DocuSign Envelope ID: 24578861-6D33-44F0-A855-6F27375160AB

FINAL PLANS

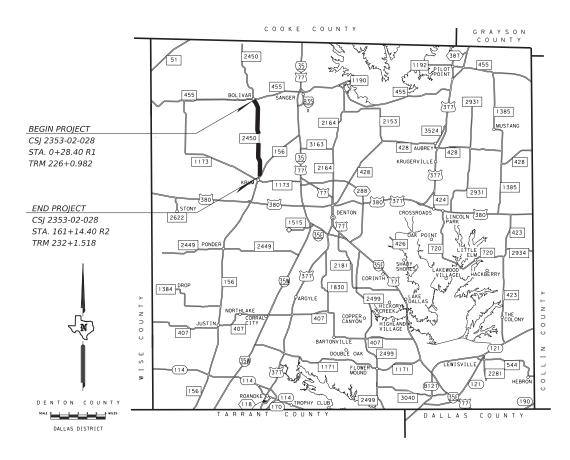
NAME OF CONTRACTOR:			
DATE OF LETTING:			
DATE WORK BEGAN:			
DATE WORK COMPLETED:			
DATE WORK ACCEPTED:			

STATE OF TEXAS DEPARTMENT OF TRANSPORTATION

 $\neg \circ \frown$

PLANS OF PROPOSED STATE HIGHWAY IMPROVEMENT

FEDERAL AID PROJECT STP 2B24(017)HRR CSJ: 2353-02-028


FM 2450 DENTON COUNTY

LIMITS: FROM TO FM 455 FM 156

TOTAL LENGTH OF PROJECT =

ROADWAY = 34315.00 FT. = 6.499 MI. BRIDGE = 355.00 FT. = 0.067 MI. TOTAL = 34670.00 FT.= 6.566 MI.

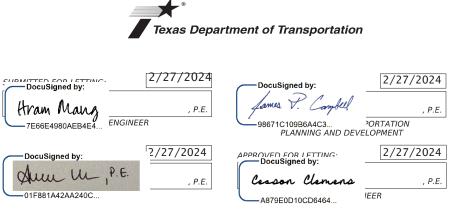
FOR THE CONSTRUCTION OF SAFETY IMPROVEMENT PROJECTS CONSISTING OF SAFETY TREAT FIXED OBJECTS, PROFILE MARKINGS, PROVIDE ADDITIONAL PAVED SURFACE WIDTH.

Hram Mains 7E66E4980AEB4E4...

EXCEPTIONS: NONE EQUATIONS: STA. 185+84.00 R1 (BK)= STA. 0+00.00 R2 (AH) RAILROAD CROSSINGS: NONE

P.E.

WORK WAS COMPLETED ACCORDING TO THE PLAN AND CONTRACT.


Signature of Registrant & Date

		FEDERAL AID PROJ	ECT NO.		
	R				
CONT	SECT JOB			HIGHWAY	
2353	02	02 028		M 2450	
DIST				SHEET NO.	
DAL		DENTON		1	

DESIGN SPEED = 40 MPH A.D.T. (2024)= 3,500 A.D.T. (2054) = 5,450FUNCTIONAL CLASSIFICATION = RURAL MAJOR COLLECTOR

NOTE:

SPECIFICATIONS ADOPTED BY THE TEXAS DEPARTMENT OF TRANSPORTATION. NOVEMBER 1, 2014, AND THE CONTRACT PROVISIONS LISTED AND DATED AS FOLLOWS SHALL GOVERN ON THIS PROJECT: REQUIRED CONTRACT PROVISIONS FOR ALL FEDERAL-AID CONSTRUCTION CONTRACTS (FORM FHWA 1273,OCTOBER 23,2023)

INDEX OF SHEETS

	I. GENERAL
1	TITLE SHEET
2	INDEX OF SHEETS
3-17	PROJECT LAYOUT
18	TYPICAL SECTIONS
19	CORE DATA
20,20A-20E	GENERAL NOTE
21,22-22A	ESTIMATE & QUANTITY SHEETS
23	ROADWAY SUMMARY SHEET
24	DRAINAGE SUMMARY SHEET
25-27	DRIVEWAY SUMMARY SHEET
28-29	EARTHWORK SUMMARY SHEET
30-32	SUMMARY OF SMALL SIGN
	II. TRAFFIC CONTROL PLAN
33	TRAFFIC CONTROL PLAN - SEQUENCE OF WORK
34-35	TRAFFIC CONTROL PLAN - TYPICAL SECTION
36	CULVERT EXTENSION TYPICAL SECTION
	TRAFFIC CONTROL PLAN STANDARDS
37-48	BC (1)-21 THRU BC (12)-21
49	TCP (1-6)-18
50	TCP (2-1)-18
51	TCP (2-2)-18
52	TCP (3-1)-13
53	TCP (3-3)-14
54	TCP (7-1)-13

- WZ (STPM)-23 55
- 56 WZ (UL)-13
- 57 WZ(RS)-22

III. ROADWAY DETAILS

58	SURVEY CONTROL INDEX SHEET
59	HORIZONTAL ALIGNMENT DATA
60	VERTICAL ALIGNMENT DATA
61	SUPERELEVATION DATA
62-90	PLAN AND PROFILE
91-92	MISCELLANEOUS ROADWAY DETAILS

	ROADWAY DETAILS STANDARDS	
93	TE(HMAC)-11	140-15
94	LJD(1-1)-07(DAL)	155
95-98	MB(1)-21 THRU MB (4)-21	
99-100	MBP(1)-22 THRU MBP(2)-22	
		156-15
	IV.RETAINING WALLS	159
	NONE	160
		161
	V. DRAINAGE DETAILS	162
101	DRAINAGE AREA MAP	163-16
102	HYDRAULIC DATA SHEETS	166
103-106	SPECIAL TEMPORARY SHORING	167-17
107-119	CULVERT LAYOUTS	
120	BCS SHEET	172

DRAINAGE DETAILS STANDARDS

121-123	SCC-10
124	SCC-MD
125	SCP-MD
126	PW
127	CH-PW-0
128	CH-PW-S
129	CH-FW-45
130	SETP-PD
131-132	SETP-CD
133	PSET-RP
134	PSET-SC
135	PSET-SP
136	PSET-RC
137-138	SRR
139	CRR

VI. UTILITIES

NONE

VII. BRIDGE NONE

VIII. TRAFFIC ITEMS

40-154	SIGNING, PAVEN
55	GUIDE SIGN DI

TRAFFIC STANDARDS

156-158	TSR(3)-13 THRU
159	SMD(GEN)-08
160	SMD(SLIP-1)-08
161	SMD(SLIP-2)-08
162	SMD(SLIP-3)-08
163-165	PM(1)-22 THRU
166	PM(4)-22A
167-171	D&OM(1)-20 TH
172	TWO-LANE HIGHW
173	RS(2)-23
174	RS(4)-23

IX. ENVIROMENTAL ISSUES

175	ENVIROMENTAL PE
176-177	STORMWATER POI
178-192	SW3P SITE MA

193-195	EC(1)-16 THRU
196-198	EC(9)-16
199	SW3P SIGN SI
200	VEGETATION E

X. MISCELLANEOUS ITEMS

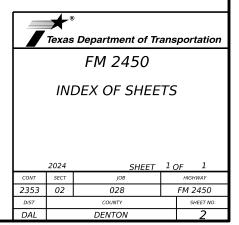
NONE

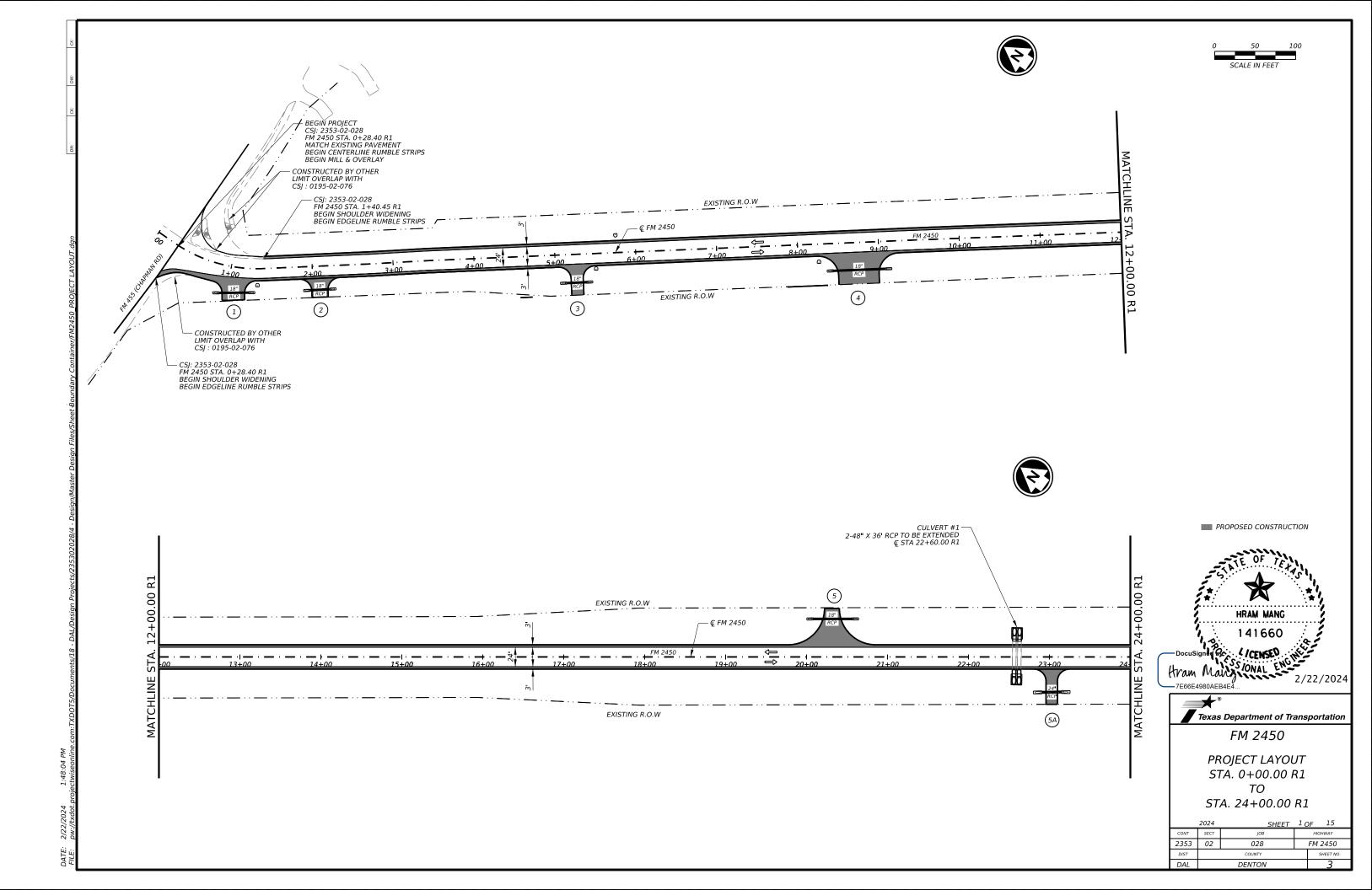
MENT MARKING & DELINEATION LAYOUT DETAILS

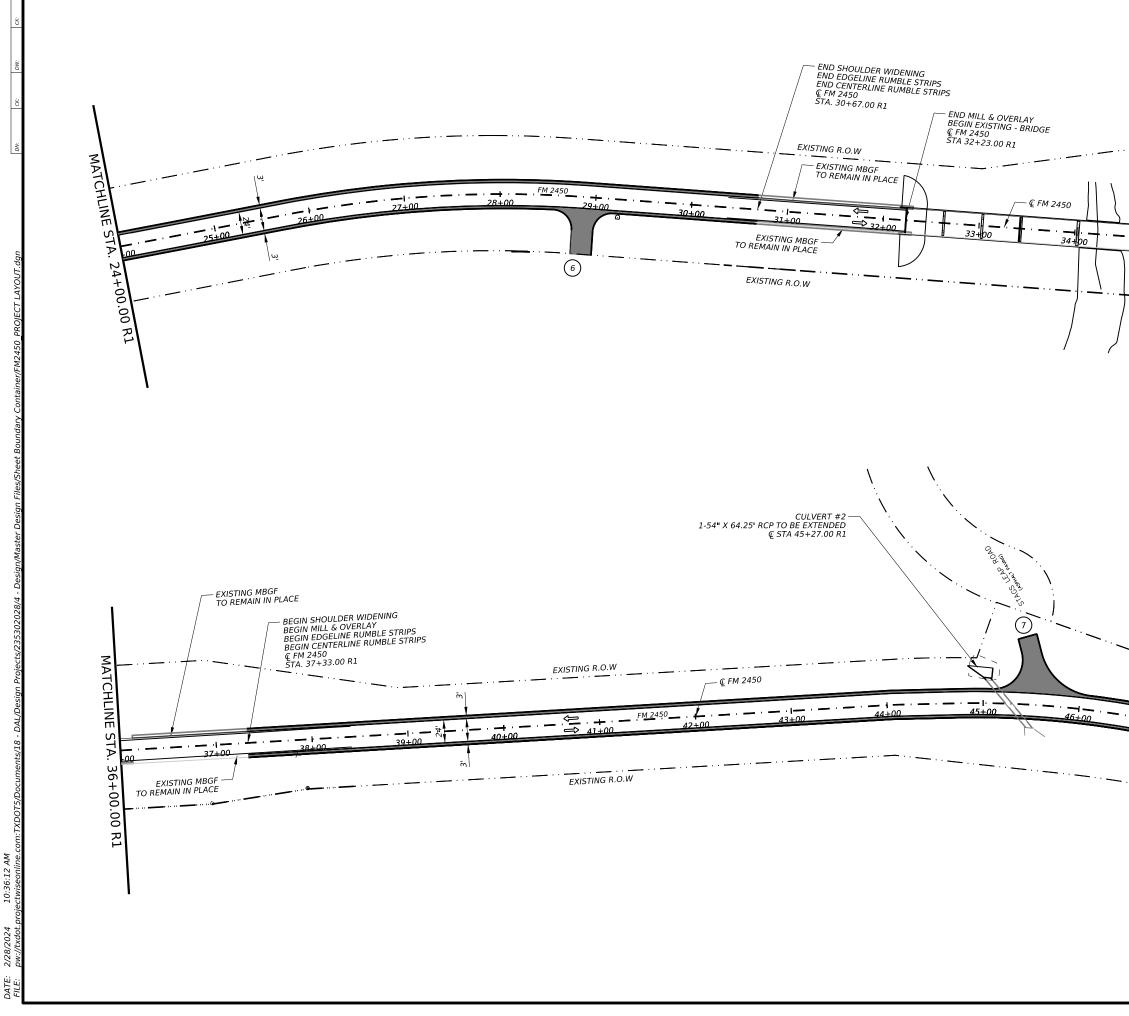
U TSR(5)-13

8-(DAL)

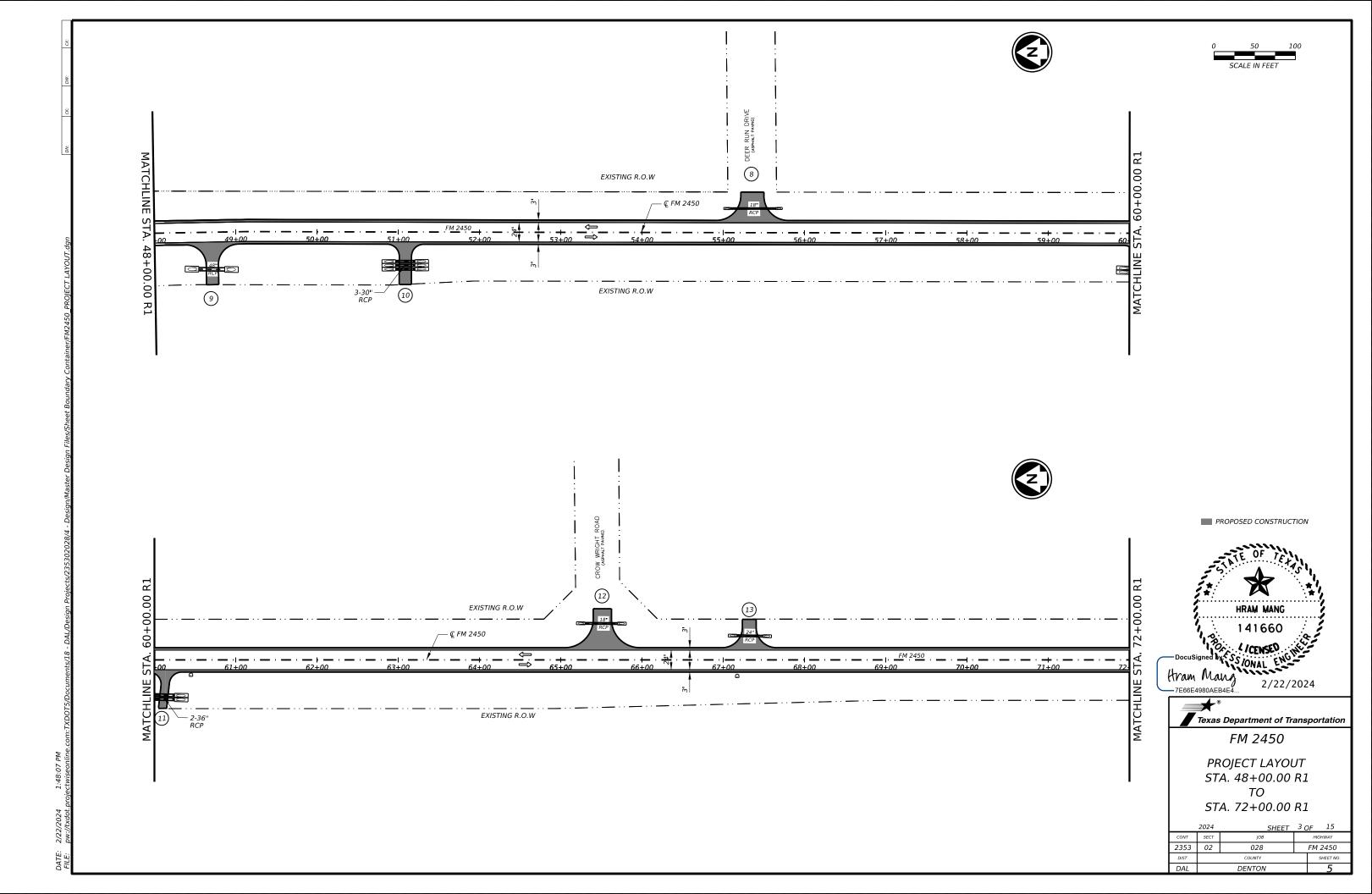
PM (3)-22

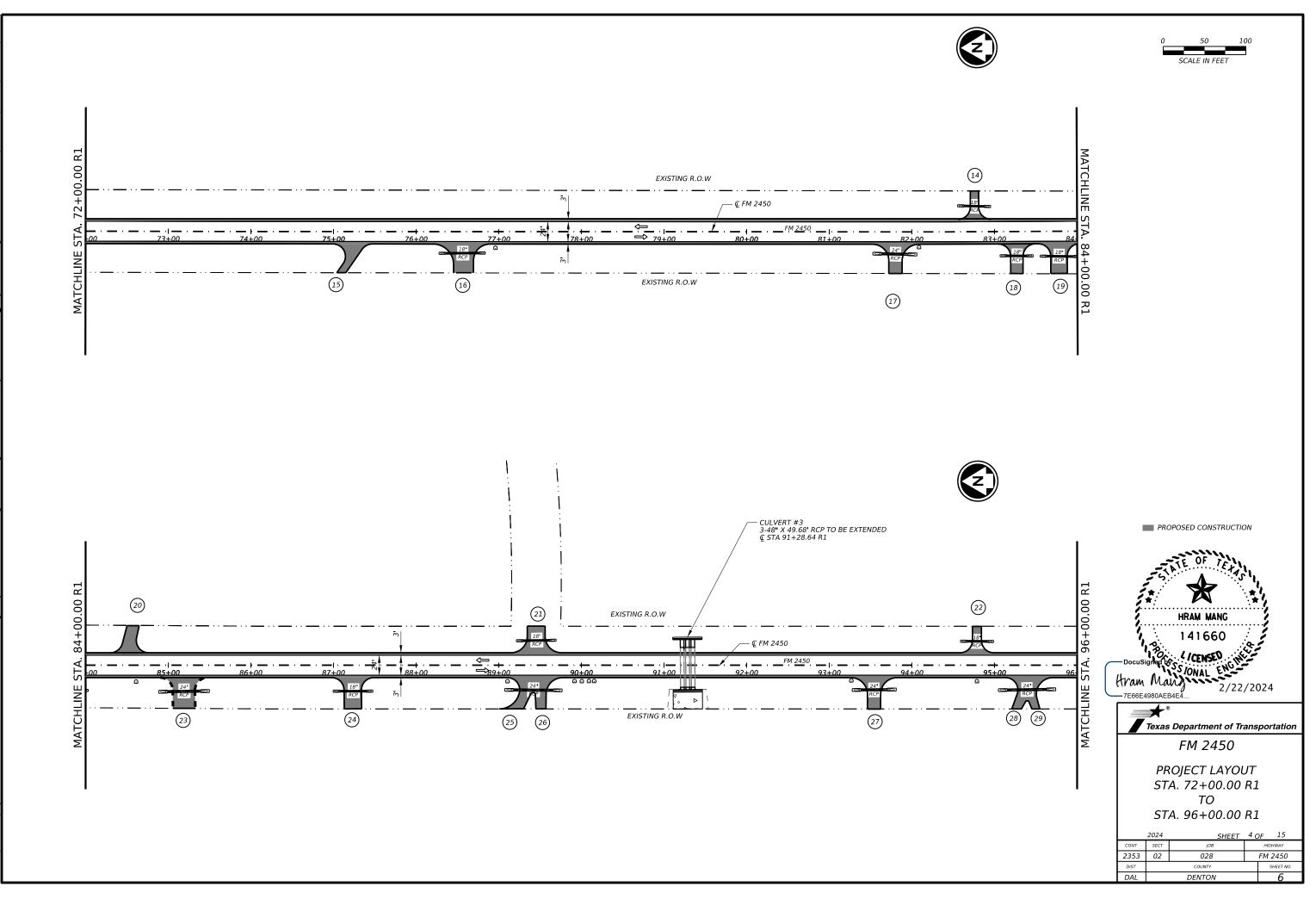

IRU D&OM(5)-20 VAY CURVE SIGNING&MARKING (DAL)

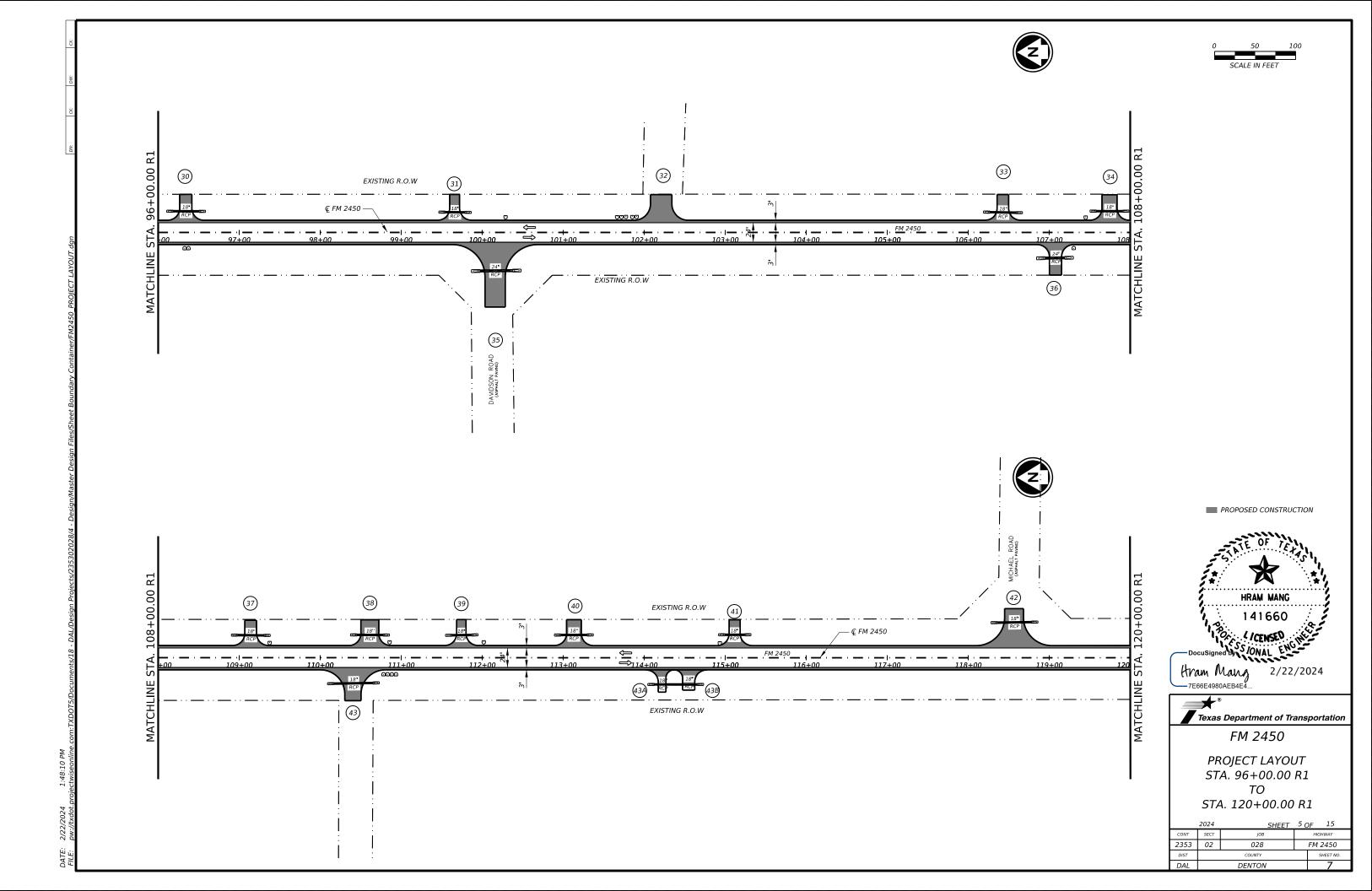

PERMITS, ISSUES AND COMMITMENTS (EPIC)(DAL) OLLUTION PREVENTION PLAN (SWP3) APS

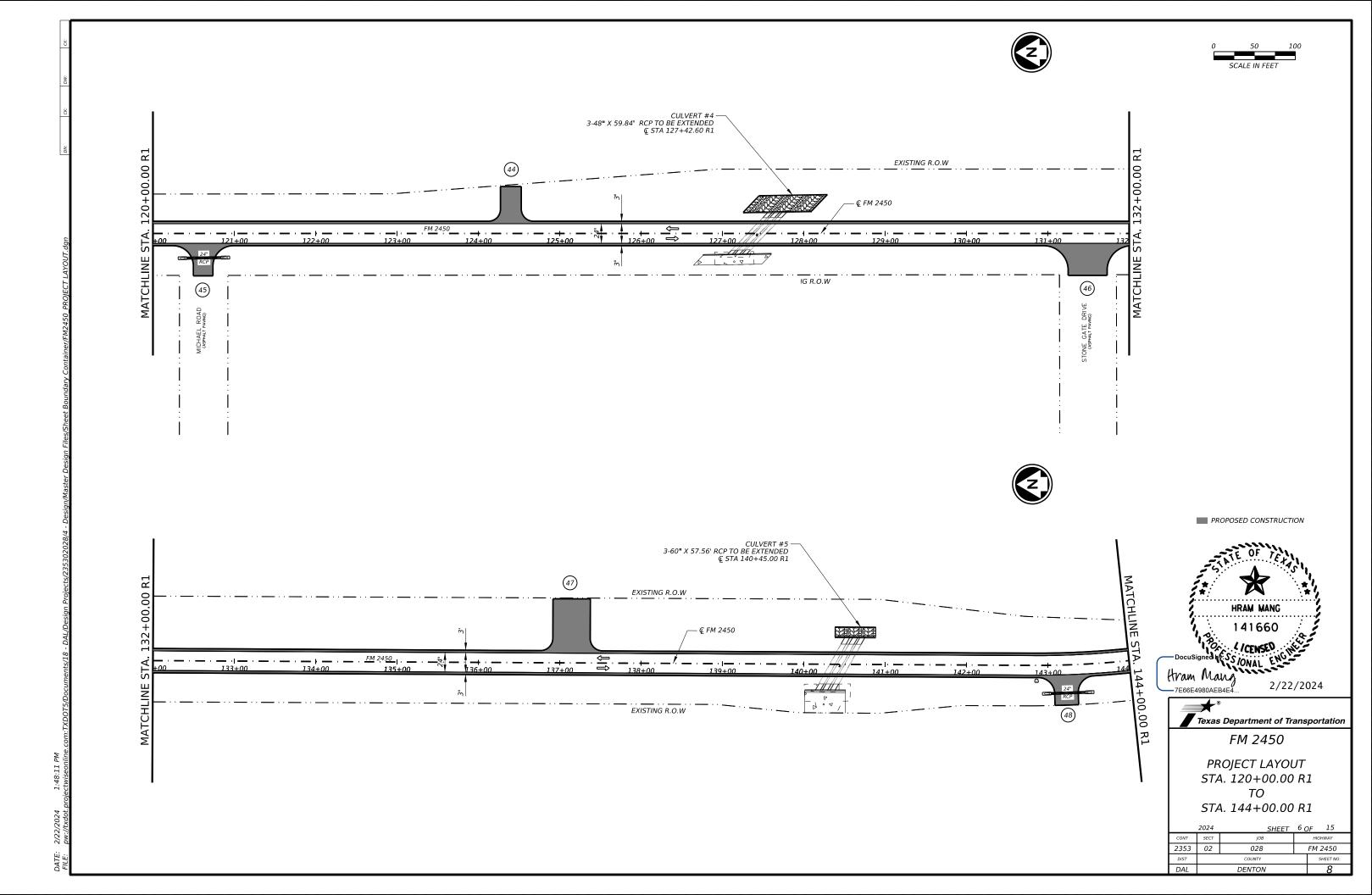

ENVIROMENTAL ISSUES STANDARDS EC(3)-16

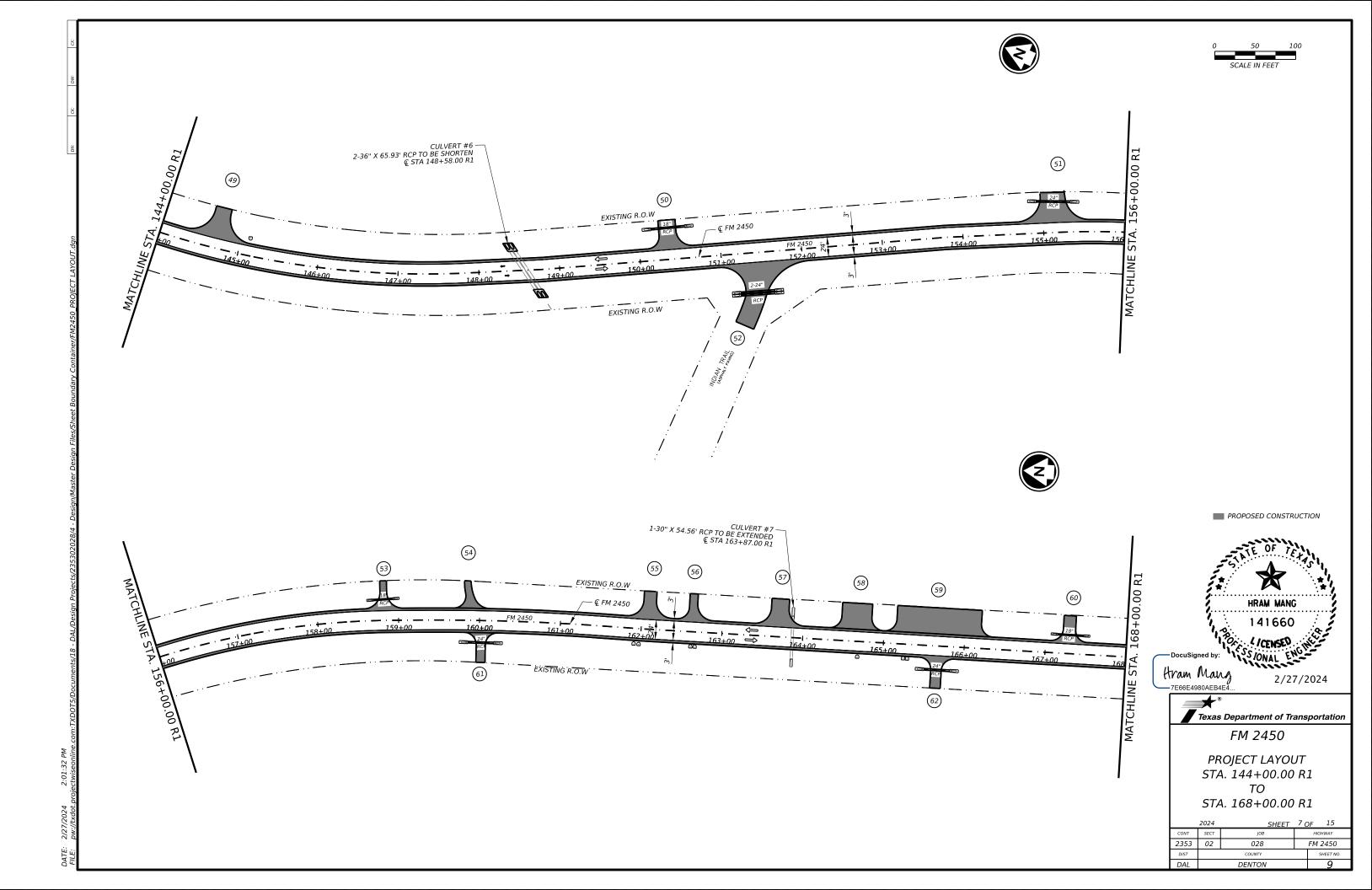
> HEET (DAL) ESTABLISHMENT SHEET (DAL)

