the sublot
Boil test ⁴			the subjot
Drain-down ²			
Binder tests ³			
	Placement Qua	lity Control	
Thermal profile ¹			1 working day of completion of
Water flow ¹	Contractor	Engineer	1 working day of completion of the lot
Membrane application rate ²	Contractor	Linginoon	the lot
	Placement Quali	ty Assurance	
Thermal profile ²			
Aging ratio ³	Engineer	Contractor	1 working day of completion of
Water flow ²	Engineer	Contractor	the lot
Membrane application rate ²			
1 These tests are required on av	11.1		

1. These tests are required on every sublot.

2. To be performed at the frequency in accordance with Table 14 or as shown on the plans.

3. To be reported as soon as the results become available.

4. When shown on the plans

Use the procedures described in <u>Tex-233-F</u>, when directed, to plot the results of all production and placement testing. Update the control charts as soon as test results for each sublot become available. Make the control charts readily accessible at the field laboratory. The Engineer may suspend production for failure to update control charts.

4.3. Quality Control Plan (QCP). Develop and follow the QCP in detail. Obtain approval for changes to the QCP made during the project. The Engineer may suspend operations if the Contractor fails to comply with the QCP.

Submit a written QCP before the mandatory pre-paving meeting, when directed. Receive approval of the QCP before pre-paving meeting. Include the following items in the QCP:

- 4.3.1. **Project Personnel.** For project personnel, include:
 - a list of individuals responsible for QC with authority to take corrective action;
 - current contact information for each individual listed; and
 - current copies of certification documents for individuals performing specified QC functions.

4.3.2. Material Delivery and Storage. For material delivery and storage, include:

the sequence of material processing, delivery, and minimum quantities to assure continuous plant

operations;

- aggregate stockpiling procedures to avoid contamination and segregation;
- frequency, type, and timing of aggregate stockpile testing to assure conformance of material requirements before mixture production; and
- procedure for monitoring the quality and variability of asphalt binder.

4.3.3. **Production.** For production, include:

- loader operation procedures to avoid contamination in cold bins;
- procedures for calibrating and controlling cold feeds;
- procedures to eliminate debris or oversized material;
- procedures for adding and verifying rates of each applicable mixture component (e.g., aggregate, asphalt binder, lime, liquid antistrip, compaction aid, foaming process, fibers);
- procedures for reporting job control test results; and
- procedures to avoid segregation and drain-down in the silo.

4.3.4. Loading and Transporting. For loading and transporting, include:

- type and application method for release agents; and
- truck loading procedures to avoid segregation.

4.3.5. Placement and Compaction. For placement and compaction, include:

- proposed agenda for mandatory pre-paving meeting, including date and location;
- proposed paving plan (e.g., production rate, paving widths, joint offsets, and lift thicknesses);
- type and application method for release agents in the paver and on rollers, shovels, lutes, and other utensils;
- procedures for the transfer of mixture into the paver while avoiding physical and thermal segregation and preventing material spillage;
- process to balance production, delivery, paving, and compaction to achieve continuous placement operations and good ride quality;
- paver operations (e.g., speed, operation of wings, height of mixture in auger chamber) to avoid physical and thermal segregation and other surface irregularities; and
- procedures to construct quality longitudinal and transverse joints.

4.4. Mixture Design.

4.4.1. **Design Requirements.** Use the design procedure provided in <u>Tex-204-F</u>, unless otherwise shown on the plans. Design the mixture to meet the requirements in accordance with Tables 1, 2, 3, 7, 8, and 9. Use a Superpave Gyratory Compactor (SGC) at 50 gyrations as the design number of gyrations (Ndesign).

The Engineer will provide the mixture design when shown on the plans. The Contractor may submit a new mixture design at any time during the project. The Engineer will verify and approve all mixture designs (JMF1) before the Contractor can begin production.

Provide the Engineer with a mixture design report using the Department-provided template. Include the following items in the report:

- the combined aggregate gradation, source, specific gravity, and percent of each material used;
- the membrane application rate based on design volumetrics;
- results of all applicable tests;
- the mixing and molding temperatures;
- the signature of the Level 2 person or persons that performed the design;
- the date the mixture design was performed; and
- a unique identification number for the mixture design.

	Permeable Friction Course		Thin B	onded Friction C	ourse
Sieve Size	Fine (PFC-F)	Coarse (PFC-C and PFCR-C)	Туре А	Туре В	Туре С
3/4"	-	100.0 ¹	_	_	100 ¹
1/2"	100.0 ¹	80.0–100.0	_	100 ¹	75–100
3/8"	95.0-100.0	35.0-60.0	100 ¹	75–100	55–80
#4	20.0-55.0	1.0-20.0	35–55	22–36	22–36
#8	1.0-10.0	1.0–10.0	19–30	19–30	19–30
#16	-	-	14–25	14–24	14–24
#50	-	-	7–14	7–14	7–14
#200	1.0-4.0	1.0-4.0	4–6	4–6	4–6

Table 7 Master Gradation Limits (% Passing by Weight or Volume) and Laboratory Mixture Design Properties

1. Defined as maximum sieve size. No tolerance allowed.

Table 8 Mixture Design Properties							
Mixture Property	Test PG 76		ixtures	A-R Mixtures	Thin Bonded Friction Course		
Mixture Property	Method	Fine (PFC-F)	Coarse (PFC-C)	Coarse (PFCR-C)	Туре А	Туре В	Туре С
Asphalt binder content, %	-	6.0-7.0	6.0-7.0	7.0–9.0	5.0-5.8	4.8–5.6	4.8-5.6
Film thickness, microns	-	-	-	-	9.0 Min	9.0 Min	9.0 Min
Design gyrations (Ndesign)	<u>Tex-241-F</u>	50	50	50	50	50	50
Laboratory-molded density, %	<u>Tex-207-F</u>	78.0 Max	82.0 Max	82.0 Max	92.0 Max	92.0 Max	92.0 Max
Hamburg Wheel test, ¹ passes at 12.5 mm rut depth	<u>Tex-242-F</u>	10,000 Min	Note 2	Note 2	Note 2	Note 2	Note 2
Drain-down, %	Tex-235-F	0.10 Max	0.10 Max	0.10 Max	0.10 Max	0.10 Max	0.10 Max
Fiber content, % by wt. of total PG 76 mixture	Calculated	0.20-0.50	0.20-0.50	-	-	-	-
Lime content, % by wt. of total aggregate	Calculated	1.0 ³	1.0 ³	-	Note 4	Note 4	Note 4
CRM content, % by wt. of A-R binder	Calculated	_	-	15.0 Min	-	-	_
Boil test ⁵	<u>Tex-530-C</u>	-	-	_	-	-	-
Cantabro loss, %	<u>Tex-245-F</u>	20.0 Max	20.0 Max	20.0 Max	20.0 Max	20.0 Max	20.0 Max

1. Mold test specimens to Ndesign at the optimum asphalt binder content.

2. No specification value is required unless otherwise shown on the plans.

3. Unless otherwise shown on the plans or waived by the Engineer based on Hamburg Wheel results.

4. Lime may be required when shown on the plans.

5. When shown on the plans. Used to establish baseline for comparison to production results.

4.4.2. **Job-Mix Formula Approval.** The job-mix formula (JMF) is the combined aggregate gradation, Ndesign level, and target asphalt percentage used to establish target values for hot-mix production. JMF1 is the original laboratory mixture design used to produce the trial batch. When a compaction aid or foaming process is used, JMF1 may be designed and submitted to the Engineer without including the compaction aid or foaming process. When a compaction aid or foaming process is used, document the compaction aid or foaming process used and recommended rate on the JMF1 submittal. The Engineer and the Contractor will verify JMF1 based on plant-produced mixture from the trial batch unless otherwise approved. The Engineer may accept an existing mixture design previously used on a Department project and may waive the trial batch to verify JMF1. The Department may require the Contractor to reimburse the Department for verification tests if more than two trial batches per design are required.

4.4.2.1. Contractor's Responsibilities.

- 4.4.2.1.1. **Providing Superpave Gyratory Compactor.** Furnish an SGC calibrated in accordance with <u>Tex-241-F</u> for molding production samples. Locate the SGC at the Engineer's field laboratory or make the SGC available to the Engineer for use in molding production samples.
- 4.4.2.1.2. Gyratory Compactor Correlation Factors. Use <u>Tex-206-F</u>, Part II, to perform a gyratory compactor

correlation when the Engineer uses a different SGC. Apply the correlation factor to all subsequent production test results.

- 4.4.2.1.3. **Submitting JMF1.** Furnish a mix design report (JMF1) with representative samples of all component materials and request approval to produce the trial batch. Provide an additional 25 lb. of the design mixture if opting to have the Department perform the Hamburg Wheel test on the laboratory mixture when required in accordance with Table 8, and request that the Department perform the test.
- 4.4.2.1.4. **Supplying Aggregates.** Provide approximately 40 lb. of each aggregate stockpile unless otherwise directed.
- 4.4.2.1.5. **Supplying Asphalt.** Provide at least 1 gal. of the asphalt material and enough quantities of any additives proposed for use.
- 4.4.2.1.6. **Ignition Oven Correction Factors.** Determine the aggregate and asphalt correction factors from the ignition oven in accordance with <u>Tex-236-F</u>, Part II. Provide correction factors that are not more than 12 mo. old. Note that the asphalt content correction factor takes into account the percent fibers in the mixture so that the fibers are excluded from the binder content determination. Provide the Engineer with split samples of the mixtures before the trial batch production, including all additives (except water), and blank samples used to determine the correction factors for the ignition oven used for quality assurance testing during production. Correction factors established from a previously approved mixture design may be used for the current mixture design if the mixture design and ignition oven are the same as previously used and the correction factors are not more than 12 mo. old, unless otherwise directed.
- 4.4.2.1.7. **Boil Test.** When shown on the plans, perform the test and retain the tested sample from <u>Tex-530-C</u> until completion of the project or as directed. Use this sample for comparison purposes during production. Add lime or liquid antistripping agent as directed if signs of stripping exist.
- 4.4.2.1.8. **Trial Batch Production.** Provide a plant-produced trial batch upon receiving conditional approval of JMF1 and authorization to produce a trial batch, including the compaction aid or foaming process, if applicable, for verification testing of JMF1 and development of JMF2. Produce a trial batch mixture that meets the requirements in accordance with Table 9. The Engineer may accept test results from recent production of the same mixture instead of a new trial batch.
- 4.4.2.1.9. **Trial Batch Production Equipment.** Use only equipment and materials proposed for use on the project to produce the trial batch. Provide documentation to verify the calibration or accuracy of the asphalt mass flow meter to measure the binder content. Verify that asphalt mass flow meter meets the requirements of 0.4 % accuracy, when required, in accordance with Item 520, "Weighing and Measuring Equipment." The Engineer may require that the accuracy of the mass flow meter be verified based on quantities used.
- 4.4.2.1.10. **Trial Batch Quantity.** Produce enough quantity of the trial batch to ensure that the mixture meets the specification requirements.
- 4.4.2.1.11. **Number of Trial Batches.** Produce trial batches as necessary to obtain a mixture that meets the specification requirements.
- 4.4.2.1.12. **Trial Batch Sampling.** Obtain a representative sample of the trial batch and split it into three equal portions in accordance with <u>Tex-222-F</u>. Label these portions as "Contractor," "Engineer," and "Referee." Deliver samples to the appropriate laboratory as directed.
- 4.4.2.1.13. **Trial Batch Testing.** Test the trial batch to ensure the mixture produced using the proposed JMF1 meets the mixture requirements in accordance with Table 9. Ensure the trial batch mixture is also in compliance with the requirements in accordance with Tables 7 and 8. Use a Department-approved laboratory listed on the MPL to perform the Hamburg Wheel test on the trial batch mixture or request that the Department perform the Hamburg Wheel test. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel test results on the trial batch. Provide the Engineer with a copy of the trial batch test results.
- 4.4.2.1.14. **Development of JMF2.** Evaluate the trial batch test results, determine the target mixture proportions, and

submit as JMF2 after the Engineer grants full approval of JMF1 based on results from the trial batch. Verify that JMF2 meets the mixture requirements in accordance with Table 9.

- 4.4.2.1.15. **Mixture Production.** After receiving approval for JMF2, use JMF2 to produce Lot 1.
- 4.4.2.1.16. **Development of JMF3.** Evaluate the test results from Lot 1, determine the optimum mixture proportions, and submit as JMF3 for use in Lot 2.
- 4.4.2.1.17. **JMF Adjustments.** If JMF adjustments are necessary to achieve the specified requirements, make the adjustments before beginning a new lot. The adjusted JMF must:
 - be provided to the Engineer in writing before the start of a new lot;
 - be numbered in sequence to the previous JMF;
 - meet the master gradation limits in accordance with Table 7
 - meet the binder content limits in accordance with Table 8; and
 - be within the operational tolerances of JMF2 in accordance with Table 9.
- 4.4.2.1.18. **Requesting Referee Testing.** Use referee testing, if needed, in accordance with Section 3082.4.9.1., "Referee Testing," to resolve testing differences with the Engineer.