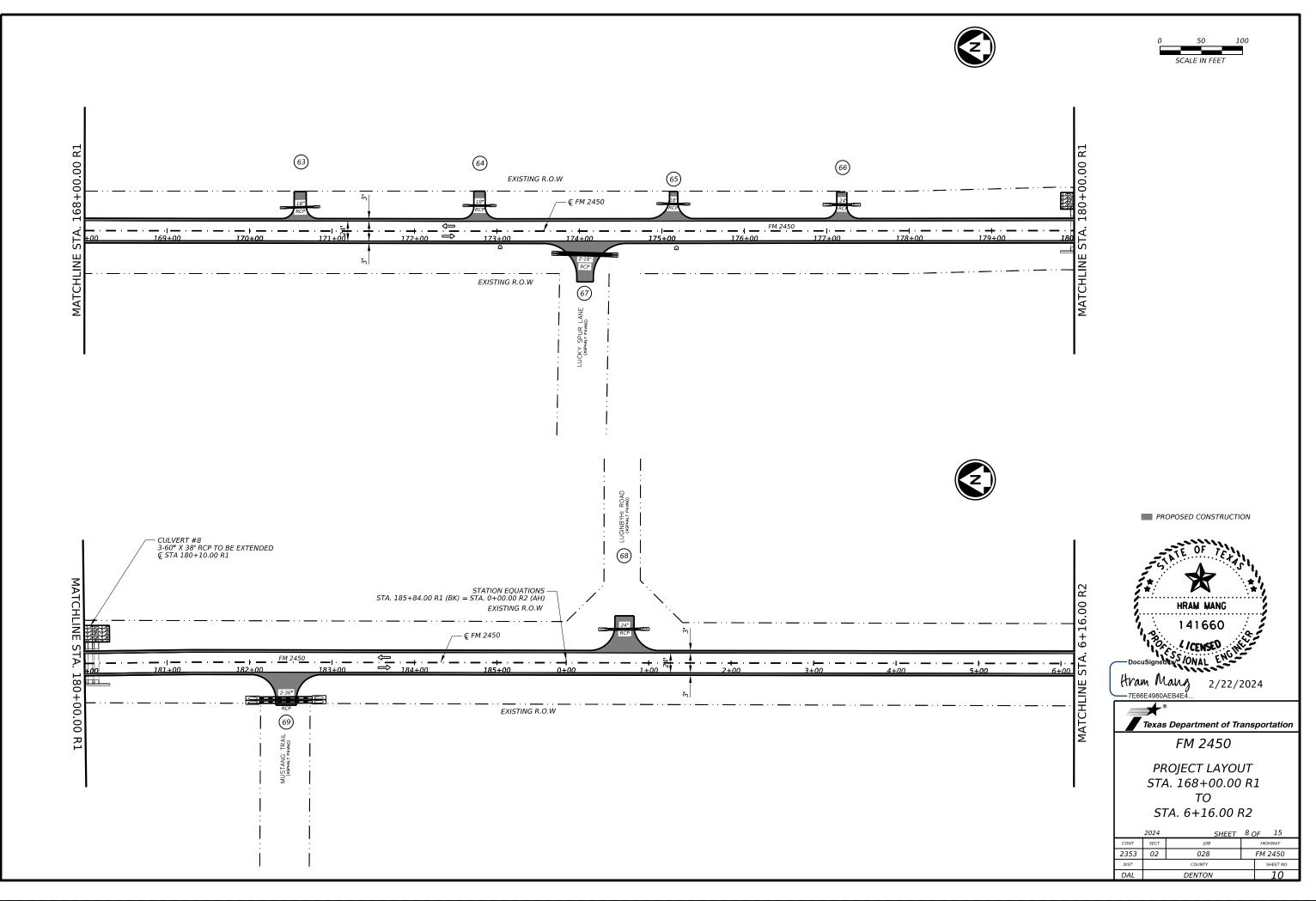

2/27/2024

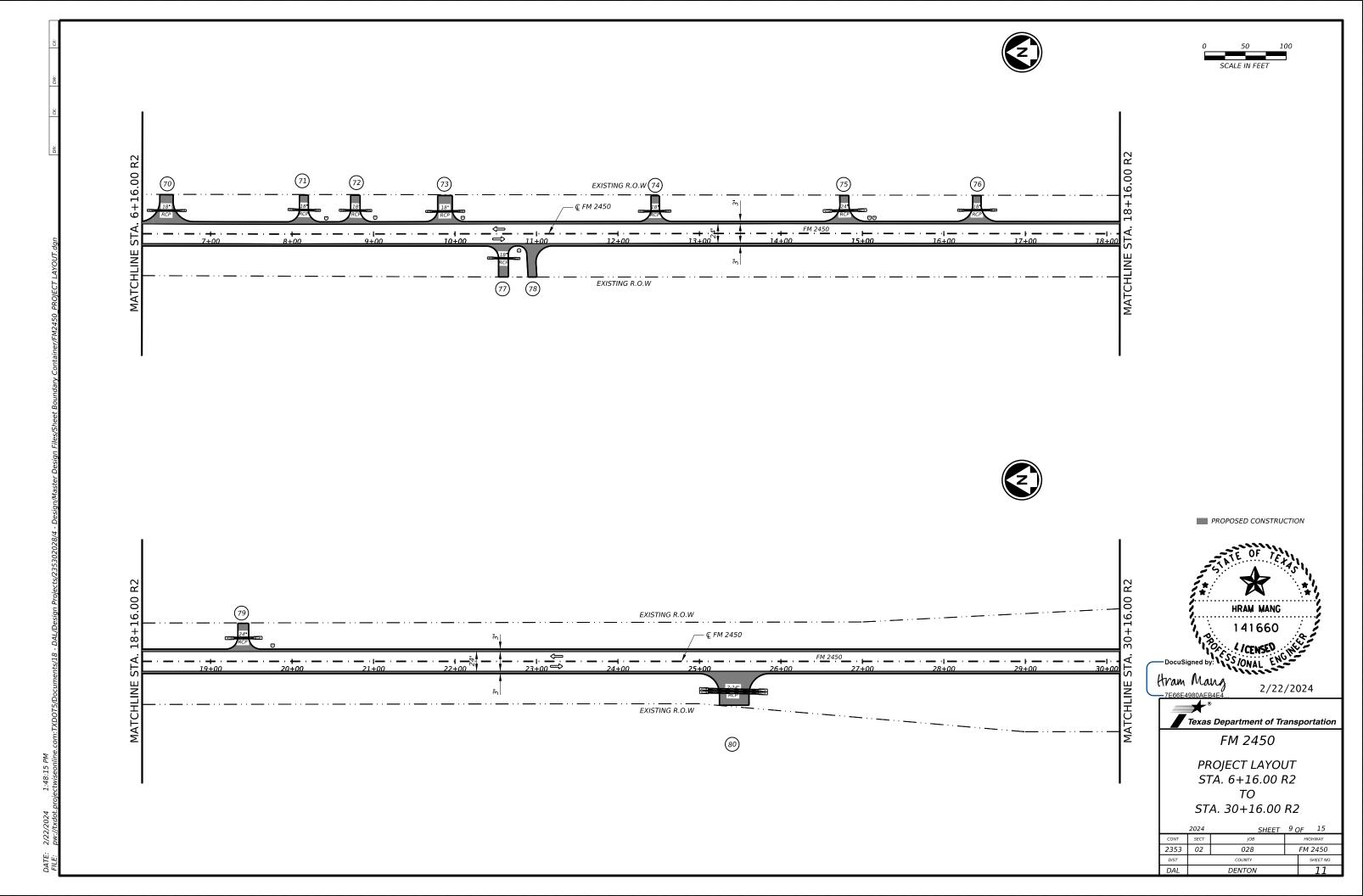


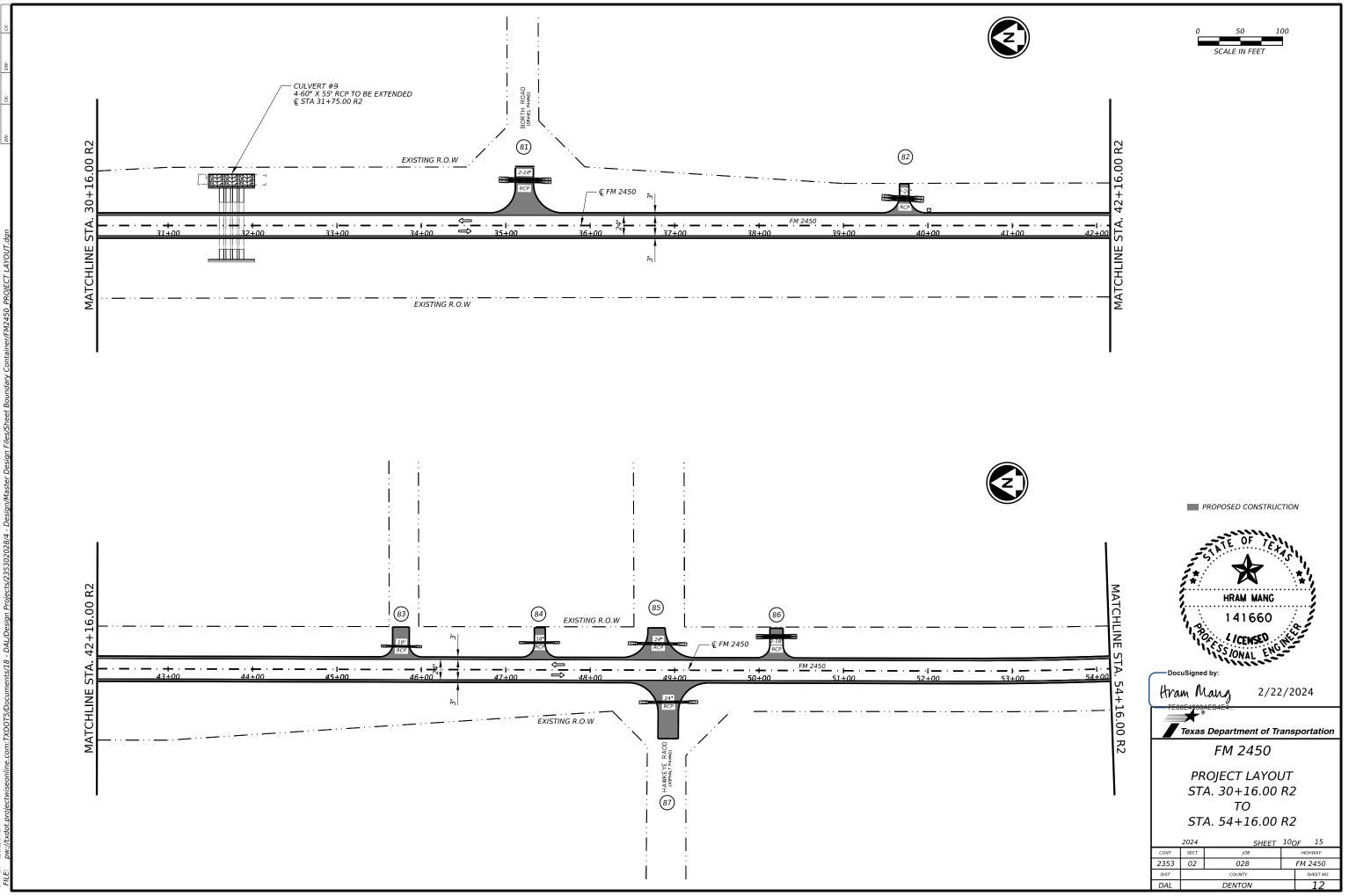


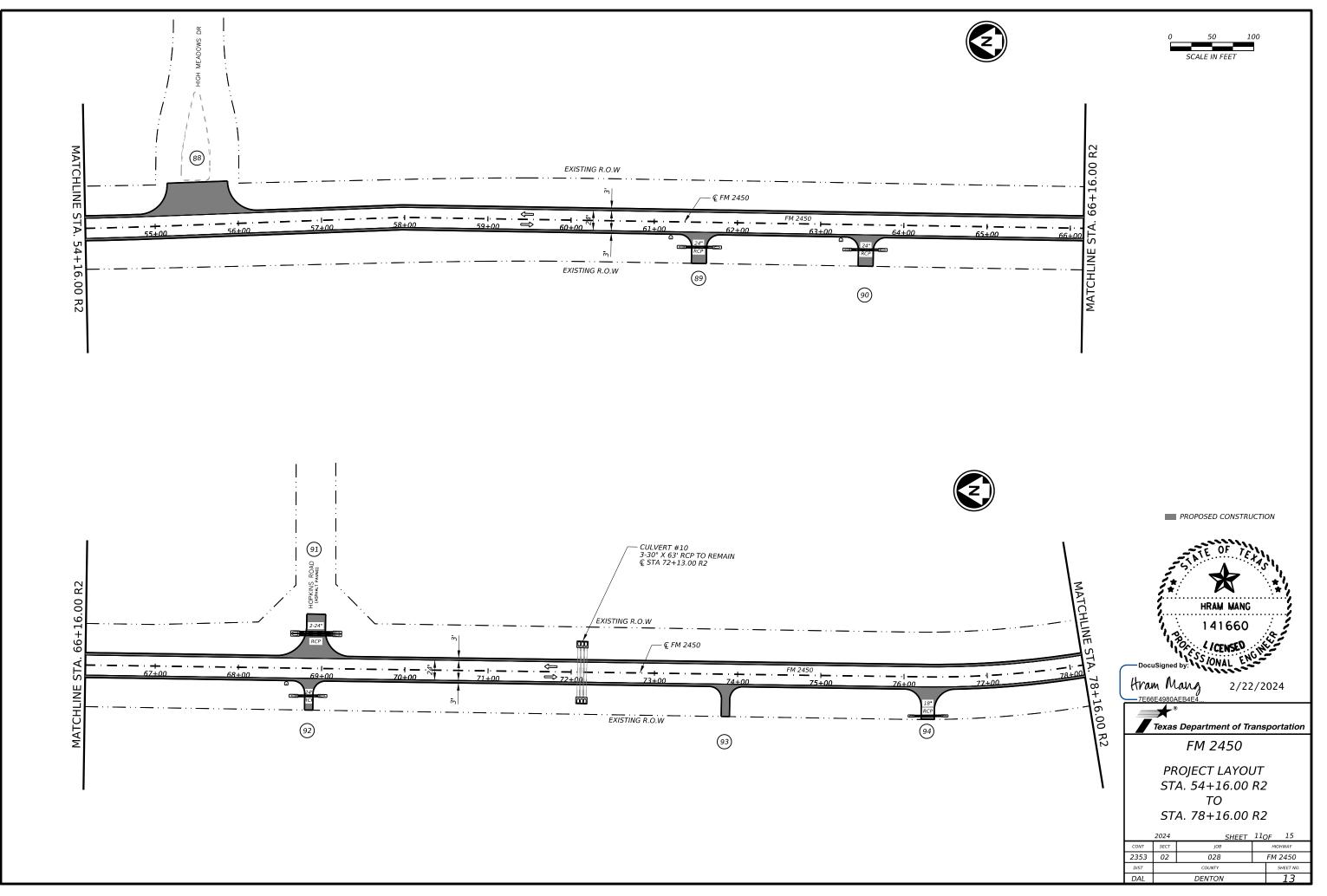


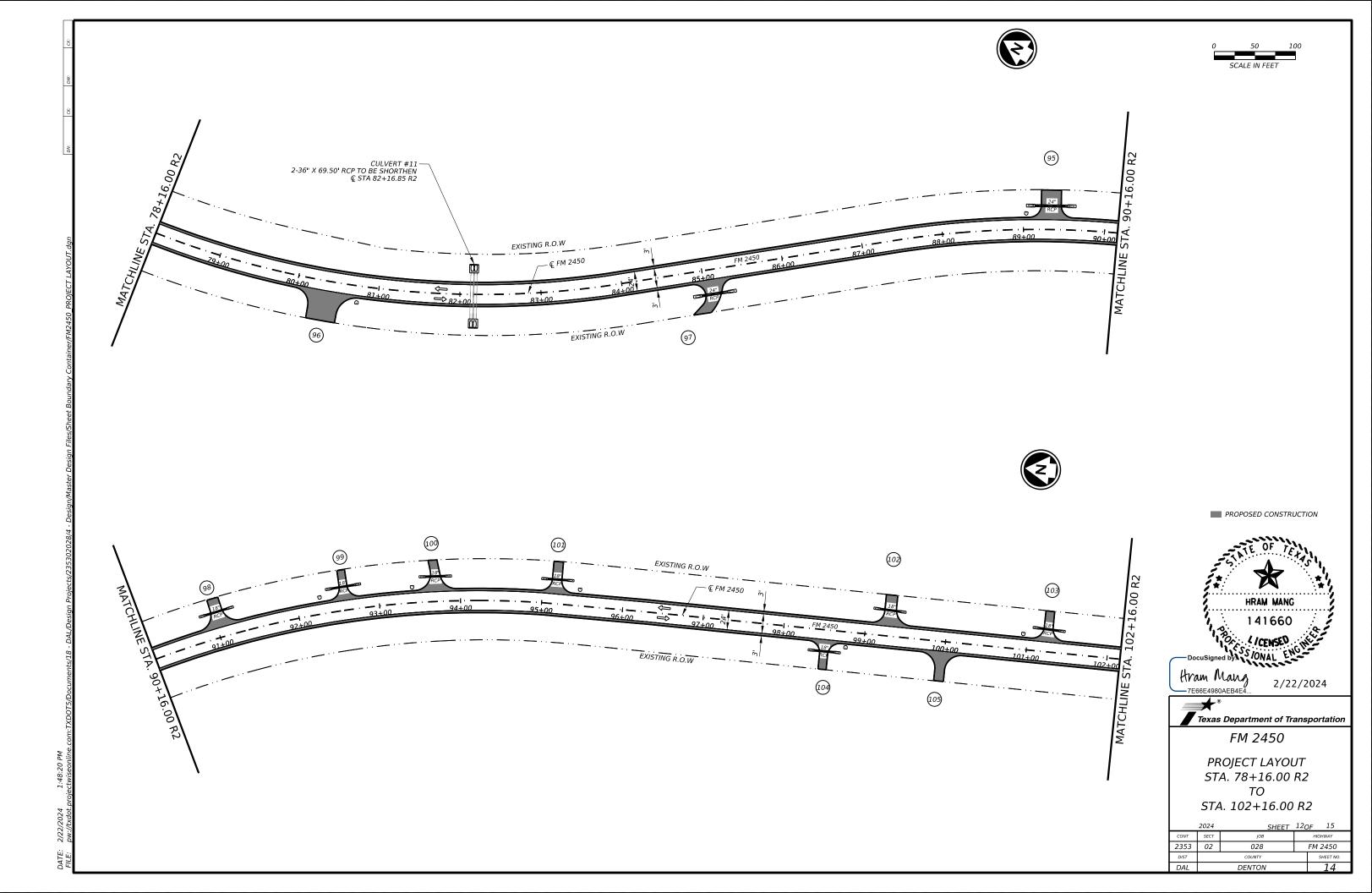

	0 50 100 SCALE IN FEET
BEGIN MILL & OVERLAY END EXISTING BRIDGE © FM 2450 STA. 35+78.00 R1 35+00 WATCHLINE STA. 35+00	
	PROPOSED CONSTRUCTION
11/1/E 57A, 48+00.00 R1	HRAM MANC HRAM MANC 141660 Docusigned VISSIONAL ENG Hram Mang 2/28/2024
MATCHLIN	TEXAS Department of Transportation FM 2450 PROJECT LAYOUT STA. 24+00.00 R1
	TO STA. 48+00.00 R1 2024 SHEET 2 OF 15 CONT SECT JOB HIGHWAY 2353 02 028 FM 2450 DIST COUNTY SHEET NO. DAL DENTON 4

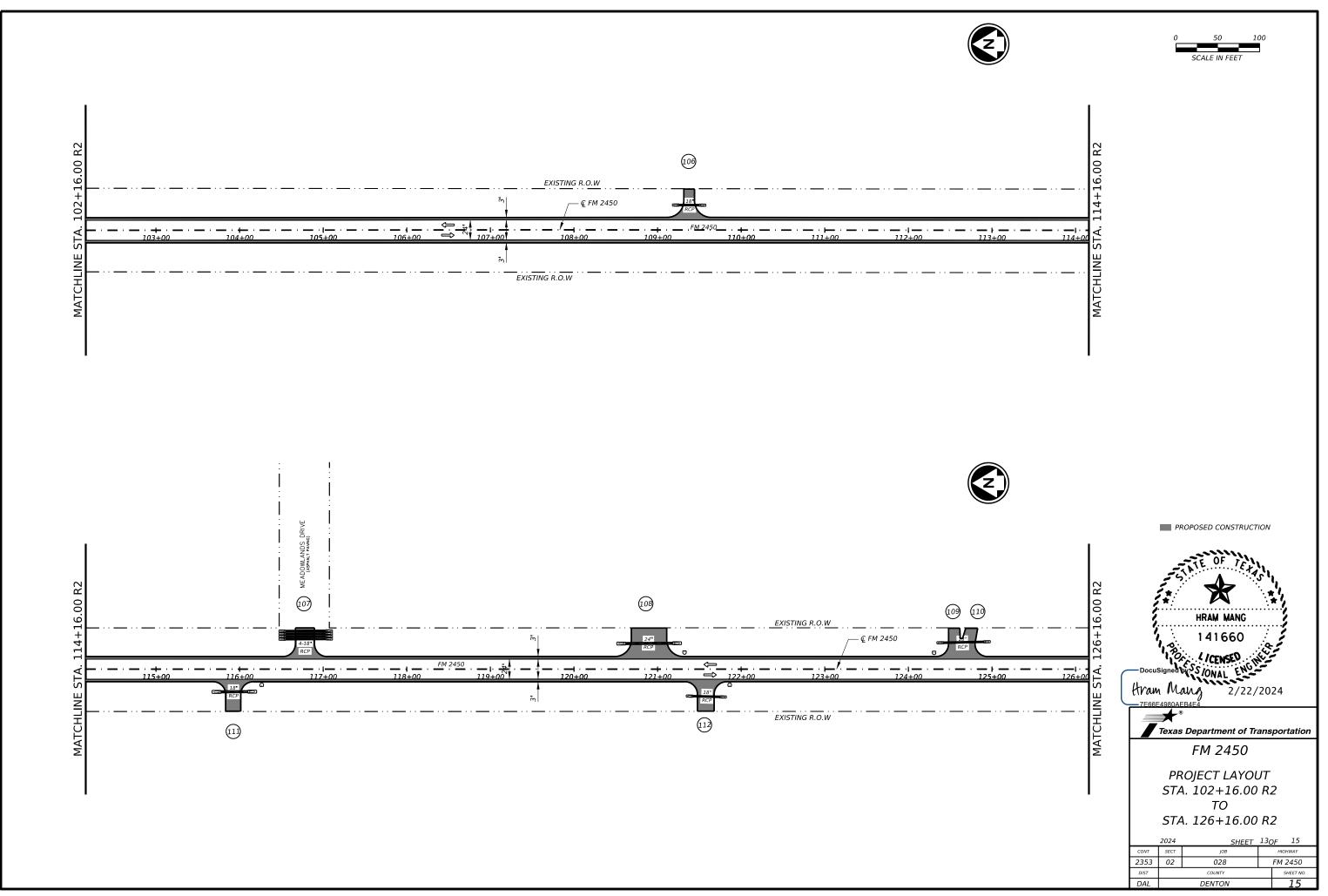


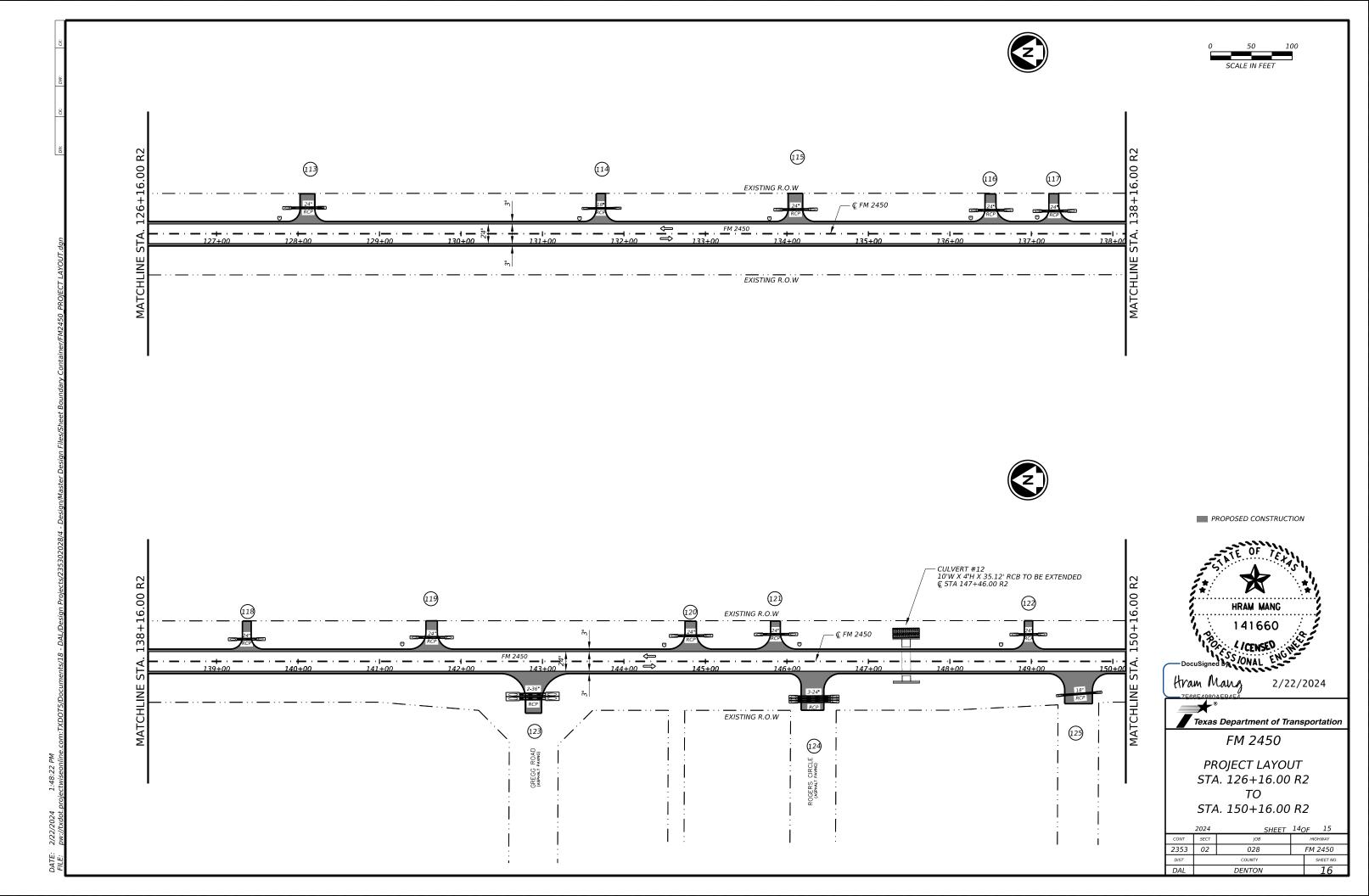


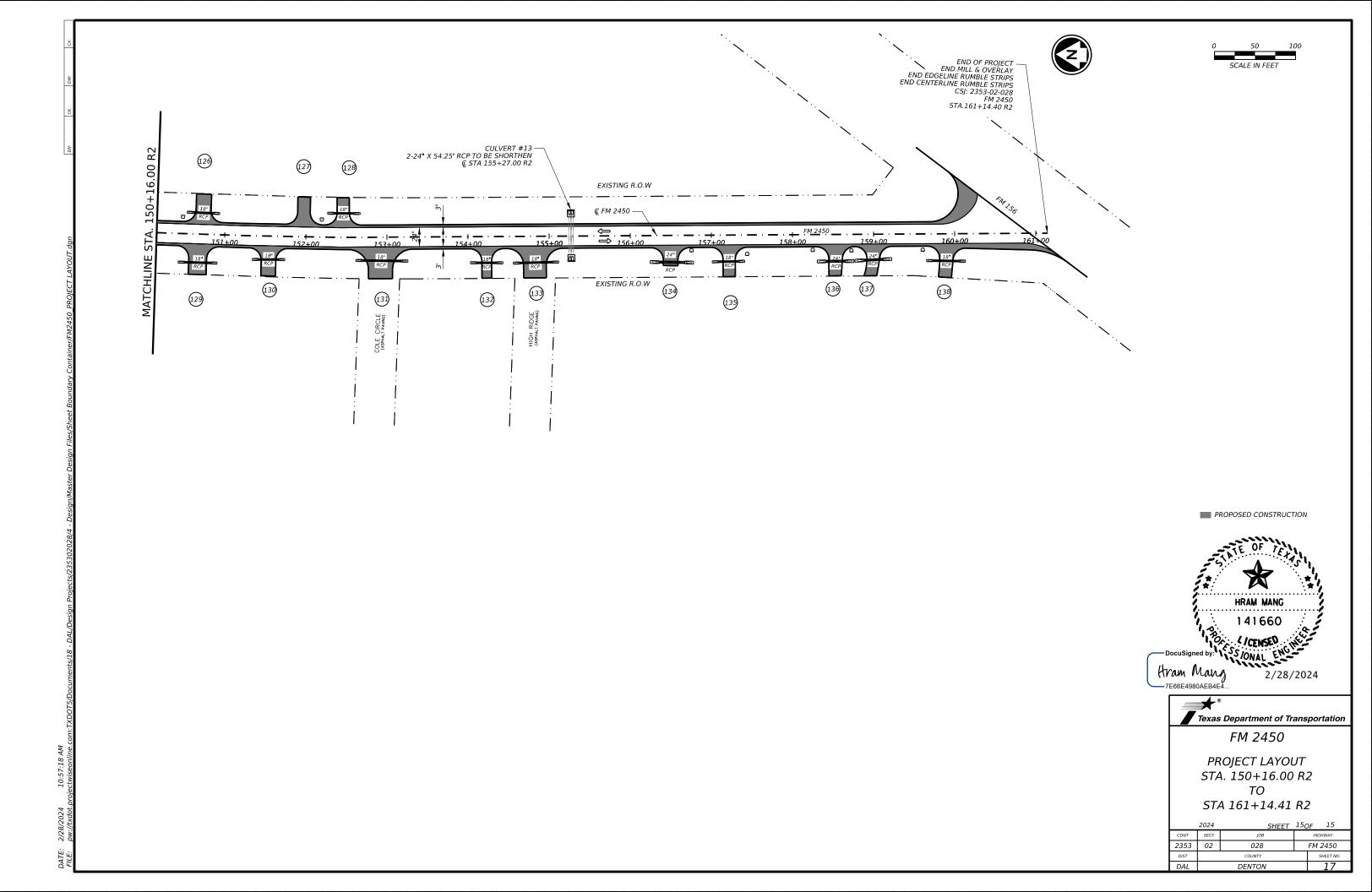


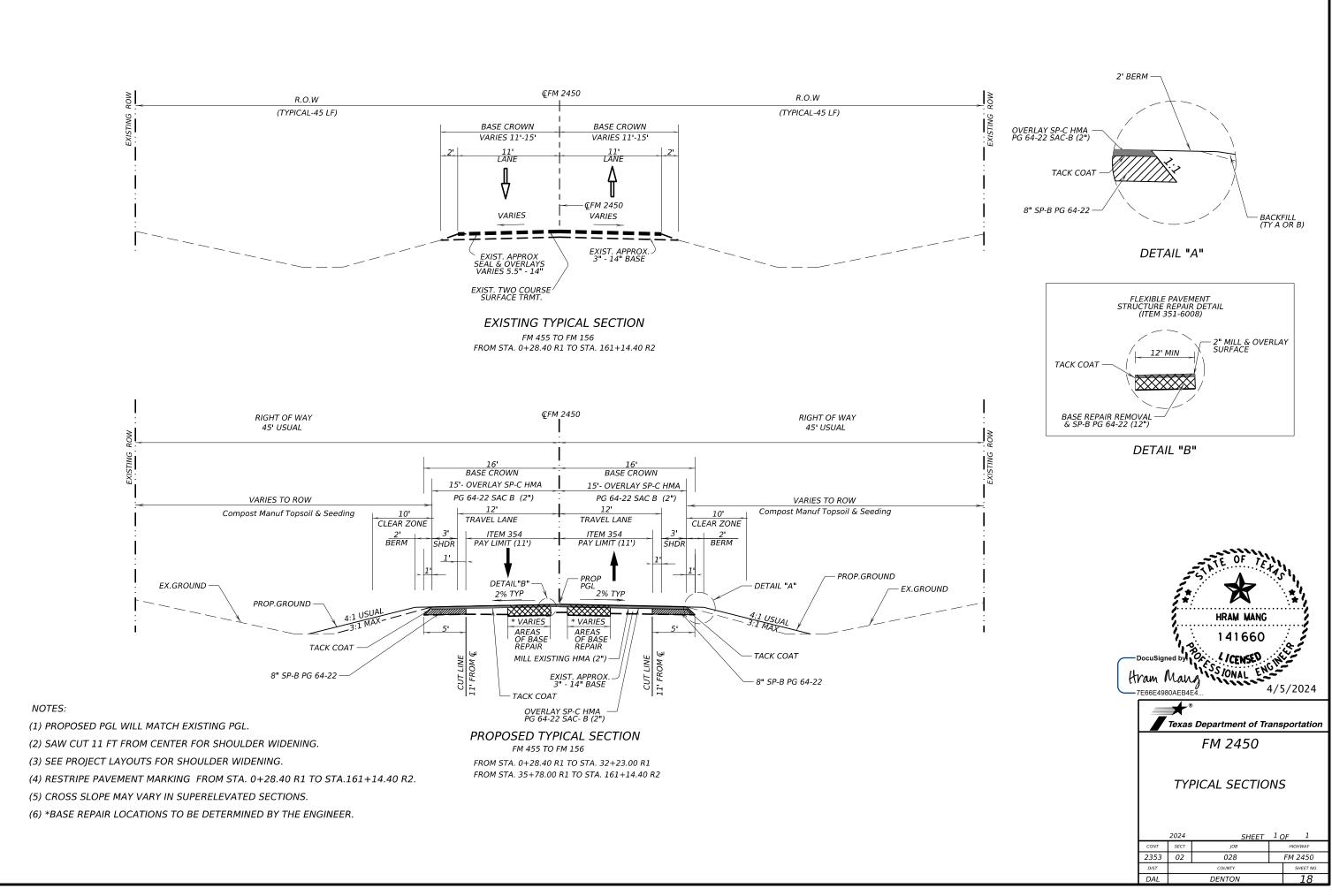












DocuSign Envelope ID: 2CE2DA67-B4EF-40C1-BA39-914E6E8CEC10

Core No.	Latitude	Longitude	Date Drilled	Concrete * (in.)	Asphalt * (in.)	Flexible Base (in.)
P-1	33.26586°	-97.23568°	11/18/2019	-	10.0	5.0
P-2	33.26988°	-97.23574°	11/19/2019	-	12.0	14.0
P-3	33.274000°	-97.23562°	11/18/2019	-	8.0	6.0
P-4	33.278116°	-97.23556°	11/19/2019	-	10.0	7.0
P-5	33.282237°	-97.23545°	11/18/2019	-	9.0	3.0
P-6	33.286066°	-97.23663°	11/19/2019	-	10.0	4.0
P-7	33.289924°	-97.23775°	11/18/2019	-	8.0	3.0
P-8	33.294045°	-97.23775°	11/19/2019	-	13.0	6.0
P-9	33.298155°	-97.23766°	11/21/2019	-	8.0	9.0
P-10	33.30226°	-97.23760°	11/19/2019	-	14.0	7.0
P-11	33.30637°	-97.23747°	11/25/2019	-	3.0	8.5
P-12	33.31050°	-97.23740°	11/21/2019	-	10.0	6.0
P-13	33.31463°	-97.23733°	11/25/2019	-	13.0	7.5
P-14	33.31859°	-97.23816°	12/9/2019	-	12.0	6.0
P-15	33.32257°	-97.23899°	11/25/2019	-	5.5	8.0
P-16	33.32670°	-97.23890°	12/9/2019	-	9.0	5.0
P-17	33.33081°	-97.23874°	11/25/2019	-	12.5	5.0
P-18	33.33493°	-97.23862°	12/9/2019	-	10.0	6.0
P-19	33.33905°	-97.23845°	11/25/2019	-	12.5	6.0
P-20	33.34316°	-97.23831°	12/9/2019	-	10.0	6.0
P-21	33.34728°	-97.23814°	11/25/2019	-	9.0	6.0

* Refer to core pictures for the top and bottom section

	FUGRO USA LAND, INC.	PAVEMENT CORE	PLATE
-fugro	2880 Virgo Lane	FM 2450 CSJ 2353-02-026	
	Dallas, TX 75229	Denton County, Texas	C1
	1/23/2020	Project No. 04.40191087	

DocuSign E

I	· ··· ·			Concrete	Asphalt	Flexible	1
Core No.	Latitude	Longitude	Date Drilled	(in.)	(in.)	Base (in.)	
P-22	33.35116°	-97.23984°	11/26/2019	-	7.0	6.0	
P-23	33.35465°	-97.24236°	11/25/2019	-	13.0	6.0	
P-24	33.35796°	-97.24527°	11/18/2019	-	9.0	7.0	
P-25	33.36210°	-97.24537°	11/26/2019	-	6.0	6.0	
P-26	33.36621°	-97.24529°	11/18/2019	-	12.0	6.0	
P-27	33.37018°	-97.24604°	11/26/2019	-	13.0	7.0	
P-28	33.37182°	-97.25044°	11/18/2019	-	10.0	6.0	
P-29	33.37532°	-97.25277°	11/26/2019	-	15.0	7.0	
P-30	33.37932°	-97.25375°	11/18/2019	-	10.0	7.0	
P-31	33.38344°	-97.25357°	11/26/2019	-	9.0	6.0	
P-32	33.38738°	-97.25439°	11/18/2019	-	8.0	6.0	
P-33	33.39091°	-97.25641°	11/26/2019	-	14.0	2.0	
P-34	33.39498°	-97.25675°	11/18/2019	-	5.0	6.0	
P-35	33.39772°	-97.26032°	11/26/2019	-	5.5	6.0	
P-36	33.40173°	-97.26092°	11/18/2019	-	9.0	7.0	
P-37	33.40584°	-97.26082°	11/26/2019	-	12.0	4.0	
P-38	33.40997°	-97.26076°	12/12/2019	-	6.0	5.0	
P-39	33.41409°	-97.26064°	12/12/2019	-	7.0	4.0	
P-40	33.41821°	-97.26058°	12/12/2019	-	10.0	4.0	TE OF TEAM
P-41	33.42233°	-97.26053°	12/12/2019	-	6.5	6.0	HRAM MANG
P-42	33.42422°	-97.26051°	12/12/2019	-	11.0	4.0	141660
Refer to	core pictures for	the top and bo	ttom section			(DocuSigned by
	F	UGRO USA LANI	D, INC.	PAVEMENT	CORE	PLATE	Hram Mangsional England 2/22/2024
-fua	RO	2880 Virgo Lar	ne	FM 2450 CSJ 23	53-02-026		I LOOL TOODINED TE T
U.		Dallas, TX 752	29	Denton County	, Texas	C2	Texas Department of Transportatio
		1/23/2020		Project No. 04.4	0191087		
							FM 2450
							CORE DATA
							2024 SHEET ¹ OF ¹
							CONT SECT JOB HIGHWAY
							2353 02 028 FM 2450 DIST COUNTY SHEET NO.
							DAL DENTON 19

I			1	Concrete	Asphalt	Flexible	1
Core No.	Latitude	Longitude	Date Drilled	(in.)	(in.)	Base (in.)	
P-22	33.35116°	-97.23984°	11/26/2019	9 -	7.0	6.0	
P-23	33.35465°	-97.24236°	11/25/2019	9 -	13.0	6.0	
P-24	33.35796°	-97.24527°	11/18/2019	9 -	9.0	7.0	
P-25	33.36210°	-97.24537°	11/26/2019	9 -	6.0	6.0	
P-26	33.36621°	-97.24529°	11/18/2019	9 -	12.0	6.0	
P-27	33.37018°	-97.24604°	11/26/2019	9 -	13.0	7.0	
P-28	33.37182°	-97.25044°	11/18/2019	9 -	10.0	6.0	
P-29	33.37532°	-97.25277°	11/26/2019	9 -	15.0	7.0	
P-30	33.37932°	-97.25375°	11/18/2019	9 -	10.0	7.0	
P-31	33.38344°	-97.25357°	11/26/2019	9 -	9.0	6.0	
P-32	33.38738°	-97.25439°	11/18/2019	9 -	8.0	6.0	
P-33	33.39091°	-97.25641°	11/26/2019	9 -	14.0	2.0	
P-34	33.39498°	-97.25675°	11/18/2019	Э -	5.0	6.0	
P-35	33.39772°	-97.26032°	11/26/2019	9 -	5.5	6.0	
P-36	33.40173°	-97.26092°	11/18/2019	9 -	9.0	7.0	
P-37	33.40584°	-97.26082°	11/26/2019	9 -	12.0	4.0	
P-38	33.40997°	-97.26076°	12/12/2019	9 -	6.0	5.0	
P-39	33.41409°	-97.26064°	12/12/2019	9 -	7.0	4.0	
P-40	33.41821°	-97.26058°	12/12/2019	9 -	10.0	4.0	TE OF TENNIN
P-41	33.42233°	-97.26053°	12/12/2019	9 -	6.5	6.0	HRAM MANG
P-42	33.42422°	-97.26051°	12/12/2019	9 -	11.0	4.0	141660
Refer to	core pictures fo	or the top and bo	ttom section				DocuSignet by
		UGRO USA LANI	D, INC.	PAVEMENT	CORE	PLATE	Hram Mangsional engineering 2/22/2024
-fua	RO C	2880 Virgo Lar	ne	FM 2450 CSJ 23	53-02-026		
I		Dallas, TX 752	29	Denton County		C2	Texas Department of Transportation
		1/23/2020		Project No. 04.4	0191087		
							FM 2450
							CORE DATA
							2024
							2024 SHEET 1 OF 1 CONT SECT JOB HIGHWAY
							2353 02 028 FM 2450
							DIST COUNTY SHEET N

DATE: FILE:

County: DENTON

Highway: FM 2450

SPECIFICATION DATA

Table 1: Soil Constants Requirements								
Itom	Description	Plastici	ty Index	Note				
Item	Description	Max	Min	Note				
132	EMBANKMENT (FINAL)(DENSITY CONTROL)(TY C)	40	8	1				

Note 1: Material excavated from the project must meet the PI requirements when used in the top 10 feet of embankment that supports the pavement structure or other locations shown in the plans. Do not use shale and obtain approval to incorporate shaley clay produced by the construction project.

Table 2: Basis of Estimate for Permanent Construction								
Item	Description	Thickness		Quantity				
162	Block Sod	N/A	See S	pecifications	11903 SY			
164	Drill Seed (Perm) (R) (C)	N/A	See S	pecifications	257851 SY			
166 *	Fertilizer (12-6-6)	N/A	500	Lbs./Ac	14 Ton			
168	Vegetative Watering (Warm)**	N/A	12	MG/Ac/Day	40125 MG			
3077	SP MIXES	See Plans	110	Lbs./SY/In	27727 Ton			
3077	Tack Coat (Undiluted Application Rate)	Milled HMA	0.11	Gal/SY	16519 Gal			
*For contractor's information only **Use Summer rate for calculation, adjust for actual field conditions/temperatures as necessary. See Vegetation Establishment Plan Sheet for estimated daily rates.								
(2	Note: (1) Base material weight based on 1.50 Ton/CY (dry- compacted) (2) Asphalt weight based on 110 Lbs./SY/In (3) Subgrade weight based on 1.5 Ton/CY (dry-compacted)							

CSJ:2353-02-028

County: DENTON

Highway: FM 2450

Table 3: Basis of Estimate for Temporary Erosion Control Items								
Item	Description Rate Quantity							
164	Drill Seeding (Temp) (Warm or Cool)	See Spe	128926 SY					
166*	Fertilizer (12-6-6)	500	Lb/Ac	7 Ton				
168	Vegetative Watering (Warm)**	12	MG/Ac/Day	20063 MG				
*For Contractor's Information Only. **Use Summer rate for calculation, adjust for Actual Field Conditions/Temperatures as Necessary. See Vegetation Establishment Sheet for estimated daily rates.								

The construction, operation and maintenance of the proposed project will be consistent with the state implementation plan as prepared by the Texas Commission on Environmental Quality.

The disturbed area for this project, as shown on the plans is 55.73 acres. However, the Total Disturbed Area (TDA) will establish the required authorization for storm water discharges. The TDA of this project will be determined by the sum of the disturbed area in all project locations in the contract, and all disturbed area on all Project-Specific Locations (PSL) located in the project limits and/or within 1 mile of the project limits. The department will obtain an authorization to discharge storm water from the Texas Commission on Environmental Quality (TCEQ) for the construction site as shown on the plans, according to the TDA of the project. The contractor will obtain any required authorization from the TCEQ for the discharge of storm water from any PSL for construction support activities on or off of the project row according to the TDA of the project. When the TDA for the project exceeds 1 acre, provide a copy of the appropriate application of permit (NOI, or Construction Site Notice) to the engineer, for any PSL located in the project limits or within 1 mile of the project limits. Follow the directives and adhere to all requirements set forth in the TCEQ, Texas Pollution Discharge Elimination System, Construction General Permit (TPDES, CGP).

This project required permits with environmental resources agencies. There is a high probability that an environmentally sensitive area could be encountered on the contractor designated Project-Specific Locations (PSL) for this project (haul roads, equipment staging areas, borrow pits, disposal sites, field offices, storage areas, parking areas, etc.). Item 7.6 "Project-Specific Locations", provides a listing of regulatory agencies that may need to be contacted regarding this project.

Install traffic marking signs prior to sealcoat application and remove within three days after placement of traffic markings.

Leave all right of way areas undisturbed until actual construction is to be performed in said areas.

Questions may be submitted via the Letting Pre-Bid Q&A web page. This webpage can be accessed from the Notice to Contractors dashboard located at the following Address:

GENERAL

20

County: DENTON

Highway: FM 2450

https://tableau.txdot.gov/views/ProjectInformationDashboard/NoticetoContractors

or Contractor guestions on this project are to be addressed to the following individual(s):

Amanda Miller Amanda.Miller@txdot.gov Christopher Rocha Christopher.Rocha@txdot.gov

Contractor questions will be accepted through email, phone, and in person by the above individuals.

All contractor questions will be reviewed by the Engineer. All questions and any corresponding responses that are generated will be posted through the same Letting Pre-Bid Q&A web page.

The Letting Pre-Bid Q&A web page for each project can be accessed by using the dashboard to navigate to the project you are interested in by scrolling or filtering the dashboard using the controls on the left. Hover over the blue hyperlink for the project you want to view the Q&A for and click on the link in the window that pops up.

Cross sections may be requested by posting a question to the above Letting Pre-Bid Q&A web page. This data is for non-construction purposes only and it is the responsibility of the prospective bidder to validate the enclosed data with appropriate plans, specifications and estimate for the project(s).

Item 5:

Underground utilities owned by the Texas Department of Transportation may be present within the Right-Of-Way on this project. For signal, illumination, surveillance, and communications & control maintained by TxDOT, call the TxDOT Traffic Signal Office (214-320-6682) for locates a minimum of 48 hours in advance of excavation. For irrigation systems, call TxDOT Landscape Office (214-320-6205) for locates a minimum of 48 hours in advance of excavation. If city or town owned irrigation facilities are present, call the appropriate department of the local city or town a minimum of 48 hours in advance of excavation. The Contractor is liable for all damages when utilities are damaged due to Contractor's negligence including, but not limited to, repair or replacement at the Contractor's expense.

For the project to be deemed complete, permanently stabilize all unpaved disturbed areas of the project with a vegetative cover at a minimum of 70% density for the control of erosion.

Place construction stakes/station markings at intervals of no more than 100 feet or as directed by the Engineer. Place stakes and markings so as not to interfere with normal construction operations.

CSJ:2353-02-028

County: DENTON

Highway: FM 2450

Item 6:

To comply with the latest provisions of Build America, Buy America Act (BABA Act) of the Bipartisan Infrastructure Law, the contractor must submit an original of the TxDOT Construction Material Buy America Certification Form for all items classified as construction materials. This form is not required for materials classified as a manufactured product.

Refer to the Buy America Material Classification Sheet for clarification on material categorization.

The Buy America Material Classification Sheet is located at the below link. https://www.txdot.gov/business/resources/materials/buy-america-material-classificationsheet.html for clarification on material categorization.

Item 7:

Repair or replace any structures and utilities that might have been damaged by negligence or a failure to have utility locates performed.

Holiday restrictions – The Engineer may decide that no lane closures or construction operations shall be allowed during the restricted periods listed in the following holiday schedule. TxDOT has the right to lengthen, shorten, or otherwise modify these restricted periods as actual, or expected, traffic conditions may warrant. Working days will not be charged for these restricted periods. No additional compensation will be allowed for these closures (i.e., overhead, delays, stand-by, barricades or any other associated cost impacts).

- Independence Day (5 am on July 3 thru 10:00 pm on July 5)

Lane and ramp closures during the following key dates and/or special events are prohibited and other dates as directed:

This is a list the dates and/or events lane and ramp closures will be prohibited:

Eve	ents	Dates
1	Texas Motor Speedway- NASCAR Series Races	April and November
2	Texas Motor Speedway- INDY Series Races	June and September

• New Year's Eve and Day (5 am on December 31 thru 10:00 pm January 1) • Easter Holiday weekend (5 am on Friday thru 10:00 pm Sunday) • Memorial Day weekend (5 am on Friday thru 10:00pm Monday) • Labor Day weekend (5 am on Friday thru 10:00 pm Monday) • Thanksgiving Holiday (5 am on Wednesday thru 10:00 pm Sunday) • Christmas Holiday (5 am on December 23 thru 10:00 pm December 26)

County: DENTON

Highway: FM 2450

Item 8:

This Project will be a Standard Workweek

Meet weekly with the engineer to notify him or her of planned work for the upcoming week.

Provide the engineer with a daily work schedule of planned work.

Critical Path Method (CPM) schedule in P6 format will be required for this project. Submit baseline schedule and obtain approval prior to beginning construction. The Estimate will be held if monthly schedule update is not submitted.

Item 100:

Remove the existing roadway small signs, delineators and object markers as shown on the plans, or as directed, during construction within the right of way. Small sign, delineator and object marker removals are subsidiary to this Item.

The limits of preparing right of way will be measured from Sta. 0+28.40 R1 to Sta. 161+14.40 R2 along the centerline of construction.

Item 104:

Sawing of concrete is not paid for directly, but is considered subsidiary to this item.

Items 105,354:

Saw existing asphalt along neat lines where portions are to be left in place temporarily or permanently. Sawing is not paid for directly, but is subsidiary to this item.

Take possession of recycled asphalt pavement from the project and recycle the material.

Properly dispose of unsalvageable material at your own expense.

Item 110:

Excavated shale is not an acceptable material for embankment.

Items 110 and 132:

Scarify and loosen the excavated areas, unpaved surface areas, except rock, to a depth of at least 8 inches and compact in accordance with the specifications.

CSJ:2353-02-028

County: DENTON

Highway: FM 2450

Excavation and embankment for driveways, sleeper slabs, alleys and intersections will not be paid for directly, but will be considered subsidiary to these items.

Item 132:

Excavated material from the project site has not been determined to be suitable for embankment. The bidder assumes all risk for the use of excavated materials for embankment and is expected to meet all material requirements for embankment regardless of the source.

Perform Tex-106-E (Plasticity Index) by an approved laboratory on excavated soils from sources outside right of way when used in roadway embankment. Provide the test results at no expense to the department. The engineer will sample and test soils produced by the construction project for specification requirements or material sources specified in the plans.

Earth embankment Type C, is mainly composed of material other than shale. Furnish material that is free from vegetation or other objectionable material and that conforms to the requirements of Table 1 (Sheet A). If necessary, treat material with lime slurry in accordance with Item 260, "Lime Treatment (Road-Mixed)" in order to meet these requirements. Use Tex-121-E, figure 1, page 4 to calculate the amount of lime required. When lime treated subgrade is specified, 3000 PPM is the maximum allowed sulfate content in the top 3 feet when material comes from borrow source. Follow recommendations of 260.4.4 for mixing and mellowing. The engineer will test material placed or excavated to a depth of one foot below and laterally to one foot outside the proposed treatment limit. Lime treatment of this material will not be paid for directly, but will be considered subsidiary to this item.

Do not use shaley clays in embankment unless approved in writing.

Item 134:

Start backfilling pavement edges as soon as possible after the surface course is started.

Backfill and compact the pavement edges to produce a smooth surface adjacent to the pavement with no vertical edges.