Table 9 Operational Tolerances						
Test Description	Test Method	Allowable Difference between JMF2 and JMF1 Target ¹	Allowable Difference from Current JMF and JMF2 ²	Allowable Difference between Contractor and Engineer ³		
Individual % retained for sieve sized larger than #200	Tex-200-F	Must be Within Master Grading Limits in	±3.0 ⁴	±5.0 ⁴		
% passing the #200 sieve	162-200-1	accordance with Table 7	±2.04	±3.04		
Laboratory-molded density, %	<u>Tex-207-F</u> , Part VIII	±1.0	±1.0	±1.0		
Asphalt binder content, %	<u>Tex-236-F</u> , Part I⁵	±0.3 ^{6,7}	±0.3 ^{4,6,7}	±0.3 ^{6,7}		
Drain-down, %	<u>Tex-235-F</u>	Note 8	Note 8	N/A		
Boil test	<u>Tex-530-C</u>	Note 9	Note 9	N/A		
Membrane application rate	<u>Tex-247-F</u>	±0.02	±0.02	N/A		

1. JMF1 is the approved laboratory mixture design used for producing the trial batch. JMF2 is the approved mixture design developed from the trial batch used to produce Lot 1.

- 2. Current JMF is JMF3 or higher. JMF3 is the approved mixture design used to produce Lot 2.
- 3. Contractor may request referee testing only when values exceed these tolerances.
- Only applies to mixture produced for Lot 1 and higher. Aggregate gradation is not allowed to be outside the limits in accordance with Table 7.
- 5. Ensure the binder content determination excludes fibers.
- 6. May be obtained from asphalt mass flow meter readouts as determined by the Engineer.
- 7. Binder content is not allowed to be outside the limits shown in Table 8.
- 8. Verify that Table 8 requirements are met.
- 9. When shown on the plans.

4.4.2.2. Engineer's Responsibilities.

- 4.4.2.2.1. **Superpave Gyratory Compactor.** The Engineer will use a Department SGC calibrated in accordance with <u>Tex-241-F</u> to mold samples for laboratory mixture design verification. For molding trial batch and production specimens, the Engineer will use the Contractor-provided SGC at the field laboratory or provide and use a Department SGC at an alternate location.
- 4.4.2.2.2. Conditional Approval of JMF1 and Authorizing Trial Batch. The Engineer will review and verify conformance of the following information within two working days of receipt:

- the Contractor's mix design report (JMF1);
- the Contractor-provided Hamburg Wheel test results, if applicable;
- all required materials including aggregates, asphalt, and additives; and
- the mixture specifications.

The Engineer will grant the Contractor conditional approval of JMF1 if the information provided on the paper copy of JMF1 indicates that the Contractor's mixture design meets the specifications. When the Contractor does not provide Hamburg Wheel test with laboratory mixture design, 10 working days are allowed for conditional approval of JMF1. The Engineer will base full approval of JMF1 on the test results on mixture from the trial batch.

Unless waived, the Engineer will determine the Micro-Deval abrasion loss in accordance with

Section 3082.2.1.1.2., "Micro-Deval Abrasion." If the Engineer's test results are pending after two working days, conditional approval of JMF1 will still be granted within two working days of receiving JMF1. When the Engineer's test results become available, they will be used for specification compliance.

The Contractor is authorized to produce a trial batch after the Engineer grants conditional approval of JMF1.

- 4.4.2.2.3. Hamburg Wheel Testing. At the Contractor's request, the Department will perform the Hamburg Wheel test on the laboratory mixture in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg Wheel test requirement in accordance with Table 8. The Engineer will be allowed 10 working days to provide the Contractor with Hamburg Wheel results on the laboratory mixture design.
- 4.4.2.2.4. **Ignition Oven Correction Factors.** The Engineer will use the split samples provided by the Contractor to determine the aggregate and asphalt correction factors for the ignition oven used for quality assurance testing during production in accordance with <u>Tex-236-F</u>, Part II. Provide correction factors that are not more than 12 mo. old. The Engineer will verify that the asphalt content correction factor takes into account the percent fibers in the mixture so that the fibers are excluded from the binder content determination.
- 4.4.2.2.5. **Testing the Trial Batch.** The Engineer will sample and test the trial batch within one full working day to ensure that the mixture meets the requirements in accordance with Table 9. If the Contractor requests the option to have the Department perform the Hamburg Wheel test on the trial batch mixture, the Engineer will mold samples in accordance with <u>Tex-242-F</u> to verify compliance with the Hamburg Wheel test requirement in accordance with Table 8.

The Engineer will have the option to perform <u>Tex-530-C</u> on the trial batch when shown on the plans. These results may be retained and used for comparison purposes during production.

4.4.2.2.6. **Full Approval of JMF1.** The Engineer will grant full approval of JMF1 and authorize the Contractor to proceed with developing JMF2 if the Engineer's results for the trial batch meet the requirements in accordance with Tables 7 and 8.

The Engineer will notify the Contractor that an additional trial batch is required if the trial batch does not meet these requirements.

- 4.4.2.2.7. **Approval of JMF2.** The Engineer will approve JMF2 within one working day if the mixture meets the requirements in accordance with Tables 7, 8, and 9.
- 4.4.2.2.8. **Approval of Lot 1 Production.** The Engineer will authorize the Contractor to proceed with Lot 1 production (using JMF2).
- 4.4.2.2.9. **Approval of JMF3 and Subsequent JMF Changes.** JMF3 and subsequent JMF changes are approved if they meet the master grading and asphalt binder content shown in accordance with Tables 7 and 8 and are within the operational tolerances of JMF2 in accordance with Table 9.

- 4.4.2.2.10. **Binder Content Adjustments.** For JMF2 and above, the Engineer may require the Contractor to adjust the target binder content by no more than 0.3% from the current JMF.
- 4.5. **Production Operations.** Perform a new trial batch when the plant or plant location is changed. Take corrective action and receive approval to proceed after any production suspension for noncompliance to the specification.
- 4.5.1. **Storage and Heating of Materials.** Do not heat the asphalt binder above the temperatures specified in Item 300, "Asphalts, Oils, and Emulsions," or outside the manufacturer's recommended values. Provide the Engineer with daily records of asphalt binder and hot-mix asphalt discharge temperatures (in legible and discernible increments) in accordance with Item 320, "Equipment for Asphalt Concrete Pavement," unless otherwise directed. Do not store mixture for a period long enough to affect the quality of the mixture, nor in any case longer than 12 hr. unless otherwise approved.
- 4.5.2. **Mixing and Discharge of Materials.** Notify the Engineer of the target discharge temperature and produce the mixture within 25°F of the target. Monitor the temperature of the material in the truck before shipping to ensure that it does not exceed the maximum production temperatures in accordance with Table 10. The Department will not pay for or allow placement of any mixture produced above the maximum production temperatures in accordance with Table 10.

Maximum Production Temperature					
High-Temperature Binder Grade ¹ Max Production Temperat					
PG 76	345°F				
A-R Binder	345°F				

Table 10

1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.

Control the mixing time and temperature so that substantially all moisture is removed from the mixture before discharging from the plant. Determine the moisture content, if requested, by oven-drying in accordance with <u>Tex-212-F</u>, Part II, and verify that the mixture contains no more than 0.2% of moisture by weight. Obtain the sample immediately after discharging the mixture into the truck and perform the test promptly.

4.6. **Hauling Operations.** Clean all truck beds before use to ensure that mixture is not contaminated. Use a release agent shown on the Department's MPL to coat the inside bed of the truck when necessary. Do not use diesel or any release agent not shown on the Department's MPL.

Use equipment for hauling as defined in Section 3082.4.7.3.2., "Hauling Equipment." Use other hauling equipment only when allowed.

4.7. **Placement Operations.** Collect haul tickets from each load of mixture delivered to the project and provide the Department's copy to the Engineer approximately every hour, or as directed. Use a hand-held thermal camera or infrared thermometer, when a thermal imaging system is not used, to measure and record the internal temperature of the mixture as discharged from the truck or Material Transfer Device (MTD) before or as the mix enters the paver and an approximate station number or GPS coordinates on each ticket. Calculate the daily yield and cumulative yield for the specified lift and provide to the Engineer at the end of paving operations for each day unless otherwise directed. The Engineer may suspend production if the Contractor fails to produce and provide haul tickets and yield calculations by the end of paving operations for each day.

Prepare the surface by removing raised pavement markers and objectionable material such as moisture, dirt, sand, leaves, and other loose impediments from the surface before placing mixture. Remove vegetation from pavement edges. Do not allow any loose mixture onto the prepared surface before application of the membrane. Place the mixture to meet the typical section requirements and produce a smooth, finished surface with a uniform appearance and texture. Offset longitudinal joints of successive courses of hot-mix by at least 6 in. Place mixture so that longitudinal joints on the surface course coincide within 6-in. of lane lines and are not placed in the wheel path, or as directed, and offset longitudinal joints of successive courses of hot-mix by at least 6-in. Ensure that all finished surfaces will drain properly.

4.7.1. Weather Conditions.

4.7.1.1. When Using a Thermal Imaging System. The Contractor may pave any time the roadway is dry and the roadway surface temperature is at least 60°F unless otherwise approved or as shown on the plans; however, the Engineer may restrict the Contractor from paving if the ambient temperature is likely to drop below 32°F within 12 hr. of paving. Place mixtures when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. Provide output data from the thermal imaging system to demonstrate to the Engineer that no recurring severe thermal segregation exists in accordance with Section 3082.4.7.3.1.2., "Thermal Imaging System."

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.1.2. When Not Using a Thermal Imaging System. When using a thermal camera instead of the thermal imaging system, place mixture when the roadway surface temperature is at or above 70°F unless otherwise approved or as shown on the plans. Measure the roadway surface temperature with a hand-held thermal camera or infrared thermometer. Place mixtures only when weather conditions and moisture conditions of the roadway surface are suitable as determined by the Engineer. The Engineer may restrict the Contractor from paving if the air temperature is 60°F and falling.

Produce mixture with a target discharge temperature higher than 300°F and with a compaction aid to facilitate compaction when the air temperature is 70°F and falling.

4.7.2. **Application of Membrane.** Apply the membrane at the rates in accordance with Table 11 unless otherwise directed. Spray the membrane using a metered mechanical pressure spray bar at a temperature of 140°F to 180°F. Monitor the membrane application rate and make adjustments to the rate when directed. Verify that the spray bar is capable of applying the membrane at a uniform rate across the entire paving width. Apply adequate overlap of the tack coat in the longitudinal direction during placement of the mat to ensure bond of adjacent mats, unless otherwise directed. Unless otherwise directed, avoid tacking the vertical faces of adjacent PFC mats in the longitudinal direction to avoid restricting lateral drainage. Apply tack coat to all transverse joints. Do not let the wheels or other parts of the paving machine contact the freshly applied membrane. Do not dilute the membrane at the terminal, in the field, or at any other location before use. Do not allow any loose mixture onto the prepared surface before application of the membrane.

	alion Rale Linnis, (Gal. per s	
Mix Type	Lift Thickness	Membrane Rate
	1-1/2 in.	0.30-0.33
Dermachia Friction Course	1-1/4 in.	0.27-0.30
Permeable Friction Course	1 in.	0.25-0.28
	3/4 in.	0.22-0.25
	3/4 in.	0.17–0.27
Thin Bonded Friction Course	5/8 in.	0.16-0.24
	1/2 in.	0.14-0.20

Table 11 Membrane Application Rate Limits. (Gal. per square vard)

- 4.7.2.1. **Non-uniform Application of Membrane**. Stop application if it is not uniform due to streaking, ridging, pooling, or flowing off the roadway surface. Verify equipment condition including plugged nozzles on the spray bar, operating procedures, application temperature, and material properties. Determine and correct the cause of non-uniform application.
- 4.7.2.2. **Test Strips.** The Engineer may perform independent tests to confirm Contractor compliance and may require testing differences or failing results to be resolved before resuming production.

The Engineer may cease operations and require construction of test strips at the Contractor's expense if any of the following occurs:

- non-uniformity of application continues after corrective action;
- in three consecutive shots, application rate differs by more than 0.03 gal. per square yard from the rate

directed; or

■ any shot differs by more than 0.05 gal. per square yard from the rate directed.

The Engineer will approve the test strip location. The Engineer may require additional test strips until the membrane application meets specification requirements.

4.7.3. **Lay-Down Operations.** Use the placement temperature in accordance with Table 12 to establish the minimum placement temperature of the mixture delivered to the paving operation.

Min Mixture Placement Temperature			
High-Temperature Binder Grade ¹ (Before Entering Paving Operation) ^{2,3}			
PG 76	280°F		
A-R Binder	280°F		

 Table 12

 Min Mixture Placement Temperature

- 1. The high-temperature binder grade refers to the high-temperature grade of the virgin asphalt binder used to produce the mixture.
- 2. The mixture temperature must be measured using a hand-held thermal camera or infrared thermometer nearest to the point of entry of the paving operation.
- 3. Minimum placement temperatures may be reduced 10°F if using a compaction aid.
- 4.7.3.1. **Thermal Profile.** Use a hand-held thermal camera or a thermal imaging system to obtain a continuous thermal profile in accordance with <u>Tex-244-F</u>. Thermal profiles are not applicable in areas described in Section 3082.4.9.8., "Miscellaneous Areas."
- 4.7.3.1.1. Thermal Segregation.
- 4.7.3.1.1.1. Moderate. Any areas that have a temperature differential greater than 25°F, but not exceeding 50°F.
- 4.7.3.1.1.2. **Severe.** Any areas that have a temperature differential greater than 50°F.
- 4.7.3.1.2. **Thermal Imaging System.** Review the output results when a thermal imaging system is used, and provide the report described in <u>Tex-244-F</u> to the Engineer daily unless otherwise directed. Modify the paving process as necessary to eliminate any recurring (moderate or severe) thermal segregation identified by the thermal imaging system.

The Engineer may suspend subsequent paving operations if the Contractor cannot successfully modify the paving process to eliminate recurring severe or moderate thermal segregation.

Provide the Engineer with electronic copies of all daily data files that can be used with the thermal imaging system software to generate temperature profile plots daily or as requested by the Engineer.

- 4.7.3.1.3. **Thermal Camera.** When using the thermal camera instead of the thermal imaging system, take immediate corrective action to eliminate recurring moderate thermal segregation when a hand-held thermal camera is used. Provide the Engineer with the thermal profile of every sublot within one working day of the completion of each lot. When requested by the Engineer, provide the electronic files generated using the thermal camera. Report the results of each thermal profile in accordance with Section 3082.4.2., "Reporting and Responsibilities." The Engineer will use a hand-held thermal camera to obtain a thermal profile at least once per project unless the thermal imaging system is used. Suspend operations and take immediate corrective action to eliminate severe thermal segregation unless otherwise directed. Resume operations when the Engineer determines that subsequent production will meet the requirements of this Section.
- 4.7.3.2. **Hauling Equipment.** Use live bottom or end dump trucks to haul and transfer mixture; however, with exception of paving miscellaneous areas, end dump trucks are only allowed when used in conjunction with an MTD with remixing capability or when a thermal imaging system is used unless otherwise allowed.
- 4.7.3.3. **Screed Heaters.** Turn off screed heaters to prevent overheating of the mat if the paver stops for more than 5 min. The Engineer may evaluate the suspect area in accordance with Section 3082.4.9.9., "Recovered

Asphalt Dynamic Shear Rheometer (DSR)," if the screed heater remains on for more than 5 min. while the paver is stopped.

4.8. Compaction. Roll the freshly placed mixture with as many steel-wheeled rollers as necessary, operated in static mode, to seat the mixture without excessive breakage of the aggregate and to provide a smooth surface and uniform texture. Do not use pneumatic rollers. Use the control strip method given in <u>Tex-207-F</u>, Part IV, to establish the rolling pattern. Moisten the roller drums thoroughly with a soap and water solution to prevent adhesion. Use only water or an approved release agent on rollers, tamps, and other compaction equipment unless otherwise directed.

For PFC mixtures, use <u>Tex-246-F</u> to test and verify that the compacted mixture has adequate permeability. Measure the water flow once per sublot at locations directed by the Engineer. The water flow rate should be less than 20 sec. Investigate the cause of the water flow rate test failures and take corrective actions during production and placement to ensure the water flow rate is less than 20 sec. Suspend production if two consecutive water flow rate tests fail unless otherwise approved. Resume production after the Engineer approves changes to production or placement methods.

Complete all compaction operations before the pavement temperature drops below 180°F unless otherwise allowed. The Engineer may allow compaction with a light finish roller operated in static mode for pavement temperatures below 180°F.

Allow the compacted pavement to cool to 160°F or lower before opening to traffic unless otherwise directed. Sprinkle the finished mat with water or limewater, when directed, to expedite opening the roadway to traffic.

- 4.9. Acceptance Plan. Sample and test the hot-mix on a lot and sublot basis.
- 4.9.1. **Referee Testing.** The Materials and Tests Division is the referee laboratory. The Contractor may request referee testing if the differences between Contractor and Engineer test results exceed the operational tolerances in accordance with Table 9 and the differences cannot be resolved. The Contractor may also request referee testing if the Engineer's test results require suspension of production and the Contractor's test results are within specification limits. Make the request within five working days after receiving test results and cores from the Engineer. Referee tests will be performed only on the sublot in question and only for the particular tests in question. Allow 10 working days from the time the referee laboratory receives the samples for test results to be reported. The Department may require the Contractor to reimburse the Department for referee tests if more than three referee tests per project are required and the Engineer's test results are closer to the referee test results than the Contractor's test results.

4.9.2. Production Acceptance.

- 4.9.2.1. **Production Lot.** A production lot consists of four equal sublots. The default quantity for Lot 1 is 1,000 ton; however, when requested by the Contractor, the Engineer may increase the quantity for Lot 1 to no more than 2,000 ton. The Engineer will select subsequent lot sizes based on the anticipated daily production such that approximately three to four sublots are produced each day. The lot size will be between 1,000 ton and 4,000 ton. The Engineer may change the lot size before the Contractor begins any lot.
- 4.9.2.1.1. **Incomplete Production Lots.** If a lot is begun but cannot be completed, such as on the last day of production or in other circumstances deemed appropriate, the Engineer may close the lot. Close all lots within five working days unless otherwise allowed.

4.9.2.2. **Production Sampling.**

4.9.2.2.1. **Mixture Sampling.** Obtain hot-mix samples from trucks at the plant in accordance with <u>Tex-222-F</u>. The sampler will split each sample into three equal portions in accordance with <u>Tex-200-F</u> and label these portions as "Contractor," "Engineer," and "Referee." The Engineer will perform or witness the sample splitting and take immediate possession of the samples labeled "Engineer" and "Referee." The Engineer will maintain the custody of the samples labeled "Engineer" and "Referee" until the Department's testing is completed.

- 4.9.2.2.1.1. Random Sample. At the beginning of the project, the Engineer will select random numbers for all production sublots. Determine sample locations in accordance with Tex-225-F. Take one sample for each sublot at the randomly selected location. The Engineer will perform or witness the sampling of production sublots.
- 4.9.2.2.1.2. Blind Sample. For one sublot per lot, the Engineer will obtain and test a "blind" sample instead of the random sample collected by the Contractor. Test either the "blind" or the random sample; however, referee testing (if applicable) will be based on a comparison of results from the "blind" sample. The location of the Engineer's "blind" sample will not be disclosed to the Contractor. The Engineer's "blind" sample may be randomly selected in accordance with Tex-225-F for any sublot or selected at the discretion of the Engineer. The Engineer will use the Contractor's split sample for sublots not sampled by the Engineer.
- 4.9.2.2.2. Informational Hamburg and Overlay Testing. Select one random sublot from Lot 2 or higher for Hamburg and Overlay testing during the first week of production. Obtain and provide the Engineer with approximately 90 lb. of mixture, sampled in accordance with Tex-222-F, in sealed containers, boxes, or bags labeled with the Control-Section-Job (CSJ), mixture type, lot, and sublot number. The Engineer will ship the mixture to the Materials and Tests Division for Hamburg and Overlay testing. Results from these tests will not be used for specification compliance.
- 4.9.2.2.3. Asphalt Binder Sampling. Obtain a 1-qt. (1 gal. for A-R binder) sample of the asphalt binder witness by the Engineer for each lot of mixture produced. The Contractor will notify the Engineer when the sampling will occur. Obtain the sample at approximately the same time the mixture random sample is obtained. Sample from a port located immediately upstream from the mixing drum or pug mill and upstream from the introduction of any additives in accordance with Tex-500-C, Part II. Label the can with the corresponding lot and sublot numbers, producer, producer facility, grade, district, date sampled, and project information including highway and CSJ. The Engineer will retain these samples for one year. The Engineer may also obtain independent samples. If obtaining an independent asphalt binder sample and upon request of the Contractor, the Engineer will split a sample of the asphalt binder with the Contractor.

At least once per project, the Engineer will collect split samples of each binder grade and source used. The Engineer will submit one split sample to the Materials and Tests Division to verify compliance with Item 300, "Asphalts, Oils, and Emulsions" and will retain the other split sample for 1 yr.

4.9.2.3. Membrane Sampling. The Engineer will obtain a 1-gt. sample of the polymer modified emulsion for each lot of mixture produced in accordance with Tex-500-C, Part III. The Engineer will notify the Contractor when the sampling will occur and will witness the collection of the sample. Obtain the sample at approximately the same time the mixture random sample is obtained. Label the can with the corresponding lot and sublot numbers, producer, producer facility, grade, district, date sampled, and project information including highway and CSJ. The Engineer will retain theses samples for two months.

> At least once per project, the Engineer will collect split samples of the polymer modified emulsion. The Engineer will submit one split sample to the Materials and Tests Division to verify compliance with Item 300, "Asphalts, Oils, and Emulsions" and will retain the other split sample for two months. The Engineer may test as often as necessary to ensure the residual of the emulsion is greater than or equal to the specification requirement in Item 300, "Asphalts, Oils, and Emulsions."

Production Testing. The Contractor and Engineer must perform production tests in accordance with 4.9.2. Table 13. The Contractor has the option to verify the Engineer's test results on split samples provided by the Engineer. Determine compliance with operational tolerances in accordance with Table 9 for all sublots.

> At any time during production, the Engineer may require the Contractor to verify the following based on quantities used:

- lime content (within ±0.1% of JMF), when PG binder is specified;
- fiber content (within ±0.03% of JMF), when PG binder is specified; and
- CRM content (within ±1.5% of JMF), when A-R binder is specified.

Maintain the in-line measuring device when A-R binder is specified to verify the A-R binder viscosity between

2,500 and 4,000 centipoise at 350°F unless otherwise approved. Record A-R binder viscosity at least once per hour and provide the Engineer with a daily summary unless otherwise directed.

If the aggregate mineralogy is such that <u>Tex-236-F</u> Part I does not yield reliable results, the Engineer may allow alternate methods for determining the asphalt content and aggregate gradation. The Engineer will require the Contractor to provide evidence that results from <u>Tex-236-F</u>, Part I are not reliable before permitting an alternate method unless otherwise allowed. Use the applicable test procedure as directed if an alternate test method is allowed.

Description	Test Method	Min Contractor Testing Frequency	Min Engineer Testing Frequency
Individual % retained for sieve sized larger than #200	<u>Tex-200-F</u>	1 per sublot	1 per 12 sublots
% passing the #200 sieve			
Laboratory-molded density, %	<u>Tex-207-F</u> , Part VIII	1 per sublot	1 per lot
Asphalt binder content ¹ , %	<u>Tex-236-F</u> , Part I ²	1 per sublot	1 per lot
Drain-down, %	<u>Tex-235-F</u>	1 per sublot	1 per 12 sublots
Boil test ³	<u>Tex-530-C</u>	1 per project	1 per project
Membrane application rate	<u>Tex-247-F</u>	1 per lot	1 per 12 sublots
Moisture content	<u>Tex-212-F</u> , Part II	When directed	1 per project
Cantabro loss, %	<u>Tex-245-F</u>	1 per project (sample only)	1 per project
Overlay test	<u>Tex-248-F</u>	1 per project (sample only) ¹⁰	1 per project ⁴
Hamburg Wheel test	<u>Tex-242-F</u>	1 per project (sample only) ¹⁰	1 per project ⁴
Water flow test ⁵	<u>Tex-246-F</u>	1 per sublot	1 per project
Asphalt binder sampling	<u>Tex-500-C</u> , Part II	1 per lot (sample only) ⁶	1 per project
Membrane sampling and testing	<u>Tex-500-C</u> , Part III	N/A	1 per project
Thermal profile	<u>Tex-244-F</u>	1 per sublot ^{7,8,9}	1 per project ⁸

 Table 13

 Production and Placement Testing Frequency

1. May be obtained from asphalt mass flow meter readouts as determined by the Engineer.

2. Ensure the binder content determination excludes fibers.

3. When shown on the plans.

4. When required according to mixture type and requirements in accordance with Table 8.

5. Only required for PFC mixtures.

6. Obtain samples witness by the Engineer. The Engineer will retain these samples for 1 yr.

7. To be performed in the presence of the Engineer when using the thermal camera, unless otherwise approved.

- 8. Not required when a thermal imaging system is used.
- 9. When using the thermal imaging system, the test report must include the temperature measurements taken in accordance with Tex-244-F.

10. Testing performed by the Materials and Tests Division for informational purposes only.

4.9.3. **Operational Tolerances.** Control the production process within the operational tolerances in accordance with Table 9. Suspend production and placement operations when production or placement test results exceed the tolerances in accordance with Table 9 unless otherwise allowed. The Engineer will allow suspended production to resume when test results or other information indicates the next mixture produced will be within the operational tolerances.

4.9.4. Individual Loads of Hot-Mix. The Engineer can reject individual truckloads of hot-mix. When a load of hotmix is rejected for reasons other than temperature, contamination, or excessive uncoated particles, the Contractor may request that the rejected load be tested. Make this request within 4 hr. of rejection. The Engineer will sample and test the mixture. If test results are within the operational tolerances in accordance with Table 9, payment will be made for the load. If test results are not within operational tolerances, no payment will be made for the load.