Use Type "A" or "B" material to backfill pavement edges as shown in plans. Type "A" or "B" material shall consist of suitable material that when compacted will support the pavement edge. Rap is considered suitable Type "A" or "B" material.

Blade the existing vegetation into a neat wind-row prior to overlay. After placing Ty A or Ty B backfill and placing seeding, the material from the wind-row shall be replaced on the completed slopes. Emulsion shall be placed at a 50/50 solution of water to emulsion over disturbed area. Emulsion rate=0.15 Gal/SY residual. This work, materials and equipment shall be subsidiary to Item 134.

20B

County: DENTON

Highway: FM 2450

Item 160:

Sequence construction operations to salvage topsoil from one location and spread on areas ready to receive topsoil. Keep stockpiling of topsoil to a minimum.

Use fertile clay or loam from the project site not more than six inches below natural grade as topsoil.

Item 161:

Provide tickets representing quantity of compost delivered to site.

Item 301:

Provide liquid antistripping agents unless otherwise directed. Add the minimum dosage determined by the manufacturer or higher dosage determined by design requirement and try subsequent trials at 0.25% increments.

Item 320:

Use a self-propelled wheel mounted MTV capable of receiving mix from the haul trucks. separate from the paver. It shall have a minimum storage capacity of approximately 25 tons. It shall be equipped with a pivoting discharge conveyor and shall completely and thoroughly remix the material prior to placement. The effectiveness of the MTV's remixing ability is subject to the approval of the Engineer. In addition, the paver shall have a surge storage insert with a minimum capacity of 20 tons.

The use of windrow pick-up equipment is allowed except on the first course of roadway material placed over the subgrade.

Item 354:

Remove the loose material from the roadway before opening to traffic.

Patch pavement cut to excessive depth by equipment failure with an approved epoxy material. Re-plane patched area to an acceptable approved ride quality. Payment for these corrections is subsidiary to this item.

Take possession of recycled asphalt pavement from the project and recycle the material.

CSJ:2353-02-028

County: DENTON

Highway: FM 2450

Item 400:

Structural Excavation is not paid for directly but is considered subsidiary to pertinent Items.

Item 420:

Apply an ordinary surface finish to all concrete surfaces within 30 days after form removal.

Provide National Bridge Inventory (NBI) numbers on all bridge structures and bridge class culverts.

For Bridge Class Culverts, place National Bridge Inventory numbers at the middle of the downstream headwall using 3" block letters.

For Bent Numbering and NBI Numbering, furnish materials that conform to the pertinent requirements of the following items:

- smudging or rippling and
- Die cut stencils or
- industrial grade and interlocking.

All materials, labor and incidentals associated with placing NBI numbers are subsidiary to the various bid items.

Item 421:

Furnish mix designs to the Engineer in a format compatible to the latest version of the Department's Construction Management System (Site Manager). Mix Design templates will be provided by the Engineer.

Provide sulfate resistant concrete for box culverts and all drilled shafts.

Strength evaluation using maturity testing, Tex-426-A, may be used for all concrete elements except drilled shafts and mass concrete pours.

Provide a digital hydraulic compression testing Machine and accessories. The machine shall have a minimum testing range of 2500 pounds force to 250,000 pounds force with a hydraulic switching valve to allow for rapid advancing, hold, controlled advancing and rapid retracting. The machine shall have a load cell to measure compressive forces within the testing range and shall be calibrated and verified in accordance with ASTM latest version. The Machine can meet or exceed the following when approved by the Engineer:

Stencil ink, black 11 oz., spray can (lead, CFC, and CFHC free). Black spray will be waterproof, weather resistance and dry instantly on all surfaces, without smearing,

20C

 Brass stencil, 3 in., numbers and letters, adjustable interlocking stencil, set content 92 piece numbers and letters, legend height 3 in., symbol height 3 in. Stencils must be

County: DENTON

Highway: FM 2450

Supply the Engineer with a list of certified personnel and copies of their current ACI certificates before beginning production and when personnel changes are made. Supply hard copies of calibration reports for testing equipment when required by the Engineer.

Item 464:

The concrete collars and the connections of pipes to existing or proposed concrete boxes or pipe will not be paid for directly but will be considered subsidiary to the various bid items.

At locations where storm drains dead-end, plug with a concrete plug of a thickness equal to $1\frac{1}{2}$ inches per foot of diameter of pipe with a minimum thickness of 3 inches. The cost of the plugs shall be included in the unit price bid per foot of the various storm drain pipes.

Item 500:

Material On Hand (MOH) will not be used in calculating partial payments for Mobilization.

Item 502:

The Contractor Force Account "Safety Contingency" that has been established for this project is intended to be utilized for work zone enhancements, to improve the effectiveness of the Traffic Control Plan, that could not be foreseen in the project planning and design stage. These enhancements will be mutually agreed upon by the Engineer and the Contractor's Responsible Person based on weekly or more frequent traffic management reviews on the project. The Engineer may choose to use existing bid items if it does not slow the implementation of enhancement.

Access will be provided to all business and residences at all times. Where turning radii are limited during phased construction at intersections, provide all weather surfaces such as RAP or base in turning movements to accommodate and to protect the traffic from edge drop-offs. Materials, labor, maintenance and removal for these temporary accesses and radii will not be paid for directly but will be considered subsidiary to the various bid items.

Provide written proposed lane closure information by 1:00 pm on the business day prior to the proposed closures. Do not close lanes when this requirement is not met.

When excavation is required next to a pavement lane carrying traffic and the widening is not completed by the end of the work day, backfill against the edge of the pavement with at least a 3:1 slope using an acceptable material to support vehicular traffic. Carefully remove and dispose of this material when work resumes. Backfilling pavement edges, and the materials required for the work will be subsidiary to this item.

Place barricades and signs in locations that do not obstruct the sight distance of drivers entering the highway from driveways or side streets.

CSJ:2353-02-028

County: DENTON

Highway: FM 2450

Do not commence work on the road before sunrise. Do not operate or park any equipment/machinery closer than 30 feet from the traveled roadway after sunset unless authorized by the engineer.

When moving unlicensed equipment on or across any pavement or public highways, protect the pavement from all damage using an acceptable method.

Limit lane closures along FM 2450 to the hours between 9:00 am and 3:30 pm. Work in other areas of the project is not restricted to this time frame.

Traffic Control Plans with Lane Closures causing back-ups of 8 minutes or greater in duration will be modified by the Engineer up to and including removal of the lane closure.

Additional lanes may be closed, started earlier, or extended later with written permission of the Engineer.

Item 506:

Take all practicable precautions to prevent debris from being discharged into the Waters of Texas or a designated wetland. Install Best Management Practices before demolition begins and maintain them during the demolition. Remove any debris or construction material that escapes containment devices and are discharged into the restricted areas, before the next rain event or within 24 hours of the discharge.

If temporary construction stream crossings are allowed under a Nationwide Permit, submit in writing for approval the type and location of each temporary stream crossing. Use temporary bridges, timber mats, or other structurally sound and non-eroding material for temporary stream crossings. A temporary culvert crossing will consist of storm sewer pipes and 4- to 8-inch nominal size rock. Temporary stream crossings must not cause more than minimal changes to the hydraulic flow characteristics of the stream, increase flooding, or cause more than minimal degradation of water quality. Remove the temporary stream crossings in their entirety and return the affected areas to their pre-existing elevation. All work and materials use for temporary construction stream crossings will not be paid for directly but are subsidiary to pertinent Items.

Provide SW3P Signs. Obtain from the Engineer a copy of the project's completed TPDES Storm Water Program Construction Site Notice and Contractor Site Notice. Laminate the sheets and bond with adhesive to 36" X 36" plywood sign blanks. Ensure the sheets remain dry. Apply Type C Blue reflective sheeting as the background and add the text "SW3P" in 5" white lettering, centered at the top. Attach the signs to approved temporary mounts and locate at each of the project limits just inside the right of way line at a readable height or as directed by the Engineer. If the sign cannot be placed outside the clear zone, it must adhere to the TMUTCD. SW3P signs, maintenance, and reposting (for replacement or as needed to ensure readability) will be subsidiary to Item 502.

General Notes

20D

County: DENTON

Highway: FM 2450

Concrete Washouts are required per the CGP. The Concrete Washout Area(s) structural controls must consist of temporary berms, temporary shallow pits, and/or temporary storage tanks to prevent contaminated runoff and must be lined as to prevent contamination of underlying soil. Ensure pits properly maintained including removal of concrete as not to allow over flow. The location(s) of washout area will be approved by the Engineer. When washout pits are no longer needed, they will be removed and area will be restored to original condition. This work, materials and labor will not be measured or paid for directly but will be subsidiary to Item 506, "Temporary Erosion, Sedimentation, and Environmental Controls."

Item 530:

Provide Class "HES" concrete for concrete intersections and driveways listed or shown on the plans.

Item 585:

Use Surface Test Type A on all intersections and driveways.

Use Surface Test Type B pay adjustment schedule 3 on the service roads.

Item 644:

Provide two (2) sets of shop drawings for signs. The shop drawings shall conform to the details shown on the plans. The shop drawings shall show the details of the panels, wind beams, stiffeners, joint backing plates, splices, fasteners, brackets, and sign support connections. The shop drawings shall show letter types and sizes, interline spacing and message arrangements.

Affix a sign identification decal to the back of all signs in accordance with Item 643.

Prior to taking elevations to determine lengths for fabrication of sign posts, obtain verification of all proposed locations.

All sign mounts shall have a clamp base system for all small roadside sign assemblies.

Item 662 and 672:

Black adhesive will be used on asphalt pavements and white adhesive will be used on concrete pavements.

CSJ:2353-02-028

County: DENTON

Highway: FM 2450

Item 730:

At the discretion of the Engineer, mow non-paved areas within the project prior to placement of permanent vegetation. Mow up to two (2) cycles per growing season.

Item 3077:

Use aggregate that meets the Surface Aggregate Classification (SAC) requirement of Class B

Provide PG binder 64-22 in Type SP-B and SP-C.

Item 6185:

The total number of truck mounted attenuators (TMAs) or trailer attenuators (TAs) required when utilizing the traffic control standards are shown in the tables below.

TCP 1 Series	Scenario	Required TMA/TA
(1-6)-18		1

TCP 2 Series	Scenario	Required TMA/TA
(2-1)-18 / (2-2)-18	All	1

TCP 3 Series	Scenario			Required TMA/TA
(3-1)-13	All			2
(3-3)-14	А	В	D	2
		С		3

The contractor will be responsible for determining if one or more of these operations will be ongoing at the same time to determine the total number of TMAs/TAs needed for the project. Additional TMAs/TAs used that are not specified in the plans in which the contractor expects compensation will require prior approval from the Engineer.

The TMA/TA used for installation/removal of traffic control for a work area will be subsidiary to the TMA/TA used to perform the work.

CONTROLLING PROJECT ID 2353-02-028

DISTRICT Dallas HIGHWAY FM 2450 **COUNTY** Denton

Estimate & Quantity Sheet

		CONTROL SECTIO	ON JOB	2353-02	2-028		
		PROJ	ECT ID	A00176	5134		
		C	OUNTY	Dent	on	TOTAL EST.	TOTAL
		HIG	HWAY	FM 24	50		FINAL
ALT	BID CODE	DESCRIPTION	UNIT	EST.	FINAL	-	
	100-6002	PREPARING ROW	STA	340.040		340.040	
	104-6009	REMOVING CONC (RIPRAP)	SY	419.000		419.000	
	104-6017	REMOVING CONC (DRIVEWAYS)	SY	1,904.000		1,904.000	
	105-6043	REMOVING STAB BASE & ASPH PAV (0-6")	SY	13,990.000		13,990.000	
	105-6046	REMOVING STAB BASE & ASPH PAV (0"-10")	SY	7,557.000		7,557.000	
	110-6001	EXCAVATION (ROADWAY)	CY	14,941.000		14,941.000	
	132-6006	EMBANKMENT (FINAL)(DENS CONT)(TY C)	CY	20,200.000		20,200.000	
	134-6004	BACKFILL (TY A OR B)	STA	340.040		340.040	
	161-6017	COMPOST MANUF TOPSOIL (4")	SY	269,754.000		269,754.000	
	162-6002	BLOCK SODDING	SY	11,903.000		11,903.000	
	164-6035	DRILL SEEDING (PERM) (RURAL) (CLAY)	SY	257,851.000		257,851.000	
	164-6051	DRILL SEED (TEMP)(WARM OR COOL)	SY	128,926.000		128,926.000	
	168-6001	VEGETATIVE WATERING	MG	60,188.000		60,188.000	
	351-6008	FLEXIBLE PAVEMENT STRUCTURE REPAIR(12")	SY	2,000.000		2,000.000	
	354-6045	PLANE ASPH CONC PAV (2")	SY	91,688.000		91,688.000	
	403-6001	TEMPORARY SPL SHORING	SF	1,632.000		1,632.000	
	432-6001	RIPRAP (CONC)(4 IN)	CY	41.000		41.000	
	432-6051	RIPRAP (STONE COMMON)(GROUT)(18 IN)	CY	287.000		287.000	
	462-6101	CONC BOX CULV (10 FT X 4 FT)	LF	22.000		22.000	
	464-6003	RC PIPE (CL III)(18 IN)	LF	2,413.000		2,413.000	
	464-6005	RC PIPE (CL III)(24 IN)	LF	1,846.000		1,846.000	
	464-6007	RC PIPE (CL III)(30 IN)	LF	76.000		76.000	
	464-6008	RC PIPE (CL III)(36 IN)	LF	240.000		240.000	
	464-6010	RC PIPE (CL III)(48 IN)	LF	152.000		152.000	
	464-6011	RC PIPE (CL III)(54 IN)	LF	3.000		3.000	
	464-6012	RC PIPE (CL III)(60 IN)	LF	238.000		238.000	
	466-6057	HEADWALL (CH - FW - 45) (DIA= 54 IN)	EA	1.000		1.000	
	466-6103	HEADWALL (CH - PW - 0) (DIA= 48 IN)	EA	2.000		2.000	
	466-6105	HEADWALL (CH - PW - 0) (DIA= 60 IN)	EA	4.000		4.000	
	466-6136	HEADWALL (CH - PW - S) (DIA= 48 IN)	EA	2.000		2.000	
	466-6138	HEADWALL (CH - PW - S) (DIA= 60 IN)	EA	2.000		2.000	
	466-6195	WINGWALL (PW - 2) (HW=6 FT)	EA	2.000		2.000	
	467-6363	SET (TY II) (18 IN) (RCP) (6: 1) (P)	EA	140.000		140.000	
	467-6388	SET (TY II) (24 IN) (RCP) (3: 1) (C)	EA	2.000		2.000	
	467-6395	SET (TY II) (24 IN) (RCP) (6: 1) (P)	EA	106.000		106.000	
	467-6417	SET (TY II) (30 IN) (RCP) (3: 1) (C)	EA	2.000		2.000	
	467-6419	SET (TY II) (30 IN) (RCP) (4: 1) (C)	EA	2.000		2.000	

DISTRICT	COUNTY	CCSJ	SHEET
Dallas	Denton	2353-02-028	21

CONTROLLING PROJECT ID 2353-02-028

DISTRICT Dallas HIGHWAY FM 2450 **COUNTY** Denton

Estimate & Quantity Sheet

		CONTROL SECTIO	N JOB	2353-02	2-028		
		PROJ	ECT ID	A00176	5134		TOTAL FINAL
		C	DUNTY	Dent	on	TOTAL EST.	
		HIG	HWAY	FM 24	150		FINAL
ALT	BID CODE	DESCRIPTION	UNIT	EST.	FINAL		
	467-6423	SET (TY II) (30 IN) (RCP) (6: 1) (P)	EA	6.000		6.000	
	467-6448	SET (TY II) (36 IN) (RCP) (3: 1) (C)	EA	4.000		4.000	
	467-6454	SET (TY II) (36 IN) (RCP) (6: 1) (P)	EA	12.000		12.000	
	467-6474	SET (TY II) (48 IN) (RCP) (3: 1) (C)	EA	4.000		4.000	
	467-6480	SET (TY II) (48 IN) (RCP) (6: 1) (P)	EA	2.000		2.000	
	480-6001	CLEAN EXIST CULVERTS	EA	13.000		13.000	
	496-6004	REMOV STR (SET)	EA	120.000		120.000	
	496-6005	REMOV STR (WINGWALL)	EA	2.000		2.000	
	496-6006	REMOV STR (HEADWALL)	EA	13.000		13.000	
	496-6007	REMOV STR (PIPE)	LF	4,257.000		4,257.000	
	496-6008	REMOV STR (BOX CULVERT)	LF	2.000		2.000	
	500-6001	MOBILIZATION	LS	1.000		1.000	
	502-6001	BARRICADES, SIGNS AND TRAFFIC HANDLING	мо	11.000		11.000	
	506-6002	ROCK FILTER DAMS (INSTALL) (TY 2)	LF	1,415.000		1,415.000	
	506-6011	ROCK FILTER DAMS (REMOVE)	LF	1,415.000		1,415.000	
	506-6020	CONSTRUCTION EXITS (INSTALL) (TY 1)	SY	78.000		78.000	
	506-6024	CONSTRUCTION EXITS (REMOVE)	SY	78.000		78.000	
	506-6038	TEMP SEDMT CONT FENCE (INSTALL)	LF	3,900.000		3,900.000	
	506-6039	TEMP SEDMT CONT FENCE (REMOVE)	LF	3,900.000		3,900.000	
	506-6041	BIODEG EROSN CONT LOGS (INSTL) (12")	LF	4,163.000		4,163.000	
	506-6043	BIODEG EROSN CONT LOGS (REMOVE)	LF	4,163.000		4,163.000	
	530-6005	DRIVEWAYS (ACP)	SY	12,829.000		12,829.000	
	530-6017	DRIVEWAYS (CONC) (HES)	SY	1,587.000		1,587.000	
	533-6001	RUMBLE STRIPS (SHOULDER)	LF	61,630.000		61,630.000	
	533-6002	RUMBLE STRIPS (CENTERLINE)	LF	34,315.000		34,315.000	
	560-6011	MAILBOX INSTALL-S (TWW-POST) TY 4	EA	58.000		58.000	
	560-6013	MAILBOX INSTALL-M (TWW-POST) TY 4	EA	7.000		7.000	
	644-6001	IN SM RD SN SUP&AM TY10BWG(1)SA(P)	EA	33.000		33.000	
	644-6004	IN SM RD SN SUP&AM TY10BWG(1)SA(T)	EA	5.000		5.000	
	644-6033	IN SM RD SN SUP&AM TYS80(1)SA(U)	EA	7.000		7.000	
	658-6099	INSTL OM ASSM (OM-2Z)(WFLX)GND	EA	26.000		26.000	
	662-6111	WK ZN PAV MRK SHT TERM (TAB)TY Y-2	EA	6,806.000		6,806.000	
	666-6018	REFL PAV MRK TY I (W)6"(DOT)(100MIL)	LF	27.000		27.000	
	666-6048	REFL PAV MRK TY I (W)24"(SLD)(100MIL)	LF	311.000		311.000	
	666-6225	PAVEMENT SEALER 6"	LF	1,420.000		1,420.000	
	666-6309	RE PM W/RET REQ TY I (W)6"(SLD)(100MIL)	LF	96,560.000		96,560.000	
	666-6318	RE PM W/RET REQ TY I (Y)6"(BRK)(100MIL)	LF	6,560.000		6,560.000	

DISTRICT	COUNTY	CCSJ	SHEET
Dallas	Denton	2353-02-028	22

CONTROLLING PROJECT ID 2353-02-028

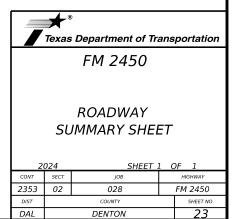
DISTRICT Dallas HIGHWAY FM 2450 **COUNTY** Denton

Estimate & Quantity Sheet

		CONTROL SECTION	ON JOB	2353-02	2-028		
		PROJ	ECT ID	A00176	6134		TOTAL FINAL
		C	OUNTY	Dent	on	TOTAL EST.	
		ню	HWAY	FM 24	450		110/12
ALT	BID CODE	DESCRIPTION	UNIT	EST.	FINAL		
	666-6321	RE PM W/RET REQ TY I (Y)6"(SLD)(100MIL)	LF	30,622.000		30,622.000	
	672-6009	REFL PAV MRKR TY II-A-A	EA	713.000		713.000	
	677-6001	ELIM EXT PAV MRK & MRKS (4")	LF	1,420.000		1,420.000	
	678-6002	PAV SURF PREP FOR MRK (6")	LF	1,420.000		1,420.000	
	730-6107	FULL - WIDTH MOWING	CYC	2.000		2.000	
	3077-6001	SP MIXES SP-B PG64-22	TON	14,943.000		14,943.000	
	3077-6013	SP MIXES SP-C SAC-B PG64-22	TON	12,784.000		12,784.000	
	3077-6075	ТАСК СОАТ	GAL	16,519.000		16,519.000	
	6001-6002	PORTABLE CHANGEABLE MESSAGE SIGN	EA	2.000		2.000	
	6185-6002	TMA (STATIONARY)	DAY	250.000		250.000	
	6185-6003	TMA (MOBILE OPERATION)	HR	200.000		200.000	
	18	EROSION CONTROL MAINTENANCE: CONTRACTOR FORCE ACCOUNT WORK (PART)		1.000		1.000	
		SAFETY CONTINGENCY: CONTRACTOR FORCE ACCOUNT WORK (PARTICIPATING)	LS	1.000		1.000	

DISTRICT	COUNTY	CCSJ	SHEET
Dallas	Denton	2353-02-028	22A

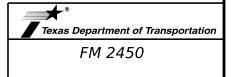
[_
SUMMARY OF ROADWAY ITE	MS											
LOCATION	100	105	110	132	134	351	354	533	533	560	560	Г
	6002	6046	6001	6006	6004	6008	6045	6001	6002	6011	6013	
	PREPARING ROW	REMOVING STAB BASE & ASPH PAV (0"-10")	EXCAVATION (ROADWAY)	EMBANKMENT (FINAL)(DENS CONT)(TY C)	BACKFILL (TY A OR B)	FLEXIBLE PAVEMENT STRUCTURE REPAIR(12")	PLANE ASPH CONC PAV (2")	RUMBLE STRIPS (SHOULDER)	RUMBLE STRIPS (CENTERLINE)	MAILBOX INSTALL-S (TWW-POST) TY 4	MAILBOX INSTALL-M (TWW-POST) TY 4	
	STA	SY	CY	СҮ	STA	SY	SY	LF	LF	EA	EA	
FM 2450	340.04	7557	14941	20200	340.04	2000	91688	61630	34315	58	7	
PROJECT TOTALS	340.04	7557	14941	20200	340.04	2000	91688	61630	34315	58	7	


SUMMARY OF EROSION CON				_		-	_	_		-		-	_	
LOCATION	161	162	164	164	168	506	506	506	506	506	506	506	506	730
	6017	6002	6035	6051	6001	6002	6011	6020	6024	6038	6039	6041	6043	6107
	COMPOST MANUF TOPSOIL (4")	BLOCK SODDING	DRILL SEEDING (PERM) (RURAL) (CLAY)	DRILL SEED (TEMP)(WA RM OR COOL)	VEGETATIVE WATERING	ROCK FILTER DAMS (INSTALL) (TY 2)		CONSTRUCTI ON EXITS (INSTALL) (TY 1)		TEMP SEDMT CONT FENCE (INSTALL)		BIODEG EROSN CONT LOGS (INSTL) (12")		FULL - WIDTH MOWING
	SY	SY	SY	SY	MG	LF	LF	SY	SY	LF	LF	LF	LF	CYC
FM 2450	269754	11903	257851	128926	60188	1415	1415	78	78	3900	3900	4163	4163	2
PROJECT TOTALS	269754	11903	257851	128926	60188	1415	1415	78	78	3900	3900	4163	4163	2

LOCATION	644	644	644	658	666	666	666	666	666	666	672	677	678
	6001	6004	6033	6099	6018	6048	6225	6309	6318	6321	6009	6001	6002
	IN SM RD SN SUP&AM TY10BWG(1)SA(P)	IN SM RD SN SUP&AM TY10BWG(1)SA(T)	IN SM RD SN SUP&AM TYS80(1)SA(U)		REFL PAV MRK TY I (W)6"(DOT)(100M IL)	REFL PAV MRK TY I (W)24"(SLD)(100 MIL)	PAVEMENT SEALER 6"	RE PM W/RET REQ TY I (W)6"(SLD)(100MIL)	TÝI	TÝI		ELIM EXT PAV MRK & MRKS (4'')	PAV SURF PRI FOR MRK (6'
	EA	EA	EA	EA	LF	LF	LF	LF	LF	LF	EA	LF	LF
FM 2450	33	5	7	26	27	311	1420	96560	6560	30622	713	1420	1420
PROJECT TOTAL	33	5	7	26	27	311	1420	96560	6560	30622	713	1420	1420

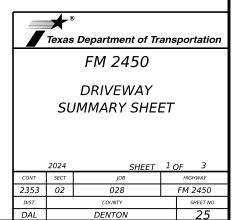
NS AND 🗍 🛛 I	VK ZN PAV MRK SHT RM (TAB)TY Y-2 EA 6806	PORTABLE CHANGEABLE MESSAGE SIGN EA 2	TMA (STATIONARY) DAY 250	TMA (MOB OPERATIO HR 200
NS AND I AFFIC TEF NDLING	MRK SHT RM (TAB)TY Y-2	CHANGEABLE MESSAGE SIGN		OPERATIO
NS AND TER	MRK SHT RM (TAB)TY	CHANGEABLE MESSAGE	TMA (STATIONARY)	TMA (MOB OPERATIO
RICADES, W				
502 5001	662 6111	6001 6002	6185 6002	6185 6003

РМ 2:29:55

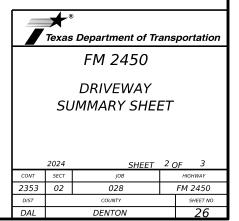

	3077	3077	3077
	6001	6013	6075
14	SP MIXES SP-B PG64-22	SP MIXES SP-C SAC-B PG64-22	TACK COAT
	TON	TON	GAL
	14943	12784	16519
	14943	12784	16519

LOCATION	TEMS 104	403	432	432	462	464	464	464	464	466	466	466	466	466	466	467	467	467
	6009	6001	6001	6051	6101	6007	6010	6011	6012	6057	6103	6105	6136	6138	6195	6388	6417	6419
	REMOVING CONC (RIPRAP)	TEMPORARY SPL SHORING	RIPRAP (CONC)(4 IN)	RIPRAP (STONE COMMON)(G ROUT)(18 IN)	CONC BOX CULV (10 FT X 4 FT)	RC PIPE (CL III)(30 IN)	RC PIPE (CL III)(48 IN)	RC PIPE (CL III)(54 IN)	RC PIPE (CL III)(60 IN)	HEADWALL (CH - FW - 45) (DIA= 54 IN)	HEADWALL (CH - PW - 0) (DIA= 48 IN)	HEADWALL (CH - PW - 0) (DIA= 60 IN)	HEADWALL (CH - PW - S) (DIA= 48 IN)	HEADWALL (CH - PW - S) (DIA= 60 IN)	WINGWALL (PW - 2) (HW=6 FT)	SET (TY II) (24 IN) (RCP) (3: 1) (C)	SET (TY II) (30 IN) (RCP) (3: 1) (C)	SET (TY II) (30 I (RCP) (4: 1) (C
	SY	SF	СҮ	СҮ	LF	LF	LF	LF	LF	EA	EA	EA	EA	EA	EA	EA	EA	EA
CULVERT 1							24											
CULVERT 2	57						21	3		1								
CULVERT 3	108		10				42				2							
CULVERT 4	61		17	131			54						2					
CULVERT 5	145	408	16	34					72					2				
CULVERT 6																		
CULVERT 7						4												2
CULVERT 8		374		53					42			2						
CULVERT 9	48	520		47					124			2						_
CULVERT 10																	2	_
CULVERT 11																		_
CULVERT 12		330		22	22										2			_
CULVERT 13																2		
PROJECT TOTALS	419	1632	43	287	22	4	120	3	238	1	2	4	2	2	2	2	2	2

	THE						
SUMMARY OF DRAINAGE IT	EMS 467	467	480	496	496	496	496
	6448	6474	6001	6005	6006	6007	6008
	SET (TY II) (36 IN) (RCP) (3: 1) (C)	SET (TY II) (48 IN) (RCP) (3: 1) (C)	CLEAN EXIST CULVERTS		REMOV STR (HEADWALL)		REMOV STR (BOX CULVERT)
	EA	EA	EA	EA	EA	LF	LF
CULVERT 1		4	1		2	6	
CULVERT 2			1		1	1	
CULVERT 3			1		2	9	
CULVERT 4			1		2	9	
CULVERT 5			1		2	18	
CULVERT 6	2		1			8	
CULVERT 7			1			2	
CULVERT 8			1		2	9	
CULVERT 9			1		2	8	
CULVERT 10			1				
CULVERT 11	2		1			20	
CULVERT 12			1	2			2
CULVERT 13			1			6	
PROJECT TOTALS	4	4	13	2	13	96	2


2:29:57 PM

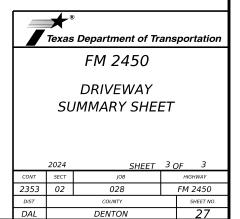
DRAINAGE SUMMARY SHEET


2	024	SHEET 2	1 OF	- 1		
CONT	SECT	JOB		HIGHWAY		
2353	02	028	FM 2450			
DIST		COUNTY		SHEET NO.		
DAL		DENTON		24		

SJ 2353-02-028	SUMMAI	RY OF DRIVEWAY ITEMS																			1
.5] 2555-02-020						104	105	464	464	464	464	464	467	467	467	467	467	496	496	530	530
DRIVEWAY NO	PLAN SHEET NO.	EXISTING MATERIAL/ TYPE	THROAT WIDTH	R (1)	R (2)	6017 REMOVING CONC (DRIVEWAYS)	6043 REMOVING STAB BASE & ASPH PAV (0-6")	(CL III)(18	6005 RC PIPE (CL III)(24 IN)	6007 RC PIPE (CL III)(30 IN)	RC PIPE	RC PIPE	6363 SET (TY II) (18 IN) (RCP) (6: 1) (P)	6395 SET (TY II) (24 IN) (RCP) (6: 1) (P)	6423 SET (TY II) (30 IN) (RCP) (6: 1, (P)	6454 SET (TY II) (36 IN) (RCP) (6: 1) (P)	6480 SET (TY II) (48 IN) (RCP) (6: 1) (P)	6004 REMOV STR (SET)	6007 REMOV STR (PIPE)	6005 DRIVEWAYS (ACP)	6017 DRIVEWAY (CONC) (HE
			FT	FT	FT	SY	SY	LF	LF	LF	LF	LF	EA	EA	EA	EA	EA	EA	LF	SY	SY
1	1	ASPHALT PAVEMENT	28	15	15		87	36					2							83.8	-
2	1	ASPHALT PAVEMENT	20	15	15		59.7	24					2						26	62.6	
3	1	ASPHALT PAVEMENT	15	15	15		86.6	24					2						20	69.8	
4	1	ASPHALT PAVEMENT	50	25	25		252.1	64					2					2	51	231.2	
5	1	ASPHALT PAVEMENT	18.4	45	45		181.4	48					2					2	53	188.6	
5A	1	ASPHALT PAVEMENT	14	15	15		78.5		24					2					34	78.5	
6	2	ASPHALT PAVEMENT	22.1	20	20		129.6													128.8	
7 STAGS LEAP RD	2	ASPHALT PAVEMENT	20	30	60		227.3													205.2	
8 DEER RUN DRIVE	3	CONCRETE PAVEMENT	28.5	30	30	195.3		56					2					2	52		153.3
9	3	ASPHALT PAVEMENT	15	25	25		144.6					32					2		30	112.3	
10	3	ASPHALT PAVEMENT	15	15	15		87.4			72					6				72	93.1	
11	3	ASPHALT PAVEMENT	10	15	15		70.3				48					4			50	61	
12 CROW WRIGHT ROAD	3	ASPHALT PAVEMENT	22.5	35	35		223.6	40					2						37	178.2	
13	3	ASPHALT PAVEMENT	16.9	25	25		107.2		32					2				2	27	95.5	
14	4	ASPHALT PAVEMENT	10	15	15		48.6	24					2						23	48.8	1
15	4	ASPHALT PAVEMENT	11	15	15		46.9													64	1
16	4	ASPHALT PAVEMENT	24	25	20		121.6	40					2					2	36	117.2	
17	4	ASPHALT PAVEMENT	16	20	20		85.3		32					2				2	22	82.1	
18	4	ASPHALT PAVEMENT	15	15	15		81.1	24					2					2	20	70.6	1
19	4	ASPHALT PAVEMENT	20	15	15		109.1	32					2					2	26	90.9	
20	4	ASPHALT PAVEMENT	14.7	15	15		80.1													67.9	
21	4	ASPHALT PAVEMENT	21.5	20	20		113.2	32					2						27	96.3	
22	4	ASPHALT PAVEMENT	10.9	15	15		55.8	24					2						20	49.4	
23	4	ASPHALT PAVEMENT	27	15	15		19.1		40					2					32	122.3	
24	4	ASPHALT PAVEMENT	21	15	15		105	32					2					2	33	99	
25	4	ASPHALT PAVEMENT	29.5	15	3		80.9		48					2				2	44	73.9	
26	4	ASPHALT PAVEMENT	12	3	20		78.3													68.2	
27	4	ASPHALT PAVEMENT	16	20	20		119.4		32					2				2	31	86.4	
28	4	ASPHALT PAVEMENT	11.7	15	2.5		83.6		48					2				2	44	56.7	
29	4	ASPHALT PAVEMENT	9.6	2.5	20		21.9													55.8	
30	5	CONCRETE PAVEMENT	15	15	15	143.7		32					2						27		64.2
31	5	ASPHALT PAVEMENT	12.2	15	15		64.3	24					2						24	64.3	
32	5	ASPHALT PAVEMENT	26.5	20	20		133.4													112.6	
33	5	ASPHALT PAVEMENT	14.1	15	15		77.6	32					2						27	60.6	
34	5	ASPHALT PAVEMENT	18.5	15	15		78.2	32					2						24	75.8	
35 DAVIDSON ROAD	5	ASPHALT PAVEMENT	25	40	40		320.9		40					2					37	329	
36	5	ASPHALT PAVEMENT	15	15	15		56.8		24					2					25	73.5	
37	5	ASPHALT PAVEMENT	14.4	15	15		64.3	32					2						24	60.9	-
38	5	ASPHALT PAVEMENT	22	15	15		79.7	32					2					2	24	88.7	
39	5	ASPHALT PAVEMENT	11.5	15	15		62.3	24					2						25	51.9	
40	5	ASPHALT PAVEMENT	18.2	15	15		88.9	32					2						24	75.3	
41	5	ASPHALT PAVEMENT	13.5	15	15		65.4	24					2						21	58.7	
42	5	ASPHALT PAVEMENT	23.2	35	35		195.7	42					2						36	175.9	
43	5	ASPHALT PAVEMENT	20	30	30		122.5	48					2						45	127.3	
43A	5	ASPHALT PAVEMENT	9.4	15	10		37.2	53					2						21	36.6	
43B	5	ASPHALT PAVEMENT	15	10	15		49.3												21	49.3	

DENTON

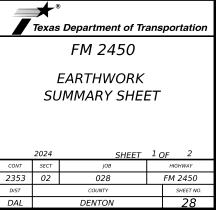
CS 2353-02-028	SUMMA	RY OF DRIVEWAY ITEMS																			
,						104	105	464	464	464	464	464	467	467	467	467	467	496	496	530	530
DRIVEWAY NO	PLAN SHEET NO.	EXISTING MATERIAL/ TYPE	THROAT WIDTH	R (1)	R (2)	6017 REMOVING CONC (DRIVEWAYS)	6043 REMOVING STAB BASE & ASPH PAV (0-6")	(CL III)(18	RC PIPE	RC PIPE		RC PIPE				6454 SET (TY II) (36 IN) (RCP) (6: 1) (P)		6004 REMOV STR (SET)	6007 REMOV STR (PIPE)	6005 DRIVEWAYS (ACP)	DRIVEWA (CONC) (H
44	6	ASPHALT PAVEMENT	25.5	15	15		131.9													131.9	
44 45 MICHAEL ROAD	6	ASPHALT PAVEMENT	23.5	25	25		131.9		42					2				2	35	131.9	-
46 STONE GATE DRIVE	6	ASPHALT PAVEMENT	48	30	30		252.8		42					2				2	55	237.5	
40 STONE GATE DRIVE 47	6	ASPHALT PAVEMENT	45.9	15	15		335.5													335.48	
47	6	ASPHALT PAVEMENT	29	20	20		171.6		42					2				2	41	131.3	
48	7	ASPHALT PAVEMENT	29	30	30		135.4		42					2				2	41	121.4	-
50	7	ASPHALT PAVEMENT	20	15	20		1135.4	42					2					2	30	95.1	
	7	ASPHALT PAVEMENT	29.9		30		179.7	42	42				2	2				2	30	95.1 162.5	
51	7		-	30										4				2			
52	7	ASPHALT PAVEMENT	24	30	60		342.1	24	84				2	4					82	298.5	-
<u>53</u> 54	7	ASPHALT PAVEMENT	8.3 12.7	20 15	20 20		72.6 55.2	24			-		2						25	50.8 48.8	
	,				_																
55	7	ASPHALT PAVEMENT	15.6	20	20		97.9													74.4	
56	7	ASPHALT PAVEMENT	10	15	20		68.4													50.5	
57	7	ASPHALT PAVEMENT	21.9	20	20		104.1													96.8	
58	7	ASPHALT PAVEMENT	37	15	15		238.9													143.5	
59	7	ASPHALT PAVEMENT	105	15	15		453.6													385.2	
60	7	ASPHALT PAVEMENT	15.3	15	15		71	32					2						26	64.8	
61	/	ASPHALT PAVEMENT	11.2	15	15		71.2		32					2				2	32	56.9	
62	7	ASPHALT PAVEMENT	13	15	15		73.14		32					2				2	27	64.6	
63	8	ASPHALT PAVEMENT	14.5	15	15		98.5	32					2						31	63.6	
64	8	ASPHALT PAVEMENT	13.7	15	15		88.4	24					2						25	61.8	
65	8	ASPHALT PAVEMENT	10	25	20		63.2	24					2	-					25	61	
66	8	ASPHALT PAVEMENT	12.1	15	15		67.5		24					2					25	54.2	
67 LUCKY SPUR LANE	8	ASPHALT PAVEMENT	20	40	40		172.6	128	10					4				2	124	179.8	
68 LUGINBYHI ROAD 69 MUSTANF TRAIL	8	ASPHALT PAVEMENT	23.2 25	30 30	30 30		296.2 156.5		40		128			2		4		4	36 130	289.3 161.4	
70	9	ASPHALT PAVEMENT	16.5	25	25		136.5	32			120		2			4		2	33	90.6	
70			16.5		15		67.3	24					2					2	27	50.9	
	9	ASPHALT PAVEMENT	-	15																	
72	9	ASPHALT PAVEMENT	11.5	15	15		50.7	24					2						26	52.5	-
73 74	9	ASPHALT PAVEMENT	17.9	15	15 15		55.9	32					2						27	74.8	
75	9	ASPHALT PAVEMENT ASPHALT PAVEMENT	10.3 11	15 20	20		58.6 78.5	24	32				2	2				2	25 33	46.8 57.9	
75	9	ASPHALT PAVEMENT	10.3	20	20		78.7	32	32				2	2				2	30	55.2	
70	9	ASPHALT PAVEMENT	10.5	15	10		53.7	24					2						25	58.4	
	9	ASPHALT PAVEMENT	10.7		20		85.7	24	-				2						25	58.4	
78 79	9	ASPHALT PAVEMENT	10.7	10	15		65.2		24					2				2	25	58.4	
79 80	9	CONCRETE PAVEMENT	13.2 36.2	15	25	225.6	05.2				-			4				-	25 124	57.4	106.2
81 BORTH ROAD	9 10	ASPHALT PAVEMENT	36.2	25 30	35	235.6	176.3		124 80		-			4				4	74	181.7	186.2
82	10	ASPHALT PAVEMENT	11	20	20		58.8		56					4					22	112.3	-
83	10	ASPHALT PAVEMENT	19.7	15	15		92.7	32	- 50				2	7					25	87.9	
85	10	ASPHALT PAVEMENT	12.9	15	15		55.5	32					2						42	61.1	
85	10	ASPHALT PAVEMENT	20.3	30	35		143.6	52	48	-			2	2					42	130.2	-
86	10	ASPHALT PAVEMENT	15.6	15	15		59.6	64	+0	-	+	+	4	<u> </u>				2	47	71.4	1
80 87 HAWKEYE ROAD		ASPHALT PAVEMENT	24	35	35		264.5	04	40				4	2				۷	40	234.7	
87 HAWKEYE ROAD 88	10 11	ASPHALT PAVEMENT	72.6	35	35		264.5 437.1		48					2					41	234.7 350.9	+
89	11	ASPHALT PAVEMENT	18	15	15		98.2		32			1		2				2	22	79.9	
90	11	ASPHALT PAVEMENT	18	15	15		81.3		32					2				2	18	80.1	-
90 91 HOPKINS ROAD	11	ASPHALT PAVEMENT	22.6	35	30		183		80					4				2	74	80.1 177	
			-		_					-		-									
92	11	ASPHALT PAVEMENT	10	15	15		56.9		24					2		1		2	23	49.8	



DENTON

CSJ 2353-02-028	SUMMA	RY OF DRIVEWAY ITEMS																
						104	105	464	464	464	464	464	467	467	467	467	467	496
DRIVEWAY NO	PLAN SHEET NO.	EXISTING MATERIAL/ TYPE	THROAT WIDTH	R (1)	R (2)	6017 REMOVING CONC	6043 REMOVING STAB BASE &		(CL III)(24		6008 RC PIPE (CL III)(36	(CL III)(48	IN) (RCP) (6: 1,	6395 SET (TY II) (24 IN) (RCP) (6: 1)	IN) (RCP) (6: 1)	IN) (RCP) (6: 1)	IN) (RCP) (6: 1)	6004 REMOV STF (SET)
						(DRIVEWAYS)	ASPH PAV (0-6",) IN)	IN)	IN)	IN)	IN)	(P)	(P)	(P)	(P)	(P)	(027)
93	11	ASPHALT PAVEMENT	10	15	15		56.8											
94	11	ASPHALT PAVEMENT	16	20	25		118.2	32					2					2
95	12	CONCRETE PAVEMENT	24.6	15	15	100.6			40					2				2
96	12	CONCRETE PAVEMENT	36.2	20	25	211.6								-				2
97	12	ASPHALT PAVEMENT	22.1	15	15		89.2		32					2				
98	12	ASPHALT PAVEMENT	14.1	20	20		80.2	28					2					
99	12	ASPHALT PAVEMENT	9.6	15	15		76	28					2					
100	12	ASPHALT PAVEMENT	11	20	20		83.7	24					2					
101	12	ASPHALT PAVEMENT	11.7	15	15		61	24					2					
102 103	12 12	ASPHALT PAVEMENT	14.1	15 15	20 15		75.6	24 24					2					
		ASPHALT PAVEMENT	10.9										_					
104 105	12	ASPHALT PAVEMENT	10	15	15 20		56.8 88.3	24					2					
	12	ASPHALT PAVEMENT	12	20				24										
106 107 MEADOWLAND DRIVE	13 13	ASPHALT PAVEMENT	12.7 22.8	20 15	20 15	117	83.5	24 192					2 8					8
108	13	ASPHALT PAVEMENT	42.3	20	20		206.5		56					2				2
108	13	CONCRETE PAVEMENT	13.5	15	0	68.1	200.5	48	50				2	2				2
110	13	CONCRETE PAVEMENT	14.4	0	15	84.9		40					2					2
110	13	ASPHALT PAVEMENT	18	15	15	04.5	92.8	32					2					2
112	13	CONCRETE PAVEMENT	20	15	15	122.3	52.0	32					2					2
112	14	ASPHALT PAVEMENT	18.2	15	15	122.5	96.1	52	40				2	2				2
115	14	ASPHALT PAVEMENT	11.4	15	15		76.8	32	40				2	2				2
115	14	CONCRETE PAVEMENT	11.4	15	15	88.6	70.0	52	32				2	2				2
115	14	ASPHALT PAVEMENT	13.3	15	20	00.0	85.3		32					2				2
110	14	ASPHALT PAVEMENT	12.1	15	20		60.6		32					2				2
117	14	ASPHALT PAVEMENT	10.7	15	15		50.6		24					2				2
118	14	ASPHALT PAVEMENT	10.7	20	20		94.7		32					2				2
119	14	ASPHALT PAVEMENT	13.8	20	20		59.3		32					2				2
120	14	ASPHALT PAVEMENT	13.8	20	20		52.8		32					2				2
121	14	ASPHALT PAVEMENT	10.4	15	15		66		24					2				2
122 123 GREGG ROAD	14	ASPHALT PAVEMENT	20	30	35		189.6		24		64			2		4		2
123 GREGG ROAD	14	ASPHALT PAVEMENT	20		20		154.4		120		04			6		4		
125 FINLEY CIRCLE	14	ASPHALT PAVEMENT	34	15 20	20		231.5	40	120				2	0				
125 FINLET CIRCLE 126	14	ASPHALT PAVEMENT	18.5	15	15		75.3	24					2					2
120	15		15.5					24					2					2
		ASPHALT PAVEMENT		15	15		54.3	24					2					
128	15	ASPHALT PAVEMENT	15	15	15	102.0	61.6	24					2					2
129	15	CONCRETE PAVEMENT	22	15	15	102.9		32					2					2
130	15	CONCRETE PAVEMENT	18	15	15	76.3	102.0	24					2					2
131	15	ASPHALT PAVEMENT	29.7	25	25	02.2	182.8	48					2					2
132	15	CONCRETE PAVEMENT	11.9	15	15	83.3	-	24					2					2
133 HIGH RIDGE	15	ASPHALT PAVEMENT	28.1	20	20		146.3	40					2					2
134	15	CONCRETE PAVEMENT	18	15	15	55.1			32					2				2
135	15	ASPHALT PAVEMENT	15	15	15		65.8	24					2					
136	15	CONCRETE PAVEMENT	15.3	15	15	73.7			24					2				2
137	15	CONCRETE PAVEMENT	15.9	15	15	69			24					2				2
138	15	CONCRETE PAVEMENT	16	15	15	75.9		32					2					2
		CSJ TOTALS				1904	13990	2413	1846	72	240	32	140	106	6	12	2	120

DATE: FILE:

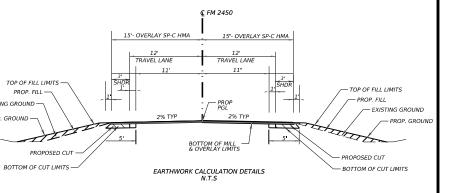

496	496	530	530
6004	6007	6005	6017
MOV STR (SET)	REMOV STR (PIPE)	DRIVEWAYS (ACP)	DRIVEWAYS (CONC) (HES)
		50.7	
2	33	88.5	
2	33		103.4
2	44		165.1
	20	93.7	
	22	72.9	
	27	48.2	
	26	64.7	
	23	58.9	
	10	71	
	23	53.2	
	25	48.4	
	25	64.5	
	21	66.8	
	21	00.0	
8	184		102.1
2	51	179.5	
2	32		61.2
			65.9
2	21	81.2	
	23		89.1
2	30	79.9	
2	30	54.3	
2	23		80
2	27	65.1	
2	26	61	
2	23	51.8	
2	33	73.3	
2	23	71.8	
2	27	64.7	
2	27	50.9	
2	72	158.8	
	108	180.6	
	38	220.1	
2			
2	21	81.9 69.1	
	22		
	22	67.1	05.0
2	27		95.9
2	19	1.00.0	79.3
2	37	168.2	
2	17		58.9
2	32	142.8	
2	23		55.1
	25	71.1	
2	23		76.2
2	23		72.6
2	33		78
120	4161	12829	1587

<u>EARTHWORK S</u> 2353-02-028	110-6001	132-6006
2353-02-020	110-6001	132-0000
STATION	EXCAVATION	(FINAL)(DEN
STATION	(CY)	SCONTROL)(
		Y-C)(CY)
		. =,(=.,)
0+00.000 R1	0	0
1+00.000 R1	16.479	9.721
2+00.000 R1	37.182	17.402
3+00.000 R1	38.748	38.118
4+00.000 R1	39.177	54.556
5+00.000 R1	41.415	51.215
5+73.198 R1	43.404	48.018
6+00.000 R1	44.132	46.848
6+09.829 R1	44.701	46.422
7+00.000 R1	49.922	42.517
8+00.000 R1	49.505	49.768
<u>9+00.000 R1</u>	46.446	43.687
10+00.000 R1	47.313	34.745
11+00.000 R1	47.081	37.686
12+00.000 R1	42.359	41.376
13+00.000 R1	44.322	37.762
14+00.000 R1	49.222	23.486
15+00.000 R1	46.234	13.169
16+00.000 R1	45.537	10.409
<u>17+00.000 R1</u>	51.403	5.304
<u>18+00.000 R1</u>	54.322	1.583
<u>19+00.000 R1</u>	52.157	3.187
20+00.000 R1	45.728	10.263
21+00.000 R1	41.74	18.306
22+00.000 R1	44.356	16.284
23+00.000 R1	47.167	10.627
24+00.000 R1	45.036	25.654
25+00.000 R1	43.897	40.517
26+00.000 R1	43.636	36.52
27+00.000 R1	44.674 46.896	32.099
28+00.000 R1 29+00.000 R1		65.682 76.567
	36.536	76.567
<u>30+00.000 R1</u>	<u>37.822</u> 42.544	121.178
<u>31+00.000 R1</u> 31+73.391R1	42.544	232.97 206.583
32+00.000 R1	41.98	197.016
33+00.000 R1	23.44	59.316
34+00.000 R1	0	0
35+00.000 R1	0	0
36+00.000 R1	11.846	196.382
37+00.000 R1	23.747	290.137
38+00.000 R1	26.216	155.635
39+00.000 R1	38.173	67.53
40+00.000 R1	53.198	8.783
41+00.000 R1	56.731	8.523
42+00.000 R1	56.098	<u> </u>
43+00.000 R1		
44+00.000 R1	56.076 45.193	12.732 38.439
	29.206	244.351
45+00.000 R1		

47+00.000 R128.49287.97548+00.000 R130.01190.88749+00.000 R136.20785.85350+00.000 R144.57289.74451+00.000 R137.70363.84653+00.000 R137.30475.85554+00.000 R137.25278.99656+00.000 R137.25278.99656+00.000 R139.88991.42257+00.000 R137.92171.56760+00.000 R137.92171.56760+00.000 R137.92171.56760+00.000 R137.92171.56760+00.000 R139.09647.18861+00.000 R137.10233.18362+00.000 R138.68842.96363+00.000 R139.70448.15664+00.000 R145.81844.43466+00.000 R145.81844.34466+00.000 R147.57344.77969+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R143.95947.76468+00.000 R147.64250.40370+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R140.94960.32275+00.000 R143.28638.17176+00.000 R143.28638.17178+00.000 R143.68638.17178+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.28554.94 <th></th> <th></th> <th></th>			
49+00.000 R136.20785.85350+00.000 R144.57289.74451+00.000 R137.70363.84653+00.000 R137.30475.85554+00.000 R137.25278.99656+00.000 R139.88991.42257+00.000 R139.88991.42257+00.000 R139.88991.42257+00.000 R142.56782.04458+00.000 R137.92171.56760+00.000 R139.09647.18861+00.000 R139.09647.18861+00.000 R138.68842.96363+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R143.95947.76468+00.000 R145.81844.43466+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R140.94960.32275+00.000 R140.94960.32275+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R143.68638.1718+00.000 R143.68638.1718+00.000 R143.68638.1718+00.000 R143.68638.1718+00.000 R144.67736.69480+00.000 R143.68638.1718+00.000 R143.68638.1718+00.000 R149.47348.061 <trr< td=""><td>47+00.000 R1</td><td>28.492</td><td>87.975</td></trr<>	47+00.000 R1	28.492	87.975
50+00.000 R144.57289.74451+00.000 R137.70363.84653+00.000 R137.70363.84653+00.000 R137.25278.99656+00.000 R137.25278.99656+00.000 R139.88991.42257+00.000 R142.56782.04458+00.000 R141.50178.48559+00.000 R137.92171.56760+00.000 R139.99647.18861+00.000 R139.09647.18861+00.000 R139.09647.18861+00.000 R139.70448.15664+00.000 R138.63842.96363+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R143.28552.49473+00.000 R141.9952.81874+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.68638.1718+00.000 R143.68638.17178+00.000 R143.68638.1718+00.000 R143.68638.1718+00.000 R143.68638.1718+00.000 R143.68638.1718+00.000 R143.68638.1718+00.000 R143.68638.1718+00.000 R143.68636.6378+00.000 R149.40328.13	48+00.000 R1	30.011	90.887
51+00.000 R1 42.419 84.798 52+00.000 R1 37.703 63.846 53+00.000 R1 37.304 75.855 54+00.000 R1 36.254 58.07 55+00.000 R1 37.252 78.996 56+00.000 R1 39.889 91.422 57+00.000 R1 42.567 82.044 58+00.000 R1 37.921 71.567 60+00.000 R1 39.096 47.188 61+00.000 R1 37.102 33.183 62+00.000 R1 39.704 48.156 64+00.000 R1 39.704 48.156 64+00.000 R1 38.334 51.947 65+00.000 R1 43.959 47.764 68+00.000 R1 47.573 44.779 69+00.000 R1 47.642 50.403 70+00.000 R1 43.285 52.494 73+00.000 R1 41.9 52.818 74+00.000 R1 40.925 60.971 76+00.000 R1 43.285 52.494 73+00.000 R1 40.925 60.971	49+00.000 R1	36.207	85.853
52+00.000 R137.70363.84653+00.000 R137.30475.85554+00.000 R136.25458.0755+00.000 R137.25278.99656+00.000 R139.88991.42257+00.000 R142.56782.04458+00.000 R141.50178.48559+00.000 R137.92171.56760+00.000 R139.09647.18861+00.000 R137.10233.18362+00.000 R139.70448.15663+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R140.94960.32275+00.000 R143.24450.61277+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R149.47348.06184+00.000 R149.47348.06184+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R135.565142.144 <t< td=""><td>50+00.000 R1</td><td>44.572</td><td>89.744</td></t<>	50+00.000 R1	44.572	89.744
53+00.000 R137.30475.85554+00.000 R136.25458.0755+00.000 R137.25278.99656+00.000 R139.88991.42257+00.000 R142.56782.04458+00.000 R141.50178.48559+00.000 R137.92171.56760+00.000 R137.92171.56760+00.000 R137.10233.18362+00.000 R138.68842.96363+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R143.95947.76468+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R147.64250.40370+00.000 R143.28552.49473+00.000 R140.92560.97176+00.000 R140.94960.32275+00.000 R143.42450.61277+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R149.47348.06184+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R135.565142.14493+00.000 R130.848127.075<	51+00.000 R1	42.419	84.798
53+00.000 R137.30475.85554+00.000 R136.25458.0755+00.000 R137.25278.99656+00.000 R139.88991.42257+00.000 R142.56782.04458+00.000 R141.50178.48559+00.000 R137.92171.56760+00.000 R137.92171.56760+00.000 R137.10233.18362+00.000 R138.68842.96363+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R143.95947.76468+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R147.64250.40370+00.000 R143.28552.49473+00.000 R140.92560.97176+00.000 R140.94960.32275+00.000 R143.42450.61277+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R149.47348.06184+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R135.565142.14493+00.000 R130.848127.075<	52+00.000 R1	37.703	63.846
54+00.000 R136.25458.0755+00.000 R137.25278.99656+00.000 R139.88991.42257+00.000 R142.56782.04458+00.000 R137.92171.56760+00.000 R139.09647.18861+00.000 R137.10233.18362+00.000 R139.70448.15663+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R145.81844.43466+00.000 R145.81844.43466+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R147.64250.40370+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R140.92560.97176+00.000 R143.28552.49473+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R143.28638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R149.47348.06184+00.000 R149.47348.06184+00.000 R149.47348.06184+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R149.9533.75390+00.000 R144.42849.245 </td <td>53+00.000 R1</td> <td></td> <td>75.855</td>	53+00.000 R1		75.855
55+00.000 R137.25278.99656+00.000 R139.88991.42257+00.000 R142.56782.04458+00.000 R137.92171.56760+00.000 R139.09647.18861+00.000 R137.10233.18362+00.000 R138.68842.96363+00.000 R139.70448.15664+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R145.81844.43466+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R140.92560.97176+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R149.47348.06184+00.000 R149.47348.06184+00.000 R149.47348.06184+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R144.42849.24592+00.000 R133.13285.40495+00.000 R138.46859.304 <tr< td=""><td>54+00.000 R1</td><td></td><td></td></tr<>	54+00.000 R1		
56+00.000 R139.88991.42257+00.000 R142.56782.04458+00.000 R137.92171.56760+00.000 R139.09647.18861+00.000 R137.10233.18362+00.000 R138.68842.96363+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R145.81844.43466+00.000 R145.81844.43466+00.000 R147.57344.77969+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R147.64250.40370+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R144.67738.87578+00.000 R143.68638.17180+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R149.47348.06183+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R133.13285.40495+00.000 R133.13285.40495+00.000 R133.46859.304<	55+00.000 R1		78.996
57+00.000 R142.56782.04458+00.000 R137.92171.56760+00.000 R139.09647.18861+00.000 R137.10233.18362+00.000 R138.68842.96363+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R145.81844.43466+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R143.28552.49473+00.000 R141.952.81874+00.000 R140.94960.32275+00.000 R143.42450.61277+00.000 R143.42450.61277+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R149.47348.06183+00.000 R149.47348.06184+00.000 R143.17946.99282+00.000 R149.40328.1387+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R144.30275.47992+00.000 R133.13285.40495+00.000 R133.13285.40495+00.000 R133.13285.404 <trr< td=""><td>56+00.000 R1</td><td></td><td>91.422</td></trr<>	56+00.000 R1		91.422
58+00.000 R141.50178.48559+00.000 R137.92171.56760+00.000 R139.09647.18861+00.000 R137.10233.18362+00.000 R138.68842.96363+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R145.81844.43466+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R143.28552.49473+00.000 R141.952.81874+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R143.13285.40495+00.000 R133.13285.40495+00.000 R133.13285.40495+00.000 R133.13285.40495+00.000 R133.13285.40495+00.000 R133.13285.404 <t< td=""><td>57+00.000 R1</td><td></td><td>82.044</td></t<>	57+00.000 R1		82.044
60+00.000 R139.09647.18861+00.000 R137.10233.18362+00.000 R138.68842.96363+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R146.16744.05167+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R144.07658.34572+00.000 R141.952.81874+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R144.67738.87578+00.000 R144.67736.69480+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R149.40328.1387+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R133.13285.40495+00.000 R133.13285.40495+00.000 R133.46859.30496+00.000 R144.42849.245	58+00.000 R1		78.485
60+00.000 R139.09647.18861+00.000 R137.10233.18362+00.000 R138.68842.96363+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R146.16744.05167+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R144.07658.34572+00.000 R141.952.81874+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R144.67738.87578+00.000 R144.67736.69480+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R149.40328.1387+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R133.13285.40495+00.000 R133.13285.40495+00.000 R133.46859.30496+00.000 R144.42849.245	59+00.000 R1	37.921	71.567
61+00.000 R137.10233.18362+00.000 R138.68842.96363+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R145.81844.05167+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R144.07658.34572+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R144.67738.87578+00.000 R143.68638.17180+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R149.40328.1387+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
62+00.000 R138.68842.96363+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R143.95947.76467+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R144.07658.34572+00.000 R144.07658.34572+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R143.42450.61277+00.000 R143.68638.17180+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R149.47348.06184+00.000 R149.40328.1387+00.000 R149.40328.1387+00.000 R149.40328.1387+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R138.46859.30496+00.000 R144.42849.245			
63+00.000 R139.70448.15664+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R146.16744.05167+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R144.07658.34572+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R144.67738.87578+00.000 R143.68638.17181+00.000 R143.68638.17181+00.000 R143.7946.99282+00.000 R149.47348.06184+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R149.40328.1387+00.000 R147.36636.63788+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
64+00.000 R138.33451.94765+00.000 R145.81844.43466+00.000 R143.95947.76467+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R144.07658.34572+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R143.42450.61277+00.000 R144.67736.69480+00.000 R143.17946.99282+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R138.46859.30496+00.000 R144.42849.245			
65+00.000 R145.81844.43466+00.000 R146.16744.05167+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R144.07658.34572+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R144.67738.87578+00.000 R144.67736.69480+00.000 R143.17946.99282+00.000 R143.21953.90683+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R149.40328.1387+00.000 R149.92543.25589+00.000 R147.36636.6378+00.000 R149.92543.25589+00.000 R145.92543.25589+00.000 R144.30275.47992+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
66+00.000 R146.16744.05167+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R144.07658.34572+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R144.67738.87578+00.000 R144.67736.69480+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R143.388127.07592+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
67+00.000 R143.95947.76468+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R144.07658.34572+00.000 R143.28552.49473+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R144.27834.79879+00.000 R144.67736.69480+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R149.92543.25589+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
68+00.000 R147.57344.77969+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R144.07658.34572+00.000 R143.28552.49473+00.000 R141.952.81874+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R147.17538.87578+00.000 R146.27834.79879+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R144.42849.245			
69+00.000 R147.64250.40370+00.000 R146.18957.5271+00.000 R144.07658.34572+00.000 R143.28552.49473+00.000 R141.952.81874+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R147.17538.87578+00.000 R146.27834.79879+00.000 R144.67736.69480+00.000 R143.17946.99282+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R145.92543.25589+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R130.848127.07592+00.000 R133.13285.40495+00.000 R144.42849.245			
70+00.000 R146.18957.5271+00.000 R144.07658.34572+00.000 R143.28552.49473+00.000 R141.952.81874+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R147.17538.87578+00.000 R146.27834.79879+00.000 R144.67736.69480+00.000 R143.17946.99282+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R149.40328.1387+00.000 R145.92543.25589+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R144.42849.245			
71+00.000 R144.07658.34572+00.000 R143.28552.49473+00.000 R141.952.81874+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R147.17538.87578+00.000 R146.27834.79879+00.000 R144.67736.69480+00.000 R143.17946.99282+00.000 R143.17946.99282+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R149.40328.1387+00.000 R145.92543.25589+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R143.13220.04291+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R144.42849.245			
72+00.000 R143.28552.49473+00.000 R141.952.81874+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R147.17538.87578+00.000 R146.27834.79879+00.000 R144.67736.69480+00.000 R143.17946.99282+00.000 R143.17946.99282+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R149.40328.1387+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R149.9533.75390+00.000 R143.313220.04291+00.000 R130.848127.07594+00.000 R138.46859.30495+00.000 R144.42849.245			
73+00.000 R141.952.81874+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R147.17538.87578+00.000 R146.27834.79879+00.000 R144.67736.69480+00.000 R143.17946.99282+00.000 R143.17946.99282+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R135.565142.14493+00.000 R133.13285.40495+00.000 R144.42849.245			
74+00.000 R140.94960.32275+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R147.17538.87578+00.000 R146.27834.79879+00.000 R144.67736.69480+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R146.21953.90683+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R135.565142.14493+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
75+00.000 R140.92560.97176+00.000 R143.42450.61277+00.000 R147.17538.87578+00.000 R146.27834.79879+00.000 R144.67736.69480+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R146.21953.90683+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R144.42849.245			
76+00.000 R143.42450.61277+00.000 R147.17538.87578+00.000 R146.27834.79879+00.000 R144.67736.69480+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R146.21953.90683+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R144.42849.245			
77+00.000 R147.17538.87578+00.000 R146.27834.79879+00.000 R144.67736.69480+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R146.21953.90683+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R147.36636.63788+00.000 R149.95533.75390+00.000 R149.9533.75390+00.000 R144.30275.47992+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R144.42849.245			
78+00.000 R146.27834.79879+00.000 R144.67736.69480+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R146.21953.90683+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R147.36636.63788+00.000 R149.95533.75390+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R135.565142.14493+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
79+00.000 R144.67736.69480+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R146.21953.90683+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R147.36636.63788+00.000 R149.95543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R138.46859.30495+00.000 R144.42849.245			
80+00.000 R143.68638.17181+00.000 R143.17946.99282+00.000 R146.21953.90683+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R147.36636.63788+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R138.46859.30495+00.000 R144.42849.245			
81+00.000 R143.17946.99282+00.000 R146.21953.90683+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R147.36636.63788+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R144.42849.245			
82+00.000 R146.21953.90683+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R147.36636.63788+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R144.42849.245			
83+00.000 R149.47348.06184+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R147.36636.63788+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
84+00.000 R153.70125.62885+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R147.36636.63788+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
85+00.000 R154.78615.77286+00.000 R149.40328.1387+00.000 R147.36636.63788+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R144.30275.47992+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
86+00.000 R149.40328.1387+00.000 R147.36636.63788+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R144.30275.47992+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
87+00.000 R147.36636.63788+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R144.30275.47992+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
88+00.000 R145.92543.25589+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R144.30275.47992+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
89+00.000 R149.9533.75390+00.000 R152.93220.04291+00.000 R144.30275.47992+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
90+00.000 R152.93220.04291+00.000 R144.30275.47992+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
91+00.000 R144.30275.47992+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
92+00.000 R135.565142.14493+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
93+00.000 R130.848127.07594+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
94+00.000 R133.13285.40495+00.000 R138.46859.30496+00.000 R144.42849.245			
95+00.000 R138.46859.30496+00.000 R144.42849.245			
96+00.000 R1 44.428 49.245			

14/+00.000 R1 32.365 67.977	r			¬		
1000000000000000000000000000000000000				148+00.000 R1	33.295	66.104
100+00.000 R1 54.347 35.803 37.249 102+00.000 R1 52.001 26.438 151+00.000 R1 43.893 78.467 102+00.000 R1 48.25 33.611 152+00.000 R1 52.211 19.269 104+00.000 R1 45.299 43.847 152+00.000 R1 62.211 19.269 106+00.000 R1 46.541 38.824 152+00.000 R1 66.785 154.00.000 R1 66.785 106+00.000 R1 46.21 40.59 155+00.000 R1 46.756 36.785 156+00.000 R1 43.045 109+00.000 R1 52.814 40.988 157+00.000 R1 42.147 35.778 156+00.000 R1 42.147 37.665 110+00.000 R1 55.627 18.036 158+00.000 R1 43.642 26.762 161+00.000 R1 33.444 45.303 115+00.000 R1 55.527 18.036 162+00.000 R1 34.474 66.217 162+00.000 R1 44.334 44.07 118+00.000 R1 34.784 76.862 162+00.000 R1 44.334 44.07 168+00.000 R1 38.177 48.491 120+00.000 R1 34.785 50.602 167+00.000 R1 38.523 38.919 172+00.000 R1 44.334 44.07 </td <td></td> <td></td> <td></td> <td>149+00.000 R1</td> <td>34,346</td> <td>88.82</td>				149+00.000 R1	34,346	88.82
101+00.000 R1 34.347 35.321 102+00.000 R1 52.012 26.438 103+00.000 R1 52.032 24.115 105+00.000 R1 46.239 41.056 107+00.000 R1 46.239 41.056 107+00.000 R1 50.499 43.847 109+00.000 R1 50.499 43.847 109+00.000 R1 50.499 41.586 110+00.000 R1 51.422 40.941 110+00.000 R1 55.414 40.968 110+00.000 R1 55.627 18.036 114+00.000 R1 55.623 37.78 114+00.000 R1 55.623 37.78 118+00.000 R1 45.652 39.778 119+00.000 R1 34.646 68.399 12+00.000 R1 34.744 75.294 12+00.000 R1 34.847 76.852 119+00.000 R1 34.847 76.852 12+00.000 R1 34.847 76.852 12+00.000 R1 34.847 76.852 12+00.000 R1 34.847 76.862 12+00.000 R1 34.847 76.862 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
102+00.000 R1 42.051 102-000 103+00.000 R1 45.253 33.611 105+00.000 R1 45.299 43.847 105+00.000 R1 46.239 41.056 107+00.000 R1 46.239 41.059 107+00.000 R1 46.239 41.059 109+00.000 R1 52.814 40.599 109+00.000 R1 52.814 40.988 110+00.000 R1 52.814 40.984 110+00.000 R1 55.643.22 157+00.000 R1 42.147 110+00.000 R1 55.527 18.036 158+00.000 R1 43.642 112+00.000 R1 55.527 18.036 162+00.000 R1 33.444 45.303 115+00.000 R1 53.629 26.662 162+00.000 R1 34.474 66.217 118+00.000 R1 32.654 54.016 123+00.000 R1 44.334 44.07 122+00.000 R1 35.484 72.86 174+00.000 R1 44.33 43.986 124+00.000 R1 35.485 50.024 137+00.000 R1 37.426 44.662 124+00.000 R1 35.932 55.024 137+00.000 R1						
104+00.000 R1 45.999 43.847 105+00.000 R1 46.541 38.824 106+00.000 R1 46.541 38.824 107+00.000 R1 46.541 38.824 107+00.000 R1 46.541 38.824 107+00.000 R1 46.541 40.59 108+00.000 R1 50.469 41.586 109+00.000 R1 52.814 40.968 110+00.000 R1 51.422 40.941 110+00.000 R1 56.64 32.2 112+00.000 R1 55.27 18.036 113+00.000 R1 55.27 18.036 116+00.000 R1 45.652 39.778 118+00.000 R1 45.652 39.778 118+00.000 R1 45.652 39.778 118+00.000 R1 45.75 51.194 119+00.000 R1 34.474 75.294 12+00.000 R1 34.474 75.294 12+00.000 R1 35.17 148.77 12+00.000 R1 35.68 58.109 12+00.000 R1 35.484 40.378 13+00.000 R1 35.92 55.002 13+00.						
105+00.000 R1 46.541 38.824 106+00.000 R1 46.239 41.056 107+00.000 R1 46.239 41.056 109+00.000 R1 50.469 41.586 109+00.000 R1 52.814 40.988 111+00.000 R1 51.422 40.945 112+00.000 R1 45.66 43.22 112+00.000 R1 55.414 40.988 114+00.000 R1 55.527 18.036 115+00.000 R1 43.529 26.662 113+00.000 R1 45.755 51.194 116+00.000 R1 34.775 51.94 118+00.000 R1 45.775 51.194 118+00.000 R1 45.775 51.194 118+00.000 R1 44.324 75.294 120+00.000 R1 44.324 75.294 120+00.000 R1 41.892 74.286 122+00.000 R1 41.892 74.286 124+00.000 R1 34.133 83.994 124+00.000 R1 34.133 83.994 130+00.000 R1 35.932 55.002 138+00.000 R1 36.43 65.376						
108+00.000 R1 46.239 41.059 107+00.000 R1 48.21 40.59 108+00.000 R1 52.814 40.988 110+00.000 R1 52.814 40.988 110+00.000 R1 51.422 40.941 111+00.000 R1 45.66 43.22 112+00.000 R1 45.66 43.22 113+00.000 R1 55.527 18.936 115+00.000 R1 55.527 18.936 116+00.000 R1 55.527 18.936 116+00.000 R1 55.527 18.936 116+00.000 R1 33.444 45.303 116+00.000 R1 45.652 39.778 118+00.000 R1 45.652 39.778 118+00.000 R1 44.364 26.762 120+00.000 R1 44.344 45.303 122+00.000 R1 34.424 75.294 122+00.000 R1 44.324 74.86 122+00.000 R1 34.784 76.862 122+00.000 R1 35.17 148.767 124+00.000 R1 35.68 58.109 122+00.000 R1 35.17 148.767 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
107+00.000 R1 48.21 40.59 108+00.000 R1 50.469 41.586 109+00.000 R1 52.814 40.968 111+00.000 R1 51.422 40.941 111+00.000 R1 45.66 43.22 111+00.000 R1 45.66 43.22 111+00.000 R1 45.66 43.22 111+00.000 R1 45.67 43.036 111+00.000 R1 45.66 43.22 111+00.000 R1 45.67 31.14 112+00.000 R1 53.529 26.662 118+00.000 R1 45.775 51.194 119+00.000 R1 43.244 75.294 112+00.000 R1 44.66 8399 120+00.000 R1 44.235 54.016 122+00.000 R1 44.235 54.016 122+00.000 R1 44.384 44.07 122+00.000 R1 44.384 44.07 122+00.000 R1 44.386 53.391 120+00.000 R1 44.384 44.07 128+00.000 R1 35.68 54.016 129+00.000 R1 35.68 58.024 130+00.000 R						
108+00.000 R1 50.469 41.586 109+00.000 R1 52.814 40.968 110+00.000 R1 51.422 40.941 111+00.000 R1 45.66 43.22 112+00.000 R1 48.211 40.945 113+00.000 R1 56.419 23.622 114+00.000 R1 55.527 18.036 114+00.000 R1 55.527 18.036 115+00.000 R1 55.527 18.036 116+00.000 R1 55.527 18.036 118+00.000 R1 55.87 31.14 118+00.000 R1 45.652 39.778 119+00.000 R1 40.486 68.399 12+00.000 R1 34.474 66.217 118+00.000 R1 44.334 44.07 12+00.000 R1 34.474 66.217 12+00.000 R1 39.484 71.515 12+00.000 R1 39.484 71.515 12+00.000 R1 31.744 76.862 12+00.000 R1 31.7426 44.662 12+00.000 R1 33.088 157.772 12+00.000 R1 35.68 58.109 13+						
109+00.000 R1 52.814 40.968 110+00.000 R1 51.422 40.941 112+00.000 R1 51.422 40.941 112+00.000 R1 45.66 43.22 112+00.000 R1 48.211 40.495 113+00.000 R1 55.67 18.036 114+00.000 R1 55.527 18.036 115+00.000 R1 50.887 31.14 117+00.000 R1 55.527 18.036 118+00.000 R1 55.527 19.93.78 118+00.000 R1 45.775 51.194 118+00.000 R1 44.74 66.217 119+00.000 R1 44.744 66.217 119+00.000 R1 44.474 66.217 119+00.000 R1 44.434 44.07 120+00.000 R1 34.447 75.294 167+00.000 R1 44.334 44.07 124+00.000 R1 33.944 71.515 124+00.000 R1 33.944 71.516 126+00.000 R1 44.133 43.986 127+00.000 R1 44.133 43.986 128+00.000 R1 34.89 56.637 <				156+00.000 R1	43.031	30.415
110+00.000 R1 51.422 40.941 111+00.000 R1 45.66 43.22 113+00.000 R1 48.211 40.495 113+00.000 R1 56.419 23.622 113+00.000 R1 55.527 18.036 115+00.000 R1 55.527 18.036 116+00.000 R1 53.529 26.662 117+00.000 R1 50.887 31.14 117+00.000 R1 45.652 39.778 118+00.000 R1 45.652 39.778 118+00.000 R1 44.344 45.303 128+00.000 R1 44.334 44.5.303 128+00.000 R1 34.474 66.217 118+00.000 R1 34.784 76.862 129+00.000 R1 34.744 76.862 129+00.000 R1 31.744 76.862 128+00.000 R1 35.17 148.777 128+00.000 R1 35.17 148.777 128+00.000 R1 35.932 55.002 138+00.000 R1 35.932 55.002 138+00.000 R1 35.932 55.002 138+00.000 R1 36.43 65.376				157+00.000 R1	42.147	35.778
111+00.000 R1 45.66 43.22 112+00.000 R1 48.211 40.495 113+00.000 R1 56.61 23.622 113+00.000 R1 55.527 18.036 115+00.000 R1 55.527 18.036 116+00.000 R1 53.529 26.662 116+00.000 R1 50.887 31.14 117+00.000 R1 45.652 39.778 118+00.000 R1 45.652 39.778 119+00.000 R1 45.652 39.778 119+00.000 R1 44.652 37.772 120+00.000 R1 34.244 75.294 167+00.000 R1 44.334 44.07 122+00.000 R1 34.784 76.862 123+00.000 R1 41.392 74.286 124+00.000 R1 37.861 46.338 125+00.000 R1 34.133 83.994 126+00.000 R1 35.17 148.767 128+00.000 R1 35.17 72.86 133+00.000 R1 35.932 55.002 138+00.000 R1 35.932 55.002 138+00.000 R1 36.85 58.109 <td< td=""><td></td><td></td><td></td><td>158+00.000 R1</td><td>47.51</td><td>37.653</td></td<>				158+00.000 R1	47.51	37.653
112+00.000 R1 48.211 40.485 113+00.000 R1 56.419 23.622 113+00.000 R1 55.527 18.036 115+00.000 R1 55.527 18.036 116+00.000 R1 55.527 18.036 116+00.000 R1 50.887 31.14 117+00.000 R1 45.652 39.778 118+00.000 R1 45.775 51.194 119+00.000 R1 45.775 51.194 119+00.000 R1 44.744 66.217 119+00.000 R1 34.244 75.294 121+00.000 R1 34.784 76.862 160+00.000 R1 44.334 44.07 122+00.000 R1 39.484 71.515 124+00.000 R1 37.861 46.338 125+00.000 R1 41.892 74.286 127+00.000 R1 33.088 157.77 130+00.000 R1 35.17 148.762 131+00.000 R1 35.68 58.109 132+00.000 R1 35.43 43.755 134+00.000 R1 35.43 65.376 134+00.000 R1 35.43 65.376 <						
113+00.000 R1 56.419 23.622 114+00.000 R1 55.527 18.036 115+00.000 R1 55.527 18.036 116+00.000 R1 50.887 31.14 117+00.000 R1 45.652 39.778 118+00.000 R1 45.652 39.778 118+00.000 R1 45.652 39.778 119+00.000 R1 45.652 39.778 119+00.000 R1 45.652 39.778 119+00.000 R1 40.486 68.399 120+00.000 R1 34.244 75.294 121+00.000 R1 34.784 76.862 122+00.000 R1 39.484 71.515 124+00.000 R1 41.325 54.016 124+00.000 R1 37.861 46.338 125+00.000 R1 31.77 148.767 128+00.000 R1 33.088 157.772 129+00.000 R1 34.735 72.86 131+00.000 R1 35.68 58.109 132+00.000 R1 35.68 58.109 132+00.000 R1 30.523 55.002 133+00.000 R1 30.523 55.024						
114+00.000 R1 55.527 18.036 162+00.000 R1 33.444 45.303 115+00.000 R1 50.527 26.662 162+00.000 R1 33.444 45.303 116+00.000 R1 50.587 31.14 164+00.000 R1 34.474 66.217 118+00.000 R1 45.755 51.194 166+00.000 R1 34.474 66.217 119+00.000 R1 40.486 68.399 166+00.000 R1 41.707 42.592 120+00.000 R1 34.784 76.862 166+00.000 R1 44.334 44.07 122+00.000 R1 39.484 71.515 167+00.000 R1 38.177 48.491 124+00.000 R1 37.861 46.338 170+00.000 R1 38.523 38.919 124+00.000 R1 31.786 46.338 172+00.000 R1 44.133 43.986 127+00.000 R1 31.433 83.994 171+00.000 R1 44.133 43.986 134+00.000 R1 35.68 58.109 174+00.000 R1 37.426 44.662 137+00.000 R1 36.43 65.376 179+00.000 R1 26.917 112.83 134+00.000 R1 30.532 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
115+00.000 R1 53.529 26.662 116+00.000 R1 50.877 31.14 117+00.000 R1 45.652 39.778 118+00.000 R1 45.75 51.194 119+00.000 R1 45.775 51.194 119+00.000 R1 45.775 51.194 119+00.000 R1 42.44 75.294 121+00.000 R1 34.244 76.862 121+00.000 R1 34.784 76.862 122+00.000 R1 39.484 71.515 124+00.000 R1 40.325 54.016 125+00.000 R1 41.892 74.286 126+00.000 R1 41.892 74.286 127+00.000 R1 35.17 148.767 128+00.000 R1 35.17 148.767 128+00.000 R1 34.133 83.994 131+00.000 R1 34.133 83.994 131+00.000 R1 35.68 58.109 132+00.000 R1 35.64 60.319 134+00.000 R1 36.43 65.376 138+00.000 R1 36.45 60.319 134+00.000 R1 32.65 60.71						
116+00.000 R1 50.887 31.14 117+00.000 R1 45.652 39.778 118+00.000 R1 45.652 39.778 119+00.000 R1 40.486 68.399 120+00.000 R1 34.244 75.294 121+00.000 R1 34.244 75.294 122+00.000 R1 34.244 75.294 122+00.000 R1 40.235 54.016 124+00.000 R1 37.861 46.338 125+00.000 R1 37.861 46.338 126+00.000 R1 38.623 38.919 126+00.000 R1 38.623 38.919 126+00.000 R1 41.892 74.286 128+00.000 R1 33.088 157.772 130+00.00 R1 35.17 148.767 132+00.000 R1 34.133 83.994 131+00.000 R1 35.68 58.109 131+00.000 R1 35.932 55.002 13+00.000 R1 35.932 55.002 13+00.000 R1 36.43 65.376 13+00.000 R1 32.932 55.002 13+00.000 R1 32.365 66.37 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
117+00.000 R1 45.652 39.778 118+00.000 R1 45.775 51.194 119+00.000 R1 40.486 68.399 120+00.000 R1 34.244 75.294 121+00.000 R1 34.244 75.294 122+00.000 R1 34.244 76.862 122+00.000 R1 34.244 76.862 122+00.000 R1 34.244 76.862 122+00.000 R1 39.484 71.515 124+00.000 R1 40.235 54.016 125+00.000 R1 41.892 74.286 127+00.000 R1 34.133 83.994 126+00.000 R1 34.775 72.86 128+00.000 R1 35.68 58.109 131+00.000 R1 35.68 58.109 131+00.000 R1 35.68 58.109 132+00.000 R1 35.932 55.002 139+00.000 R1 36.43 65.376 139+00.000 R1 36.43 65.376 139+00.000 R1 30.532 157.7894 140+00.000 R1 30.532 157.894 140+00.000 R1 32.302 93.234						
118+00.000 R145.77551.194119+00.000 R140.48668.399120+00.000 R134.24475.294121+00.000 R134.78476.862122+00.000 R134.78476.862122+00.000 R139.48471.515122+00.000 R137.86146.338125+00.000 R141.89274.286126+00.000 R135.17148.767128+00.000 R135.17148.767129+00.000 R135.6858.109130+00.000 R135.6858.109131+00.000 R135.6858.109132+00.000 R135.6858.109132+00.000 R136.4365.376134+00.000 R136.4365.376135+00.000 R130.532157.894137+00.000 R130.532157.894139+00.000 R130.759134.099141+00.000 R132.30293.234145+00.000 R132.20171.545144+00.000 R132.20171.545146+00.000 R132.203293.234145+00.000 R132.20171.545146+00.000 R132.203293.234147+00.000 R132.23667.977				164+00.000 R1	34.474	66.217
119+00.000 R1 40.486 68.399 120+00.000 R1 34.244 75.294 121+00.000 R1 34.784 76.862 122+00.000 R1 39.484 71.515 122+00.000 R1 39.484 71.515 123+00.000 R1 40.235 54.016 124+00.000 R1 40.235 54.016 124+00.000 R1 41.94 58.234 126+00.000 R1 41.99 58.234 126+00.000 R1 41.892 74.286 127+00.000 R1 35.17 148.767 128+00.000 R1 34.133 83.994 131+00.000 R1 34.775 72.86 133+00.000 R1 35.68 58.109 132+00.000 R1 35.68 58.109 132+00.000 R1 36.43 65.376 134+00.000 R1 36.43 65.376 134+00.000 R1 30.523 157.894 140+00.000 R1 30.523 157.894 140+00.000 R1 30.523 157.894 144+00.000 R1 32.302 93.234 140+00.000 R1 32.201 71.545				165+00.000 R1	41.707	42.592
120+00.000 R1 34.244 75.294 121+00.000 R1 34.784 76.862 122+00.000 R1 39.484 71.515 123+00.000 R1 40.235 54.016 124+00.000 R1 37.861 46.338 125+00.000 R1 41.94 58.234 126+00.000 R1 41.892 74.286 127+00.000 R1 35.17 148.767 128+00.000 R1 33.088 157.772 129+00.000 R1 34.133 83.994 131+00.000 R1 35.68 58.109 131+00.000 R1 35.68 58.109 132+00.000 R1 35.932 55.002 134+00.000 R1 36.43 65.376 135+00.000 R1 39.251 58.024 135+00.000 R1 32.392 92.079 140+00.000 R1 30.532 157.894 142+00.000 R1 32.375 116.15 144+00.000 R1 32.032 93.234 142+00.000 R1 32.392 92.079 140+00.000 R1 32.392 93.234 142+00.000 R1 32.2032 93.234				166+00.000 R1	49.224	23.772
121+00.000 R1 34.784 76.862 122+00.000 R1 39.484 71.515 123+00.000 R1 40.235 54.016 125+00.000 R1 37.861 46.338 125+00.000 R1 41.94 58.234 126+00.000 R1 41.892 74.286 127+00.000 R1 35.17 148.767 128+00.000 R1 33.088 157.772 129+00.000 R1 34.133 83.994 131+00.000 R1 35.68 58.109 131+00.000 R1 35.68 58.109 132+00.000 R1 35.932 55.002 134+00.000 R1 36.43 65.376 133+00.000 R1 39.645 60.319 134+00.000 R1 30.523 157.894 134+00.000 R1 30.521 57.894 142+00.000 R1 32.392 92.079 140+00.000 R1 32.032 93.234 142+00.000 R1 32.032 93.234 144+00.000 R1 32.2594 56.7 144+00.000 R1 32.2594 56.7 144+00.000 R1 32.2594 56.7				167+00.000 R1	44.334	44.07
122+00.000 R1 39.484 71.515 123+00.000 R1 40.235 54.016 124+00.000 R1 37.861 46.338 125+00.000 R1 41.94 58.234 126+00.000 R1 41.94 58.234 127+00.000 R1 35.17 148.767 128+00.000 R1 35.17 148.767 128+00.000 R1 34.133 83.994 130+00.000 R1 34.775 72.86 131+00.000 R1 35.68 58.109 132+00.000 R1 35.932 55.002 134+00.000 R1 35.68 58.109 132+00.000 R1 39.645 60.319 136+00.000 R1 39.645 60.319 136+00.000 R1 39.645 60.319 136+00.000 R1 30.532 157.894 140+00.000 R1 30.532 157.894 141+00.000 R1 30.532 157.894 142+00.000 R1 32.032 93.234 145+00.000 R1 32.032 93.234 145+00.000 R1 32.032 93.234 145+00.000 R1 32.032 93.234				-		
123+00.000 R1 40.235 54.016 124+00.000 R1 37.861 46.338 125+00.000 R1 41.94 58.234 126+00.000 R1 41.892 74.286 127+00.000 R1 35.17 148.767 128+00.000 R1 33.088 157.772 129+00.000 R1 34.133 83.994 130+00.000 R1 34.775 72.86 131+00.000 R1 35.932 55.002 132+00.000 R1 35.932 55.002 134+00.000 R1 39.645 60.319 135+00.000 R1 39.645 60.319 136+00.000 R1 39.645 60.319 137+00.000 R1 30.759 134.09 137+00.000 R1 30.615 65.568 138+00.000 R1 30.759 134.09 141+00.000 R1 30.759 134.09 141+00.000 R1 30.759 134.09 142+00.000 R1 32.392 92.079 140+00.000 R1 30.759 134.09 141+00.000 R1 28.037 405.313 182+00.000 R1 30.238 118.485						
124+00.000 R1 37.861 46.338 125+00.000 R1 41.94 58.234 126+00.000 R1 41.892 74.286 127+00.000 R1 35.17 148.767 128+00.000 R1 33.088 157.772 129+00.000 R1 34.133 83.994 130+00.000 R1 34.133 83.994 131+00.000 R1 34.775 72.86 132+00.000 R1 35.68 58.109 132+00.000 R1 35.68 58.109 132+00.000 R1 35.68 58.109 132+00.000 R1 35.68 55.002 133+00.000 R1 39.645 60.319 136+00.000 R1 39.251 58.024 137+00.000 R1 30.632 157.894 140+00.000 R1 30.532 157.894 142+00.000 R1 32.032 93.234 142+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 144+00.000 R1 32.202 93.234 145+00.000 R1 32.365 67.977	123+00.000 R1	40.235	54.016			
125+00.000 R1 41.94 56.234 126+00.000 R1 41.892 74.286 127+00.000 R1 35.17 148.767 128+00.000 R1 33.088 157.772 129+00.000 R1 34.133 83.994 130+00.000 R1 34.775 72.86 131+00.000 R1 34.775 72.86 132+00.000 R1 35.68 58.109 132+00.000 R1 35.932 55.002 134+00.000 R1 36.43 65.376 135+00.000 R1 39.645 60.319 136+00.000 R1 39.645 60.319 137+00.000 R1 36.115 65.568 137+00.000 R1 30.643 65.376 138+00.000 R1 30.645 60.319 136+00.000 R1 30.759 134.099 141+00.000 R1 30.532 157.894 142+00.000 R1 32.032 93.234 142+00.000 R1 32.032 93.234 142+00.000 R1 32.201 71.545 144+00.000 R1 32.201 71.545 144+00.000 R1 32.202 93.234	124+00.000 R1	37.861	46.338			
127+00.000 R1 35.17 148.767 128+00.000 R1 33.088 157.772 129+00.000 R1 34.133 83.994 130+00.000 R1 34.133 83.994 131+00.000 R1 34.775 72.86 131+00.000 R1 35.68 58.109 132+00.000 R1 37.548 40.378 132+00.000 R1 37.548 40.378 132+00.000 R1 36.43 65.376 134+00.000 R1 39.645 60.319 136+00.000 R1 39.251 58.024 137+00.000 R1 32.52 92.079 140+00.000 R1 30.759 134.099 141+00.000 R1 26.45 137.987 143+00.000 R1 32.032 93.234 142+00.000 R1 32.201 71.545 144+00.000 R1 32.201 71.545 143+00.000 R1 32.201 71.545 144+00.000 R1 32.201 71.545 144+00.000 R1 32.201 71.545 144+00.000 R1 32.201 71.545 144+00.000 R1 32.235 56.7	125+00.000 R1	41.94	58.234			
128+00.000 R1 33.088 157.772 129+00.000 R1 34.133 83.994 130+00.000 R1 34.133 83.994 130+00.000 R1 34.775 72.86 131+00.000 R1 35.68 58.109 132+00.000 R1 37.548 40.378 132+00.000 R1 35.932 55.002 134+00.000 R1 36.43 65.376 135+00.000 R1 39.645 60.319 136+00.000 R1 39.251 58.024 137+00.000 R1 32.392 92.079 140+00.000 R1 30.532 157.894 142+00.000 R1 22.032 93.234 145+00.000 R1 32.032 93.234 144+00.000 R1 32.594 56.7 144+00.000 R1 32.594 56.7 147+00.000 R1 32.594 56.7 147+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977						
129+00.000 R134.13383.994130+00.000 R134.77572.86131+00.000 R135.6858.109132+00.000 R137.54840.378133+00.000 R135.93255.002134+00.000 R136.4365.376135+00.000 R139.64560.319136+00.000 R139.25158.024136+00.000 R139.25158.024137+00.000 R132.39292.079140+00.000 R130.532157.894142+00.000 R126.45137.987143+00.000 R126.45137.987143+00.000 R126.45137.987143+00.000 R132.03293.234145+00.000 R132.20171.545146+00.000 R132.29456.7147+00.000 R132.36567.977						
130+00.000 R1 34.775 72.86 131+00.000 R1 35.68 58.109 132+00.000 R1 37.548 40.378 133+00.000 R1 37.548 40.378 133+00.000 R1 35.932 55.002 134+00.000 R1 36.43 65.376 135+00.000 R1 39.645 60.319 136+00.000 R1 39.251 58.024 137+00.000 R1 36.115 65.568 138+00.000 R1 32.392 92.079 140+00.000 R1 30.532 157.894 142+00.000 R1 32.032 93.234 145+00.000 R1 32.032 93.234 145+00.000 R1 32.2594 56.7 147+00.000 R1 32.365 67.977				174+00.000 R1	37.426	44.662
131+00.000 R1 35.68 58.109 132+00.000 R1 37.548 40.378 133+00.000 R1 35.932 55.002 134+00.000 R1 36.43 65.376 135+00.000 R1 39.645 60.319 136+00.000 R1 39.251 58.024 137+00.000 R1 39.251 58.024 137+00.000 R1 39.251 58.024 137+00.000 R1 36.115 65.568 138+00.000 R1 32.392 92.079 140+00.000 R1 30.759 134.099 141+00.000 R1 30.532 157.894 142+00.000 R1 22.032 93.234 145+00.000 R1 32.032 93.234 145+00.000 R1 32.594 56.7 147+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977				175+00.000 R1	34.89	56.637
132+00.000 R1 37.548 40.378 133+00.000 R1 35.932 55.002 134+00.000 R1 36.43 65.376 135+00.000 R1 39.645 60.319 136+00.000 R1 39.251 58.024 137+00.000 R1 36.115 65.568 138+00.000 R1 32.392 92.079 140+00.000 R1 30.759 134.099 141+00.000 R1 26.45 137.987 143+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.201 71.545 146+00.000 R1 32.365 67.977				176+00.000 R1	28.084	84.991
132+00.000 R1 37.548 40.378 133+00.000 R1 35.932 55.002 134+00.000 R1 36.43 65.376 135+00.000 R1 39.645 60.319 136+00.000 R1 39.251 58.024 137+00.000 R1 36.115 65.568 138+00.000 R1 33.768 88.288 139+00.000 R1 32.392 92.079 140+00.000 R1 30.532 157.894 142+00.000 R1 26.45 137.987 143+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977				177+00.000 R1	27,952	96.961
133+00.000 R1 35.352 35.002 134+00.000 R1 36.43 65.376 135+00.000 R1 39.645 60.319 136+00.000 R1 39.251 58.024 137+00.000 R1 36.115 65.568 138+00.000 R1 33.768 88.288 139+00.000 R1 32.392 92.079 140+00.000 R1 30.532 157.894 142+00.000 R1 26.45 137.987 143+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.365 67.977						
135+100.000 R1 39.645 60.319 135+00.000 R1 39.251 58.024 137+00.000 R1 39.251 58.024 137+00.000 R1 36.115 65.568 138+00.000 R1 33.768 88.288 139+00.000 R1 32.392 92.079 140+00.000 R1 30.532 157.894 142+00.000 R1 26.45 137.987 143+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977						
136+00.000 R1 39.251 58.024 137+00.000 R1 36.115 65.568 138+00.000 R1 33.768 88.288 139+00.000 R1 32.392 92.079 140+00.000 R1 30.759 134.099 141+00.000 R1 30.532 157.894 142+00.000 R1 26.45 137.987 143+00.000 R1 22.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977						
137+00.000 R1 36.115 65.568 138+00.000 R1 33.768 88.288 139+00.000 R1 32.392 92.079 140+00.000 R1 30.759 134.099 141+00.000 R1 30.532 157.894 142+00.000 R1 26.45 137.987 143+00.000 R1 27.375 116.15 144+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977						
138+00.000 R1 33.768 88.288 139+00.000 R1 32.392 92.079 140+00.000 R1 30.759 134.099 141+00.000 R1 30.532 157.894 142+00.000 R1 26.45 137.987 143+00.000 R1 27.375 116.15 144+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977						
139+00.000 R1 32.392 92.079 140+00.000 R1 30.759 134.099 141+00.000 R1 30.532 157.894 142+00.000 R1 26.45 137.987 143+00.000 R1 27.375 116.15 144+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.594 56.7				182+00.000 R1	30.238	118.485
140+00.000 R1 30.759 134.099 141+00.000 R1 30.532 157.894 142+00.000 R1 26.45 137.987 143+00.000 R1 27.375 116.15 144+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977				-		
141+00.000 R1 30.532 157.894 142+00.000 R1 26.45 137.987 143+00.000 R1 27.375 116.15 144+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977				-		
142+00.000 R1 26.45 137.987 143+00.000 R1 27.375 116.15 144+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977				1		
143+00.000 R1 27.375 116.15 144+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977				1		
144+00.000 R1 32.032 93.234 145+00.000 R1 32.201 71.545 146+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977				1		
145+00.000 R1 32.201 71.545 146+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977				1		
146+00.000 R1 32.594 56.7 147+00.000 R1 32.365 67.977				1		®
147+00.000 R1 32.365 67.977				1		
]		