4.9.5. Placement Acceptance.

- 4.9.6. **Placement Lot.** A placement lot consists of four placement sublots. A placement sublot consists of the area placed during a production sublot.
- 4.9.7. **Miscellaneous Areas.** Miscellaneous areas include areas that typically involve significant handwork or discontinuous paving operations such as driveways, mailbox turnouts, crossovers, gores, spot level-up areas, and other similar areas. The specified layer thickness is based on the rate of 90 lb. per square yard for each inch of pavement unless another rate is shown on the plans. Miscellaneous areas are not subject to thermal profiles testing.
- 4.9.8. **Recovered Asphalt Dynamic Shear Rheometer (DSR).** The Engineer may take production samples or cores from suspect areas of the project to determine recovered asphalt properties. Asphalt binders with an aging ratio greater than 3.5 do not meet the requirements for recovered asphalt properties and may be deemed defective when tested and evaluated by the Materials and Tests Division. The aging ratio is the DSR value of the extracted binder divided by the DSR value of the original unaged binder. Obtain DSR values in accordance with AASHTO T 315 at the specified high temperature performance grade of the asphalt. The Engineer may require removal and replacement of the defective material at the Contractor's expense. The asphalt binder will be recovered for testing from production samples or cores in accordance with <u>Tex-211-F</u>.
- 4.9.9. Irregularities. Identify and correct irregularities including segregation, rutting, raveling, flushing, fat spots, mat slippage, irregular color, irregular texture, roller marks, tears, gouges, streaks, uncoated aggregate particles, or broken aggregate particles. The Engineer may also identify irregularities, and in such cases, the Engineer will promptly notify the Contractor. If the Engineer determines that the irregularity will adversely affect pavement performance, the Engineer may require the Contractor to remove and replace (at the Contractor to remove and replace (at the Contractor to remove and replace (at the Contractor's expense) areas where the mixture does not bond to the existing pavement.

If irregularities are detected, the Engineer may require the Contractor to immediately suspend operations or may allow the Contractor to continue operations for no more than one day while the Contractor is taking appropriate corrective action.

- 4.9.10. **Exempt Production.** When the anticipated daily production is less than 100 ton, all QC and QA sampling and testing are waived. The Engineer may deem the mixture as exempt production for the following conditions:
 - anticipated daily production is more than 100 ton but less than 250 ton;
 - total production for the project is less than 2,500 ton;
 - when mutually agreed between the Engineer and the Contractor; or
 - when shown on the plans.

For exempt production, the Contractor is relieved of all production and placement sampling and testing requirements. All other specification requirements apply, and the Engineer will perform acceptance tests for production and placement in accordance with Table 13. For exempt production:

- produce, haul, place, and compact the mixture as directed by the Engineer; and
- control mixture production to yield a laboratory-molded density that is within ±1.0% of the target density as tested by the Engineer.

4.9.11. **Ride Quality**. Measure ride quality in accordance with Item 585, "Ride Quality for Pavement Surfaces," unless otherwise shown on the plans.

5. MEASUREMENT

- 5.1. **PFC Hot-Mix Asphalt.** Permeable friction course (PFC) hot-mix will be measured by the ton of composite mixture, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520, "Weighing and Measuring Equipment."
- 5.2. **TBFC Hot-Mix Asphalt.** Thin bonded friction course (TBFC) hot-mix will be measured by the ton of composite mixture, which includes asphalt, aggregate, and additives. Measure the weight on scales in accordance with Item 520, "Weighing and Measuring Equipment."
- 5.3. **Membrane.** Membrane material will be measured by volume. Membrane material will be measured at the applied temperature by strapping the tank before and after road application and determining the net volume in gallons from the distributor's calibrated strap stick. The Engineer will witness all operations for volume determination. All membrane will be measured by the gallon applied, in the accepted membrane.

6. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under Section 3082.5.1., "PFC Hot-Mix Asphalt," will be paid for at the unit bid price for "Permeable friction course" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, removing pavement marking and markers, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 3082.5.2., "TBFC Hot-Mix Asphalt," will be paid for at the unit bid price for "Thin bonded friction course" of the mixture type, SAC, and binder specified. These prices are full compensation for surface preparation, removing pavement marking and markers, materials, placement, equipment, labor, tools, and incidentals.

The work performed and materials furnished in accordance with this Item and measured as provided under Section 3082.5.3., "Membrane," will be paid for at the unit bid price for "Membrane" of the membrane material provided. These prices are full compensation for materials, placement, equipment, labor, tools, and incidentals.

Trial batches will not be paid for unless they are included in pavement work approved by the Department.

Payment adjustment for ride quality will be determined in accordance with Item 585, "Ride Quality for Pavement Surfaces."

Special Specification 3096 Asphalts, Oils, and Emulsions

1. DESCRIPTION

Provide asphalt cements, cutback and emulsified asphalts, performance-graded asphalt binders, and other miscellaneous asphalt materials as specified on the plans.

2. MATERIALS

Provide asphalt materials that meet the stated requirements when tested in conformance with the referenced Department, AASHTO, and ASTM test methods. Use asphalt containing recycled materials only if the recycled components meet the requirements of Article 6.9., "Recycled Materials." Provide asphalt materials that the Department has preapproved for use in accordance with <u>Tex-545-C</u>, "Asphalt Binder Quality Program."

Inform the Department of all additives or modifiers included in the asphalt binder as part of the facility quality plan, as required by <u>Tex-545-C</u>, "Asphalt Binder Quality Program," and provide that information to Department personnel. The Department reserves the right to prohibit the use of any asphalt additive or modifier.

Limit the use of polyphosphoric acid to no more than 0.5% by weight of the asphalt binder.

The use of re-refined engine oil bottoms is prohibited.

Acronyms used in this Item are defined in Table 1.

	Table1
٨	

	Acronyms											
Acronym	Definition											
	Test Procedure Designations											
Tex	Department											
T or R	AASHTO											
D	ASTM											
	Polymer Modifier Designations											
Р	polymer-modified											
SBR or L	styrene-butadiene rubber (latex)											
SBS	styrene-butadiene-styrene block co-polymer											
TR	tire rubber (from ambient temperature grinding of truck and											
	passenger tires)											
AC	asphalt cement											
AE	asphalt emulsion											
AE-P	asphalt emulsion prime											
A-R	asphalt-rubber											
С	cationic											
EAP&T	emulsified asphalt prime and tack											
EBL	emulsified bonding layer											
FDR	full depth reclamation											
H-suffix	harder residue (lower penetration)											
HF	high float											
HY	high yield											
MC	medium-curing											
MS	medium-setting											
PCE	prime, cure, and erosion control											
PG	performance grade											
RC	rapid-curing											
RS	rapid-setting											
S-suffix	stockpile usage											
SCM	special cutback material											
SS	slow-setting											
SY	standard vield											
TRAIL	tracking resistant asphalt interlayer											

2.1. **Asphalt Cement**. Provide asphalt cement that is homogeneous, water-free, and nonfoaming when heated to 347°F, and meets the requirements in Table 2.

		As	sphalt	Cemer	t									
	Test	Viscosity Grade												
Property	Test	AC-0.6		AC	-1.5	AC	-3	AC-5		AC	-10			
	Procedure	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max			
Viscosity	T 202													
140°F, poise		40	80	100	200	250	350	400	600	800	1,200			
275°F, poise		0.4	-	0.7	-	1.1	-	1.4	-	1.9	-			
Penetration, 77°F, 100g, 5 sec.	T 49	350	_	250	_	210	_	135	-	85	_			
Flash point, C.O.C., °F	T 48	425	-	425	-	425	-	425	-	450	-			
Solubility in trichloroethylene, %	T 44	99.0	_	99.0	_	99.0	_	99.0	-	99.0	_			
Spot test	Tex-509-C	Ne	eg.	Ne	eg.	Ne	eg.	Neg.		Ne	eg.			
Tests on residue from RTFOT:	T 240													
Viscosity, 140°F, poise	T 202	-	180	-	450	-	900	-	1,500	-	3,000			
Ductility, ¹ 77°F 5 cm/min., cm	T 51	100	-	100	-	100	-	100	-	100	-			

Table 2 sphalt Ceme

 If AC-0.6 or AC-1.5 ductility at 77°F is less than 100 cm, material is acceptable if ductility at 60°F is more than 100 cm.

3096

2.2.

Polymer-Modified Asphalt Cement. Provide polymer-modified asphalt cement that is smooth, homogeneous, and meets the requirements Table 3. Supply samples of the base asphalt cement and polymer additives if requested.

Property	Test														
	Procedure	AC-12	2-5TR	NT-	HA ¹	AC-		AC-2		AC-10	-2TR	AC-20	-5TR		
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
Polymer		TI	۲	-	-	SE	3S	SB	IS	TF	२	TF	२		
Polymer content, %	<u>Tex-533-C</u>	5.0	-	-	-	3.0	-	-	-	2.0	-	5.0	-		
(solids basis)	or <u>Tex-553-C</u>														
Dynamic shear,	T 315			1.0	-										
G*/sinδ, 82°C,															
10 rad/s, kPa															
Dynamic shear,	T 315	-	-	-	-	-	-	1.0	-	-	-	1.0	-		
G*/sinδ, 64°C,															
10 rad/s, kPa															
Dynamic shear,	T 315	1.0	-	-	-	-	-	-	-	1.0	-	-	-		
G*/sinδ, 58°C,															
10 rad/s, kPa															
Viscosity															
140°F, poise	T 202	1,200	-			1,500	-	2,000	-	1,000	-	2,000	-		
275°F, poise	T 202			-	4,000	-	8.0	-	-	-	8.0	-	10.0		
Penetration, 77°F,	T 49	110	150	-	25	100	150	75	115	95	130	75	115		
100 g, 5 sec.															
Ductility, 5cm/min.,	T 51					-	-	-	-	-	-	-	-		
39.2°F, cm															
Elastic recovery,	<u>Tex-539-C</u>	55	-			55	-	55	-	30	-	55	-		
50°F, %															
Softening point, °F	T 53	113	-	170	-	-	-	120	-	110	-	120	-		
Polymer separation,	<u>Tex-540-C</u>	No	ne			No	ne	No	ne	Noi	ne	No	ne		
5 hr.					1		-						-		
Flash point, C.O.C.,	T 48	425	-	425	-	425	-	425	-	425	-	425	-		
°F															
Tests on residue	T 240														
from RTFOT aging	and R 28														
and pressure aging:															
Creep stiffness	T 313														
S, -18°C, MPa		-	300	-	-	-	300	-	300	-	300	-	300		
m-value, -18°C		0.300	-	-	-	0.300	-	0.300	-	0.300	-	0.300	-		

Table 3
Polymer-Modified Asphalt Cement
Delumer Medifi

1. Non-Tracking Hot Applied Tack Coat - TRAIL product

2.3.

Cutback Asphalt. Provide cutback asphalt that meets the requirements of Tables 4, 5, and 6, for the specified type and grade. Supply samples of the base asphalt cement and polymer additives if requested.

Property	Test Procedure		Type–Grade					
		RC	-250	RC	-800	RC-	3000	
		Min	Max	Min	Max	Min	Max	
Kinematic viscosity, 140°F, cSt	T 201	250	400	800	1,600	3,000	6,000	
Water, %	D95	_	0.2	_	0.2	_	0.2	
Flash point, T.O.C., °F	T 79	80	-	80	-	80	-	
Distillation test:	T 78							
Distillate, percentage by volume of total								
distillate to 680°F								
to 437°F		40	75	35	70	20	55	
to 500°F		65	90	55	85	45	75	
to 600°F		85	-	80	-	70	-	
Residue from distillation, volume %		70	-	75	-	82	-	
Tests on distillation residue:								
Viscosity, 140°F, poise	T 202	600	2,400	600	2,400	600	2,400	
Ductility, 5 cm/min., 77°F, cm	T 51	100	-	100	-	100	-	
Solubility in trichloroethylene, %	T 44	99.0	-	99.0	-	99.0	-	
Spot test	Tex-509-C	N	eg.	Ne	eg.	Neg.		

Table 4 Rapid-Curing Cutback Asphalt

Medium-Curing Cutback Asphalt												
Property	Test				Тур	e–Grade						
	Procedure	MC	C-30	MC	250	MC-	800	MC-	3000			
		Min	Max	Min	Max	Min	Max	Min	Max			
Kinematic viscosity, 140°F, cSt	T 201	30	60	250	500	800	1,600	3,000	6,000			
Water, %	D95	-	0.2	-	0.2	-	0.2	-	0.2			
Flash point, T.O.C., °F	T 79	95	-	122	-	140	-	149	-			
Distillation test: Distillate, percentage by volume of total distillate to 680°F to 437°F to 500°F to 600°F Residue from distillation, volume %	T 78	- 30 75 50	35 75 95 –	- 5 60 67	20 55 90 –	- - 45 75	- 40 85 -	- - 15 80	- 15 75 -			
Tests on distillation residue: Viscosity, 140°F, poise Ductility, 5 cm/min., 77°F, cm Solubility in	T 202 T 51 T 44	300 100 99.0	1,200 _ _	300 100 99.0	1,200 _ _	300 100 99.0	1,200 _ _	300 100 99.0	1,200 - -			
trichloroethylene, % Spot test	<u>Tex-509-C</u>	N	eg.	Ne	eg.	Ne	g.	Ne	eg.			

Table 5

	Special-Use Cuth	Special-Use Cutback Asphalt										
Property	Test			Туре	–Grade							
	Procedure	MC-2	400L	SC	CMI	SC	CM II					
		Min	Max	Min	Max	Min	Max					
Kinematic viscosity, 140°F, cSt	T 201	2,400	4,800	500	1,000	1,000	2,000					
Water, %	D95	-	0.2	-	0.2	-	0.2					
Flash point, T.O.C., °F	T 79	150	-	175	-	175	_					
Distillation test:	T 78											
Distillate, percentage by volume of												
total distillate to 680°F												
to 437°F		-	-	-	-	-	-					
to 500°F		-	35	-	0.5	-	0.5					
to 600°F		35	80	20	60	15	50					
Residue from distillation, volume %		78	-	76	-	82	-					
Tests on distillation residue:												
Polymer		SBR			-		-					
Polymer content, % (solids basis)	<u>Tex-533-C</u>	2.0	-	-	-	-	-					
Penetration, 100 g, 5 sec., 77°F	T 49	150	300	180	-	180	-					
Ductility, 5 cm/min., 39.2°F, cm	T 51	50	-	-	-	-	-					
Solubility in trichloroethylene, %	T 44	99.0	_	99.0		99.0	_					

Table 6

2.4.