DENTON

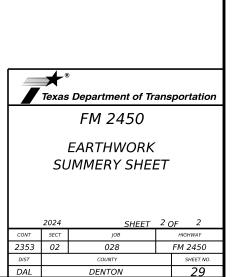

183+00.000 R1	26.953	95.915
184+00.000 R1	27.877	99.388
185+00.000 R1	34.598	78.926
0+00.000 R2	33.402	57.668
1+00.000 R2	44.09	63.789
2+00.000 R2	40.543	66.435
3+00.000 R2	36.052	71.553
4+00.000 R2	36.61	68.568
5+00.000 R2	37.66	62.771
6+00.000 R2	36.517	66.95
7+00.000 R2	35.166	70.538
8+00.000 R2	39.136	50.971
9+00.000 R2	42.425	39.559
10+00.000 R2	43.579	31.631
11+00.000 R2	43.308	27.217
12+00.000 R2	42.09	42.857
13+00.000 R2	45.915	47.51
14+00.000 R2	46.484	45.224
15+00.000 R2	45.419	43.265
16+00.000 R2	48.185	57.27
17+00.000 R2	45.869	82.527
18+00.000 R2	43.638	85.693
19+00.000 R2	45.809	80.278
20+00.000 R2	45.33	81.63
21+00.000 R2	41.275	96.854
22+00.000 R2	38.951	101.144
23+00.000 R2	40.327	84.123
24+00.000 R2	45.184	58.07
25+00.000 R2	50.159	38.835
26+00.000 R2	51.31	40.282
27+00.000 R2	52.639	39.631
28+00.000 R2	53.769	40.386
29+00.000 R2	52.21	43.924
30+00.000 R2	49.955	41.554
31+00.000 R2	48.727	55.336
32+00.000 R2	42.167	197.921
33+00.000 R2	40.316	207.364
34+00.000 R2	45.87	74.22
35+00.000 R2	50.378	34.31
36+00.000 R2	47.431	32.204
37+00.000 R2	41.209	48.199
38+00.000 R2	42.788	39.178
39+00.000 R2	43.253	40.858
40+00.000 R2	44.363	48.618
41+00.000 R2	41.947	56.647
42+00.000 R2	42.434	55.615
43+00.000 R2	45.666	53.69
44+00.000 R2	44.973	53.936
45+00.000 R2	47.482	41.464
46+00.000 R2	48.225	39.227
47+00.000 R2	50.754	41.626

48+00.000 R2	57.331	29.165	98+00.000 R2	50.549	36.118	148+0
49+00.000 R2	63.741	11.167	99+00.000 R2	54.55	34.593	149+0
50+00.000 R2	61.646	29.955	100+00.000 R2	60.149	26.371	150+0
51+00.000 R2	57.999	46.234	101+00.000 R2	54.324	36.39	151+0
52+00.000 R2	54.281	42.86	102+00.000 R2	42.323	61.183	152+0
53+00.000 R2	44.284	45.278	103+00.000 R2	41.825	61.929	153+0
54+00.000 R2	52.518	27.681	104+00.000 R2	40.482	61.449	154+0
55+00.000 R2	65.567	18.482	105+00.000 R2	30.562	87.413	155+0
56+00.000 R2	68.266	16.239	106+00.000 R2	25.738	105.225	156+0
57+00.000 R2	58.105	26.176	107+00.000 R2	26.021	100.411	- <u>157+0</u> - 158+0
58+00.000 R2	42.265	39.179	108+00.000 R2	28.854	91.325	159+0
59+00.000 R2	41.311	47.601	109+00.000 R2	38.617	72.093	160+0
60+00.000 R2	44.665	59.505	110+00.000 R2	44.853	60.243	161+0
61+00.000 R2	44.379	67.324	111+00.000 R2	42.728	51.706	161+1
62+00.000 R2	42.361	71.745	112+00.000 R2	43.261	42.738	Gran
63+00.000 R2	45.074	64.798	113+00.000 R2	45.597	46.679	
64+00.000 R2	42.053	54.063	114+00.000 R2	42.433	50.498	1
65+00.000 R2	31.426	53.936	115+00.000 R2	37.718	52.712	1
66+00.000 R2	37.263	37.899	116+00.000 R2	41.093	43.321	1
67+00.000 R2	47.443	18.07	117+00.000 R2	46.93	27.591	1
68+00.000 R2	41.511	18.76	118+00.000 R2	41.086	33.835	1
69+00.000 R2	47.924	17.091	119+00.000 R2	35.872	43.934	TOP OF FILL
70+00.000 R2	46.782	38.557	120+00.000 R2	35.657	49.388	PROP. FIL
71+00.000 R2	35.958	67.622	121+00.000 R2	40.882	37.344	EXISTING GROUND -
72+00.000 R2	40.264	85.009	122+00.000 R2	46.313	29.282	PROP. GROUND
73+00.000 R2	42.648	62.523	123+00.000 R2	39.585	48.651	
74+00.000 R2	48.599	30.727	124+00.000 R2	35.169	67.201	PRO
75+00.000 R2	48.139	48.765	125+00.000 R2	36.035	71.111	BOTTOM OF
76+00.000 R2	41.175	61.644	126+00.000 R2	39.935	63.116	
77+00.000 R2	39.086	72.975	127+00.000 R2	43.926	54.872	
78+00.000 R2	38.811	97.579	128+00.000 R2	50.208	31.835	
79+00.000 R2	36.223	152.972	129+00.000 R2	49.788	25.165	
80+00.000 R2	35.254	130.812	130+00.000 R2	51.993	25.991	
81+00.000 R2	38.65	91.335	131+00.000 R2	56.599	17.218	
82+00.000 R2	41.223	113.929	132+00.000 R2	52.763	21.262	
83+00.000 R2	41.632	82.434	133+00.000 R2	51.867	24.273	
84+00.000 R2	44.623	48.344	134+00.000 R2	53.758	15.812	
85+00.000 R2	50.598	32.521	135+00.000 R2	51.426	19.777	
86+00.000 R2	48.79	21.067	136+00.000 R2	44.741	33.385	
87+00.000 R2	41.412	21.683	137+00.000 R2	41.792	36.282	
88+00.000 R2	35.158	30.682	138+00.000 R2	44.984	43.357	
89+00.000 R2	40.586	30.582	139+00.000 R2	51.936	54.802	
90+00.000 R2	44.266	30.955	140+00.000 R2	47.569	61.292	
91+00.000 R2	44.827	29.408	141+00.000 R2	41.066	59.191	
92+00.000 R2	43.638	35.363	142+00.000 R2	43.924	56.148	
93+00.000 R2	38.86	42.962	143+00.000 R2	54.22	45.121	
94+00.000 R2	40.015	35.651	144+00.000 R2	51.745	41.295	
95+00.000 R2	43.745	28.442	145+00.000 R2	43.617	40	
96+00.000 R2	43.901	34.499	146+00.000 R2	49.013	28.03	
97+00.000 R2	45.297	41.521	147+00.000 R2	49.434	63.466	1

DATE:

2:30:04 PM 4/4/2024

14940.788	20199.292
10.07	0
60.209	0.138
48.373	7.069
50.204	25.34
50.35	45.9
50.082	61.963
52.243	56.874
48.889	47.241
54.502	39.94
64.023	18.253
58.268	20.978
51.372	42.505
54.575	30.388
54.098	52.725
48.585	98.376
	54.098 54.575 51.372 58.268 64.023 54.502 48.889 52.243 50.082 50.35 50.204 48.373 60.209 10.07



MILL & OVERLAY (0"- 2")

COUNTY DENTON

					E A)	С Ш		D SGN	ASSM TY X	<u>XXXX (X)</u>	$\underline{\mathbf{x}} \underline{\mathbf{x}} (\underline{\mathbf{x}} - \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}})$
PLAN					(TYPE	(TYPE	POST TYPE	POSTS	ANCHOR TYPE	MOUN	ITING DESIGNATION
SHEET SIGN NO. NO.		SIGN NOMENCLATURE	SIGN	DIMENSIONS	FLAT ALUMINUM	EXAL ALUMINUM	FRP = Fiberglass TWT = Thin-Wall 10BWG = 10 BWG	1 or 2	UA=Universal Conc UB=Universal Bolt SA=Slipbase-Conc SB=Slipbase-Bolt WS=Wedge Steel WP=Wedge Plastic	PREFABRICATED	BM = Extruded Wind
1	1	M3-1	NORTH < AUXILIARY SIGN>	24 × 12	Х		S8Ø	1	SA	U	
		M1-6F	<pre><fm shield=""> farm road (route #)</fm></pre>	24 × 24	X						
		M6-1 M3-3	<pre><arrow -="" horiz.="" strght=""> <auxiliary sign=""> SOUTH <auxiliary sign=""></auxiliary></auxiliary></arrow></pre>	21 × 15	X X	_					
		M1-6F	<pre></pre>	24 × 12 24 × 24	X	-					
		M6-1	<pre><arrow -="" horiz.="" strght=""> <auxiliary sign=""></auxiliary></arrow></pre>	24 × 24 21 × 15	X	_					
		110 1									
	2	R1-1	STOP	36 × 36	X		1ØBWG	1	SA	P	
		R1-3P	ALL WAY	18 × 6	Х						
	3	D1-2	FORESTBURG(LEFT ARROW) SANGER(RIGHT ARROW)	96×30	X	-	S8Ø	1	SA	U	
	4					-	1.00.00	1	<u> </u>	P	
	4	R2-1	SPEED LIMIT (SPEED)	36X36	X	-	1ØBWG		SA	۲	
	5	W3-1	SYMBOL - STOP AHEAD		X	\vdash	1ØBWG	1	SA	P	
				00,000	\uparrow	\vdash	120110	<u> </u>		1	1
	6	M3-2	EAST < AUXILIARY SIGN>	24 × 12	X	L	S8Ø	1	SA	U	
		M1-6F	<pre><fm shield=""> farm road (route #)</fm></pre>	24 × 24	Х						
		M6-1	<pre><arrow -="" horiz.="" strght=""> <auxiliary sign=""></auxiliary></arrow></pre>	21 × 15	Х						
		M3-4	WEST < AUXILIARY SIGN>	24 × 12	Х	_					
_		M1-6F M6-1	<pre><fm shield=""> FARM ROAD (ROUTE #) </fm></pre>	24 × 24	X						
_		IVID - 1	<pre><arrow -="" horiz.="" strght=""> < AUXILIARY SIGN></arrow></pre>	21 × 15	$+^{\times}$	\vdash					
_	7	R12-6BT	LOAD ZONED ROAD (MI) MILES AHD (DESCRIP)	102X30	X	\vdash	S8Ø	1	SA	U	
	,			I DENOD	+	\vdash				Ŭ	
	8	R12-1T	WEIGHT LIMIT/GROSS (WEIGHT) LBS	24 × 36	Х		1ØBWG	1	SA	P	
_	9	R7-1D	NO PARKING ANY TIME < BI-DIRECTNAL ARRW>	12 × 18	X	-	1ØBWG	1	SA	P	
_	10	M3-3	SOUTH < AUXILIARY SIGN>	24 × 12	X	⊢	1ØBWG	1	SA	P	
_	נשו	M1-6F	<pre></pre>	24 × 12 24 × 24	X	-	TNDMO	1	Эн	r	
_			KITT GALLED THAT HORD (TOUTE "7		\uparrow	\vdash					
	11	R7-1R	NO PARKING ANY TIME < ARROW RIGHT>	12 × 18	X	\vdash	1ØBWG	1	SA	P	
	12	R2-1	SPEED LIMIT (SPEED)	30 × 36	Х		1ØBWG	1	SA	P	
					-	1	1000			-	
_	13	D2-1	KRUM 7	54X18	X	-	1ØBWG	1	SA	Т	
_	14	W3-5	<pre><symbol -="" ahd="" reduced="" speed=""> (SPEED)</symbol></pre>	36 × 36	X	\vdash	1 ØBWG	1	SA	P	
	14		CONTROL REDUCED OF EED HILD/ COFEED/		$+^{-}$		INDMO	1	55		
	15	M2-1	JCT < AUXILIARY SIGN>	21 × 15	X	\vdash	1ØBWG	1	SA	P	
		M1-6F	<pre><fm shield=""> farm road (route #)</fm></pre>	24 × 24	Х						
	16	W1-2R	SYMBOL - HORIZ CURVE RIGHT	36 × 36	X		1ØBWG	1	SA	Р	
		W13-1P	(SPEED) MPH < ADVISORY SPEED PLAQUE>	18 × 18	Х	┢					
_	1	W1-2L	SYMBOL - HORIZ CURVE LEFT	36 × 36	X	\vdash	1 ØBWG	1	SA	P	
2	1	W13-1P	(SPEED) MPH (ADVISORY SPEED PLAQUE)	18 × 18	X		UMDWD	1	Эп	'	
					+						
	2	R12-8AT	WT LIMT (4 LINE DESCRIP OF VEH TYPES/WTS)	78 × 36	Х		S8Ø	1	SA	U	
	3	R12-8AT	WT LIMT (4 LINE DESCRIP OF VEH TYPES/WTS)	78 × 36	×		S8Ø	1	SA	U	
	А			20 20		-	10000	1	<u> </u>	P	
	4	R2-1	SPEED LIMIT (SPEED)	30 × 36	X	-	1ØBWG	1	SA	۲	
	5	W1-2R	SYMBOL - HORIZ CURVE RIGHT	36 × 36	X	┢	1ØBWG	1	SA	P	
	<u> </u>	W13-1P	(SPEED) MPH < ADVISORY SPEED PLAQUE>	18 × 18	X	-	1220	- -		1	
						L					
				1			1	1	1	1	1

XX) = # of Ext ed Wind Beam /ft Wing ed Alum Sign	BRIDGE MOUNT CLEARANCE SIGNS (See Note 2) TY = TYPE TY N TY S		
			ALUMINUM SIC
			Square Feet
			Less than 7.
			7.5 to 15
			Greater than
			The Cheedeed
			The Standard for Texas (S
			the followin http://\
		NC	DTE:
		۱.	Sign supports s on the plans, e may shift the s design guidelin secure a more of
			avoid conflict otherwise show Contractor sha will verify al
		2.	For installations in the signs, see Brid Assembly (BMCS
		3.	Sign Mounting I
			Signs General I
		4	*
			Texas Departmen
			SUM
			SUN SMAI
		FILE:	sums16.dgn
		© TxD 4-16	OT May 1987 REVISIONS
		8-16	
		18	

ALUMINUM SIGN B	LANKS THICKNESS				
Square Feet	Minimum Thickness				
Less than 7.5	0.080"				
7.5 to 15	0.100"				
Greater than 15	0.125"				
Greater than 15	0.125"				

The Standard Highway Sign Designs for Texas (SHSD) can be found at the following website. http://www.txdot.gov/

- Sign supports shall be located as shown on the plans, except that the Engineer may shift the sign supports, within design guidelines, where necessary to secure a more desirable location or to avoid conflict with utilities. Unless otherwise shown on the plans, the Contractor shall stake and the Engineer will verify all sign support locations.
- For installation of bridge mount clearance signs, see Bridge Mounted Clearance Sign Assembly (BMCS)Standard Sheet.
- For Sign Support Descriptive Codes, see Sign Mounting Details Small Roadside Signs General Notes & Details SMD(GEN).

	SHEET 1 OF 3								
Texas Department of Transportation	Traffic Operations Division Standard								
SUMMARY OF SMALL SIGNS									
SOSS									
	W. TUDOT OF TUDOT								

LE:	sums16.dgn	dn: Tx	DOT	ск: TxDOT	DW:	TxDOT	ск: TxDOT	
) TxDOT	May 1987	CONT	SECT	JOB	JOB		HIGHWAY	
	REVISIONS	2353	02	028		FM	2450	
-16 -16		DIST	COUNTY			SHEET NO.		
		DAL	DENTON			30		

					R	6) SGN	ASSM TY X	XXXX (X)	$\underline{\mathbf{x}} \underline{\mathbf{x}} (\underline{\mathbf{x}} - \underline{\mathbf{x}} \underline{\mathbf{x}} \underline{\mathbf{x}})$
					TYPE	(TYPE					
PLAN HEET	SIGN	SIGN			ĭ ⊒	Ĭž		POSTS	ANCHOR TYPE		TING DESIGNATION
	NOMENCLATURE	SIGN	DIMENSIONS	FLAT ALUMINUM (TYPE	_	S80 = Sch 80		UA=Universal Conc UB=Universal Bolt SA=Slipbase-Conc SB=Slipbase-Bolt WS=Wedge Steel WP=Wedge Plastic	P = "Plain" T = "T" U = "U"	IEXT or 2EXT = # BM = Extruded W WC = 1.12 #/ft (Channel EXAL= Extruded A Panels	
3	1	M3-1 M1-6F	NORTH < AUXILIARY SIGN>	24 × 12	X		1ØBWG	1	SA	P	
		D10-7AT	<pre><fm shield=""> FARM ROAD (ROUTE #) MILE MARKER 228</fm></pre>	24 × 24 3 × 10	X						
		D10-7AT	MILE MARKER 228	3 × 10	X						
		010 111									
	2	W1-2L W13-1P	SYMBOL - HORIZ CURVE LEFT (SPEED) MPH <advisory plaque="" speed=""></advisory>	36 × 36 18 × 18	X X		1ØBWG	1	SA	P	
6	1	W1-4L W13-1P	SYMBOL - REVERSE CURVE LEFT (SPEED) MPH (ADVISORY SPEED PLAQUE)	36 × 36 18 × 18	X X		1ØBWG	1	SA	P	
							4 9 7 1 9				
_/	1	M3-2 M1-6F	EAST <auxiliary sign=""> <fm shield=""> FARM ROAD (ROUTE #)</fm></auxiliary>	24 × 12 24 × 24	X		1ØBWG	1	SA	P	
		D10-7AT	MILE MARKER 230	24 × 24 3 × 10	X					<u> </u>	
		D10-7AT	MILE MARKER 230	3 × 10	X						
	2	R2-1	SPEED LIMIT (SPEED)	30 × 36	X		1ØBWG	1	SA	P	
8	1	W1-4L	SYMBOL - REVERSE CURVE LEFT	36 × 36	X		1ØBWG	1	SA	P	
		W13-1P	(SPEED) MPH < ADVISORY SPEED PLAQUE>	18 × 18	Х						
10	1	D14-4T	ADOPT A HWY NEXT (MI) MILES (GROUP NAME)	48 × 48	X		1ØBWG	1	SA	Т	
11	1	R2-1	SPEED LIMIT (SPEED)	30 × 36	X		1ØBWG	1	SA	P	
11	1	NZ-1	SFEED LIMIT (SFEED)	30 X 36	+		IUBWU	1	Эн		
	2	W1-4L	SYMBOL - REVERSE CURVE LEFT	36 × 36	X		1ØBWG	1	SA	P	
		W13-1P	(SPEED) MPH < ADVISORY SPEED PLAQUE>	18 × 18	Х						
12	1	M3-1	NORTH < AUXILIARY SIGN>	24 × 12	X	_	1ØBWG	1	SA	P	
		M1-6F D10-7AT	<pre> <fm shield=""> FARM ROAD (ROUTE #)</fm></pre>	24 × 24 3 × 10	X	_					
		D10-7AT	MILE MARKER 232	3 × 10 3 × 10	X						
		DID /HI		5 × 10	+						
13	1	W1-4L	SYMBOL - REVERSE CURVE LEFT	36 × 36	X		1ØBWG	1	SA	P	
		W13-1P	(SPEED) MPH < ADVISORY SPEED PLAQUE>	18 × 18	Х						
1.4	1			20 20	V			1	<u> </u>	P	
14	1	W3-5	<pre>< SYMBOL - REDUCED SPEED AHD> (SPEED)</pre>	36 × 36	<u> </u>		1ØBWG	1	SA	P	
	2	R2-1	SPEED LIMIT (SPEED)	30 × 36	X		1ØBWG	1	SA	P	
	3	D2-1	BOLIVAR 7	66X18	X		1ØBWG	1	SA	Т	
	4	R2-1	SPEED LIMIT (SPEED)	30 × 36	×		1ØBWG	1	SA	P	
	4	HZ-1	SFEED LIMIT (SFEED)	30 × 36	$+^{\sim}$		IUBWG	1	БН	P	
	5	I-2AT	KRUM CITY LIMIT	42X34	X		1ØBWG	1	SA	Р	
	6	M2-1	JCT < AUXILIARY SIGN>	21 × 15	X		1ØBWG	1	SA	P	
		M1-6F	<pre><fm shield=""> FARM ROAD (ROUTE #)</fm></pre>	24 × 24	X						
15	1	R2-1	SPEED LIMIT (SPEED)	30 × 36	X	-	1ØBWG	1	SA	P	
	-		5. 210 EANA . 6. 2207		Ť		100.00	-		1	
	2	M3 - 1	NORTH < AUXILIARY SIGN>	24 × 12	Х		1ØBWG	1	SA	Р	
		M1-6F	<pre><fm shield=""> FARM ROAD (ROUTE #)</fm></pre>	24 × 24	Х						
		D10-7AT	MILE MARKER 234	3 × 10	X	_				───	
		D10-7AT	MILE MARKER 234	3 × 10	X	-				 	
	3	D14-4T	ADOPT A HWY NEXT (MI) MILES (GROUP NAME)	48 × 48	×	-	1ØBWG	1	SA	т	<u> </u>
	5	1 1 1 1	HUGH I HAT MEXT VEHT/ MILLS (ONOUP INHME)	0+ X UF	1 ^	1	100000	1		I	1

DISCLAIMER: The use

XX) = # of Ext ed Wind Beam /ft Wing ed Alum Sign	BRIDGE MOUNT CLEARANCE SIGNS (See Note 2) TY = TYPE TY N TY S		
		ALUMINUM S	
		Square Fee	
		Less than	
		7.5 to 15	
		Greater than	ר
		The Standar for Texas	(SI
		the follow http:	
		Intp.	// V
		NOTE:	
		1. Sign supports on the plans, may shift the	, e
		design guide secure a more avoid conflic otherwise sho	e d ct
		Contractor st will verify o	
		2. For installat	
		signs, see Br Assembly (BM(251
		3. For Sign Supp	
		Sign Mounting	э (
		Signs General	
		*	
		Texas Departm	en
		Su	IM
		SU SM/	4
		FILE: SUMS16.dgn	
		© TxDOT May 1987 REVISIONS	
		REVISIONS 4-16 8-16	
		18	

ALUMINUM SIGN B	LANKS THICKNESS
Square Feet	Minimum Thickness
Less than 7.5	0.080"
7.5 to 15	0.100"
Greater than 15	0.125"

d Highway Sign Designs SHSD) can be found at ng website. /www.txdot.gov/

- s shall be located as shown except that the Engineer e sign supports, within lines, where necessary to e desirable location or to ct with utilities. Unless own on the plans, the nall stake and the Engineer all sign support locations.
- ion of bridge mount clearance idge Mounted Clearance Sign S)Standard Sheet.
- ort Descriptive Codes, see Details Small Roadside Notes & Details SMD(GEN).

				S	неет 2	2 OF 3
Texas Department	of Tra	nsp	ortation		Oper Div	affic ations ision ndard
SUMA SMAL	-	SI		5		
sums16.dgn	dn: Tx	DOT	ск: TxDOT	DW:	TxDOT	ск: TxDOT
DOT May 1987	CONT	SECT	JOB		ніс	GHWAY

DOT	May 1987	CONT	SECT	JOB		HIGHWAY
	REVISIONS	2353	02	028	F	M 2450
		DIST		COUNTY		SHEET NO.
		DAL		DENTON		31

		<u>vv (v_vvvv)</u> I		ASSM TY XX						Ī		
	BRIDGE MOUNT						ຊີ 3 ພູ່ພູ					
	CLEARANCE						(TYPE					
	SIGNS (See	TING DESIGNATION 1EXT or 2EXT = # of Ext		ANCHOR TYPE	POSTS	POST TYPE	33	DIMENSIONS	C LON	SIGN	SIGN	неет
	Note 2) TY = TYPE	BM = Extruded Wind Beam WC = 1.12 #/ft Wina		UB=Universal Bolt	1 or 2	FRP = Fiberglass TWT = Thin-Wall 10BWG = 10 BWG	AL UM I NUM AL UM I NUM	DIMENSIONS	SIGN	NOMENCLATURE	NO,	NO.
	TY N TY S	EXAL= Extruded Alum Sign Panels	U = "U"	WS=Wedge Steel WP=Wedge Plastic		S80 = Sch 80	FLAT EXAL					
			P	SA SA	1	10BWG 	X X	24 × 36 102X30	WEIGHT LIMIT/GROSS (WEIGHT) LBS	R12-1T	4	
ALUMIN				SA	1	10BWG	X	84X18	FT WORTH (RIGHT ARROW)		6	
Squar					1	IUBWG		84×18	FI WORTH (RIGHT HRKOW)	D1 - 1	0	
Less 7.5												
Greater			Ρ	SA	1	1ØBWG	X X	36 × 36 24 × 12	STOP CROSS TRAFFIC DOES NOT STOP (PLAQUE)	R1-1 W4-4P	7	
The S [.] for To the fo												
NOTE:												
 Sign sup on the p may shit design o secure o avoid co otherwis Contract will ver 												
2. For inst signs, s Assembly												
3. For Sign Sign Mou Signs Ge												
Texas De												
FILE: SUMS16.C												
4-16							\vdash					

ALUMINUM SIGN B	LANKS THICKNESS
Square Feet	Minimum Thickness
Less than 7.5	0.080"
7.5 to 15	0.100"
Greater than 15	0.125"

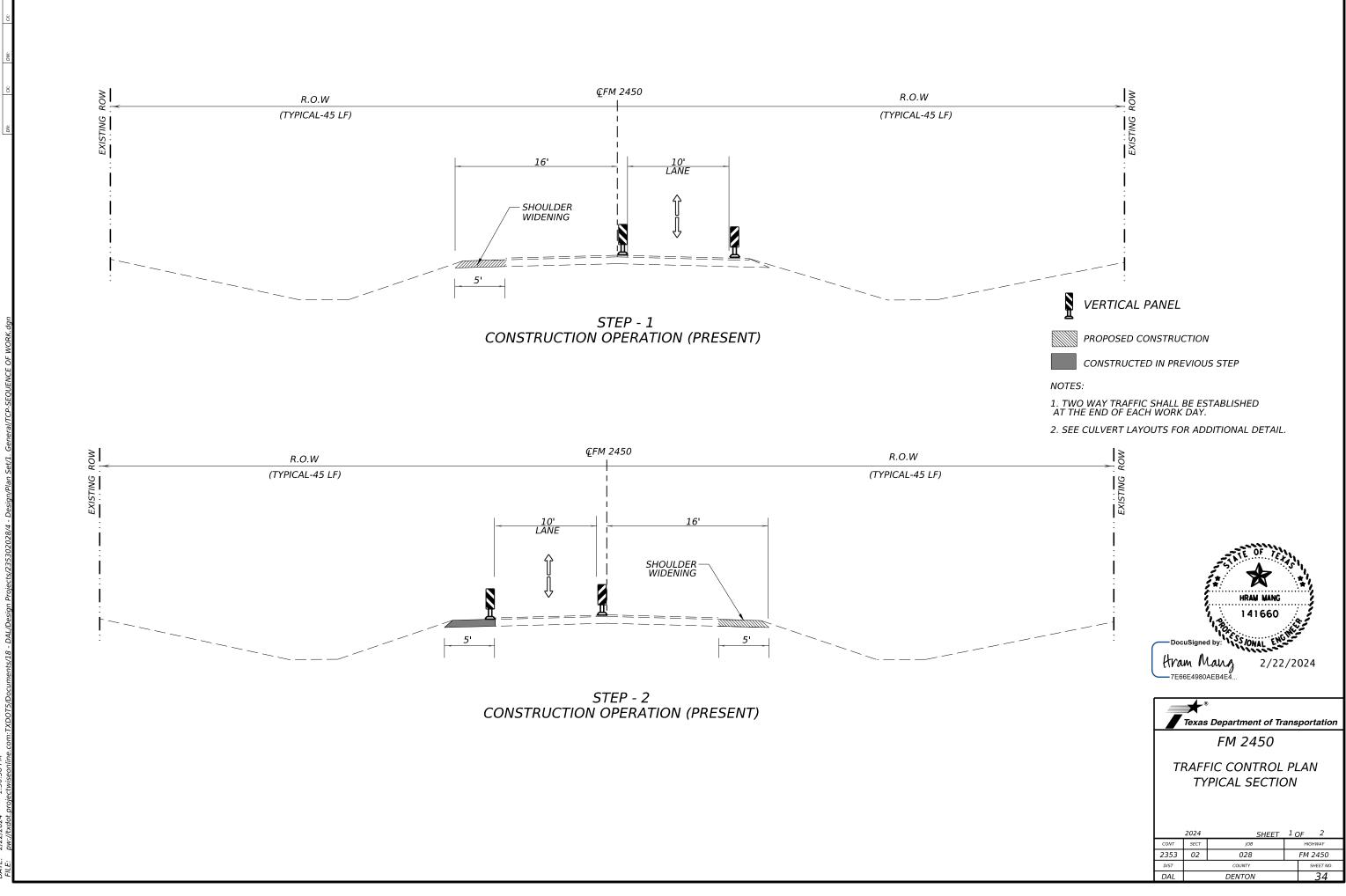
The Standard Highway Sign Designs for Texas (SHSD) can be found at the following website. http://www.txdot.gov/

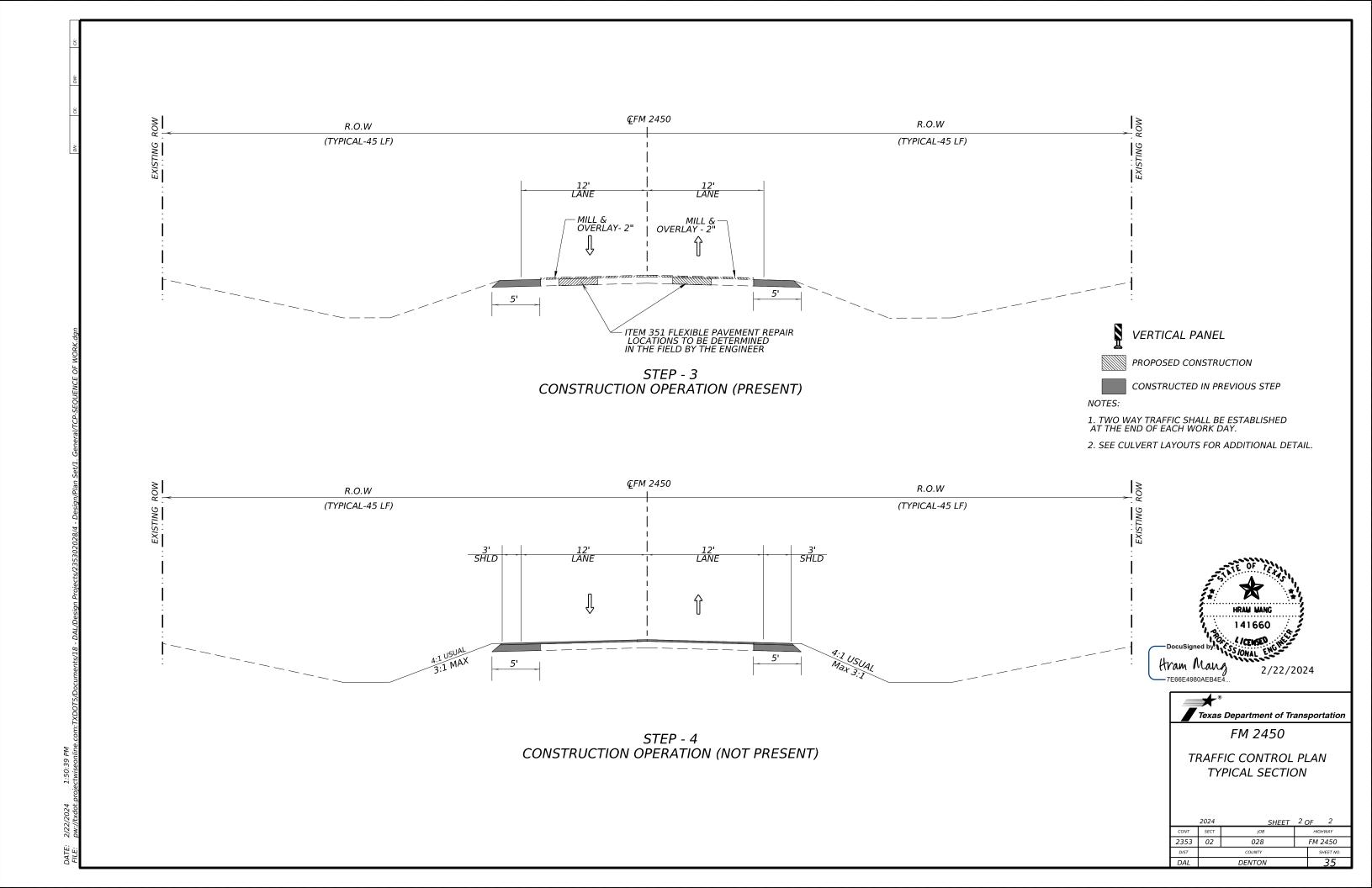
- Sign supports shall be located as shown on the plans, except that the Engineer may shift the sign supports, within design guidelines, where necessary to secure a more desirable location or to avoid conflict with utilities. Unless otherwise shown on the plans, the Contractor shall stake and the Engineer will verify all sign support locations.
- For installation of bridge mount clearance signs, see Bridge Mounted Clearance Sign Assembly (BMCS)Standard Sheet.
- For Sign Support Descriptive Codes, see Sign Mounting Details Small Roadside Signs General Notes & Details SMD(GEN).

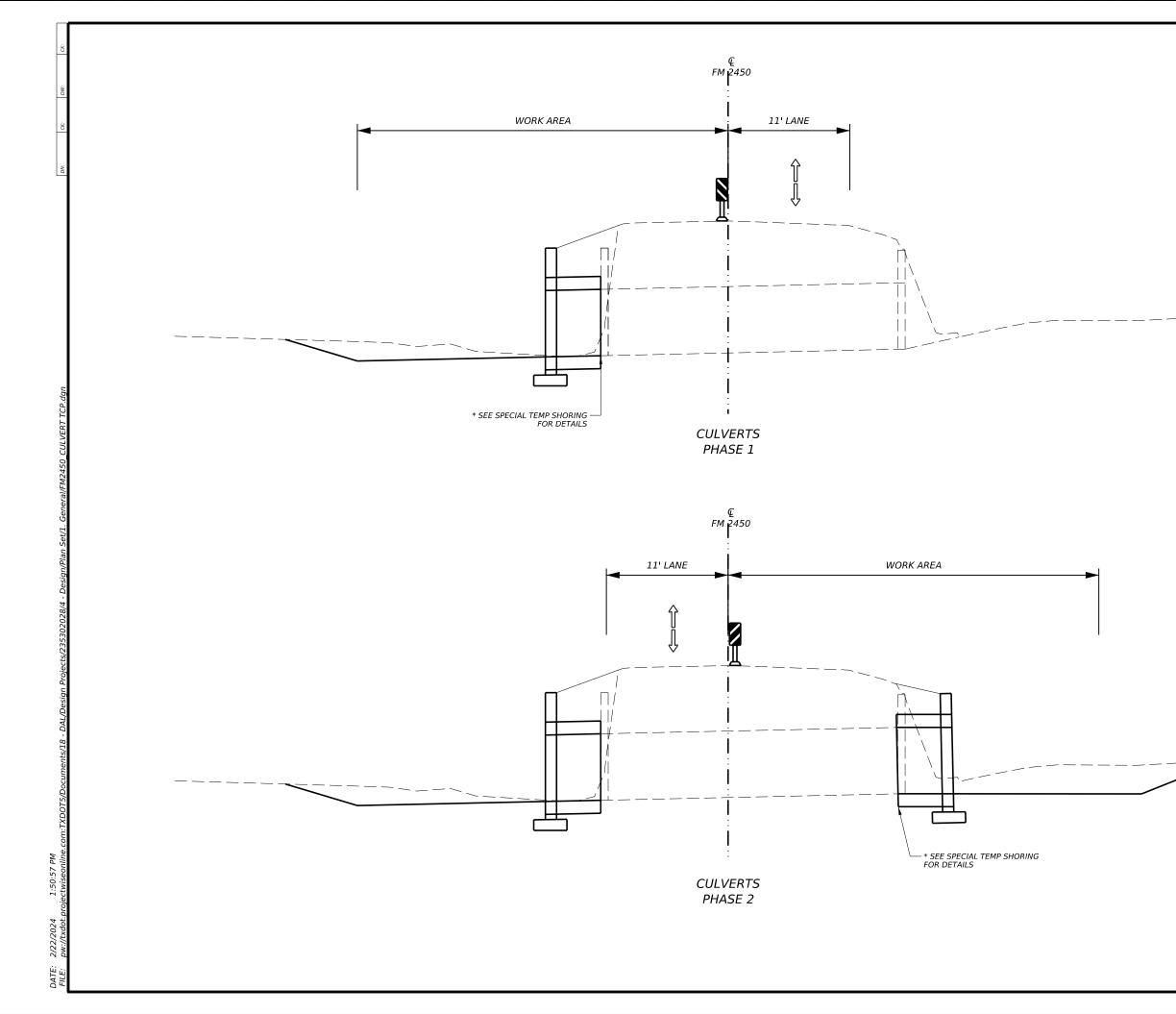
				S	HEET 3	3 OF 3		
Texas Department of Transportation Standard								
SUMA SMAL	•	S	GNS	5				
sums16,dgn		DOT	ск: TxDOT	DW:	TxDOT	ск: TxDOT		
DOT May 1987	CONT	SECT	JOB		HIC	SHWAY		

	sums ro. ugn		001		UW:	1 XUUT	CK: IXDUT
xDOT	May 1987	CONT	SECT	JOB		ніс	GHWAY
~	REVISIONS	2353	02	028		FM	2450
0 6		DIST		COUNTY			SHEET NO.
0		DAL		DENTC	N		32

GENERAL SEQUENCE OF WORK:


1.) ERECT PROJECT LIMIT AND ADVANCE WARNING SIGNS AS SHOWN IN THE PLANS, BC, TCP, AND WZ STANDARDS AND AS DIRECTED BY THE ENGINEER.


- 2.) PLACE AND MAINTAIN SW3P DEVICES AS SHOWN IN THE PLANS AND AS DIRECTED BY THE ENGINEER. TEMPORARY SW3P EROSION CONTROL MEASURES SHALL ONLY BE PLACED IN AREAS WHERE SOIL DISTRUBANCE OR OTHER POTENTIAL POLLUTANT-GENERATING ACTIVITIES ARE EXPECTED TO OCCUR WITHIN TWO WEEKS.
- 3.) USING DAILY LANE CLOSURES, PERFORM CULVERT EXTENSIONS IN ACCORDANCE WITH TCP (2-2)-18 AND BC(10)-21.
- 4.) SAW CUT AND REMOVE 1' OF EXISTING PAVEMENT AND CONSTRUCT SHOULDER WIDENING AS SHOWN IN THE TYPICAL SECTIONS. A 3:1 OR FLATTER SLOPE AT THE PAVEMENT EDGES IS TO BE INTACT AT THE END OF EACH DAY'S OPERATIONS.
- 5.) CONSTRUCT DRIVEWAYS AND DRIVEWAY DRAINAGE STRUCTURES DURING CONSTRUCTION PHASE OF OPERATION AS ADJACENT ROADWAY PAVEMENT.
- 6.) BACKFILL/EMBANK EDGES AND GRADE TO DRAIN IN ACCORDANCE WITH CROSS-SECTIONS AND THE EXISTING TOPOGRAPHY. PULL TOPSOIL BACK UP TO THE SLOPE.
- 7.) MILL 2" OF ROADWAY FOR THE FULL WIDTH OF THE ROAD.
- 8.) CONSTRUCT FLEXIBLE PAVEMENT STRUCTURE REPAIR AS DIRECTED BY THE ENGINEER. (NOTE- IF REPAIRS ARE NEEDED BEFORE MILLING, THERE WILL BE A SCARIFICE OF 2" TO BRING BACK TO EXISTING PROFILE GRADE.)
- 9.) OVERLAY 2" TY C SUPERPAVE MIXTURES. (NOTE: 7-9 WILL BE COMPLETED IN ONE MILE SECTION OR AS APPROVED BY THE ENGINEER)
- 10.) PLACE AND MAINTAIN TEMPORARY PAVEMENT MARKINGS (TABS) FOR SECTION OF ROADWAY BEING WORKED, AND MAINTAIN AS DIRECTED.
- 11.) ERECT PERMANENT SIGNS.
- 12.) ESTABLISH PERMANENT VEGETATION IN DISTURBED AREAS, OR AS DIRECTED BY THE ENGINEER PER THE SWPPP.
- 13.) PLACE PERMANENT PAVEMENT MARKINGS AND RUMBLE STRIPS.
- 14.) TEMPORARY SW3P EROSION CONTROL MEASURES SHALL BE REMOVED WITHIN TWO WEEKS OF VEGETATION ESTABLISHMENT IN THEIR CONTROL AREA OR AS APPROVED BY THE ENGINEER.
- 15.) PERFORM FINAL SITE CLEAN UP AS DIRECTED BY THE ENGINEER AND REMOVE PROJECT LIMIT/ADVANCE WARNING SIGNS.


TCP GENERAL NOTES:

- 1.) THE CONTRACTOR WILL PROVIDE AND MAINTAIN SKILLED FLAGGERS EQUIPPED WITH TWO-WAY RADIOS TO HANDLE TRAFFIC THROUGH THE WORK AREAS FOR THE SAFETY AND CONVENIENCE OF THE TRAVELING PRUBLIC AND CONTRACTOR PERSONNEL. PAY ATTENTION FOR OVERHEAD UTILITIES.
- 2.) COMPLY WITH TCP(7-1)-13 WHICH INCLUDES PROVISIONS FOR CERTAIN SIGNS TO BE INSTALLED AND TO REMAIN UNTIL PERMANENT PAVEMENT MARKINGS ARE IN PLACE. THESE SIGNS ARE IN ADDITION TO SIGNS THAT MAY BE REQUIRED BY THE VARIOUS TCP AND BC STANDARDS.
- 3.) MAINTAIN DRIVEWAY AND SIDE STREET ACCESS AT ALL TIMES.
- 4.) MAINTAIN POSITIVE DRAINAGE DURING CONSTRUCTION.
- 5.) ALL TCP DEVICES AND SIGNS SHOWN ON TCP PLAN ARE CONSIDERED MINIMUM, ADDITIONAL DEVICES AND SIGNS MAY BE NECESSARY AND WILL BE SUBSIDIARY TO ITEM 502.
- 6.) ALL TRAFFIC CONTROL SHALL CONFROM TO THE TEXAS MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES, ALL APPLICABLE TXDOT STANDARDS AND AS DIRECTED BY THE ENGINEER.

HRAM MAN 141660 </CENSED d by SS IONAL DocuSigne Hran Manz 2/22/2024 7F66F4980AFB4F4 Texas Department of Transportation FM 2450 TRAFFIC CONTROL PLAN SEQUENCE OF WORK 2024 SHEET ¹ OF SECT HIGHWA 2353 02 028 FM 2450 DIST COUNTY SHEET NO DENTON 33 ΠΔΙ

NOTES:

1. TWO WAY TRAFFIC SHALL BE ESTABLISHED AT THE END OF EACH WORK DAY.

2. SEE CULVERT LAYOUTS FOR ADDITIONAL DETAIL.

Hram Mang -7E66E4980AEB4E4...

2/22/2024

Texas Department of Transportation

FM 2450

CULVERT EXTENSION TYPICAL SECTION

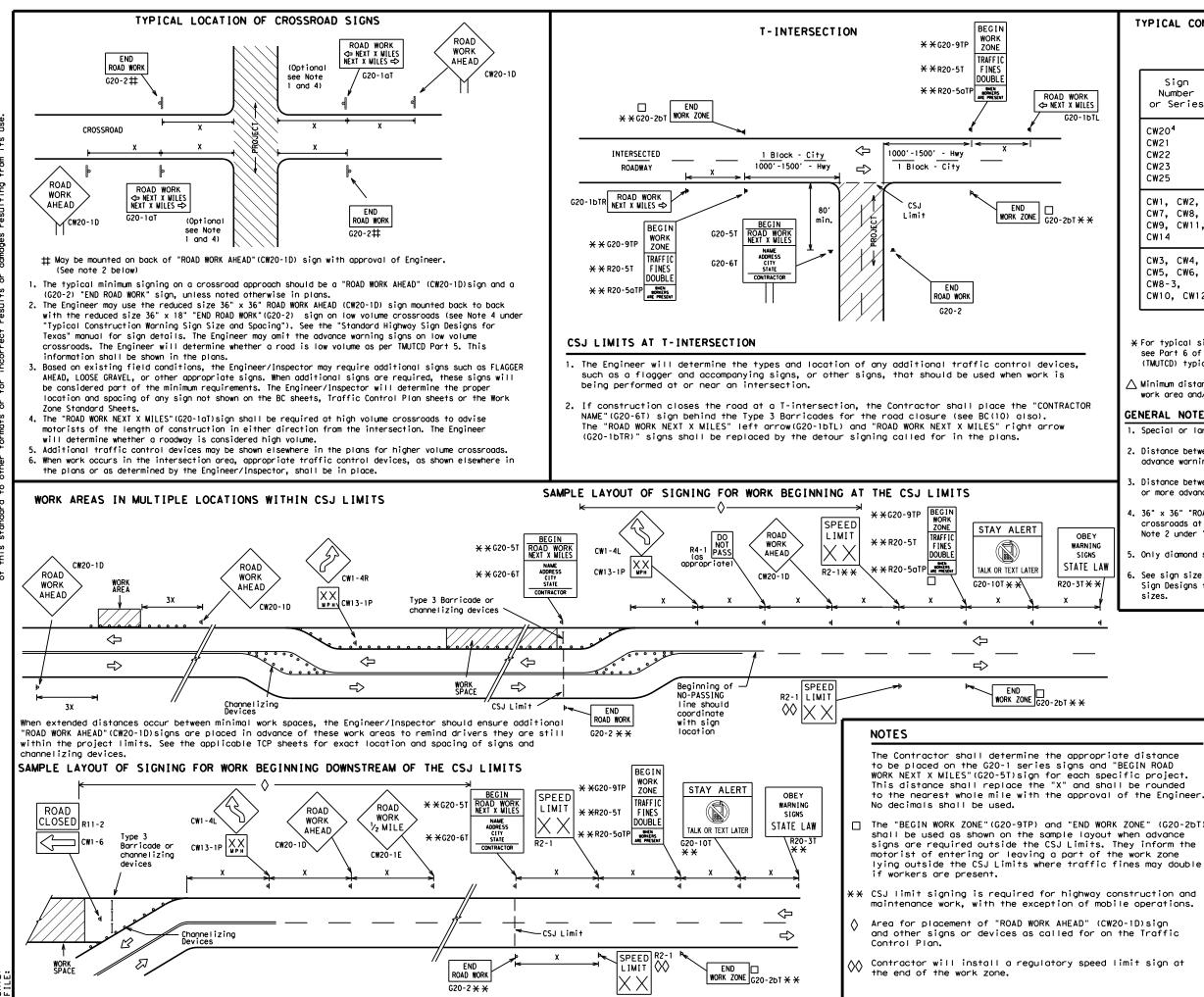
	2024	SHEET	10	DF 1		
CONT	SECT	JOB				
2353	02	028		FM 2450		
DIST		COUNTY		SHEET NO.		
DAL	DAL DENTON					

BARRICADE AND CONSTRUCTION (BC) STANDARD SHEETS GENERAL NOTES:

- The Barricade and Construction Standard Sheets (BC sheets) are intended 1. to show typical examples for placement of temporary traffic control devices, construction pavement markings, and typical work zone signs. The information contained in these sheets meet or exceed the requirements shown in the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD).
- The development and design of the Traffic Control Plan (TCP) is the 2. responsibility of the Engineer.
- The Contractor may propose changes to the TCP that are signed and sealed by a licensed professional engineer for approval. The Engineer may develop. sign and seal Contractor proposed changes.
- 4. The Contractor is responsible for installing and maintaining the traffic control devices as shown in the plans. The Contractor may not move or change the approximate location of any device without the approval of the Engineer.
- 5. Geometric design of lane shifts and detours should, when possible, meet the applicable design criteria contained in manuals such as the American Association of State Highway and Transportation Officials (AASHTO), "A Policy on Geometric Design of Highways and Streets," the TxDOT "Roadway Design Manual" or engineering judgment.
- When projects abut, the Engineer(s) may omit the END ROAD WORK, TRAFFIC FINES DOUBLE, and other advance warning signs if the signing would be redundant and the work areas appear continuous to the motorists. If the adjacent project is completed first, the Contractor shall erect the necessary warning signs as shown on these sheets, the TCP sheets or as directed by the Engineer. The BEGIN ROAD WORK NEXT X MILES sign shall be revised to show appropriate work zone distance.
- The Engineer may require duplicate warning signs on the median side of divided highways where median width will permit and traffic volumes justify the signing.
- 8. All signs shall be constructed in accordance with the details found in the "Standard Highway Sign Designs for Texas," latest edition. Sign details not shown in this manual shall be shown in the plans or the Engineer shall provide a detail to the Contractor before the sign is manufactured.
- The temporary traffic control devices shown in the illustrations of the 9. BC sheets are examples. As necessary, the Engineer will determine the most appropriate traffic control devices to be used.
- 10. Where highway construction or maintenance work is being undertaken, other than mobile operations as defined by the Texas Manual on Uniform Traffic Control Devices, CSJ limit signs are required. CSJ limit signs are shown ON BC(2). THE OBEY WARNING SIGNS STATE LAW sign. STAY ALERT TALK OR TEXT LATER and the WORK ZONE TRAFFIC FINES DOUBLE sign with plaque shall be erected in advance of the CSJ limits. The BEGIN ROAD WORK NEXT X MILES. CONTRACTOR and END ROAD WORK signs shall be erected at or near the CSJ limits. For mobile operations, CSJ limit signs are not required.
- 11. Traffic control devices should be in place only while work is actually in progress or a definite need exists.
- 12. The Engineer has the final decision on the location of all traffic control devices.
- 13. Inactive equipment and work vehicles, including workers' private vehicles must be parked away from travel lanes. They should be as close to the right-of-way line as possible, or located behind a barrier or guardrail, or as approved by the Engineer.

WORKER SAFETY NOTES:

- 1. Workers on foot who are exposed to traffic or to construction equipment within the right-of-way shall wear high-visibility safety apparel meeting the requirements of ISEA "American National Standard for High-Visibility" Apparel." or equivalent revisions, and labeled as ANSI 107-2004 standard performance for Class 2 or 3 risk exposure. Class 3 garments should be considered for high traffic volume work areas or night time work.
- 2. Except in emergency situations, flagger stations shall be illuminated when flagging is used at night.


COMPLIANT WORKZONE TRAFFIC CONTROL DEVICES

- 1. Only pre-qualified products shall be used. The "Compliant Work Zone Traffic Control Devices List" (CWZTCD) describes pre-qualified products and their sources.
- 2. Work zone traffic control devices shall be compliant with the Manual for Assessing safety Hardware (MASH).

THE DOCUMENTS BELOW CAN BE FOUND ON-LINE AT http://www.txdot.gov
COMPLIANT WORK ZONE TRAFFIC CONTROL DEVICES LIST (CWZTCD)
DEPARTMENTAL MATERIAL SPECIFICATIONS (DMS)
MATERIAL PRODUCER LIST (MPL)
ROADWAY DESIGN MANUAL - SEE "MANUALS (ONLINE MANUALS)"
STANDARD HIGHWAY SIGN DESIGNS FOR TEXAS (SHSD)
TEXAS MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (TMUTCD)
TRAFFIC ENGINEERING STANDARD SHEETS

SHEET I OF 12							
Texas Department	of Trans	sportation	Traffic Safety Division Standard				
AND RE	RAL	NOTES REMENT					
FILE: bc-21.dgn	DN: TxDO		TxDOT CK: TxDOT				
© TxDOT November 2002	CONT SE	ст јов	HIGHWAY				
4-03 7-13	2353 02	2 028	FM 2450				
9-07 8-14	DIST	COUNTY	SHEET NO.				
5-10 5-21	DAL	DENTON	37				
95							

SHEET 1 OF 12

TYPICAL	CONSTRUCTION	WARNING	SIGN	SIZE	AND	SPACING ^{1,5,6}

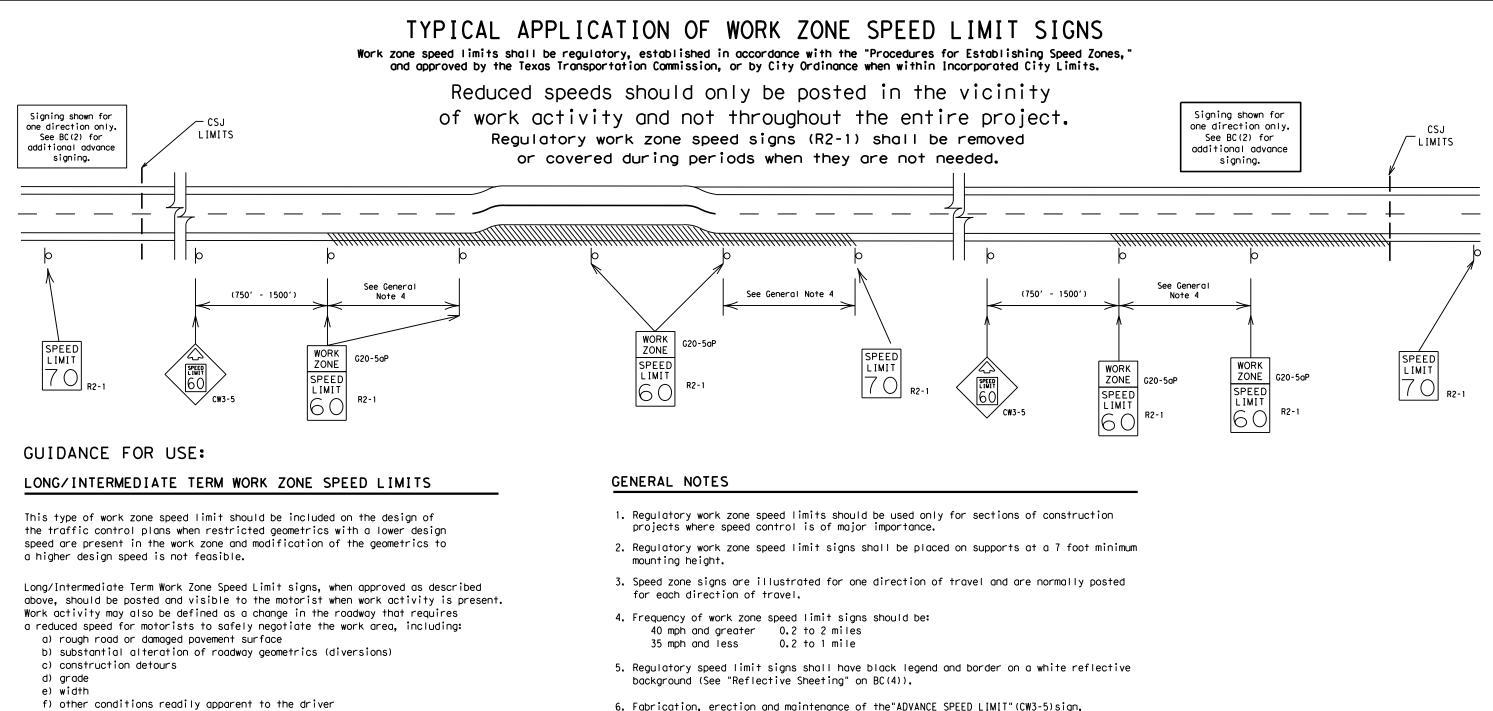
SIZE

Sign Number or Series	Conventional Road	Expressway/ Freeway
CW20 ⁴ CW21 CW22 CW23 CW25	48" × 48"	48" × 48"
CW1, CW2, CW7, CW8, CW9, CW11, CW14	36" × 36"	48" × 48"
CW3, CW4, CW5, CW6, CW8-3, CW10, CW12	48" × 48"	48" × 48"

Posted Speed	Sign∆ Spacing "X"
MPH	Feet (Apprx.)
30	120
35	160
40	240
45	320
50	400
55	500 ²
60	600 ²
65	700 ²
70	800 ²
75	900 ²
80	1000 ²
*	* 3

SPACING

X For typical sign spacings on divided highways, expressways and freeways, see Part 6 of the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD) typical application diagrams or TCP Standard Sheets.


ightarrow Minimum distance from work area to first Advance Warning sign nearest the work area and/or distance between each additional sign.

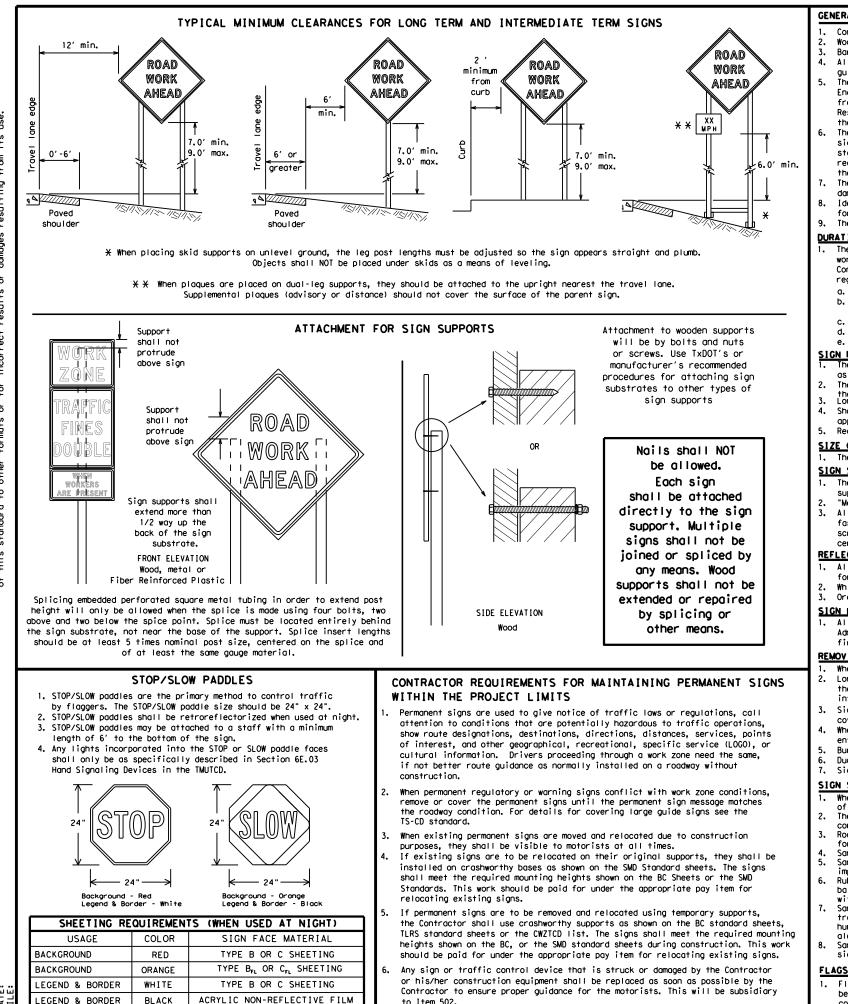
GENERAL NOTES

- 1. Special or larger size signs may be used as necessary.
- 2. Distance between signs should be increased as required to have 1500 feet advance warning.
- 3. Distance between signs should be increased as required to have 1/2 mile or more advance warning.
- 4. 36" x 36" "ROAD WORK AHEAD" (CW20-1D)signs may be used on low volume crossroads at the discretion of the Engineer as per TMUTCD Part 5. See Note 2 under "Typical Location of Crossroad Signs".
- 5. Only diamond shaped warning sign sizes are indicated.
- 6. See sign size listing in "TMUTCD", Sign Appendix or the "Standard Highway Sign Designs for Texas" manual for complete list of available sign design sizes.

]			Type Chanr	3 B	_							
<u>ן</u>			Chann		_							
]		0 0 0 •		neli	zina							
]		-			g	000 Channelizing Devices						
<u>[</u>			Sign	📥 Sign								
		x	Warni Spaci TMUT(ing ing CD f	Sign char or s	Const Size t or ign ireme	ana the	b				
	-		SHEE	т 2	OF	12			•			
· [Te	🗲 ° exas Depa	rtment o	of Tr	ansp	ortatio	'n	Sa Divi	affic fety ision ndard			
	BARRICADE AND CONSTRUCTION PROJECT LIMIT											
			BC	(2	<u>ہ (</u>	21						
F	FILE: 1	bc-21.dgn			∎ ♥ TxDOT	Ск : ТхD0		TxDOT	ск: TxDOT			
Ŀ												

.E:	bc-21.dgn	DN: T>	DOT	ск: TxDOT	DW:	TxDOT	ск: ТхDOT	
)TxDOT	November 2002	CONT	SECT	JOB		н	IGHWAY	
	REVISIONS	2353	02	028		FΜ	FM 2450	
9-07	8-14	DIST	COUNTY				SHEET NO.	
7-13	5-21	DAL	DENTON 38				38	
6								

As long as any of these conditions exist, the work zone speed limit signs should remain in place.


SHORT TERM WORK ZONE SPEED LIMITS

This type of work zone speed limit may be included on the design of the traffic control plans when workers or equipment are not behind concrete barrier, when work activity is within 10 feet of the traveled way or actually in the traveled way.

Short Term Work Zone Speed Limit signs should be posted and visible to the motorists only when work activity is present. When work activity is not present, signs shall be removed or covered. (See Removing or Covering on BC(4)).

- 6. Fabrication, erection and maintenance of the "ADVANCE SPEED LIMIT" (CW3-5) sign, "WORK ZONE"(G20-5aP) plaque and the "SPEED LIMIT"(R2-1)signs shall not be paid for directly, but shall be considered subsidiary to Item 502.
- 7. Turning signs from view, laying signs over or down will not be allowed, unless as otherwise noted under "REMOVING OR COVERING" on BC(4).
- 8. Techniques that may help reduce traffic speeds include but are not limited to: A. Law enforcement.
 - B. Flagger stationed next to sign.
 - C. Portable changeable message sign (PCMS).
 - D. Low-power (drone) radar transmitter.
 - E. Speed monitor trailers or signs.
- 9. Speeds shown on details above are for illustration only. Work Zone Speed Limits should only be posted as approved for each project.
- 10. For more specific guidance concerning the type of work, work zone conditions and factors impacting allowable regulatory construction speed zone reduction see TxDOT form #1204 in the TxDOT e-form system.

Texas Departme	ent of Tran	nsportation		S. Di	raffic afety vision undard
BARRICADE	AND (CONST	Rl	JCT	ION
WORK ZOI			. I		
WORK ZOI	NE SP	-21			
WORK ZOI	NE SP	-21		MI	T
WORK ZOU E FILE: bc-21.dgn C TxDOT November 2002 REVISIONS	NE SP BC (3)) - 21		TxDOT H	Т ск: ТхD01
WORK ZOL E FILE: bc-21.dgn © TxDOT November 2002	NE SP BC (3)) - 21 DT ск: ТхDOT БЕСТ ЈОВ		TxDOT H	Т ск: Т.xD01 існиат

GENERAL NOTES FOR WORK ZONE SIGNS

- Contractor shall install and maintain signs in a straight and plumb condition and/or as directed by the Engineer. Wooden sign posts shall be painted white.
- Barricades shall NOT be used as sign supports
- guide the traveling public safely through the work zone.
- the Inspector's TxDOT diary and having both the Inspector and Contractor initial and date the agreed upon changes.
- the Engineer can verify the correct procedures are being followed.
- damaged or marred reflective sheeting as directed by the Engineer/Inspector.
- for identification shall be 1 inch.

The Contractor shall replace damaged wood posts. New or damaged wood sign posts shall not be spliced.

<u>DURATION OF WORK (as defined by the "Texas Manual on Uniform Traffic Control Devices" Part 6)</u>

- regard to crashworthiness and duration of work requirements.
- a. Long-term stationary work that occupies a location more than 3 days.
- more than one hour. Short-term stationary - daytime work that occupies a location for more than 1 hour in a single daylight period.
- Short, duration work that occupies a location up to 1 hour.
- Mobile work that moves continuously or intermittently (stopping for up to approximately 15 minutes.)

SIGN MOUNTING HEIGHT

- The bottom of Long-term/intermediate-term signs shall be at least 7 feet, but not more than 9 feet, above the paved surface, except as shown for supplemental plaques mounted below other signs.
- the ground. Long-term/Intermediate-term Signs may be used in lieu of Short-term/Short Duration signing.
- Short-term/Short Duration signs shall be used only during daylight and shall be removed at the end of the workday or raised to
- appropriate Long-term/Intermediate sign height.

SIZE OF SIGNS

The Contractor shall furnish the sign sizes shown on BC (2) unless otherwise shown in the plans or as directed by the Engineer.

SIGN SUBSTRATES

- "Mesh" type materials are NOT an approved sign substrate, regardless of the tightness of the weave. centers. The Engineer may approve other methods of splicing the sign face.

REFLECTIVE SHEETING

- 1. All signs shall be retroreflective and constructed of sheeting meeting the color and retro-reflectivity requirements of DMS-8300

SIGN LETTERS

1. All sign letters and numbers shall be clear, and open rounded type uppercase alphabet letters as approved by the Federal Highway first class workmanship in accordance with Department Standards and Specifications.

REMOVING OR COVERING

- When sign messages may be confusing or do not apply, the signs shall be removed or completely covered.
- intersections where the sign may be seen from approaching traffic. Signs installed on wooden skids shall not be turned at 90 degree angles to the roadway. These signs should be removed or completely
- covered when not required.
- entire sign face and maintain their opaque properties under automobile headlights at night, without damaging the sign sheeting. Burlap shall NOT be used to cover signs.
- Duct tape or other adhesive material shall NOT be affixed to a sign face.
- Signs and anchor stubs shall be removed and holes backfilled upon completion of work.

SIGN SUPPORT WEIGHTS

- 1. Where sign supports require the use of weights to keep from turning over, the use of sandbags with dry, cohesionless sand should be used. The sandbags will be tied shut to keep the sand from spilling and to maintain a
- constant weight. Rock, concrete, iron, steel or other solid objects shall not be permitted
- for use as sign support weights. Sandbags should weigh a minimum of 35 lbs and a maximum of 50 lbs.
- Sandbags shall be made of a durable material that tears upon vehicular
- impact. Rubber (such as tire inner tubes) shall NOT be used. Rubber ballasts designed for channelizing devices should not be used for ballast on portable sign supports. Sign supports designed and manufactured with rubber bases may be used when shown on the CWZTCD list.
- Sandbags shall only be placed along or laid over the base supports of the traffic control device and shall not be suspended above ground level or hung with rope, wire, chains or other fasteners. Sandbags shall be placed along the length of the skids to weigh down the sign support.
- Sandbags shall NOT be placed under the skid and shall not be used to level sign supports placed on slopes.

FLAGS ON SIGNS

1. Flags may be used to draw attention to warning signs. When used, the flag shall be 16 inches square or larger and shall be orange or fluorescent red-orange in color. Flags shall not be allowed to cover any portion of the sign face.

- to Item 502.

All signs shall be installed in accordance with the plans or as directed by the Engineer. Signs shall be used to regulate, warn, and

The Contractor may furnish either the sign design shown in the plans or in the "Standard Highway Sign Designs for Texas" (SHSD). The Engineer/Inspector may require the Contractor to furnish other work zone signs that are shown in the TMUTCD but may have been omitted from the plans. Any variation in the plans shall be documented by written agreement between the Engineer and the Contractor's Responsible Person. All changes must be documented in writing before being implemented. This can include documenting the changes in

The Contractor shall furnish sign supports listed in the "Compliant Work Zone Traffic Control Device List" (CWZICD) for small roadside signs. Supports for temporary large roadside signs shall meet the requirements detailed on the Temporary Large Roadside Signs (TLRS) standard sheets. The Contractor shall install the sign support in accordance with the manufacturer's recommendations. If there is a guestion regarding installation procedures, the Contractor shall furnish the Engineer a copy of the manufacturer's installation recommendations so

The Contractor is responsible for installing signs on approved supports and replacing signs with damaged or cracked substrates and/or

Identification markings may be shown only on the back of the sign substrate. The maximum height of letters and/or company logos used

The types of sign supports, sign mounting height, the size of signs, and the type of sign substrates can vary based on the type of work being performed. The Engineer is responsible for selecting the appropriate size sign for the type of work being performed. The Contractor is responsible for ensuring the sign support, sign mounting height and substrate meets manufacturer's recommendations in

Intermediate-term stationary - work that occupies a location more than one daylight period up to 3 days, or nighttime work lasting

The bottom of Short-term/Short Duration signs shall be a minimum of 1 foot above the pavement surface but no more than 2 feet above

Regulatory signs shall be mounted at least 7 feet, but not more than 9 feet, above the paved surface regardless of work duration.

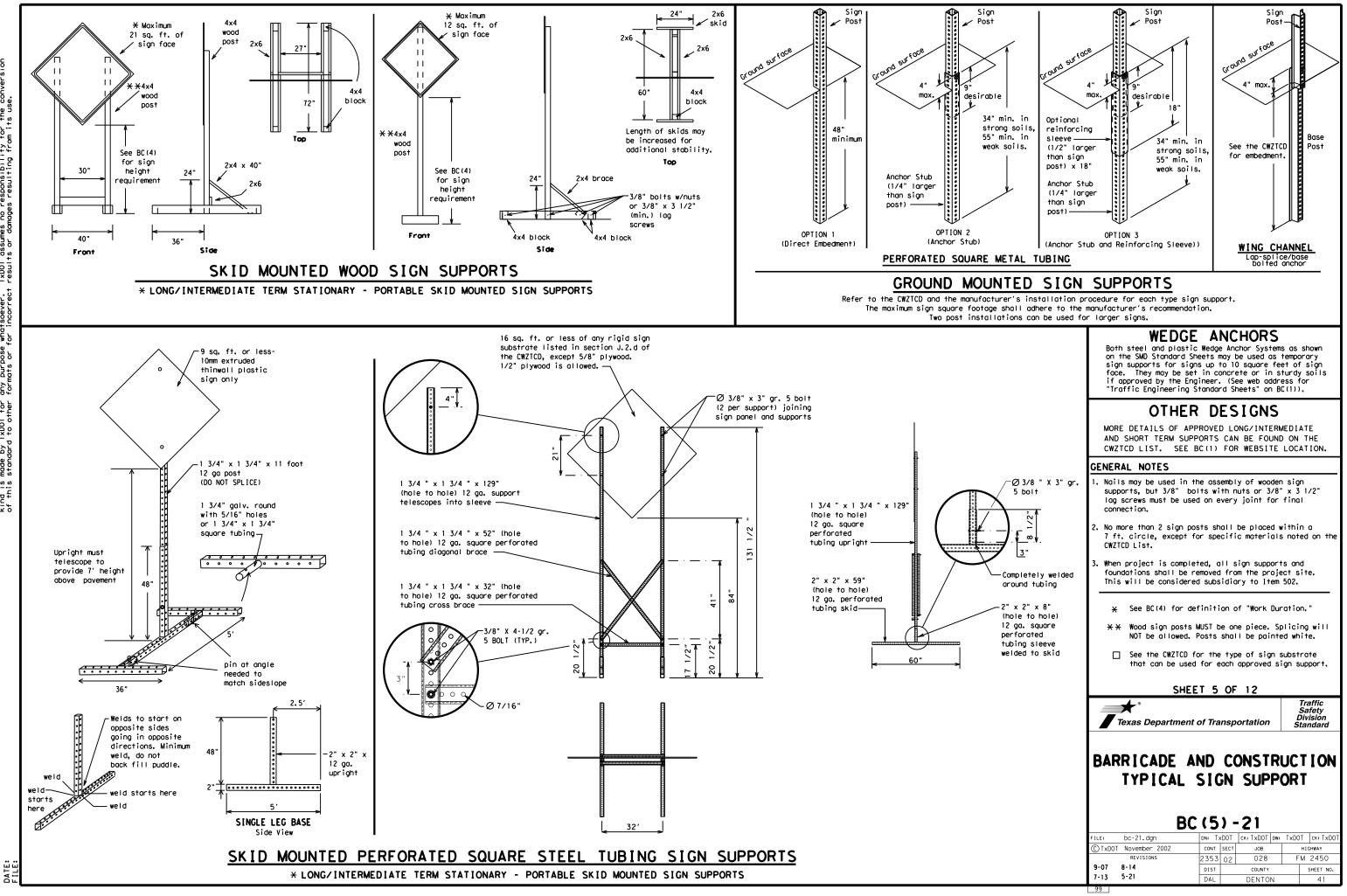
The Contractor shall ensure the sign substrate is installed in accordance with the manufacturer's recommendations for the type of sign support that is being used. The CWZICD lists each substrate that can be used on the different types and models of sign supports. All wooden individual sign panels fabricated from 2 or more pieces shall have one or more plywood cleat, 1/2" thick by 6" wide, fastened to the back of the sign and extending fully across the sign. The cleat shall be attached to the back of the sign using wood screws that do not penetrate the face of the sign panel. The screws shall be placed on both sides of the splice and spaced at 6"

for rigid signs or DMS-8310 for roll-up signs. The web address for DMS specifications is shown on BC(1). White sheeting, meeting the requirements of DMS-8300 Type A, shall be used for signs with a white background. 3. Orange sheeting, meeting the requirements of DMS-8300 Type B_{FL} or Type C_{FL}, shall be used for rigid signs with orange backgrounds.

Administration (FHWA) and as published in the "Standard Highway Sign Design for Texas" manual. Signs, letters and numbers shall be of

Long-term stationary or intermediate stationary signs installed on square metal tubing may be turned away from traffic 90 degrees when the sign message is not applicable. This technique may not be used for signs installed in the median of divided highways or near any

When signs are covered, the material used shall be opaque, such as heavy mil black plastic, or other materials which will cover the


98

SHEET 4 OF 12

st Texas Department of Transportation Traffic Safety Division Standard

BARRICADE AND CONSTRUCTION TEMPORARY SIGN NOTES

	BC (4) -21									
E:	bc-21.dgn	DN: T)	<dot< td=""><td>ск: TxDOT</td><td>DW:</td><td>TxDC</td><td>)T</td><td>ск: ТхDOT</td></dot<>	ск: TxDOT	DW:	TxDC)T	ск: ТхDOT		
TxDOT	November 2002	CONT	SECT	JOB	JOB		HIGHWAY			
	REVISIONS	2353	02	028		F	М	2450		
9-07	8-14	DIST	DIST COUNTY SH			SHEET NO.				
7-13	5-21	DAL		DENTO	N			40		

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TXDOT for any purpose whatsoever. TXDOT assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use.

PORTABLE CHANGEABLE MESSAGE SIGNS

- 1. The Engineer/Inspector shall approve all messages used on portable changeable message signs (PCMS).
- Messages on PCMS should contain no more than 8 words (about four to 2. eight characters per word), not including simple words such as "TO," "FOR, " "AT, " etc.
- 3. Messages should consist of a single phase, or two phases that alternate. Three-phase messages are not allowed. Each phase of the message should convey a single thought, and must be understood by itself.
- 4. Use the word "EXIT" to refer to an exit ramp on a freeway; i.e., "EXIT CLOSED." Do not use the term "RAMP."
- Always use the route or interstate designation (IH, US, SH, FM) 5. along with the number when referring to a roadway.
- When in use, the bottom of a stationary PCMS message panel should be a minimum 7 feet above the roadway, where possible.
- The message term "WEEKEND" should be used only if the work is to 7. start on Saturday morning and end by Sunday evening at midnight. Actual days and hours of work should be displayed on the PCMS if work is to begin on Friday evening and/or continue into Monday morning.
- The Engineer/Inspector may select one of two options which are available for displaying a two-phase message on a PCMS. Each phase may be displayed for either four seconds each or for three seconds each.
- Do not "flash" messages or words included in a message. The message should be steady burn or continuous while displayed.
- 10. Do not present redundant information on a two-phase message; i.e., keeping two lines of the message the same and changing the third line.
- Do not use the word "Danger" in message.
 Do not display the message "LANES SHIFT LEFT" or "LANES SHIFT RIGHT" on a PCMS. Drivers do not understand the message.
- 13. Do not display messages that scroll horizontally or vertically across the face of the sign.
- 14. The following table lists abbreviated words and two-word phrases that are acceptable for use on a PCMS. Both words in a phrase must be displayed together, Words or phrases not on this list should not be abbreviated, unless shown in the TMUTCD.
- 15. PCMS character height should be at least 18 inches for trailer mounted units. They should be visible from at least 1/2 (.5) mile and the text should be legible from at least 600 feet at night and 800 feet in daylight. Truck mounted units must have a character height of 10 inches and must be legible from at least 400 feet.
- 16. Each line of text should be centered on the message board rather than left or right justified.
- 17. If disabled, the PCMS should default to an illegible display that will not alarm motorists and will only be used to alert workers that the PCMS has malfunctioned. A pattern such as a series of horizontal solid bars is appropriate.