Emulsified Asphalt. Provide emulsified asphalt that is homogeneous, does not separate after thorough mixing, and meets the requirements for the specified type and grade in Tables 7, 8, 9, 10, and 10A-C.

Data a carta	Emulsified Asphalt Property Test Type–Grade										
Property	Procedure	Rapid-S	Sotting		Mediun	n-Settina	brade		Slow	Setting	
	Tiocedule	HFR	<u> </u>	M	5-2	AES-	200	SS-1			-1H
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol	T 72	WIIII	Max	WIIII	Max		Max		max		Max
77°F. sec.	172	_	_	_	_	75	400	20	100	20	100
122°F, sec.		150	400	100	300	-	-		-	_	-
Sieve test, %	T 59	-	0.1	-	0.1	-	0.1	_	0.1	-	0.1
Miscibility	T 59	_	0.1	-	-	_		Pa	ass	Pa	ISS
Cement mixing, %	T 59	_	_	_	_	_	_	-	2.0	-	2.0
Coating ability and water	T 59								2.0		2.0
resistance:											
Dry aggregate/after spray		_		-	-	Good/	Fair	-	-	-	-
Wet aggregate/after spray		_			_	Fair/	Fair	_		-	-
Demulsibility, 35 mL of 0.02	T 59	50	-	-	30	-	-	-	-	-	-
N CaCl ₂ , %											
Storage stability, 1 day, %	T 59	-	1	-	1	-	1	-	1	-	1
Freezing test, 3 cycles ¹	T 59	_		Pass		_		Pa	ISS	Pa	ISS
Distillation test:	T 59										
Residue by distillation, %		65	-	65	-	65	-	60	-	60	-
by wt.											
Oil distillate, % by volume		-	0.5	-	0.5	-	5	-	0.5	-	0.5
of emulsion											
Tests on residue from											
distillation:											
Penetration, 77°F, 100 g,	Т 49	100	140	120	160	300	-	120	160	70	100
5 sec.											
Solubility in	Т 44	97.5	-	97.5	-	97.5	-	97.5	-	97.5	-
trichloroethylene, %	T 64	400		100				400			
Ductility, 77°F, 5 cm/min.,	T 51	100	-	100	-	-	-	100	-	80	-
CM Float toat 140°E and	T 50	1.200				1.200					
Float test, 140°F, sec.		1	-	-	-	1,200	-	-	-	-	-

Table 7 Emulsified Asphalt

1. Applies only when the Engineer designates material for winter use.

Table 8 Cationic Emulsified Asphalt

Property	Test						Тур	e-Grade					
	Procedure		Rapid-	Setting			Medium	-Setting			Slow-S	Setting	
		CF	RS-2	CRS	S-2H	CMS-2		CMS-2S		CSS-1		CSS	-1H
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol	T 72												
77°F, sec.		-	-	-	-	-	-	-	-	20	100	20	100
122°F, sec.		150	400	150	400	100	300	100	300	-	-	-	-
Sieve test, %	T 59	-	0.1	-	0.1	-	0.1	-	0.1	-	0.1	-	0.1
Cement mixing, %	T 59	-	-	-	-	-	-	-	-	-	2.0	-	2.0
Coating ability and water resistance:	T 59												
Dry aggregate/after spray		-		-		Good	d/Fair	Good/Fair		-		-	-
Wet aggregate/after spray		-		-	-	Fair	/Fair	Fair	/Fair	-		-	
Demulsibility, 35 mL of 0.8%	T 59	70	-	70	-	-	-	-	-	-	-	-	-
Sodium dioctyl sulfosuccinate, %													
Storage stability, 1 day, %	T 59	-	1	-	1	-	1	-	1	-	1	-	1
Particle charge	T 59	Pos	sitive	Pos	itive	Positive		Positive		Positive		Positive	
Distillation test:													
Residue by distillation, % by wt.	T 59	65	-	65	-	65	-	65	-	60	-	60	-
Oil distillate, % by volume of	1 55	-	0.5	-	0.5	-	7	-	5	-	0.5	-	0.5
emulsion													
Tests on residue from distillation:													
Penetration, 77°F, 100 g, 5 sec.	T 49	120	160	70	110	120	200	300	-	120	160	70	110
Solubility in trichloroethylene, %	T 44	97.5	-	97.5	-	97.5	-	97.5	-	97.5	-	97.5	-
Ductility, 77°F, 5 cm/min., cm	T 51	100	-	80	-	100	-		-	100	-	80	-

Property	Test					Тур	e-Grade				
	Procedure	Rapid-	Setting		Medium	-Setting			Slow	Setting	
		HFR	S-2P	AES	150P	AES	300P	AES-3	300S	S	S-1P
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol	T 72										
77°F, sec.		-	-	75	400	75	400	75	400	30	100
122°F, sec.		150	400					-	-	-	-
Sieve test, %	T 59	-	0.1	-	0.1	-	0.1	-	0.1	-	0.1
Miscibility	T 59		_	-	-	-	-	-		F	ass
Coating ability and water resistance:											
Dry aggregate/after spray	T 59		-	Good	d/Fair	Good	d/Fair	Good/F	air		-
Wet aggregate/after spray			_		/Fair	Fair	/Fair	Fair/F	air		-
Demulsibility, 35 mL of 0.02 N CaCl ₂ ,	T 59	50	-	-	-	-	-	-	-	-	-
%											
Storage stability, 1 day, %	T 59	-	1	-	1	-	1	I	1	-	1
Breaking index, g	<u>Tex-542-C</u>	-	-								
Distillation test:1	T 59										
Residue by distillation, % by wt.		65	-	65	-	65	-	65	-	60	-
Oil distillate, % by volume of		-	0.5	-	3	-	5	-	7	-	0.5
emulsion											
Tests on residue from distillation:											
Polymer content, wt. % (solids	<u>Tex-533-C</u>	3.0	-	-	-	-	-	-	-	3.0	-
basis)											
Penetration, 77°F, 100 g, 5 sec.	T 49	90	140	150	300	300	-	300	-	100	140
Solubility in trichloroethylene, %	T 44	97.0	-	97.0	-	97.0	-	97.0	-	97.0	-
Viscosity, 140°F, poise	T 202	1,500	-	-	-	-	-	-	-	1,300	-
Float test, 140°F, sec	T 50	1,200	-	1,200	-	1,200	-	1,200	-	-	-
Ductility, ² 39.2°F, 5 cm/min., cm	T 51	50	-	-	-	-	-	-	-	50	-
Elastic recovery,2 50°F, %	<u>Tex-539-C</u>	55	-	-	-	-	-	-	-	-	-
Tests on RTFO curing of distillation	T 240										
	Tev 526.0			50		50		20			
Elastic recovery, 50°F, %	<u>Tex-536-C</u>	-	—	50	-	50	-	30	-	-	-

Table 9 Polymer-Modified Emulsified Asphalt

Exception to T 59: Bring the temperature on the lower thermometer slowly to 350°F ±10°F. Maintain at this temperature for 20 min. Complete total distillation in 60 min. (±5 min.) from the first application of heat.
 HFRS-2P must meet one of either the ductility or elastic recovery requirements.

Table 10	
Polymer-Modified Cationic Emulsified Asphal	t

Property	Test	Test Polymer-Modified Cationic Emulsified Asphalt Type–Grade											
rioperty	Procedure			Rapid-S	ottina		Type=0	laue	Medium	Setting	1	Slow	Setting
	Trocedure	CRS	CRS-2P CHFRS-2P			CRS-	S-2TR CMS-1P ³			CMS-2P ³		CSS 1P	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol	T 72												
77°F, sec.		_	_	_	_	_	_	10	100	_	_	20	100
122°F, sec.		150	400	100	400	150	500	_	_	50	400	_	_
Sieve test. %	T 59	-	0.1	-	0.1	-	0.1	_	0.1	-	0.1	_	0.1
Demulsibility, 35 ml of 0.8% sodium	T 59	70	-	60	-	40	-	_	-	_	-	-	-
dioctyl sulfosuccinate, %	1.00	10		00		10							
Storage stability, 1 day, %	T 59	-	1	-	1	-	1	-	1	-	1	-	1
Breaking index, g	Tex-542-C	-	-	-	-	-	-	-	-	-	-	-	-
Particle charge	T 59	Posi	tive	Posi	tive	Posit	ive	Pos	sitive	Po	sitive	Po	sitive
Distillation test1:	T 59												
Residue by distillation, % by weight		65	-	65	-	65	-	30	-	60	-	62	-
Oil distillate, % by volume of emulsion		-	0.5	-	0.5	-	3	-	0.5	-	0.5	-	0.5
Tests on residue from distillation:													
Polymer content, wt. % (solids basis)	Tex-533-C	3.0	-	3.0	-	5.07	-	-	-	-	-	3.0	-
Penetration, 77°F, 100 g, 5 sec.	T 49	90	150	80	130	90	150	30	-	30	-	55	90
Viscosity, 140°F, poise	T 202	1,300	-	1,300	-	1,000	-	-	-	-	-	-	-
Solubility in trichloroethylene, %	T44	97.0	-	95.0	-	98	-	-	-	-	-	97.0	-
Softening point, °F	T 53	-	-	-	-	-	-	-	-	-	-	135	-
Ductility, 77°F, 5 cm/min., cm	T 51	-	-	-	-	40	-	-	-	-	-	70	-
Float test, 140°F, sec.	T 50	-	-	1,800	-	-	-	-	-	-	-	-	-
Ductility, ² 39.2°F, 5 cm/min., cm	T 51	50	-	-	-	-	-	-	-	-	-	-	-
Elastic recovery, ² 50°F, %	Tex-539-C	55	-	55	-	-	-	-	-	-	-	-	-
Tests on residue from evaporative	R 78,												
recovery:	Procedure												
	В												
Nonrecoverable creep compliance of	T 350	-	-	-	-	-	-	-	2.0	-	4.0	-	-
residue, 3.2 kPa, 52°C, kPa-1													
Tests on rejuvenating agent:													
Viscosity, 140°F, cSt	T 201	-	-	-	-	-	-	50	175	50	175	-	-
Flash point, C.O.C., °F	T 48	-	-	-	-	-	-	380	-	380	-	-	-
Saturates, % by weight	D 2007	-	-	-	-	-	-	-	30	-	30	-	-
Solubility in n-pentane, % by weight	D 2007	-	-	-	-	-	-	99	-	99	-	-	-
Tests on rejuvenating agent after RTFO	T 240												
Weight Change, %		-	-	-	-	-	-	-	6.5	-	6.5	-	-
Viscosity Ratio		-	-	-	-	-	-	-	3.0	-	3.0	-	-
Tests on latex4:													
Tensile strength, die C dumbbell, psi	D 412 ⁵	-	-	-	-	-	-	800	-	800	-	-	-
Change in mass after immersion in	D 471	-	-	-	-	-	-	-	406	-	406	-	-
rejuvenating agent, %													

1. Exception to T 59: Bring the temperature on the lower thermometer slowly to 350°F (±0°F). Maintain at this temperature for 20 min. Complete total distillation in 60 min. (±5 min.) from the first application of heat.

2. CRS-2P must meet one of either the ductility or elastic recovery requirements.

With all precertification samples of CMS-1P or CMS-2P, submit certified test reports showing that the rejuvenating agent and latex meet the stated requirements. Submit samples of these raw materials if requested by the Engineer.

4. Preparation of latex specimens: use any substrate and recovery method which produces specimens of uniform dimensions and which delivers enough material to achieve desired residual thickness.

5. Cut samples for tensile strength determination using a crosshead speed of 20 in. per minute.

6. Specimen must remain intact after exposure and removal of excess rejuvenating agent.

7. Modifier type is tire rubber.

Property	Test Procedure	NT-	HRE	NT-RRE		NT-	-SRE	
		Min	Max	Min	Max	Min	Max	
Viscosity, Saybolt Furol	T 72	15	-	15	-	10	100	
77° F, sec.								
Storage stability, 1 Day, %	T 59	-	1	-	1	-	1	
Settlement, 5-day, %	T 59	-	5	-	5	-	5	
Sieve test, %	T 59	-	0.30	-	0.30	-	0.1	
Distillation test:2	T 59							
Residue by distillation, % by wt.		50	-	58	-	50	-	
Oil distillate, by volume of emulsion		-	1.0	-	1.0	-	1.0	
Test on residue from distillation:								
Penetration, 77°F, 100 g, 5 sec.	T 49	-	20	15	45	40	90	
Solubility in trichloroethylene, %	T 44	97.5	-	97.5	-	97.5	-	
Softening point, °F	T 53	150	-	-	-	-	-	
Dynamic shear, G*/sin(δ), 82°C, 10 rad/s, kPa	T 315	1.0	-	-	-	-	-	

Table 10A
Non-Tracking Tack Coat Emulsion ¹

1. Due to the hardness of the residue, these emulsions should be heated to 120-140°F before thoroughly mixing as the emulsion is being prepared for testing.

 Exception to T 59: Bring the temperature on the lower thermometer slowly to 350°F ± 10°F. Maintain at this temperature for 20 min. Complete total distillation in 60 ± 5 min. from first application of heat.

Spray Applied Underseal Membrane Polymer-Modified Emulsions (EBL)									
Property	Test Procedure	Min	Max						
Viscosity @ 77°F, SSF	T 72	20	100						
Storage Stability ¹ , %	T 59	-	1						
Demulsibility ²	T 59	55	-						
Anionic emulsions – 35 mL of 0.02 N CaCl2, %									
Cationic emulsions – 35 mL of 0.8% sodium									
dioctyl sulfosuccinate, %									
Sieve Test ³ , %	T 59	-	0.05						
Distillation Test ⁴	T 59								
Residue by distillation, % by wt.		63							
Oil portion of distillate, % by vol.			0.5						
Test on Residue from Distillation									
Elastic Recovery @ 50°F, 50 mm/min., %	Tex-539-C	60	-						
Penetration @ 77°F, 100 g, 5 sec., 0.1 mm	T 49	80	130						
4 46 7 8 8 8 1 1 1 6 6 4 1 8 1									

Table10B Spray Applied Underseal Membrane Polymer-Modified Emulsions (EBL)

1. After standing undisturbed for 24 hr., the surface must be smooth, must not exhibit a white or milky colored substance, and must be a homogeneous color throughout.

2. Material must meet demulsibility test for emulsions.

3. May be required by the Engineer only when the emulsion cannot be easily applied in the field.

4. The temperature on the lower thermometer should be brought slowly to 350°F ± 10°F and maintained at this temperature for 20 min. The total distillation should be completed in 60 ± 5 min. from the first application of heat.

Property	Test Procedure	Standard	Yield (SY)	Yield (HY)	
		Min	Max	Min	Max
Sieve test, %	T 59	-	0.1	-	0.1
Viscosity Saybolt Furol @ 77°F, sec.	T 59	20	100	20	100
Distillation test1:	T 59				
Residue by distillation, % by wt.		60	-	63	-
Oil portion of distillate, % by vol.		-	0.5	-	0.5
Test on residue from distillation:	T 49				
Penetration @ 77°F, dmm		55	95	120	-
Test on rejuvenating agent:					
BWOA, % ²	***	-	-	2	-
Viscosity @ 140°F, cSt	T 201	-	-	50	175
Flash Point, COC, °F	T 48	-	-	380	-
Solubility in n-pentane, % by wt.	D2007	-	-	99	-

Table 10C	
Full-Depth Reclamation Emulsion (FDR EM)

 The temperature on the lower thermometer should be brought slowly to 350°F ±10°F and maintained at this temperature for 20 min. The total distillation should be completed in 60 ± 5 min. from the first application of heat.

2. BWOA = By weight of asphalt. Provide a manufacturer's certificate of analysis (COA) with the percent of rejuvenator added.

2.5.

Specialty Emulsions. Provide specialty emulsion that is either asphalt-based or resin-based and meets the requirements of Table 11 or Table 11A.

	Specialty Em	ulsions						
Property	Test Procedure	Type–Grade						
			Medium-	Setting		Slow-Setting		
		AE	·P	EA	P&T	P		
		Min	Max	Min	Max	Min	Max	
Viscosity, Saybolt Furol	T 72							
77°F, sec.		-	-	-	-	10	100	
122°F, sec.		15	150	-	-	-	-	
Sieve test, %	T 59	-	0.1	-	0.1	-	0.1	
Miscibility ²	T 59	-		Pass		Pass		
Demulsibility, 35 mL of 0.10 N CaCl ² , %	T 59	-	70	-	-	-	-	
Storage stability, 1 day, %	T 59	-	1	-	1	-	-	
Particle size, ⁵ % by volume < 2.5 μm	<u>Tex-238-F³</u>	-	-	90	-	90	-	
Asphalt emulsion distillation to 500°F								
followed by Cutback asphalt distillation of	T 59 & T 78							
residue to 680°F:								
Residue after both distillations, % by wt.		40	-	-	-	-	-	
Total oil distillate from both distillations, %		25	40	-	-	-	-	
by volume of emulsion								
Residue by distillation, % by wt.	T 59	-	-	60	-	-	-	
Residue by evaporation, ⁴ % by wt.	T 59	-	-	-	-	60	-	
Tests on residue after all distillations:								
Viscosity, 140°F, poise	T 202	-	-	800	-	-	-	
Kinematic viscosity, ⁵ 140°F, cSt	T 201	-	-	-	-	100	350	
Flash point C.O.C., °F	T 48	-	-	-	-	400	-	
Solubility in trichloroethylene, %	T 44	97.5	-	-	-	-	-	
Float test, 122°F, sec.	T 50	50	200	-	-	-	-	

Table 11 Specialty Emulsio

1. Supply with each shipment of PCE:

 a copy of a lab report from an approved analytical lab, signed by a lab official, indicating the PCE formulation does not meet any characteristics of a Resource Conservation Recovery Act (RCRA) hazardous waste;

a certification from the producer that the formulation supplied does not differ from the one tested and that no listed RCRA hazardous wastes or Polychlorinated Biphenyls (PCBs) have been mixed with the product; and

a Safety Data Sheet.

3.

2. Exception to T 59: In dilution, use 350 mL of distilled or deionized water and a 1,000-mL beaker.

Use <u>Tex-238-F</u>, beginning at "Particle Size Analysis by Laser Diffraction," with distilled or deionized water as a medium and no dispersant, or use another approved method.

4. Exception to T 59: Leave sample in the oven until foaming ceases, then cool and weigh.

5. PCE must meet either the kinematic viscosity requirement or the particle size requirement.

Hard Residue Surface Sealant								
Property	Test	Min	Max					
	Procedure							
Viscosity, Krebs unit, 77°F, Krebs units	D 562	45	75					
Softening point, °F	Tex-505-C ¹	250	Ι					
Uniformity	D 2939	Pa	SS ²					
Resistance to heat	D 2939	Pa	SS ³					
Resistance to water	D 2939	Pa	SS ⁴					
Wet flow, mm	D 2939	-	0					
Resistance to Kerosene (optional) ⁵	D 2939	Pa	ss ⁶					
Ultraviolet exposure, UVA-340, 0.77 W/m ² ,	G 154	Pa	SS ⁸					
50°C chamber, 8 hr. UV lamp, 5 min. spray,								
3 hr. 55 min. condensation, 1,000 hr. total								
exposure ⁷								
Abrasion loss, 1.6 mm thickness, liquid only, %	ISSA TB-100	Ι	1.0					
Residue by evaporation, % by weight	D 2939	33	-					
Tests on residue from evaporation:								
Penetration, 77°F, 100 g, 5 sec.	T 49	15	30					
Flash point, Cleveland open cup, °F	T 48	500						
Tests on base asphalt before emulsification								
Solubility in trichloroethylene, %	T 44	98	-					

Table 11A Hard Residue Surface Sealant

1. Cure the emulsion in the softening point ring in a 200°F \pm 5°F oven for 2 hr.

2. Product must be homogenous and show no separation or coagulation that cannot be overcome by moderate stirring.

3. No sagging or slippage of film beyond the initial reference line.

4. No blistering or re-emulsification.

5. Recommended for airport applications or where fuel resistance is desired.

- 6. No absorption of Kerosene into the clay tile past the sealer film. Note sealer surface condition and loss of adhesion.
- 7. Other exposure cycles with similar levels of irradiation and conditions may be used with Department approval.
- 8. No cracking, chipping, surface distortion, or loss of adhesion. No color fading or lightening.
- 2.6. **Recycling Agent**. Recycling agent and emulsified recycling agent must meet the requirements in Table 12. Additionally, recycling agent and residue from emulsified recycling agent, when added in the specified proportions to the recycled asphalt, must meet the properties specified on the plans.

Recy	cling Agent ar	nd Emulsif	ied Recycl	ing Agent			
Property	Test Procedure	Recycling Agent		Emulsified Recycling Agent (ARA-1)		Émul Recyclir	Modified sified ng Agent A-1P)
		Min	Max	Min	Max	Min	Max
Viscosity, Saybolt Furol, 77°F, sec.	T 72	-	-	15	100	15	110
Sieve test, %	T 59	-	-	-	0.1	-	0.1
Miscibility ¹	T 59	-	-	No coagulation			
Residue by evaporation, ² % by wt.	T 59	_	-	60	-	I	_
Distillation test:	T 59						
Residue by distillation, % by wt.						60	65
Oil distillate, % by volume of emulsion						-	2
Penetration of Distillation Residue at	T 49					110	190
39.2°F, 100 g, 5 sec.							
Tests on recycling agent or residue from							
evaporation:							
Flash point, C.O.C., °F	T 48	400	-	400	-	400	-
Kinematic viscosity,	T 201						
140°F, cSt		75	200	75	200		
275°F, cSt		-	10.0	-	10.0		

Table 12

Exception to T 59: Use 0.02 N CaCl2 solution in place of water. 1.

Exception to T 59: Maintain sample at 300°F until foaming ceases, then cool and weigh. 2.

2.7. Crumb Rubber Modifier. Crumb rubber modifier (CRM) consists of automobile and truck tires processed by ambient temperature grinding.

CRM must be:

- free from contaminants including fabric, metal, and mineral and other nonrubber substances;
- free-flowing; and
- nonfoaming when added to hot asphalt binder.

Ensure rubber gradation meets the requirements of the grades in Table 13 when tested in accordance with Tex-200-F, Part I, using a 50-g sample.

Table 13

				CRM Grad	ations			
Sieve Size	Grad	e A	Gra	Grade B		e C	Grade D	Grade E
(% Passing)	Min	Max	Min	Max	Min	Max		
#8	100	-	-	-	-	-		
#10	95	100	100	-	-	-	As shown on the plans	
#16	-	-	70	100	100	-		As approved
#30	-	-	25	60	90	100		As approved
#40	-	-	-	-	45	100		
#50	0	10	-	-	-	-		
#200	-	-	0	5	-	-		

2.8.

Crack Sealer. Provide polymer-modified asphalt-emulsion crack sealer meeting the requirements of Table 14. Provide rubber-asphalt crack sealer meeting the requirements of Table 15.

Property	Test Procedure	Min	Max					
Rotational viscosity, 77°F, cP	D 2196, Method A	10,000	25,000					
Sieve test, %	T 59	-	0.1					
Storage stability, 1 day, %	T 59	-	1					
Evaporation	<u>Tex-543-C</u>							
Residue by evaporation, % by wt.		65	-					
Tests on residue from evaporation:								
Penetration, 77°F, 100 g, 5 sec.	Т 49	35	75					
Softening point, °F	T 53	140	-					
Ductility, 39.2°F, 5 cm/min., cm	T 51	100	-					

Table 14 Polymer-Modified Asphalt-Emulsion Crack Sealer

Table 15 Rubber-Asphalt Crack Sealer

Property	Test	Class A		Class B									
	Procedure	Min	Max	Min	Max								
CRM content, Grade A or B, % by wt.	<u>Tex-544-C</u>	22	26	-	_								
CRM content, Grade B, % by wt.	<u>Tex-544-C</u>	-	-	13	17								
Virgin rubber content, ¹ % by wt.		-	-	2	-								
Flash point, ² C.O.C., °F	T 48	400	-	400	_								
Penetration, ³ 77°F, 150 g, 5 sec.	T 49	30	50	30	50								
Penetration, ³ 32°F, 200 g, 60 sec.	T 49	12	-	12	_								
Softening point, °F	T 53	-	-	170	_								
Bond Test, non-immersed, 0.5 in specimen,													
50% extension, 20°F ⁴	D5329	– Pas		ISS									
A Description and the effect the states Miss 0/ structures	استادا والمتعادين والماري			4 Describe continent to the Min O/ viscin million and because added									

1. Provide certification that the Min % virgin rubber was added.

2. Agitate the sealing compound with a 3/8- to 1/2 in. (9.5- to 12.7 mm) wide, square-end metal spatula to bring the material on the bottom of the cup to the surface (i.e., turn the material over) before passing the test flame over the cup. Start at one side of the thermometer, move around to the other, and then return to the starting point using 8 to 10 rapid circular strokes. Accomplish agitation in 3 to 4 sec. Pass the test flame over the cup immediately after stirring is completed.

3. Exception to T 49: Substitute the cone specified in D 217 for the penetration needle.

4. Allow no crack in the crack sealing materials or break in the bond between the sealer and the mortar blocks over 1/4 in. deep for any specimen after completion of the test.

2.9. Asphalt-Rubber Binders. Provide asphalt-rubber (A-R) binders that are mixtures of asphalt binder and CRM, which have been reacted at elevated temperatures. Provide A-R binders meeting D6114 and containing a minimum of 15% CRM by weight. Provide Types I or II, containing CRM Grade C, for use in hot-mixed aggregate mixtures. Provide Types II or III, containing CRM Grade B, for use in surface treatment binder. Ensure binder properties meet the requirements of Table 16.

15

130

20

450

75

25

125

10

450

75

-

_

_

_

_

-

_

_

_

_

2.10.