			1
WORD OR PHRASE	ABBREVIATION	WORD OR PHRASE	ABBREVIATION
Access Road	ACCS RD	Major	MAJ
Alternate	ALT	Miles	MI
Avenue	AVE	Miles Per Hour	MPH
Best Route	BEST RTE	Minor	MNR
Boulevard	BLVD	Monday	MON
Bridge	BRDG	Normal	NORM
Cannot	CANT	North	N
Center	CTR	Nor thbound	(route) N
Construction Ahead	CONST AHD	Parking	PKING
CROSSING	XING	Road	RD
Detour Route	DETOUR RTE	Right Lane	RT LN SAT
Do Not	DONT	Saturday	SAT SERV RD
East	F	Service Road	
Eastbound	(route) E	Shoulder	SHLDR
Emergency	EMER	Slippery	SL IP S
Emergency Vehicle		South	-
Entrance, Enter	ENT	Southbound	(route) S SPD
Express Lane	EXP LN	Speed Street	SPU
Expressway	EXPWY	Sunday	SUN
XXXX Feet	XXXX FT	Telephone	PHONE
Fog Ahead	FOG AHD	Temporary	TEMP
Freeway	FRWY, FWY	Thursday	THURS
Freeway Blocked	FWY BLKD	To Downtown	TO DWNTN
Friday	FRI	Traffic	TRAF
Hazardous Driving			
Hazardous Material		Trovelers	TRVLRS
High-Occupancy	HOV	Tuesday	TUES
Vehicle		Time Minutes	TIME MIN
Highway	HWY	Upper Level	UPR LEVEL
Hour (s)	HR, HRS	Vehicles (s)	VEH, VEHS WARN
Information	INFO	Warning	
lt Is	ITS	Wednesday	WED WT LIMIT
Junction	JCT	Weight Limit West	
Left	LFT		
Left Lane	LFT LN	Westbound Wet Pavement	(route) W WET PVMT
Lane Closed	LN CLOSED	Will Not	WEIPVMI
Lower Level	LWR LEVEL		
Maintenance	MAINT		

RECOMMENDED PHASES AND FORMATS FOR PCMS MESSAGES DURING ROADWORK ACTIVITIES

(The Engineer may approve other messages not specifically covered here.)

Phase 1: Condition Lists

Road/Lane/Ramp Closure List

	ΠP			
FREEWAY CLOSED X MILE		FRONTAGE ROAD CLOSED		RO X
ROAD CLOSED AT SH XXX		SHOULDER CLOSED XXX FT		FL XX
ROAD CLSD AT FM XXXX		RIGHT LN CLOSED XXX FT		R I NA XX
RIGHT X LANES CLOSED		RIGHT X LANES OPEN		ME TR XX
CENTER LANE CLOSED		DAYTIME LANE CLOSURES		L GI X X
NIGHT LANE CLOSURES		I-XX SOUTH EXIT CLOSED		DI X
VARIOUS LANES CLOSED		EXIT XXX CLOSED X MILE		RO/ I S⊦
EXIT CLOSED		RIGHT LN TO BE CLOSED		XX
MALL DRIVEWAY CLOSED		X LANES CLOSED TUE - FRI		TR S XX
XXXXXXXX BLVD CLOSED	×	LANES SHIFT in	Phase	1 must

Other Cor	ndition List
ROADWORK XXX FT	ROAD REPAIRS XXXX FT
FLAGGER XXXX FT	LANE NARROWS XXXX FT
RIGHT LN NARROWS XXXX FT	TWO-WAY TRAFFIC XX MILE
MERGING TRAFFIC XXXX FT	CONST TRAFFIC XXX FT
LOOSE GRAVEL XXXX FT	UNEVEN LANES XXXX FT
DETOUR X MILE	ROUGH ROAD XXXX FT
ROADWORK PAST SH XXXX	ROADWORK NEXT FRI-SUN
BUMP XXXX FT	US XXX EXIT X MILES
TRAFFIC SIGNAL XXXX FT	L ANE S SH I F T

Action to Take/Effect on Travel List MERGE FORM RIGHT X LINES RIGHT DETOUR USE XXXXX NEXT RD EXIT X EXITS USE USE EXIT EXIT XXX I-XX NORTH STAY ON USE US XXX I-XX F SOUTH TO I-XX N TRUCKS WATCH USE FOR US XXX N TRUCKS WATCH EXPECT FOR DELAYS TRUCKS PREPARE EXPECT DELAYS то STOP REDUCE END SPEED SHOULDER XXX FT USE USE WATCH OTHER FOR ROUTES WORKERS STAY ĪΝ LANE

APPLICATION GUIDELINES

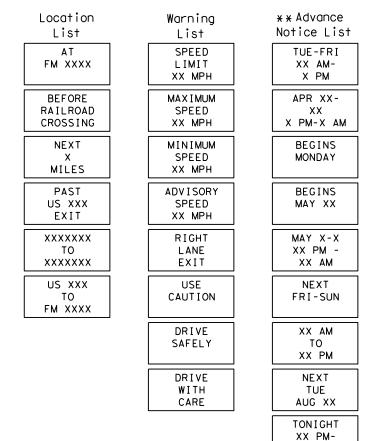
- 1. Only 1 or 2 phases are to be used on a PCMS. 2. The 1st phase (or both) should be selected from the
- "Road/Lane/Ramp Closure List" and the "Other Condition List".
- 3. A 2nd phase can be selected from the "Action to Take/Effect on Travel, Location, General Warning, or Advance Notice Phase Lists".
- 4. A Location Phase is necessary only if a distance or location is not included in the first phase selected.
- 5. If two PCMS are used in sequence, they must be separated by a minimum of 1000 ft. Each PCMS shall be limited to two phases, and should be understandable by themselves.
- 6. For advance notice, when the current date is within seven days of the actual work date, calendar days should be replaced with days of the week. Advance notification should typically be for no more than one week prior to the work.

WORDING ALTERNATIVES

- 1. The words RIGHT, LEFT and ALL can be interchanged as appropriate. 2. Roadway designations IH, US, SH, FM and LP can be interchanged as
- appropriate.
- be interchanged as appropriate.
- 4. Highway names and numbers replaced as appropriate.
- 5. ROAD, HIGHWAY and FREEWAY can be interchanged as needed.
- 6. AHEAD may be used instead of distances if necessary. 7. FT and MI. MILE and MILES interchanged as appropriate.
- 8. AT. BEFORE and PAST interchanged as needed.
- 9. Distances or AHEAD can be eliminated from the message if a
- location phase is used.

PCMS SIGNS WITHIN THE R.O.W. SHALL BE BEHIND GUARDRAIL OR CONCRETE BARRIER OR SHALL HAVE A MINIMUM OF FOUR (4) PLASTIC DRUMS PLACED PERPENDICULAR TO TRAFFIC ON THE UPSTREAM SIDE OF THE PCMS, WHEN EXPOSED TO ONE DIRECTION OF TRAFFIC. WHEN EXPOSED TO TWO WAY TRAFFIC. THE FOUR DRUMS SHOULD BE PLACED WITH ONE DRUM AT EACH OF THE FOUR CORNERS OF THE UNIT.

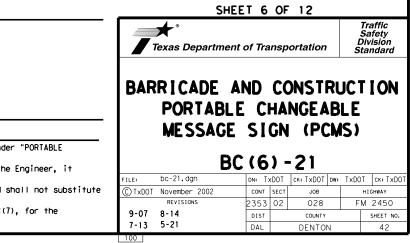
be used with STAY IN LANE in Phase 2.

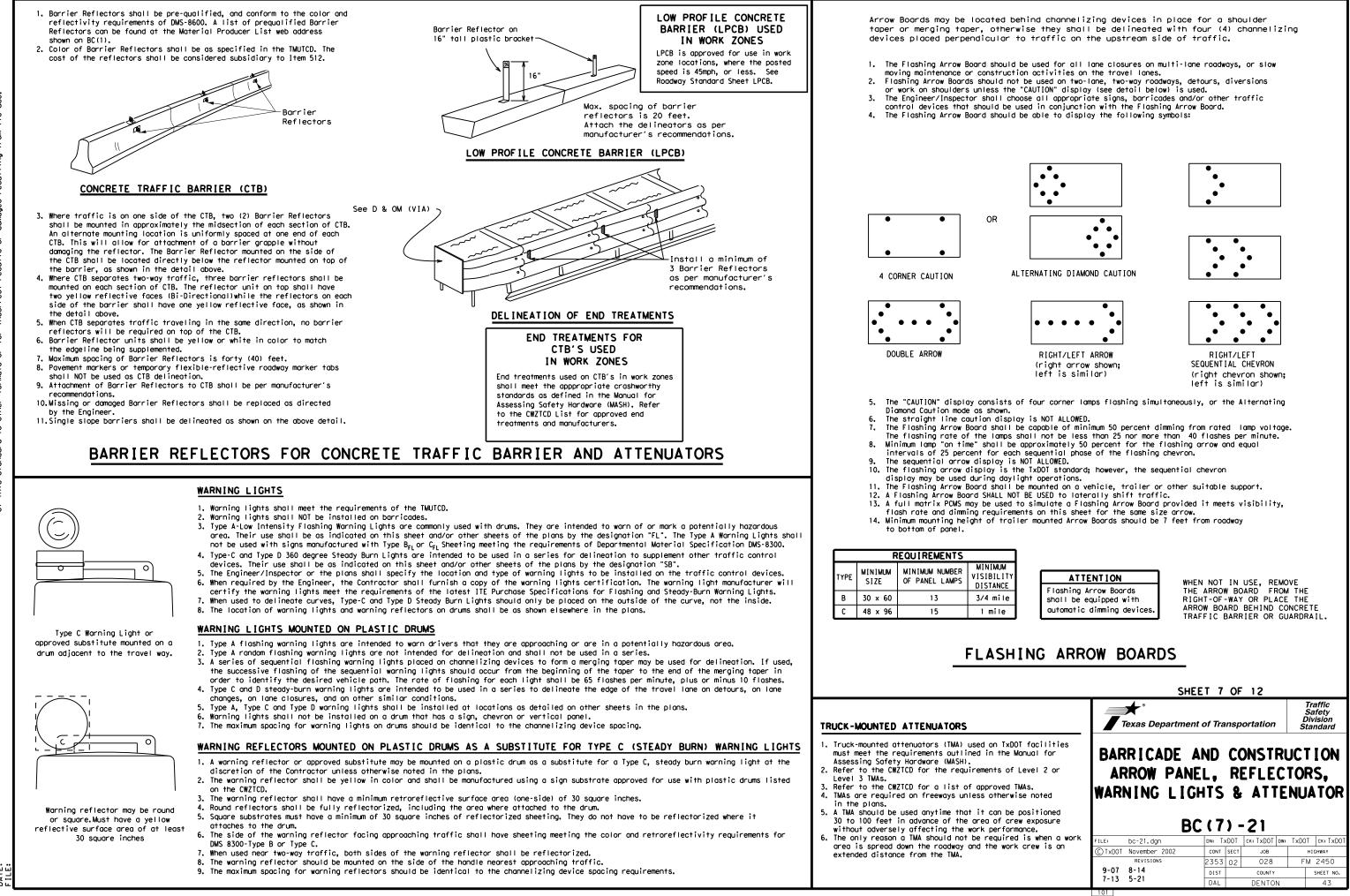

FULL MATRIX PCMS SIGNS

- 1. When Full Matrix PCMS signs are used, the character height and legibility/visibility requirements shall be maintained as listed in Note 15 under "PORTABLE CHANGEABLE MESSAGE SIGNS" above.
- 2. When symbol signs, such as the "Flagger Symbol" (CW20-7) are represented graphically on the Full Matrix PCMS sign and, with the approval of the Engineer, it shall maintain the legibility/visibility requirement listed above
- When symbol signs are represented graphically on the Full Matrix PCMS, they shall only supplement the use of the static sign represented, and shall not substitute for, or replace that sign.
- 4. A full matrix PCMS may be used to simulate a flashing arrow board provided it meets the visibility, flash rate and dimming requirements on BC(7), for the some size arrow.

Roadway

designation # IH-number, US-number, SH-number, FM-number

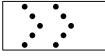

Phase 2: Possible Component Lists



* * See Application Guidelines Note 6.

XX AM

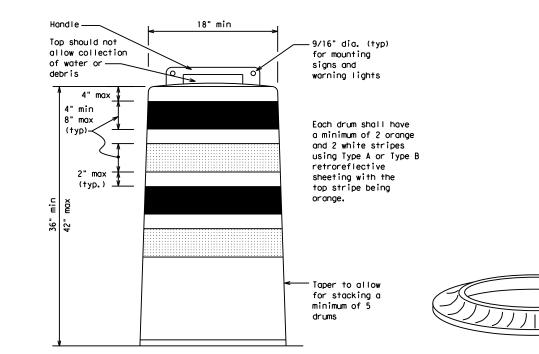
EAST, WEST, NORTH and SOUTH (or abbreviations E, W, N and S) can

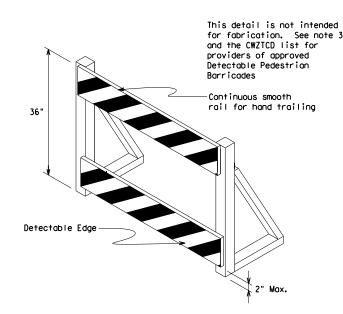


GENERAL NOTES

- 1. For long term stationary work zones on freeways, drums shall be used as the primary channelizing device.
- 2. For intermediate term stationary work zones on freeways, drums should be used as the primary channelizing device but may be replaced in tangent sections by vertical panels, or 42" two-piece cones. In tangent sections, one-piece cones may be used with the approval of the Engineer but only if personnel are present on the project at all times to maintain the cones in proper position and location.
- 3. For short term stationary work zones on freeways, drums are the preferred channelizing device but may be replaced in tapers, transitions and tangent sections by vertical panels, two-piece cones or one-piece cones as approved by the Engineer.
- 4. Drums and all related items shall comply with the requirements of the current version of the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD) and the "Compliant Work Zone Traffic Control Devices List" (CWZTCD).
- 5. Drums, bases, and related materials shall exhibit good workmanship and shall be free from objectionable marks or defects that would adversely affect their appearance or serviceability.
- 6. The Contractor shall have a maximum of 24 hours to replace any plastic drums identified for replacement by the Engineer/Inspector. The replacement device must be an approved device.

GENERAL DESIGN REQUIREMENTS


- Pre-gualified plastic drums shall meet the following requirements:
- 1. Plastic drums shall be a two-piece design; the "body" of the drum shall be the top portion and the "base" shall be the bottom.
- 2. The body and base shall lock together in such a manner that the body separates from the base when impacted by a vehicle traveling at a speed of 20 MPH or greater but prevents accidental separation due to normal handling and/or air turbulence created by passing vehicles.
- 3. Plastic drums shall be constructed of lightweight flexible, and deformable materials. The Contractor shall NOT use metal drums or single piece plastic drums as channelization devices or sign supports.
- 4. Drums shall present a profile that is a minimum of 18 inches in width at the 36 inch height when viewed from any direction. The height of drum unit (body installed on base) shall be a minimum of 36 inches and a maximum of 42 inches.
- 5. The top of the drum shall have a built-in handle for easy pickup and shall be designed to drain water and not collect debris. The handle shall have a minimum of two widely spaced 9/16 inch diameter holes to allow attachment of a warning light, warning reflector unit or approved compliant sign.
- 6. The exterior of the drum body shall have a minimum of four alternating orange and white retroreflective circumferential stripes not less than 4 inches nor greater than 8 inches in width. Any non-reflectorized space between any two adjacent stripes shall not exceed 2 inches in width.
- 7. Bases shall have a maximum width of 36 inches, a maximum height of 4 inches, and a minimum of two footholds of sufficient size to allow base to be held down while separating the drum body from the base.
- 8. Plastic drums shall be constructed of ultra-violet stabilized, orange, high-density polyethylene (HDPE) or other approved material.
- 9. Drum body shall have a maximum unballasted weight of 11 lbs.
- 10. Drum and base shall be marked with manufacturer's name and model number.


RETROREFLECTIVE SHEETING

- 1. The stripes used on drums shall be constructed of sheeting meeting the color and retroreflectivity requirements of Departmental Materials Specification DMS-8300, "Sign Face Materials." Type A or Type B reflective sheeting shall be supplied unless otherwise specified in the plans.
- 2. The sheeting shall be suitable for use on and shall adhere to the drum surface such that, upon vehicular impact, the sheeting shall remain adhered in-place and exhibit no delaminating, cracking, or loss of retroreflectivity other than that loss due to abrasion of the sheeting surface.

BALLAST

- 1. Unballasted bases shall be large enough to hold up to 50 lbs. of sand. This base, when filled with the ballast material, should weigh between 35 lbs (minimum) and 50 lbs (maximum). The ballast may be sand in one to three sandbags separate from the base, sand in a sand-filled plastic base, or other ballasting devices as approved by the Engineer. Stacking of sandbags will be allowed, however height of sandbags above pavement surface may not exceed 12 inches.
- 2. Bases with built-in ballast shall weigh between 40 lbs. and 50 lbs. Built-in ballast can be constructed of an integral crumb rubber base or a solid rubber base.
- 3. Recycled truck tire sidewalls may be used for ballast on drums approved for this type of ballast on the CWZTCD list.
- 4. The ballast shall not be heavy objects, water, or any material that would become hazardous to motorists, pedestrians, or workers when the drum is struck by a vehicle.
- 5. When used in regions susceptible to freezing, drums shall have drainage holes in the bottoms so that water will not collect and freeze becoming a hazard when struck by a vehicle.
- 6. Ballast shall not be placed on top of drums.
- 7. Adhesives may be used to secure base of drums to pavement.

DETECTABLE PEDESTRIAN BARRICADES

- 1. When existing pedestrian facilities are disrupted, closed, or relocated in a TTC zone, the temporary facilities shall be detectable and include accessibility features consistent with the features present in the existing pedestrian facility. Refer to WZ(BTS-2) for Pedestrian Control requirements for Sidewalk Diversions, Sidewalk Detours and Crosswalk Closures. 2. Where pedestrians with visual disabilities normally use the
- closed sidewalk, a Detectable Pedestrian Barricade shall be placed across the full width of the closed sidewalk instead of a Type 3 Barricade.
- 3. Detectable pedestrian barricades similar to the one pictured above, longitudinal channelizing devices, some concrete barriers, and wood or chain link fencing with a continuous detectable edging can satisfactorily delineate a pedestrian
- 4. Tape, rope, or plastic chain strung between devices are not detectable, do not comply with the design standards in the "Americans with Disabilities Act Accessibility Guidelines (ADAAG)" and should not be used as a control for pedestrian movements.
- 5, Warning lights shall not be attached to detectable pedestrian barricades.
- 6. Detectable pedestrian barricades should use 8" nominal barricade rails as shown on BC(10) provided that the top rail provides a smooth continuous rail suitable for hand trailing with no splinters, burrs, or sharp edges.

È.

(Maximum Sign Dimension)

Chevron CW1-8, Opposing Traffic Lane

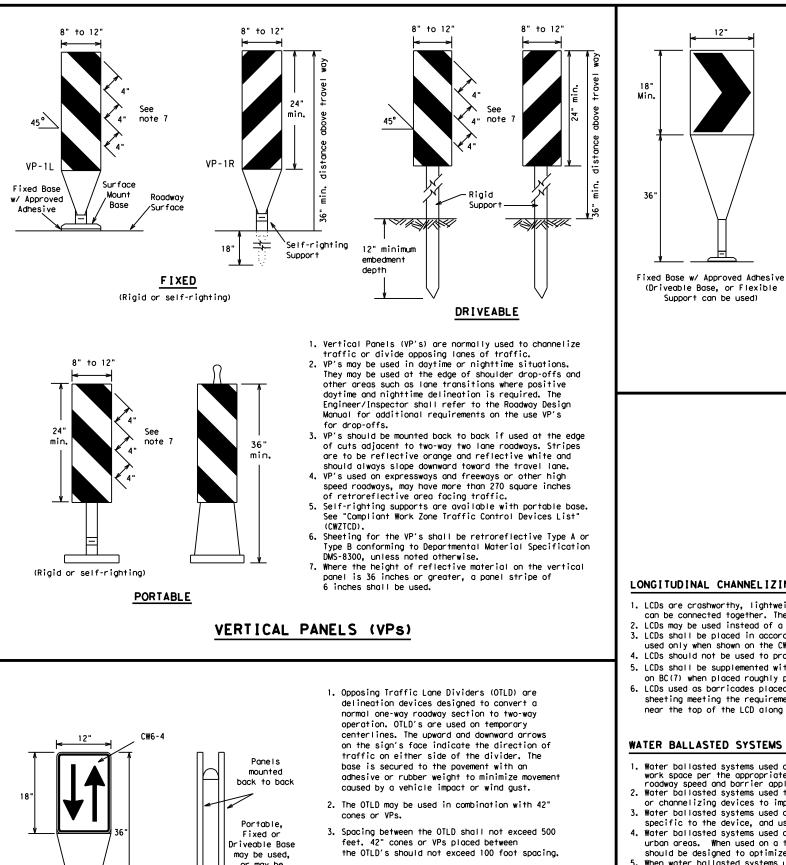
Divider, Driveway sign D70a, Keep Right

R4 series or other signs as approved

by Engineer

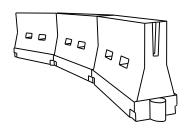
12" x 24" Vertical Panel mount with diagonals sloping down towards travel way

Plywood, Aluminum or Metal sign substrates shall NOT be used on plastic drums


See Ballast

Note 3

SIGNS, CHEVRONS, AND VERTICAL PANELS MOUNTED ON PLASTIC DRUMS


- 1. Signs used on plastic drums shall be manufactured using substrates listed on the CWZTCD.
- 2. Chevrons and other work zone signs with an orange background shall be manufactured with Type B_{FL} or Type C_{FL} Orange sheeting meeting the color and retroreflectivity requirements of DMS-8300, "Sign Face Material," unless otherwise specified in the plans.
- 3. Vertical Panels shall be manufactured with orange and white sheeting meeting the requirements of DMS-8300 Type A or Type B. Diagonal stripes on Vertical Panels shall slope down toward the intended traveled lane.
- 4. Other sign messages (text or symbolic) may be used as approved by the Engineer. Sign dimensions shall not exceed 18 inches in width or 24 inches in height, except for the R9 series signs discussed in note 8 below.
- 5. Signs shall be installed using a 1/2 inch bolt (nominal) and nut, two washers, and one locking washer for each connection.
- 6. Mounting bolts and nuts shall be fully engaged and adequately torqued. Bolts should not extend more than 1/2 inch beyond nuts.
- 7. Chevrons may be placed on drums on the outside of curves, on merging tapers or on shifting tapers. When used in these locations, they may be placed on every drum or spaced not more than on every third drum. A minimum of three (3) should be used at each location called for in the plans.
- 8. R9-9, R9-10, R9-11 and R9-11a Sidewalk Closed signs which are 24 inches wide may be mounted on plastic drums, with approval of the Engineer.

SHE	EET 8	OF	12							
Texas Departmen	nt of Tra	nsp	ortation	Ċ	Traffic Safety Division tandard					
CHANNEL	BARRICADE AND CONSTRUCTION CHANNELIZING DEVICES									
	<u>C (8</u>		_							
FILE: bc-21.dgn		<dot< th=""><th>CK: TXDOT DW</th><th>TxDO</th><th></th></dot<>	CK: TXDOT DW	TxDO						
© TxDOT November 2002	CONT	SECT	JOB		HIGHWAY					
REVISIONS 4-03 8-14	2353	02	028	F	M 2450					
4-03 8-14 9-07 5-21	DIST		COUNTY		SHEET NO.					
7-13	DAL		DENTON		44					
102										

- 1. The chevron shall be a vertical rectangle with a minimum size of 12 by 18 inches.
- 2. Chevrons are intended to give notice of a sharp change of alignment with the direction of travel and provide additional emphasis and guidance for vehicle operators with regard to changes in horizontal alignment of the roadway.
- 3. Chevrons, when used, shall be erected on the out side of a sharp curve or turn, or on the far side of an intersection. They shall be in line with and at right angles to approaching traffic. Spacing should be such that the motorist always has three in view, until the change in alignment eliminates its need.
- 4. To be effective, the chevron should be visible for at least 500 feet.
- 5. Chevrons shall be orange with a black nonreflective legend. Sheeting for the chevron shall be retroreflective Type B_{FL} or Type C_{FL} conforming to Departmental Material Specification DMS-8300, unless noted otherwise. The legend shall meet the requirements of DMS-8300.
- 6. For Long Term Stationary use on tapers or transitions on freeways and divided highways, self-righting chevrons may be used to supplement plastic drums but not to replace plastic drums.

CHEVRONS

LONGITUDINAL CHANNELIZING DEVICES (LCD)

- 1. LCDs are crashworthy, lightweight, deformable devices that are highly visible, have good target value and can be connected together. They are not designed to contain or redirect a vehicle on impact. 2. LCDs may be used instead of a line of cones or drums.
- 3. LCDs shall be placed in accordance to application and installation requirements specific to the device, and used only when shown on the CWZTCD list.
- 4. LCDs should not be used to provide positive protection for obstacles, pedestrians or workers.
- 5. LCDs shall be supplemented with retroreflective delineation as required for temporary barriers on BC(7) when placed roughly parallel to the travel lanes.
- 6. LCDs used as barricades placed perpendicular to traffic should have at least one row of reflective sheeting meeting the requirements for barricade rails as shown on BC(10). Place reflective sheeting near the top of the LCD along the full length of the device.

WATER BALLASTED SYSTEMS USED AS BARRIERS

- Water ballasted systems used as barriers shall not be used solely to channelize road users, but also to protect the work space per the appropriate Manual for Assessing Safety Hardware (MASH) crashworthiness requirements based on roadway speed and barrier application.
- 2. Water ballosted systems used to channelize vehicular traffic shall be supplemented with retroreflective delineation or channelizing devices to improve daytime/nighttime visibility. They may also be supplemented with pavement markings.
- 3. Water ballasted systems used as barriers shall be placed in accordance to application and installation requirements specific to the device, and used only when shown on the CWZTCD list.
- Water ballasted systems used as barriers should not be used for a merging taper except in low speed (less than 45 MPH urban areas. When used on a taper in a low speed urban area, the taper shall be delineated and the taper length
- should be designed to optimize road user operations considering the available geometric conditions. When water ballasted systems used as barriers have blunt ends exposed to traffic, they should be attenuated as per manufacturer recommendations or flared to a point outside the clear zone.

If used to channelize pedestrians, longitudinal channelizing devices or water ballasted systems must have a continuous detectable bottom for users of long canes and the top of the unit shall not be less than 32 inches in height.

HOLLOW OR WATER BALLASTED SYSTEMS USED AS LONGITUDINAL CHANNELIZING DEVICES OR BARRIERS

or may be mounted on drums

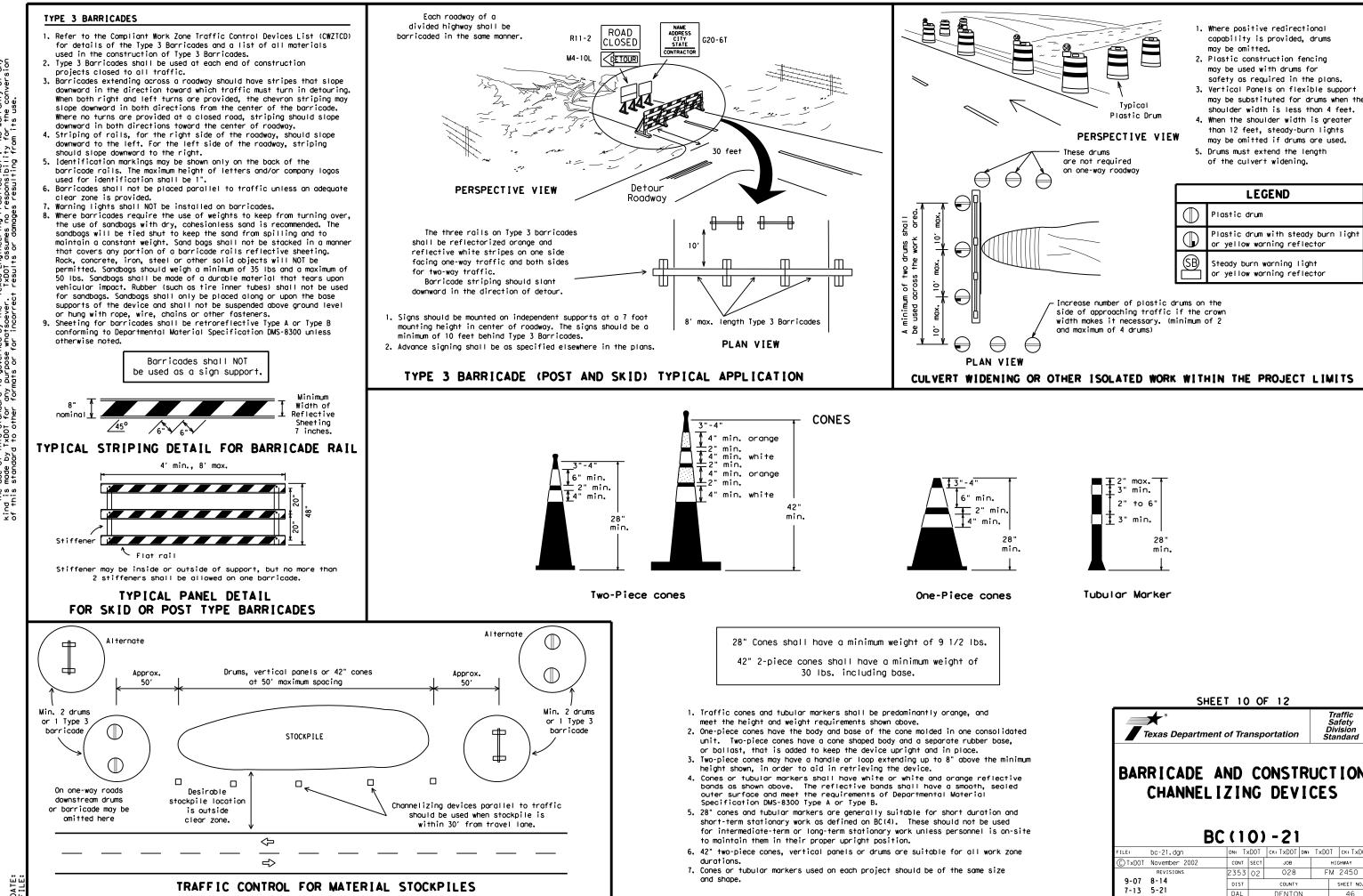
4. The OTLD shall be orange with a black nonreflective legend. Sheeting for the OTLD shall be retroreflective Type B_{FL} or Type C_{FL} conforming to Departmental Material Specification DMS-8300, unless noted otherwise. The legend shall meet the requirements of DMS-8300.

OPPOSING TRAFFIC LANE DIVIDERS (OTLD)

GENERAL NOTES

- 1. Work Zone channelizing devices illustrated on this sheet may be installed in close proximity to traffic and are suitable for use on high or low speed roadways. The Engineer/Inspector shall ensure that spacing and placement is uniform and in accordance with the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD).
- 2. Channelizing devices shown on this sheet may have a driveable, fixed or portable base. The requirement for self-righting channelizing devices must be specified in the General Notes or other plan sheets.
- 3. Channelizing devices on self-righting supports should be used in work zone areas where channelizing devices are frequently impacted by errant vehicles or vehicle related wind gusts making alignment of the channelizing devices difficult to maintain. Locations of these devices shall be detailed elsewhere in the plans. These devices shall conform to the TMUTCD and the "Compliant Work Zone Traffic Control Devices List" (CWZTCD).
- 4. The Contractor shall maintain devices in a clean condition and replace damaged, nonreflective, faded, or broken devices and bases as required by the Engineer/Inspector. The Contractor shall be required to maintain proper device spacing and alignment.
- 5. Portable bases shall be fabricated from virgin and/or recycled rubber. The portable bases shall weigh a minimum of 30 lbs.
- Pavement surfaces shall be prepared in a manner that ensures proper bonding between the adhesives, the fixed mount bases and the pavement surface. Adhesives shall be prepared and applied according to the manufacturer's recommendations.
- 7. The installation and removal of channelizing devices shall not cause detrimental effects to the final pavement surfaces, including pavement surface discoloration or surface integrity. Driveable bases shall not be permitted on final pavement surfaces. The Engineer/Inspector shall approve all application and removal procedures of fixed bases.

Posted Speed	Formula	D	Minimur esirab er Lena X X	le gths	Suggested Maximum Spacing of Channelizing Devices			
		10' Offset	11' Offset	12' Offset	On a Taper	On a Tangent		
30		150'	165′	180'	30'	60′		
35	$L = \frac{WS^2}{60}$	205'	2251	245'	35′	70′		
40	80	265'	295′	320'	40′	80′		
45		450 <i>'</i>	495′	540'	45′	90′		
50		500'	550'	600'	50'	100'		
55	L=WS	550'	605′	660 <i>′</i>	55 <i>'</i>	110′		
60	L - 11 S	600'	660 <i>'</i>	720'	60 <i>'</i>	120′		
65		650′	715′	780′	65 <i>'</i>	130'		
70		700′	770′	840'	70′	140'		
75		750′	825′	900'	75 <i>'</i>	150′		
80		800′	880'	960'	80 <i>'</i>	160′		


XX Taper lengths have been rounded off. L=Length of Taper (FT.) W=Width of Offset (FT.) S=Posted Speed (MPH)

SUGGESTED MAXIMUM SPACING OF CHANNELIZING DEVICES AND MINIMUM DESIRABLE TAPER LENGTHS

SHEET 9 OF 12 Traffic Safety Division Standard **st** Texas Department of Transportation

BARRICADE AND CONSTRUCTION CHANNELIZING DEVICES

		BC	(9) -	·21				
ILE:	bc-21.dgn		DN: T)	DOT	ск: TxDOT	DW:	TxDO	T	ск:ТхDOT
) TxDOT	November 2002		CONT	SECT	JOB			ніс	HWAY
	REVISIONS		2353	02	028		F	М	2450
9-07	8-14		DIST		COUNTY			Ş	SHEET NO.
7-13	5-21		DAL		DENTC	N			45
03									

	SHEE	т 10) ()	F 12			
	★* Texas Department of	of Tra	nsp	ortation		ċ	Traffic Safety Division tandard
	RICADE AI CHANNELIJ BC	ZIN	IG		10		
FILE:	bc-21.dgn	DN: T:	< DOT	ск: TxDOT	DW:	TxDO	Т ск: TxDOT
© TxDOT	November 2002	CONT	SECT	JOB			HIGHWAY
	REVISIONS	2353	02	028		F	M 2450
9-07	8-14	DIST		COUNTY			SHEET NO.
7-13	5-21	DAL		DENTO	N		46

WORK ZONE PAVEMENT MARKINGS

GENERAL

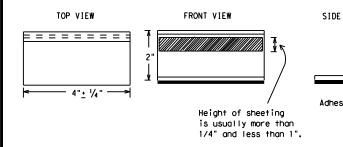
- The Contractor shall be responsible for maintaining work zone and existing pavement markings, in accordance with the standard specifications and special provisions, on all roadways open to traffic within the CSJ limits unless otherwise stated in the plans.
- Color, patterns and dimensions shall be in conformance with the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD).
- 3. Additional supplemental pavement marking details may be found in the plans or specifications.
- Pavement markings shall be installed in accordance with the TMUTCD and as shown on the plans.
- 5. When short term markings are required on the plans, short term markings shall conform with the TMUTCD, the plans and details as shown on the Standard Plan Sheet WZ(STPM).
- 6. When standard pavement markings are not in place and the roadway is opened to traffic, DO NOT PASS signs shall be erected to mark the beginning of the sections where passing is prohibited and PASS WITH CARE signs at the beginning of sections where passing is permitted.
- All work zone pavement markings shall be installed in accordance with Item 662, "Work Zone Pavement Markings."

RAISED PAVEMENT MARKERS

- 1. Raised pavement markers are to be placed according to the patterns on BC(12).
- All raised pavement markers used for work zone markings shall meet the requirements of Item 672, "RAISED PAVEMENT MARKERS" and Departmental Material Specification DMS-4200 or DMS-4300.

PREFABRICATED PAVEMENT MARKINGS

- Removable prefabricated pavement markings shall meet the requirements of DMS-8241.
- Non-removable prefabricated pavement markings (foil back) shall meet the requirements of DMS-8240.


MAINTAINING WORK ZONE PAVEMENT MARKINGS

- The Contractor will be responsible for maintaining work zone pavement markings within the work limits.
- Work zone pavement markings shall be inspected in accordance with the frequency and reporting requirements of work zone traffic control device inspections as required by Form 599.
- 3. The markings should provide a visible reference for a minimum distance of 300 feet during normal daylight hours and 160 feet when illuminated by automobile low-beam headlights at night, unless sight distance is restricted by roadway geometrics.
- Markings failing to meet this criteria within the first 30 days after placement shall be replaced at the expense of the Contractor as per Specification Item 662.

REMOVAL OF PAVEMENT MARKINGS

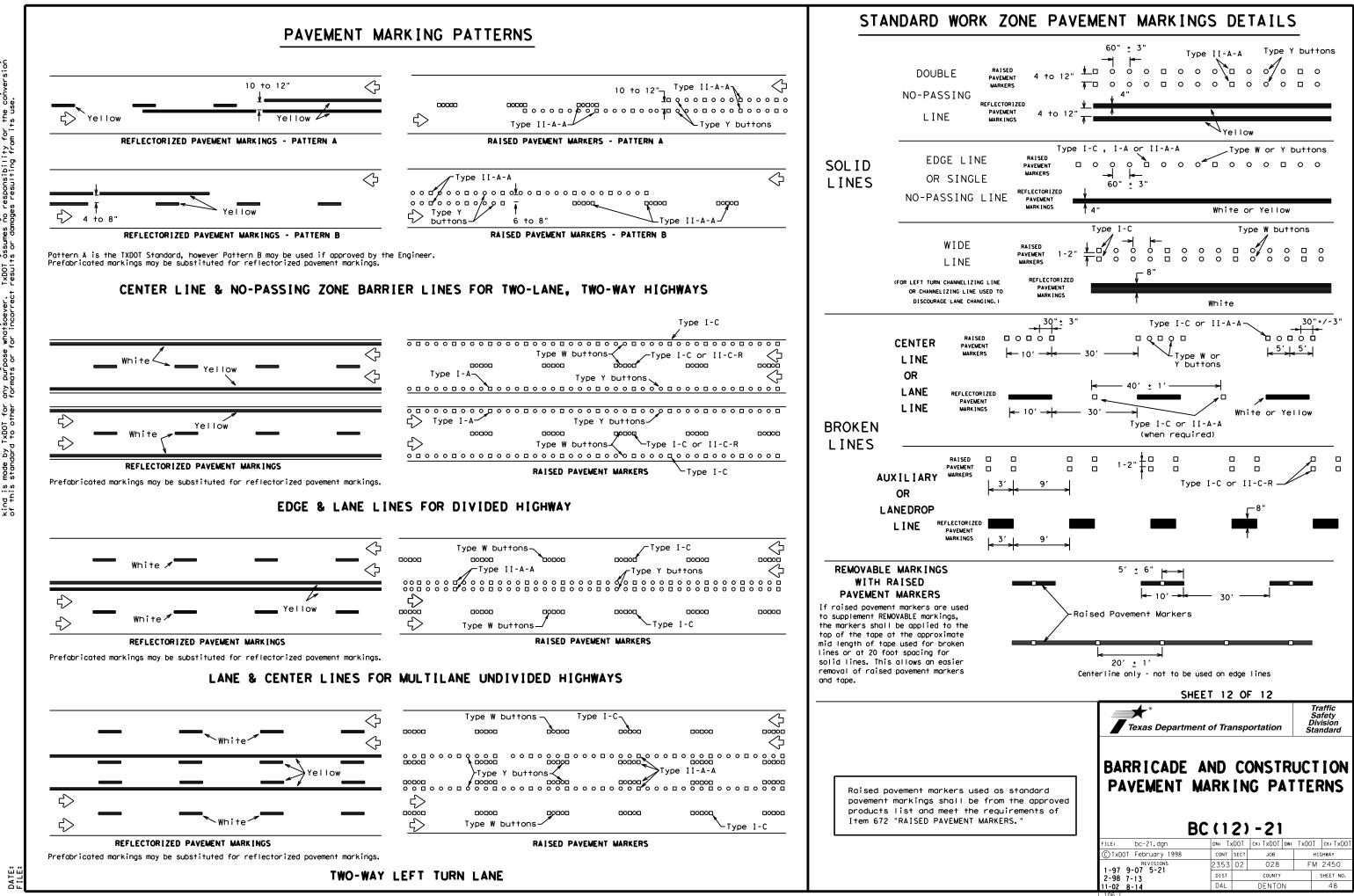
- Pavement markings that are no longer applicable, could create confusion or direct a motorist toward or into the closed portion of the roadway shall be removed or obliterated before the roadway is opened to traffic.
- The above shall not apply to detours in place for less than three days, where flaggers and/or sufficient channelizing devices are used in lieu of markings to outline the detour route.
- Pavement markings shall be removed to the fullest extent possible, so as not to leave a discernable marking. This shall be by any method approved by TxDOT Specification Item 677 for "Eliminating Existing Pavement Markings and Markers".
- 4. The removal of pavement markings may require resurfacing or seal coating portions of the roadway as described in Item 677.
- Subject to the approval of the Engineer, any method that proves to be successful on a particular type pavement may be used.
- 6. Blast cleaning may be used but will not be required unless specifically shown in the plans.
- 7. Over-painting of the markings SHALL NOT BE permitted.
- 8. Removal of raised pavement markers shall be as directed by the Engineer.
- Removal of existing pavement markings and markers will be paid for directly in accordance with Item 677, "ELIMINATING EXISTING PAVEMENT MARKINGS AND MARKERS," unless otherwise stated in the plans.
- 10.Black-out marking tape may be used to cover conflicting existing markings for periods less than two weeks when approved by the Engineer.