Performance-Graded Binders. Provide PG binders that are smooth and homogeneous, show no separation when tested in accordance with <u>Tex-540-C</u>, and meet the requirements of Table 17.

10

135

25

450

75

-

_

_

_

_

T 49

T 53

D5329

T 48

T 179

T 49

Separation testing is not required if:

Property

Apparent viscosity, 347°F, cP

Penetration, 77°F, 100 g, 5 sec.

Tests on residue from Thin-Film

200 g, 60 sec., % of original

Retained penetration ratio, 39.2°F,

Softening point, °F

Resilience, 77°F, %

Oven Test:

Flash point, C.O.C., °F

Penetration, 39.2°F, 200 g, 60 sec.

- a modifier is introduced separately at the mix plant either by injection in the asphalt line or mixer,
- the binder is blended on site in continuously agitated tanks, or
- binder acceptance is based on field samples taken from an in-line sampling port at the hot-mix plant after the addition of modifiers.

Table 17 Performance-Graded Binders

					Pe	rtorma	nce-Gra											
Property and Test Method	Performance Grade																	
		PG 58				G 64				G 70				76			PG 82	
	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28
Average 7-day max pavement design temperature, °C1		58				64			-	70			7	6			82	
Min pavement design temperature, °C1	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28	-34	-16	-22	-28
						Ori	ginal Bin	der										
Flash point, T 48, Min, °C									23	30								
Viscosity, T 316 ^{2, 3} :									11	35								
Max, 3.0 Pas, test temperature, °C									1.	50								
Dynamic shear, T 3154:																		
Ğ*/sin(δ), Min, 1.00 kPa, Max, 2.00 kPa²,		58				64			-	70			7	6			82	
Test temperature @ 10 rad/sec., °C																		
Elastic recovery, D6084, 50°F, % Min ⁸	-	-	30	-	-	30	50	-	30	50	60	30	50	60	70	50	60	70
					Rollin	g Thin-	Film Ove	n (<u>Tex-5(</u>) <mark>6-C</mark>)									
Mass change, T 240, Max, %									1	.0								
Dynamic shear, T 315:																		
Ġ*/sin(δ), Min, 2.20 kPa, Max, 5.00 kPa ⁷ ,		58				64			-	70			7	6			82	
Test temperature @ 10 rad/sec., °C																		
MSCR, T350, Recovery, 0.1 kPa, High Temperature, % Min ⁸	-	-	20	-	-	20	30	-	20	30	40	20	30	40	50	30	40	50
				Pre	essure A	Aging V	essel (PA	V) Resid	lue (R 2	8)								
PAV aging temperature, °C									1(00								
Dynamic shear, T 315:																		
G [*] sin(δ), Max, 5,000 kPa	25	22	19	28	25	22	19	28	25	22	19	28	25	22	19	28	25	22
Test temperature @ 10 rad/sec., °C																		
Creep stiffness, T 313 ^{5, 6} :																		
S, max, 300 MPa,	10	-18	04	<u> </u>	10	-18	04	<u> </u>	10	10	04	<u> </u>	-12	-18	24	~	10	10
<i>m</i> -value, Min, 0.300	-12	-1ŏ	-24	-6	-12	-10	-24	-6	-12	-18	-24	-6	-12	-1ŏ	-24	-6	-12	-18
Test temperature @ 60 sec., °C																		
Direct tension, T 3146:																		
Failure strain, min, 1.0% Test temperature @ 1.0 mm/min., °C	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18	-24	-6	-12	-18

1. Pavement temperatures are estimated from air temperatures and using an algorithm contained in a Department-supplied computer program, may be provided by the Department, or by following the procedures outlined in AASHTO MP 2 and PP 28.

 This requirement may be waived at the Department's discretion if the supplier warrants that the asphalt binder can be adequately pumped, mixed, and compacted at temperatures that meet all applicable safety, environmental, and constructability requirements. At test temperatures where the binder is a Newtonian fluid, any suitable standard means of viscosity measurement may be used, including capillary (T 201 or T 202) or rotational viscometry (T 316).

3. Viscosity at 135°C is an indicator of mixing and compaction temperatures that can be expected in the lab and field. High values may indicate high mixing and compaction temperatures. Additionally, significant variation can occur from batch to batch. Contractors should be aware that variation could significantly impact their mixing and compaction operations. Contractors are therefore responsible for addressing any constructability issues that may arise.

4. For quality control of unmodified asphalt binder production, measurement of the viscosity of the original asphalt binder may be substituted for dynamic shear measurements of G*/sin(δ) at test temperatures where the asphalt is a Newtonian fluid. Any suitable standard means of viscosity measurement may be used, including capillary (T 201 or T 202) or rotational viscometry (T 316).

5. Silicone beam molds, as described in AASHTO TP 1-93, are acceptable for use.

6. If creep stiffness is below 300 MPa, direct tension test is not required. If creep stiffness is between 300 and 600 MPa, the direct tension failure strain requirement can be used instead of the creep stiffness requirement. The m value requirement must be satisfied in both cases.

7. Maximum values for unaged and RTFO aged dynamic shear apply only to materials used as substitute binders, as described in Item 340, "Dense-Graded Hot-Mix Asphalt (Small Quantity)", Item 341, "Dense-Graded Hot-Mix Asphalt, and Item 344, "Superpave Mixtures."

8. Elastic Recovery (ASTM D6084) is not required unless MSCR (AASHTO T 350) is less than the minimum % recovery. Elastic Recovery must be used for the acceptance criteria in this instance.

EQUIPMENT

3.

Provide all equipment necessary to transport, store, sample, heat, apply, and incorporate asphalts, oils, and emulsions.

4.

CONSTRUCTION

Typical Material Use. Use materials shown in Table 18, unless otherwise determined by the Engineer.

	Table18					
	Typical Material Use					
Material Application	Typically Used Materials					
Hot-mixed, hot-laid asphalt mixtures	PG binders, A-R binders Types I and II					
Surface treatment	AC-5, AC-10, AC-15P, AC-20XP, AC-10-2TR, AC-20-5TR, HFRS-2, MS-2, CRS-2, CRS-2H, CRS-2TR, CMS-2P HFRS-2P, CRS-2P, CHFRS-2P, A-R binders Types II and III					
Surface treatment (cool weather)	AC12-5TR, RC-250, RC-800, RC-3000, MC-250, MC-800, MC-3000, MC-2400L, CMS-2P					
Precoating	AC-5, AC-10, PG 64-22, SS-1, SS-1H, CSS-1, CSS-1H					
Tack coat	PG Binders, SS-1H, CSS-1H, EAP&T, TRAIL, EBL					
Fog seal	SS-1, SS-1H, CSS-1, CSS-1H, CMS-1P					
Hot-mixed, cold-laid asphalt mixtures	AC-0.6, AC-1.5, AC-3, AES-300, AES-300P, CMS-2, CMS-2S					
Patching mix	MC-800, SCM I, SCM II, AES-300S					
Recycling	AC-0.6, AC-1.5, AC-3, AES-150P, AES-300P, recycling agent, emulsified recycling agent					
Crack sealing	SS-1P, polymer mod AE crack sealant, rubber asphalt crack sealers (Class A, Class B)					
Microsurfacing	CSS-1P					
Prime	MC-30, AE-P, EAP&T, PCE					
Curing membrane	SS-1, SS-1H, CSS-1, CSS-1H, PCE					
Erosion control	SS-1, SS-1H, CSS-1, CSS-1H, PCE					
FDR -Foaming	PG 64-22, FDR EM-SY, FDR EM-HY					

4.1. **Storage and Application Temperatures**. Use storage and application temperatures in accordance with Table 19. Store and apply materials at the lowest temperature yielding satisfactory results. Follow the manufacturer's instructions for any agitation requirements in storage. Manufacturer's instructions regarding recommended application and storage temperatures supersede those of Table 19.

Storage and Application Temperatures							
	Applicat	Storage					
Type-Grade	Recommended Range (°F)	Max Allowable (°F)	Max (°F)				
AC-0.6, AC-1.5, AC-3	200–300	350	350				
AC-5, AC-10	275–350	350	350				
AC-15P, AC-20-5TR, AC12-5TR and AC10-2TR	300–375	375	360				
RC-250	125–180	200	200				
RC-800	170–230	260	260				
RC-3000	215–275	285	285				
MC-30, AE-P	70–150	175	175				
MC-250	125–210	240	240				
MC-800, SCM I, SCM II	175–260	275	275				
MC-3000, MC-2400L	225–275	290	290				
HFRS-2, MS-2, CRS-2, CRS-2H, HFRS-2P, CRS-2P, CMS-2, CMS-2S, AES-300, AES-300S, AES-150P, AES-300P, CRS-2TR	120–160	180	180				
SS-1, SS-1H, CSS-1, CSS-1H, PCE, EAP&T, SS-1P, RS-1P, CRS-1P, CSS-1P, recycling agent, emulsified recycling agent, polymer mod AE crack sealant	50–130	140	140				
PG binders	275–350	350	350				
Rubber asphalt crack sealers (Class A, Class B)	350–375	400	-				
A-R binders Types I, II, and III	325-425	425	425				

Table19 Storage and Application Temperatures

5. MEASUREMENT AND PAYMENT

The work performed, materials furnished, equipment, labor, tools, and incidentals will not be measured or paid for directly but is subsidiary or is included in payment for other pertinent Items.

Special Specification 4002

Elastomeric Bearing Pads

1. DESCRIPTION

Replace elastomeric bridge bearings.

2. MATERIALS

Furnish elastomeric bearings meeting the requirements of Item 434, "Bridge Bearings." Fabricate new bearings to the indicated dimensions.

3. CONSTRUCTION

Raise spans as necessary to replace the indicated bearings in conformance with Item 495, "Raising Existing Structures." Individual girders may be raised if approved and if no damage occurs to the slab or adjacent girders.

Remove indicated bearings. Do not use flame-cutting techniques to remove bearing pads.

Clean existing bearing seats and the bearing contact area on the bottoms of concrete girders by steam cleaning to remove all wax residue and other deleterious materials. After steam cleaning, use abrasive blasting to roughen the bearing contact surfaces on the bearing seats and the bottoms of concrete girders. Use oil-free compressed air for final cleaning to remove all loose material from bearing contact areas.

Repair spalls at bearing areas as indicated in accordance with Item 429, "Concrete Structure Repair." Restore or reconstruct damaged bearing seats as necessary to ensure they meet the requirements of Section 420.4.9, "Treatment and Finishing of Horizontal Surfaces."

If indicated, construct pedestals in accordance with the pertinent Items and the details shown on the plans.

Place new bearing pads after all bearing seat or spall repair materials have attained a compressive strength of 3,000 psi. Do not use dry cement powder under the new bearings.

Completely remove all hardware or appurtenances used to raise the spans or girders. Repair any damage resulting from the lifting operation at no expense to the Department.

4. MEASUREMENT

This Item will be measured by each bearing replaced.

PAYMENT

5.

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Replacing Elastomeric Bearing Pads." This price is full compensation for raising the spans or girders, removing the original bearing pads, cleaning and restoring the bearing contact areas, furnishing and installing new bearing pads, equipment, labor, shoring, falsework, tools, and incidentals. The work performed to raise the spans or girders in accordance with Item 495, "Raising Existing Structures," will not be paid for directly but is considered subsidiary to this Item. Concrete spall repairs will be measured and paid for in accordance with Item 429, "Concrete Structure Repair."

Pedestals will be paid for in accordance with Item 420, "Concrete Substructures," or Item 442, "Metal for Structures," as indicated.

Special Specification 6001 Portable Changeable Message Sign

1. DESCRIPTION

Furnish, operate, and maintain portable trailer mounted changeable message sign (PCMS) units.

2. MATERIALS

Furnish new or used material in accordance with the requirements of this Item and the details shown on the plans. Provide a self-contained PCMS unit with the following:

- Sign controller
- Changeable Message Sign
- Trailer
- Power source

Paint the exterior surfaces of the power supply housing, supports, trailer, and sign with Federal Orange No. 22246 or Federal Yellow No. 13538 of Federal Standard 595C, except paint the sign face assembly flat black.

- 2.1. **Sign Controller**. Provide a controller with permanent storage of a minimum of 75 pre-programmed messages. Provide an external input device for random programming and storage of a minimum of 75 additional messages. Provide a controller capable of displaying up to 3 messages sequentially. Provide a controller with adjustable display rates. Enclose sign controller equipment in a lockable enclosure.
- 2.2. **Changeable Message Sign**. Provide a sign capable of being elevated to at least 7 ft. above the roadway surface from the bottom of the sign. Provide a sign capable of being rotated 360° and secured against movement in any position.

Provide a sign with 3 separate lines of text and 8 characters per line minimum. Provide a minimum 18 in. character height. Provide a 5 × 7 character pixel matrix. Provide a message legibility distance of 600 ft. for nighttime conditions and 800 ft. for normal daylight conditions. Provide for manual and automatic dimming light sources.

The following are descriptions for 3 screen types of PCMS:

- Character Modular Matrix. This screen type comprises of character blocks.
- **Continuous Line Matrix**. This screen type uses proportionally spaced fonts for each line of text.
- Full Matrix. This screen type uses proportionally spaced fonts, varies the height of characters, and displays simple graphics on the entire sign.
- 2.3. **Trailer**. Provide a 2 wheel trailer with square top fenders, 4 leveling jacks, and trailer lights. Do not exceed an overall trailer width of 96 in. Shock mount the electronics and sign assembly.
- 2.4. **Power Source**. Provide a diesel generator, solar powered power source, or both. Provide a backup power source as necessary.
- 2.5. **Cellular Telephone**. When shown on the plans, provide a cellular telephone connection to communicate with the PCMS unit remotely.

3. CONSTRUCTION

Place or relocate PCMS units as shown on the plans or as directed. The plans will show the number of PCMS units needed, for how many days, and for which construction phases.

Maintain the PCMS units in good working condition. Repair damaged or malfunctioning PCMS units as soon as possible. PCMS units will remain the property of the Contractor.

4. MEASUREMENT

This Item will be measured by each PCMS or by the day used. All PCMS units must be set up on a work area and operational before a calendar day can be considered measurable. When measurement by the day is specified, a day will be measured for each PCMS set up and operational on the worksite.

5. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Portable Changeable Message Sign." This price is full compensation for PCMS units; set up; relocating; removing; replacement parts; batteries (when required); fuel, oil, and oil filters (when required); cellular telephone charges (when required); software; and equipment, materials, tools, labor, and incidentals.

Special Specification 6185

Truck Mounted Attenuator (TMA) and Trailer Attenuator (TA)

1. DESCRIPTION

Furnish, operate, maintain and remove upon completion of work, Truck Mounted Attenuator (TMA) or Trailer Attenuator (TA).

2. MATERIALS

Furnish, operate and maintain new or used TMAs or TAs. Assure used attenuators are in good working condition and are approved for use. A list of approved TMA/TA units can be found in the Department's Compliant Work Zone Traffic Control Devices List. The host vehicle for the TMA and TA must weigh a minimum of 19,000 lbs. Host vehicles may be ballasted to achieve the required weight. Any weight added to the host vehicle must be properly attached or contained within it so that it does not present a hazard and that proper energy dissipation occurs if the attenuator is impacted from behind by a large truck. The weight of a TA will not be considered in the weight of the host vehicle but the weight of a TMA may be included in the weight of the host vehicle. Upon request, provide either a manufacturer's curb weight or a certified scales weight ticket to the Engineer.

3. CONSTRUCTION

Place or relocate TMA/TAs as shown on the plans or as directed. The plans will show the number of TMA/TAs needed, for how many days or hours, and for which construction phases.

Maintain the TMA/TAs in good working condition. Replace damaged TMA/TAs as soon as possible.

4. MEASUREMENT

- 4.1. **Truck Mounted Attenuator/Trailer Attenuator (Stationary).** This Item will be measured by the each or by the day. TMA/TAs must be set up in a work area and operational before a calendar day can be considered measurable. When measurement by the day is specified, a day will be measured for each TMA/TA set up and operational on the worksite.
- 4.2. **Truck Mounted Attenuator/Trailer Attenuator (Mobile Operation).** This Item will be measured by the hour. The time begins once the TMA/TA is ready for operation at the predetermined site and stops when notified by the Engineer. A minimum of 4 hr. will be paid each day for each operating TMA/TA used in a mobile operation.

5. PAYMENT

The work performed and materials furnished in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Truck Mounted Attenuators/Trailer Attenuators (Stationary)," or "Truck Mounted Attenuators/Trailer Attenuators (Mobile Operation)." This price is full compensation for furnishing TMA/TA: set up; relocating; removing; operating; fuel; and equipment, materials, tools, labor, and incidentals.

Special Specification 6438 Mobile Retroreflectivity Data Collection for

1. DESCRIPTION

Pavement Markings

Furnish mobile retroreflectivity data collection (MRDC) for pavement markings on roadways as shown on the plans or as designated by the Engineer. Conduct MRDC on dry pavement only. Provider is defined as the Contractor or Subcontractor who collects the MRDC data.

2. EQUIPMENT AND PERSONNEL

- 2.1. **Mobile Retroreflectometer**. Provide a self-propelled, mobile retroreflectometer certified by the Texas A&M Transportation Institute (TTI) Mobile Retroreflectometer Certification Program.
- 2.2. **Portable Retroreflectometer**. Provide a portable retroreflectometer that uses 30-meter geometry meeting the requirements described in ASTM E 1710. Maintain, service, and calibrate all portable retroreflectometers according to the manufacturer's instructions.
- 2.3. **Operating Personnel for Mobile Retroreflectometer**. Provide all personnel required to operate the mobile retroreflectometer and portable retroreflectometer. Ensure MRDC system operator has a current certification from the TTI Mobile Retroreflectometer Certification Program to conduct MRDC with the certified mobile retroreflectometer provided.
- 2.4. Additional Personnel. Provide any other personnel necessary to compile, evaluate, and submit MRDC.
- 2.5. Safety Equipment. Supply and operate all required safety equipment to perform this service.

3. MRDC DOCUMENTATION AND TESTING

Document all MRDC by county and roadway or as directed by the Engineer. Submit all data to the Department and to the TTI Mobile Retroreflectometer Certification Program no later than three working days after the day the data is collected. Submit all raw data collected in addition to all other data submitted. Provide data files in Microsoft Excel format or a format approved by the Engineer. Provide measurement notification and field tests as specified. Verification and referee testing may be conducted at the Department's discretion.

- 3.1. **Preliminary Documentation Sample**. Submit a sample data file, video, and map of MRDC data in the required format 10 working days before beginning any work. The format must meet specification and be approved by the Engineer before any work may begin.
- 3.2. Initial Documentation Review and Approval. The Department will review documentation submitted for the first day of MRDC, and if it does not meet specification requirements, will not allow further MRDC until deficiencies are corrected. The Department will inform the Provider no later than three working days after submittal if the first day of MRDC does not meet specification requirements. Time charges will continue unless otherwise directed by the Engineer.
- 3.3. Data File. Provide data files with the following:
 - date;
 - district number;

- county;
- Project CSJ number;
- name of mobile retroreflectometer operator;
- route number with reference markers or other reference information provided by the Engineer to indicate the location of beginning and end data collection points on that roadway;
- cardinal direction;
- line type (single solid, single broken, double solid, etc.);
- line color;
- file name corresponding to video;
- data for each centerline listed separately;
- average reading taken for each 0.1-mi. interval (or interval designated by the Engineer);
- accurate GPS coordinates (within 20 ft.) for each interval;
- color-coding for each interval indicating passing or failing, unless otherwise directed by the Engineer (passing and failing thresholds provided by the Engineer);
- graphical representation of the MRDC (y-axis showing retroreflectivity and x-axis showing intervals) corresponding with each data file;
- distance in miles driven while measuring the pavement markings;
- event codes (pre-approved by the Engineer) indicating problems with measurement;
- portable retroreflectometer field check average reading and corresponding mobile average reading for that interval when applicable; and
- upper validation threshold (may be included separately with the raw data but must be clearly identified with the data collected using that threshold).

3.4. **Map**. Provide a map in an electronic format approved by the Engineer with each MRDC submission that includes the following information:

- date;
- district number;
- county;
- color-coded 1-mi. intervals (or interval length designated by the Engineer) for passing and failing retroreflectivity values or retroreflectivity threshold values provided by the Engineer; and
- percentage of passing and failing intervals, if required by the Engineer.

Video. Provide a high-quality DVD or electronic video file with the following information:

- date and corresponding data file name on label;
- district number;
- county;

3.5.

- route number with reference markers or other designated reference information to indicate the location of beginning and end collection points on that roadway; and
- retroreflectivity values presented on the same screen with the following information:
 - date;
 - location;
 - starting and ending mileage;
 - total miles;
 - retroreflectivity readings; and
 - upper validation thresholds (may be included separately with the raw data but must be clearly identified with the data collected using that threshold).
- 3.6. Field Comparison Checks with a Portable Retroreflectometer. Take a set of field comparison readings with the portable retroreflectometer at least once every 4 hr. while conducting MRDC or at the frequency designated by the Engineer. Take a minimum of 20 readings, spread out over the interval measured. List the average portable retroreflectometer reading next to the mobile average reading for that interval with the

reported MRDC data. Request approval from the Engineer to take field comparison readings on a separate roadway, when measuring a roadway where portable retroreflectometer readings are difficult to take. Take the off-location field comparison readings at no additional cost. Submit the portable retroreflectometer printout of all the readings taken for the field comparison check with the corresponding MRDC data submitted. The mobile average reading must be within $\pm 15\%$ of the portable average reading. The Engineer may require new MRDC for some or all of the pavement markings measured in a 4-hr. interval before a field comparison check not meeting the $\pm 15\%$ range. Provide the new MRDC at no extra cost to the Department. The Engineer may take readings with a Department portable retroreflectometer to ensure accuracy at any time. The Department's Materials and Tests Division (MTD) will take comparison readings and serve as the referee if there is a significant difference between the Engineer's portable readings on a fairly flat and straight roadway when possible.

- 3.7. Periodic Field Checks at Pre-Measured Locations. When requested by the Engineer, measure with the mobile unit and report to the Engineer immediately after measurement the average retroreflectivity values for a designated pre-measured test location. The Engineer will have taken measurements at the test location within 10 days of the test. The test location will not include pavement markings less than 30 days old. If the measured averages do not fall within ±15% of the pre-measured averages, further calibration and comparison measurements may be required before any further MRDC. Submit the results of the field check with the MRDC report for that day.
- 3.8. **Measurement Notification**. Provide notification via email to <u>Mobileretro@tamu.edu</u> with a carbon copy to the Engineer a minimum of 24 hr. before mobile retroreflectivity data collection to allow for scheduling verification testing when needed.
- 3.9. Verification Testing. The Engineer or a third party may perform retroreflectivity verification testing within seven days of the Provider's retroreflectivity readings. The Provider-submitted retroreflectivity data will be compared to the verification test data to determine acceptability of the Provider's mobile retroreflectometer data. Comparison of the data will result in one of the two scenarios below:
 - Provider's Data is Validated if the difference between Provider's and Engineer-third party data is 20% or less, then the Provider's data is validated. The Provider's data will be used for acceptance.
 - Provider's Data is not Validated if the difference between Provider's and Engineer-third party data is more than 20%, then the Provider's data is not validated. The Engineer-third party data will be used for acceptance and the Provider will be required to take corrective action before additional Provider data collection and may require re-certification of the mobile retroreflectometer. If the Engineer determines that the Provider's data might be correct then, referee testing may be requested by the Engineer.
- 3.10. **Referee Testing.** MTD will perform referee testing using portable retroreflectometers to determine if the markings need to be restriped to meet the required retroreflectivity level. The referee test results will be final. Referee testing will be conducted on the verification test sections using the method for portable retroreflectometers specified in Item 666, "Reflectorized Pavement Markings."

4. FINAL REPORT

Submit a final report in the format specified by the Engineer to the Department's Traffic Engineering representative within one calendar week after the service is complete. The final report must contain a list of all problems encountered (pre-approved event codes) and the locations where problems occurred during MRDC.

5. MEASUREMENT

When mobile retroreflectivity data collection for pavement markings is specified on the plans to be a pay item, measurement will be by the mile driven while measuring pavement markings.

PAYMENT

6.

Unless otherwise specified on the plans, the work performed, materials furnished, equipment, labor, tools, and incidentals will not be paid for directly, but will be considered subsidiary to bid items of the Contract. When mobile retroreflectivity data collection for pavement markings is specified on the plans to be a pay item, the work performed in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Mobile Retroreflectivity Data Collection." This price is full compensation for providing summaries of readings to the Engineer, equipment calibration and prequalification, equipment, labor, tools, and incidentals.

Special Specification 7000

Removal and Proper Disposal of Driftwood and Debris

1. DESCRIPTION

Remove and properly dispose of driftwood and debris as shown on the plans.

2. MATERIALS AND EQUIPMENT

Furnish all equipment, labor, and incidentals necessary to achieve acceptable work. Equipment may include but is not limited to dragline, front-end loader, backhoe, hydraulic excavator and dump trucks.

All heavy equipment operating on or within 30 ft. of the outside edge of the traveled lane shall have an amber rotary flashing light or strobe light mounted on the highest point of the machine in order to insure 360 degree visibility.

CONSTRUCTION

3.

5.

Cut driftwood as required, load, haul and dispose of driftwood and debris off of the right of way in accordance with federal, state and local regulations. Small items of brush and limbs may be chipped on site and then hauled to a suitable place of disposal at the expense of the Contractor.

Temporary stockpiling of debris under bridges will not be allowed.

No dumping of driftwood or debris within 500 ft. of the highway right of way.

No burning of driftwood or debris permitted within the limits of the highway right of way.

At locations where driftwood is located behind guard fence and no access is available, the Contractor may, with approval, remove enough guard fence to allow access to the work area. Reinstall the guard fence at the end of each work day.

Remove all debris and trash from the worksite, smooth all areas of the right of way that are damaged and leave the site in a neat uniform appearance as much as practical.

4. MEASUREMENT

This Item will be measured by the lump sum or cubic yard or by lump sum for sites described on the plans.

PAYMENT

The work performed in accordance with this Item and measured as provided under "Measurement" will be paid for at the unit price bid for "Removal and Disposal of Driftwood and Debris" or for "Removal and Disposal of Driftwood and Debris" at the site specified. This price shall be full compensation for cutting up, loading, hauling, disposing of driftwood and smoothing the right of way at each location as noted on the plans and for all manipulation, labor, equipment, appliances, tools, and incidentals necessary to complete the work.

This page intentionally left blank.