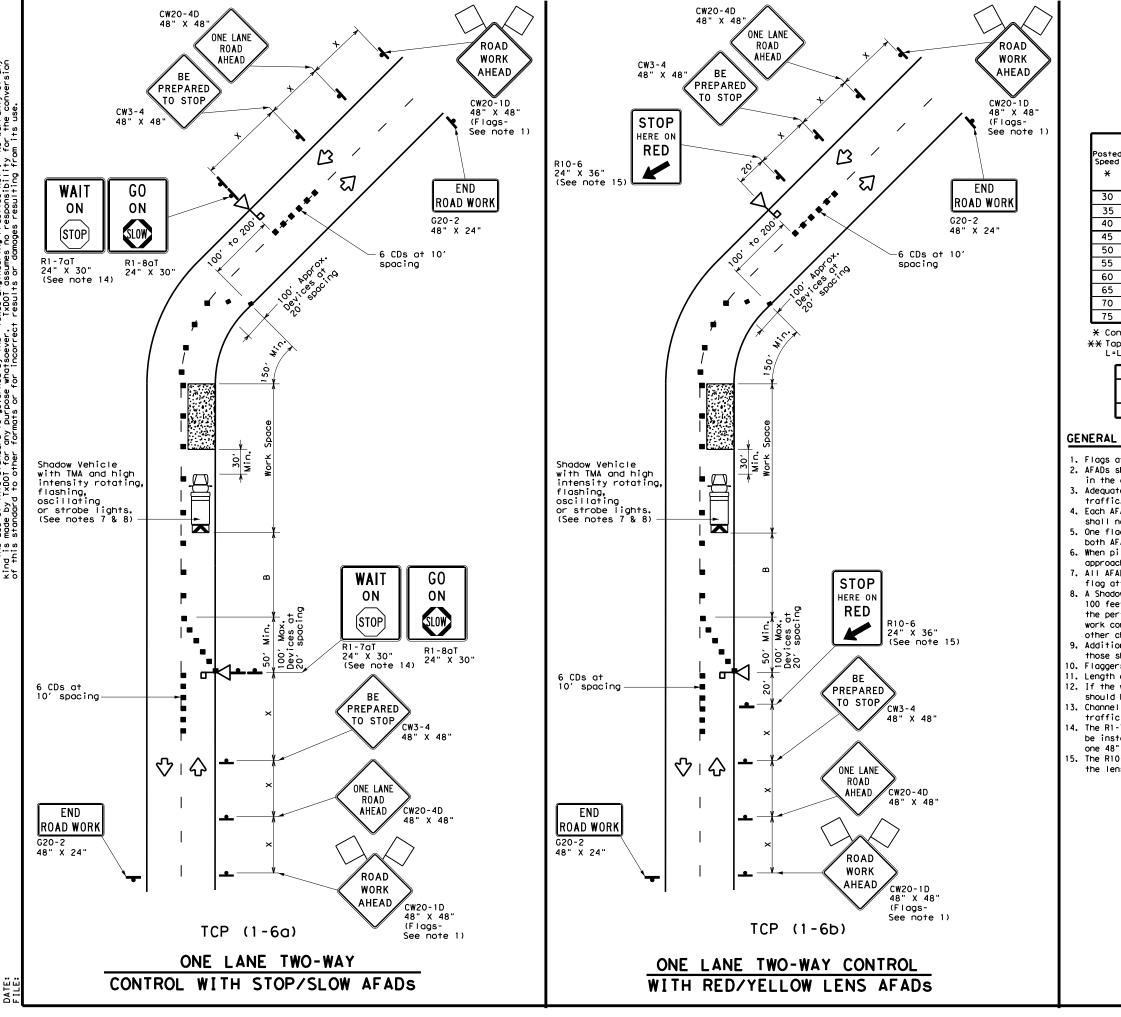
Temporary Flexible-Reflective Roadway Marker Tabs

STAPLES OR NAILS SHALL NOT BE USED TO SECU TEMPORARY FLEXIBLE-REFLECTIVE ROADWAY MARK TABS TO THE PAVEMENT SURFACE

- Temporary flexible-reflective roadway marker tabs used as guiden shall meet the requirements of DMS-8242.
- Tabs detailed on this sheet are to be inspected and accepted by Engineer or designated representative. Sampling and testing is m normally required, however at the option of the Engineer, either or "B" below may be imposed to assure quality before placement or roadway.
 - A. Select five (5) or more tabs at random from each lot or sh and submit to the Construction Division, Materials and Pav Section to determine specification compliance.
 - B. Select five (5) tabs and perform the following test. Affix (5) tabs at 24 inch intervals on an asphaltic pavement in straight line. Using a medium size passenger vehicle or pir run over the markers with the front and rear tires at a sp of 35 to 40 miles per hour, four (4) times in each direction more than one (1) out of the five (5) reflective surfaces be lost or displaced as a result of this test.
- 3. Small design variances may be noted between tab manufacturers.
- 4. See Standard Sheet WZ(STPM) for tab placement on new pavements. Standard Sheet TCP(7-1) for tab placement on seal coat work.

RAISED PAVEMENT MARKERS USED AS GUIDEMARK


- Raised pavement markers used as guidemarks shall be from the ap product list, and meet the requirements of DMS-4200.
- All temporary construction raised pavement markers provided on project shall be of the same manufacturer.
- Adhesive for guidemarks shall be bituminous material hot applie butyl rubber pad for all surfaces, or thermoplastic for concretsurfaces.


Guidemarks shall be designated as:

YELLOW - (two amber reflective surfaces with yellow body). WHITE - (one silver reflective surface with white body).

	DEPARTMENTAL MATERIAL SPECIFICAT	
	PAVEMENT MARKERS (REFLECTORIZED)	DMS-4200
	TRAFFIC BUTTONS	DMS-4300
EW	EPOXY AND ADHESIVES	DMS-6100
57	BITUMINOUS ADHESIVE FOR PAVEMENT MARKERS	DMS-6130
	PERMANENT PREFABRICATED PAVEMENT MARKINGS	DMS-8240
	PAVEMENT MARKINGS	DMS-8241
	TEMPORARY FLEXIBLE, REFLECTIVE ROADWAY MARKER TABS	DMS-8242
e pod	A list of prequalified reflective raised pavemen non-reflective traffic buttons, roadway marker t pavement markings can be found at the Material P web address shown on BC(1).	abs and othe
5		
u		
ne ent nt		
ve D, No I I		
_		
ved		
•		
	SHEET 11 OF 12	
	SHEET 11 OF 12	Traffic
	SHEET 11 OF 12	Safety Division
	≁°	Safety
	Texas Department of Transportation	Safety Division Standard
	Texas Department of Transportation	Safety Division Standard
	Texas Department of Transportation	Safety Division Standard
	Texas Department of Transportation	Safety Division Standard
	Texas Department of Transportation BARRICADE AND CONSTI PAVEMENT MARKIN	Safety Division Standard
	Texas Department of Transportation BARRICADE AND CONSTI PAVEMENT MARK IN BC (111) - 21	Safety Division Standard
	Texas Department of Transportation BARRICADE AND CONSTINATION BARRICADE AND CONSTINATION BARRICADE AND CONSTINATION BEC (111) - 21 FILE: bc-21.dgn DNE TXDOT CK-TXDOT CONT SECT JOB CONT	Safety Division Standard
	Texas Department of Transportation BARRICADE AND CONSTINATION PAVEMENT MARK IN BC (111) - 21 FILE: bc-21.dgn DN: TXDDT CK: TXDDT	Safety Division Standard

105

No warranty of any for the conversion "Texas Engineering Practice Act". . TxDOT assumes no responsibility governed by the rpose whatsoever SCLAIMER: The use of this standard ind is made by TxDOI for any

				l	EG	ENI)				
<u>e 7 7 7 7</u>	Туре	3 Bar	ricod	е	0 (Chanr	nelizing	Devices (CD)s)	
□¤	Heavy	/ Work	Vehi	cle				k Mountee nuator ("			
┏┛		nated stance))			M	Ì		able Cha age Sign			
_	Sign					5	Traf	fic Flow			
\bigtriangleup	Flag				٩	С	Flag	ger			
Formula	D	Minimur esirab er Leng X X	le gths	Ś	jeste pacir janne Dev	ng c Iizi	ng	Minimum Sign Spacing "X"	Suggested Longitudinal Buffer Space	S	opping ight stance
	10' Offset	11' Offset	12' Offset		o a Der		n a ngent	Distance	"B"		
	150'	1651	180'	3	0'		60′	120'	90,	2	2001
$L = \frac{WS^2}{60}$	205 <i>'</i>	225'	245'	3	5′		70′	160'	120'	2	2501
00	265′	295′	320'	4	0′		80'	240'	155'	1.4	505 <i>1</i>
	450'	495 <i>'</i>	540'	4	5′		90′	320'	195'	1.1	360 <i>'</i>
1	500'	550'	600'	5	0′	1	00′	400'	240′	4	25′
L=WS	550'	605 <i>'</i>	660 <i>'</i>	5	5′	1	10′	500 <i>'</i>	295′	4	95′
1 "3	600'	660 <i>'</i>	720'	6	0'	1	20'	600′	350′	5	70'
1	650 <i>'</i>	715′	780′	6	51	1	30′	700 <i>'</i>	410′	6	645 <i>1</i>
	700'	770'	840′	7	0′	1	40 <i>'</i>	800′	475'	-	730'
	750′	825′	900′	7	5′	1	50′	900'	540 <i>′</i>	5	320 <i>'</i>

X Conventional Roads Only

XX Taper lengths have been rounded off. L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH)

		TYPICAL U	SAGE	
MOBILE	SHORT DURATION	SHORT TERM STATIONARY	INTERMEDIATE TERM STATIONARY	LONG TERM STATIONARY
	✓	1		

GENERAL NOTES

¥

1. Flags attached to signs where shown are REQUIRED.

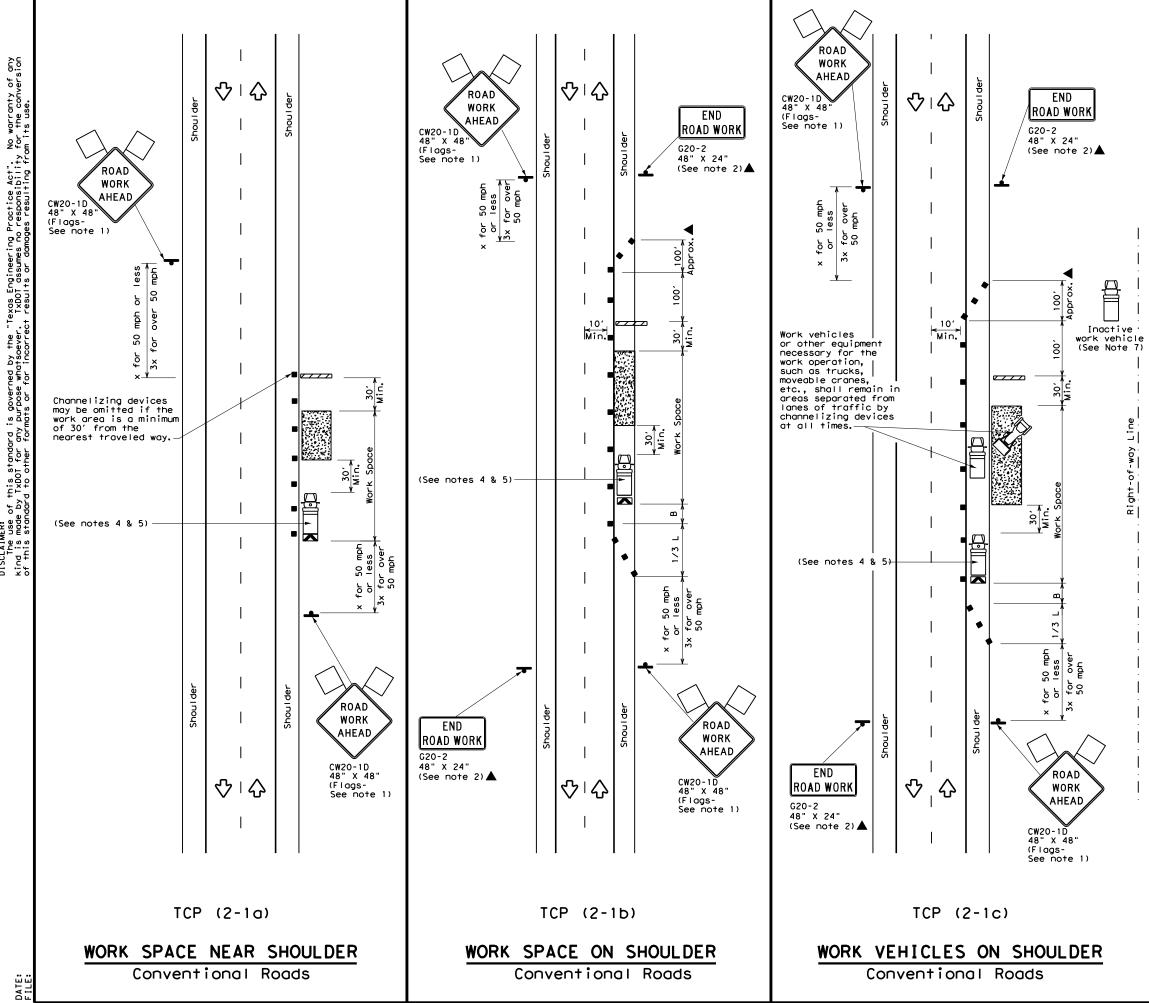
2. AFADs shall only be used in situations where there is one lane of approaching traffic in the direction to be controlled.

3. Adequate stopping sight distance must be provided to each AFAD location for approaching traffic. (See table above).

4. Each AFAD shall be operated by a qualified/certified flagger. Flaggers operating AFADs shall not leave them unattended while they are in use.

5. One flagger may operate two AFADs only when the flagger has an unobstructed view of both AFADs and of the approaching traffic in both directions.

6. When pilot cars are used, a flagger controlling traffic shall be located on each approach. AFADs shall not be operated by the pilot car operator.


7. All AFADs shall be equipped with gate arms with an orange or fluorescent red-orange flag attached to the end of the gate arm. The flag shall be a minimum of 16" square. 8. A Shadow Vehicle with a TMA should be used anytime it can be positioned 30 to 100 feet in advance of the area of crew exposure without adversely affecting the performance or quality of the work. If workers are no longer present but road or work conditions require the traffic control to remain in place, Type 3 Barricades or

other channelizing devices may be substituted for the Shadow Vehicle and TMA. 9. Additional Shadow Vehicles with TMAs may be positioned off the paved surface, next to those shown in order to protect wider work spaces.

10. Flaggers should use two-way radios or other methods of communication to control traffic. 11. Length of work space should be based on the ability of flaggers to communicate. 12. If the work space is located near a horizontal or vertical curve, the buffer distances should be increased in order to maintain stopping sight distance to the AFAD. 13. Channelizing devices on the center line may be omitted when a pilot car is leading traffic and approved by the Engineer.

14. The R1-7aT "WAIT ON STOP" sign and the R1-8aT "GO ON SLOW" sign shall be installed at the AFAD location on separate supports or they may be fabricated as one 48" x 30" sign. They shall not obscure the face of the STOP/SLOW AFAD. 15. The R10-6 "STOP HERE ON RED" arrow sign shall be offset so as not to obscure the lenses of the AFAD.

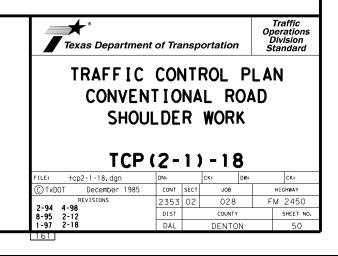
	★ ° 「exas Departmen	t of Tra	nsp	ortation	1	Ор С	Traffic perations Division tandard
	TRAFFIC AUTOMA	TED) F	LAG	GE	R	
	ASSIST	(AF	_		IC		5
		(AF	ĀD				5
FILE:		(AF	ĀD	S)			Ск:
FILE:	TCP	(AF) (1)	ĀD)S) () - 1	8	·E :	
© TxDOT	TCP	(AF) (1)	AD - 6)S)) - 1 ^{ck:}	8		CK:
	TCP tcp1-6-18.dgn February 2012	(AF) (1) DN: CONT	AD - 6)S)) - 1 ск: 	8		CK: HIGHWAY

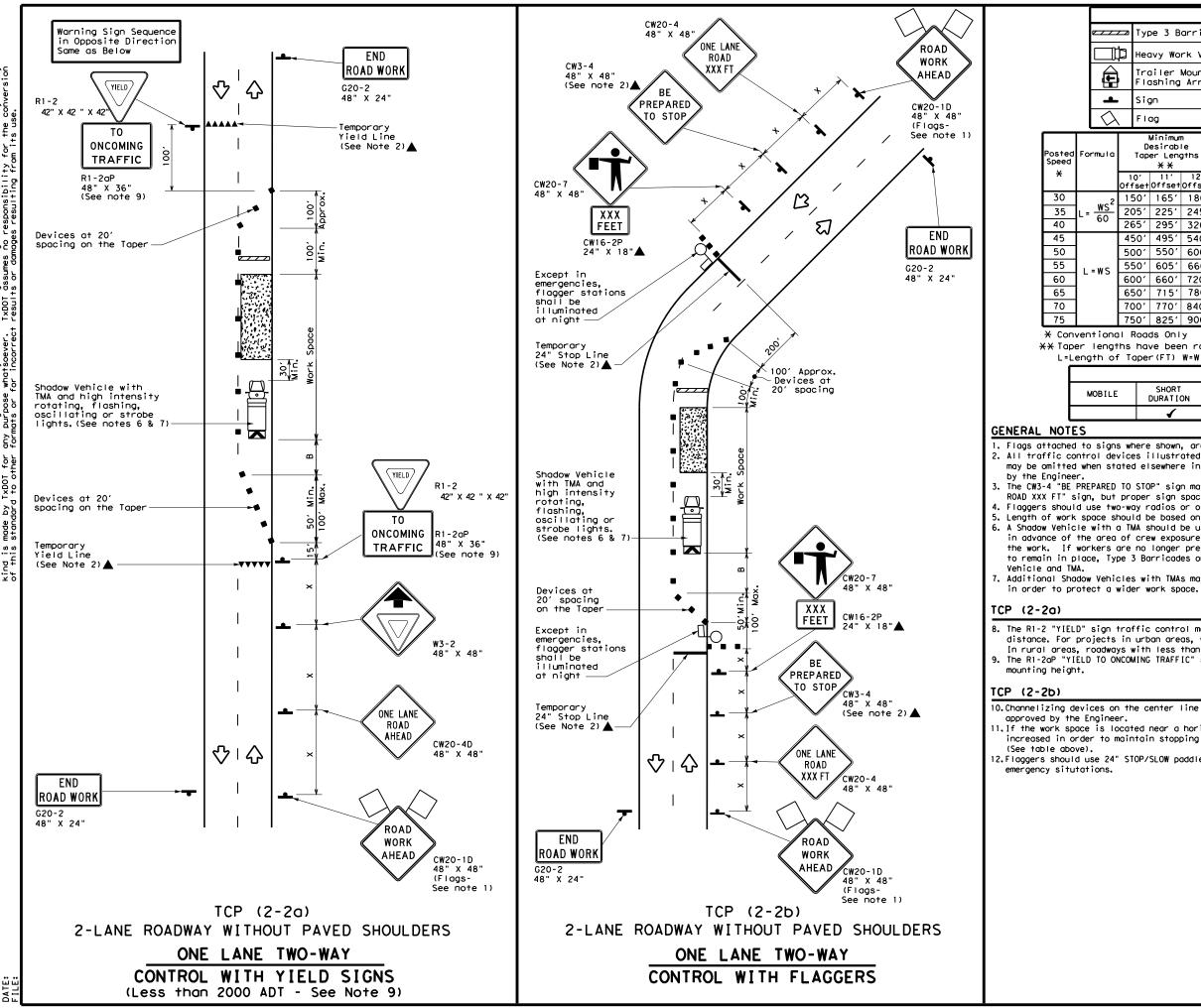
DISCLAIMER: The use of this standard is governed by the kind is made by TxDD1 for any purpose whatseever of this standard to other formats or for incorre

	LEGE	ND	
<u>~ ~ ~ ~ ~</u>	Type 3 Barricade		Channelizing Devices
	Heavy Work Vehicle		Truck Mounted Attenuator (TMA)
Ē	Trailer Mounted Flashing Arrow Board	M	Portable Changeable Message Sign (PCMS)
-	Sign	\Diamond	Traffic Flow
$\langle \rangle$	Flag	۵	Flagger

Posted Speed X	Formula	D Tap	Minimur esirab er Leng X X	le gths	Spacin Channe Dev	līzing ices	Minimum Sign Spacing "X"	Suggested Longitudinal Buffer Space
*		10' Offset	11' Offset	12' Offset	On a Taper	On a Tangent	Distance	"B"
30	<u>ws</u> ²	150'	1651	180'	30′	60'	1201	90′
35	$L = \frac{WS}{60}$	205'	225'	245'	35′	70'	160'	120'
40	60	265′	295′	320'	40′	80′	240′	155'
45		450'	495′	540′	45′	90′	320′	195'
50		500'	550'	600'	50 <i>'</i>	100'	400′	240′
55	L=WS	550'	605′	660 <i>'</i>	55 <i>'</i>	110'	500 <i>'</i>	295′
60	L-#5	600 <i>'</i>	660 <i>'</i>	720′	60 <i>'</i>	120′	600 <i>'</i>	350′
65		650'	715′	780′	65′	130'	700'	410′
70		700'	770′	840′	70'	140'	800'	475′
75		750′	825′	900′	75′	150′	900′	540'

X Conventional Roads Only


XX Taper lengths have been rounded off.


L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH)

		TYPICAL U	JSAGE	
MOBILE	SHORT DURATION	SHORT TERM STATIONARY	INTERMEDIATE TERM STATIONARY	LONG TERM STATIONARY
	1	1	1	1

GENERAL NOTES

- 1. Flags attached to signs where shown, are REQUIRED.
- 2. All traffic control devices illustrated are REQUIRED, except those denoted with the triangle symbol may be omitted when stated in the plans, or for routine maintenance work, when approved by the Engineer 3. Stockpiled material should be placed a minimum of 30 feet from
- nearest traveled way.
 Shadow Vehicle with TMA and high intensity rotating, flashing, oscillating or strobe lights. A Shadow Vehicle with a TMA should be used anytime it can be positioned 30 to 100 feet in advance of the area of crew exposure without adversely affecting the performance or quality of the work. If workers are no longer present but road or work conditions require the traffic control to remain in place, Type 3 Barricades or other channelizing devices may be substituted for the Shadow Vehicle and TMA.
- 5. Additional Shadow Vehicles with TMAs may be positioned off the paved surface, next to those shown in order to protect a wider work space. 6. See TCP(5-1) for shoulder work on divided highways, expressways and
- freeways. 7. Inactive work vehicles or other equipment should be parked near the
- right-of-way line and not parked on the paved shoulder. 8. CW21-5 "SHOULDER WORK" signs may be used in place of CW20-1D
- "ROAD WORK AHEAD" signs for shoulder work on conventional roadways.

No warranty of any for the conversion Practice Act". responsibility Texas Engineering TxDOT assumes no governed by rpose whatso si D this standard TxDOT for any ٩ç DISCLAIMER: The use kind is mode

					LEGE	ND				
_		Тур	be 3 B	arrico	ode		с	hannelizi	ing Devices	
ľ	þ	Нес	vy Wo	rk Ver	nicle			ruck Mour ttenuator		
	,		biler i Dshing		ed v Board	M			Changeable ign (PCMS)	
L		siç	jn			\langle	T	raffic F	low	
λ		FI	og			٩	F	lagger		
2		D	Minimum esirabl er Leng X X	le			'n	Minimum Sign Spacing "x"	Suggested Longitudinal Buffer Space	Stopping Sight Distance
		0' 'set	11' Offset	12' Offset	On a Taper	On a Tangen	t	Distance	"B"	
2	15	50'	165'	180′	30′	60′		120'	90'	200'
-	20)51	225′	245'	35′	70′		160'	120'	250 <i>'</i>
	26	55′	295′	320'	40'	80′		240′	1551	305′
	45	50'	495′	540'	45'	90′		320′	195′	360′
	50)0ʻ	550'	600′	50 <i>'</i>	100′		400′	240′	425′
	55	50'	605′	660 <i>'</i>	55 <i>'</i>	110′		500 <i>'</i>	295 <i>'</i>	495′
	60)0 <i>'</i>	660'	720′	60′	120′		600′	350'	570′
	65	50'	715′	780′	65 <i>'</i>	130'		700′	410′	645′
	70)0 <i>'</i>	770'	840'	70'	140′		800'	475′	730′
	75	50'	825'	900'	75'	150′		900'	540 <i>′</i>	820′

XX Taper lengths have been rounded off.

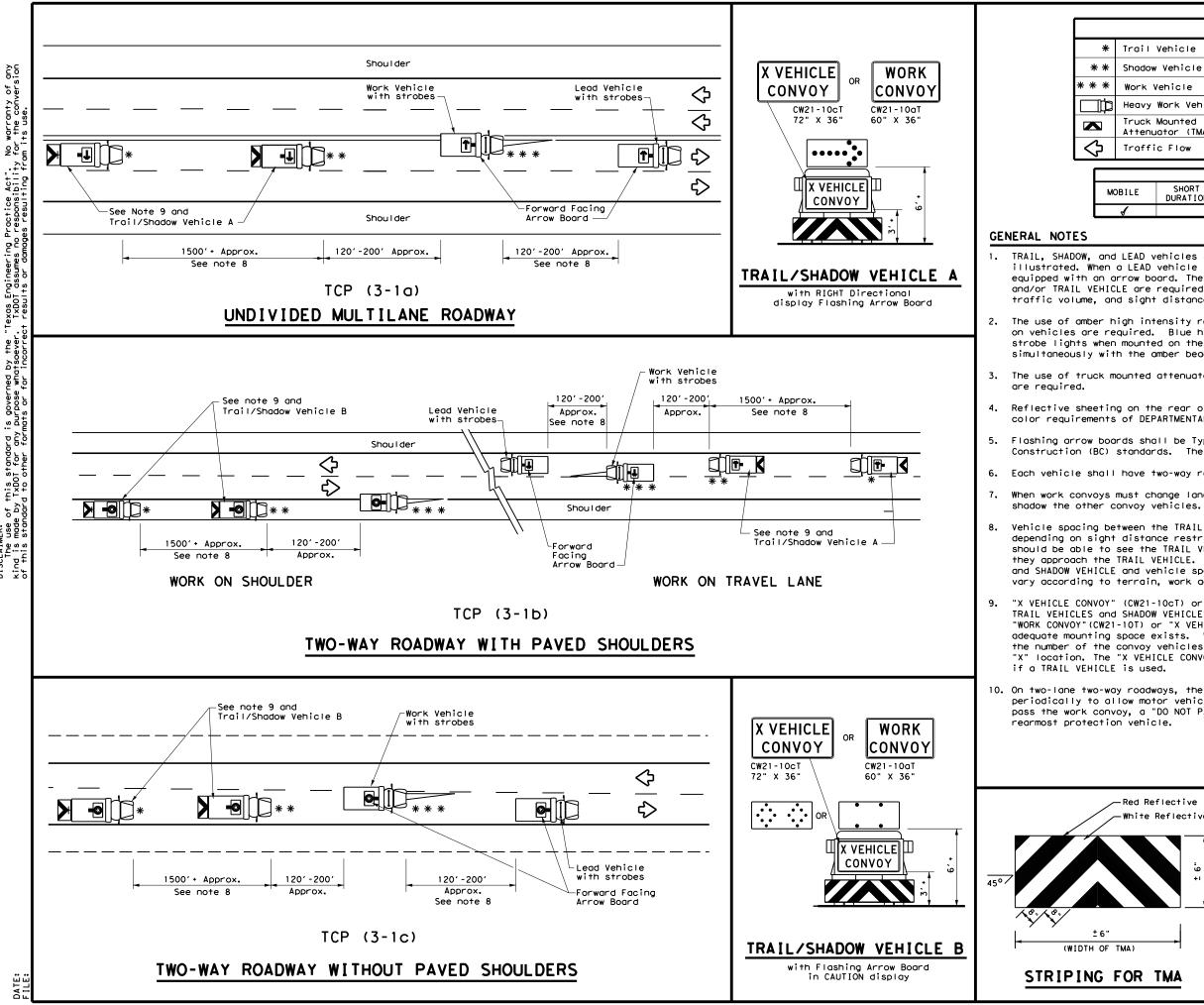
L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH)

		TYPICAL U	ISAGE	
E	SHORT DURATION	SHORT TERM STATIONARY	INTERMEDIATE TERM STATIONARY	LONG TERM STATIONARY
	4	√	4	

1. Flags attached to signs where shown, are REQUIRED. 2. All traffic control devices illustrated are REQUIRED, except those denoted with the triangle symbol may be omitted when stated elsewhere in the plans, or for routine maintenance work, when approved

3. The CW3-4 "BE PREPARED TO STOP" sign may be installed after the CW20-4 "ONE LANE ROAD XXX FT" sign, but proper sign spacing shall be maintained. 4. Flaggers should use two-way radios or other methods of communication to control traffic. 5. Length of work space should be based on the ability of flaggers to communicate. 6. A Shadow Vehicle with a TMA should be used anytime it can be positioned 30 to 100 feet in advance of the area of crew exposure without adversely affecting the performance or quality of the work. If workers are no longer present but road or work conditions require the traffic control to remain in place, Type 3 Barricades or other channelizing devices may be substituted for the Shadow

7. Additional Shadow Vehicles with TMAs may be positioned off the paved surface, next to those shown


8. The R1-2 "YIELD" sign traffic control may be used on projects with approaches that have adequate sight distance. For projects in urban areas, work space should be no longer than one half city block. In rural areas, roadways with less than 2000 ADT, work space should be no longer than 400 feet. 9. The R1-2aP "YIELD TO ONCOMING TRAFFIC" sign shall be placed on a support at a 7 foot minimum

10.Channelizing devices on the center line may be omitted when a pilot car is leading traffic and

11. If the work space is located near a horizontal or vertical curve, the buffer distances should be increased in order to maintain stopping sight distance to the flagger and a queue of stopped vehicles.

12.Flaggers should use 24" STOP/SLOW paddles to control traffic. Flags should be limited to

Texas Departmen	nt of Tra	nsp	ortatic	on	Ор С	Traffic perations Division tandard
TRAFFIC ONE-LA	ANE	T	WO-	WA	Y	N
			-			
TCP	۰ (2		·) - (18		
TCP		-2	-		•	Ск:
TCP	۰ (2		ск: Јов	1 8		HIGHWAY
FILE: tcp2-2-18.dgn © TxDOT December 1985 REVISIONS	P (2 ·	-2	ск:	1 8		*
FILE: tcp2-2-18.dgn © TxDOT December 1985	DN: CONT	- 2	ск: Јов	DW:		HIGHWAY

warranty the conv δp Practice Act". responsibility Ę, ° ng SCLAIMER: The use of this standard nd is made by TxDDT for any this etandard to other for

	LE	GEND			
Vehicle					
Vehicle		ARROW BOARD DISPLAY			
/ehicle		RIGHT Directional			
vy Work Vehicle			lor		
		Double Arrow			
Traffic Flow CAUTION (Alternating Diamond or 4 Corner Flo			•		
	111	ILAL U	ISAUL		
SHORT DURATION				LONG TERM STATIONARY	
	Mounted lator (TMA) c Flow SHORT	Vehicle Vehicle Work Vehicle Mounted Mounted ofor (TMA) c Flow TYP SHORT SHOR	vehicle /ehicle Work Vehicle Mounted Mounted Mounted Attor (TMA) c Flow TYPICAL L SHORT SHORT TERM	Vehicle ARROW BOARD D Vehicle Vehicle Vehicle Work Vehicle Mounted Motor (TMA) c Flow TYPICAL USAGE SHORT SHORT TERM INTERMEDIATE	

TRAIL, SHADOW, and LEAD vehicles shall be equipped with arrow boards as illustrated. When a LFAD vehicle is not used the WORK vehicle must be equipped with an arrow board. The Engineer will determine if the LEAD VEHICLE and/or TRAIL VEHICLE are required based on prevailing roadway conditions, traffic volume, and sight distance restrictions.

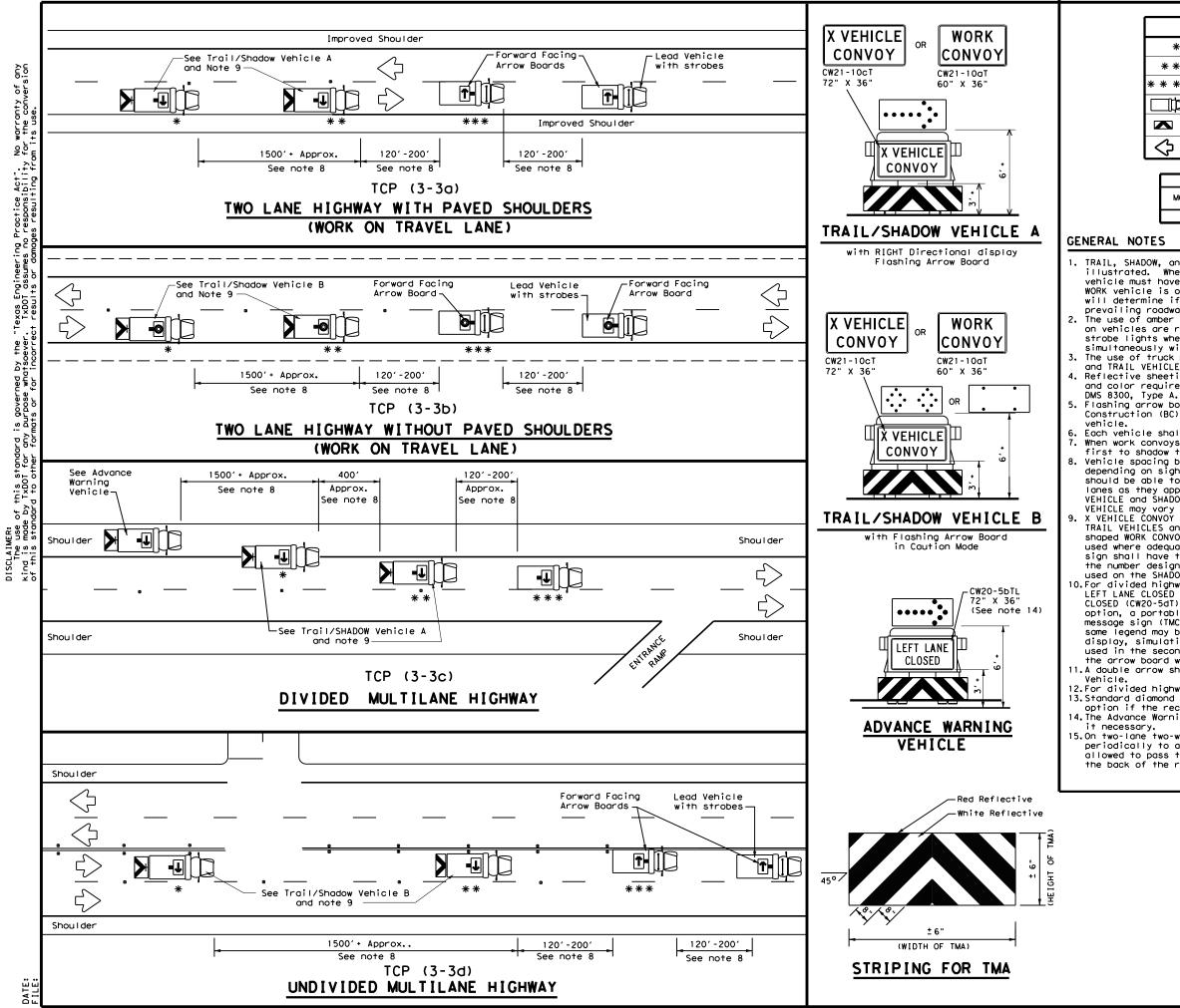
2. The use of amber high intensity rotating, flashing, oscillating, or strobe lights on vehicles are required. Blue high intensity rotating, flashing, oscillating or strobe lights when mounted on the driver's side of the vehicle may be operated simultaneously with the amber beacons or strobe lights.

3. The use of truck mounted attenuators (TMA) on the SHADOW VEHICLE and TRAIL VEHICLE

Reflective sheeting on the rear of the TMA shall meet or exceed the reflectivity and color requirements of DEPARTMENTAL MATERIAL SPECIFICATION DMS 8300, Type A.

Flashing arrow boards shall be Type B or Type C as per the Barricade and Construction (BC) standards. The board shall be controlled from inside the vehicle.

Each vehicle shall have two-way radio communication capability.


When work convoys must change lanes, the TRAIL VEHICLE should change lanes first to

Vehicle spacing between the TRAIL VEHICLE and the SHADOW VEHICLE will vary depending on sight distance restrictions. Motorists approaching the work convoy should be able to see the TRAIL VEHICLE in time to slow down and/or change lanes as they approach the TRAIL VEHICLE. Vehicle spacing between the WORK VEHICLE and SHADOW VEHICLE and vehicle spacing between WORK VEHICLE and LEAD VEHICLE may vary according to terrain, work activity and other factors.

"X VEHICLE CONVOY" (CW21-10cT) or "WORK CONVOY" (CW21-10aT) signs shall be used on TRAIL VEHICLES and SHADOW VEHICLES as shown. As an option 48" X 48" diamond shaped "WORK CONVOY"(CW21-10T) or "X VEHICLE CONVOY" (CW21-10bT) signs may be used where adequate mounting space exists. When used, the X VEHICLE CONVOY sign shall have the number of the convoy vehicles displayed on the sign in the number designation "X" location. The "X VEHICLE CONVOY" sign shall not be used on the SHADOW VEHICLE

10. On two-lane two-way roadways, the work and protection vehicles should pull over periodically to allow motor vehicle traffic to pass. If motorists are not allowed to pass the work convoy, a "DO NOT PASS" (R4-1) sign should be placed on the back of the

Red Reflective White Reflective	Texas Departme	nt of Transport	tation	Traffic Operations Division Standard
± 6"				
	UNDIVI			-
	UNDIVI	<u>CP (3-1</u>)-1	3
	UNDIVI T	CP (3 - 1) – 1 : TxDOT dw:	3 ТхDOT ск: ТхDO
	UNDIVI T FILE: tcp3-1.dgn © TxDOT December 1985	CP (3 - 1 DN: TXDOT CK: CONT SECT) – 1 : TxDOT dw: JOB	З Тхрот ск: тхро ніснимач
	UNDIVI T FILE: tcp3-1.dgn © TxDOT December 1985 REVISIONS	CP (3 - 1) – 1 : TxDOT dw:	3 ТхDOT ск: ТхDO
	UNDIVI T FILE: tcp3-1.dgn © TxDOT December 1985	CP (3 - 1 DN: TXDOT CK: CONT SECT) – 1 : TxDOT dw: JOB	З Тхрот ск: тхро ніснимач

Sp. Act bility this st TxDOT

LEGEND					
*	Trail Vehicle		ARROW BOARD DISPLAY		
* *	Shadow Vehicle	- ARROW BOARD DISPLAT			
* * *	Work Vehicle	•	RIGHT Directional		
þ	Heavy Work Vehicle	F	LEFT Directional		
	Truck Mounted Attenuator (TMA)	₽	Double Arrow		
\Diamond	Traffic Flow CAUTION (Alternating Diamond or 4 Corner Flash)				

		TYPICAL U	JSAGE	
MOBILE	SHORT DURATION		INTERMEDIATE TERM STATIONARY	LONG TERM STATIONARY
4				

1. TRAIL, SHADOW, and LEAD vehicles shall be equipped with arrow boards as

illustrated. When a LEAD vehicle is not used on two way roads the WORK vehicle must have an arrow board. For divided roadways, the arrow board on the WORK vehicle is optional based on the type of work being performed. The Engineer will determine if the LEAD vehicle and/or TRAIL vehicle are required based on prevailing roadway conditions, traffic volume, and sight distance restrictions. The use of amber high intensity rotating, flashing, oscillating, or strobe lights on vehicles are required. Blue high intensity rotating, flashing, oscillating, or strobe lights when mounted on the driver's side of the vehicle may be operated simultaneously with the amber beacons or strobe lights. The use of truck mounted attenuators (TMA) on the SHADOW VEHICLE, ADVANCE WARNING

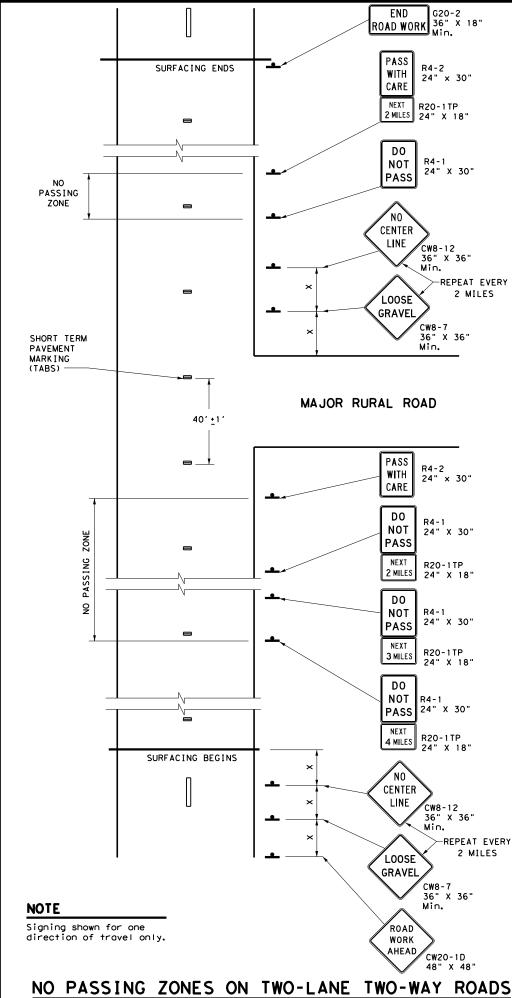
and TRAIL VEHICLE are required. Reflective sheeting on the rear of the TMA shall meet or exceed the reflectivity

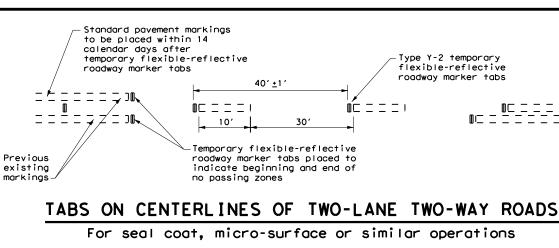
and color requirements of DEPARTMENTAL MATERIAL SPECIFICATION

Flashing arrow boards shall be Type B or Type C as per the Barricade and Construction (BC) standards. The board shall be controlled from inside the

Each vehicle shall have two-way radio communication capability. When work convoys must change lanes, the TRAIL VEHICLE should change lanes first to shadow the other convoy vehicles. Vehicle spacing between the TRAIL VEHICLE and the SHADOW VEHICLE will vary

depending on sight distance restrictions. Motorists approaching the convoy should be able to see the TRAIL VEHICLE in time to slow down and/or change lanes as they approach the TRAIL VEHICLE. Vehicle spacing between the WORK VEHICLE and SHADOW VEHICLE and vehicle spacing between WORK VEHICLE and LEAD VEHICLE may vary according to terrain, work activity and other factors. X VEHICLE CONVOY (CW21-10cT) or WORK CONVOY (CW21-10aT) signs shall be used on TRAIL VEHICLES and SHADOW VEHICLES as shown. As an option 48" x 48" diamond shaped WORK CONVOY (CW21-10T) or X VEHICLE CONVOY (CW21-10DT) signs may be used where adequate mounting space exists. When used, the X VEHICLE CONVOY sign shall have the number of the convoy vehicles displayed on the sign in the number designation "X" location. The X VEHICLE CONVOY sign shall not be used on the SHADOW VEHICLE if a TRAIL VEHICLE is used. 10.For divided highways with two or three lanes in one direction, the appropriate LEFT LANE CLOSED (CW20-5bTL), RIGHT LANE CLOSED (CW20-5bTR), or CENTER LANE CLOSED (CW20-5dT) sign should be used on the Advance Warning Vehicle. As an


option, a portable changeable message sign (PCMS) or truck mounted changeable message sign (TMCMS) with a minimum character height of 12", and displaying the same legend may be substituted for these signs. An appropriate directional arrow display, simulating the size and legibility of the flashing arrow board may be used in the second phase of the PCMS/TMCMS message. When this is done, the arrow board will not be required on the Advance Warning Vehicle.


11.A double arrow shall not be displayed on the arrow board on the Advance Warning

12.For divided highways with three or four lanes in each direction, use TCP(3-2). 13.Standard diamond shape versions of the CW20-5 series signs may be used as an option if the rectangular signs shown are not available. 14. The Advance Warning Vehicle may straddle the edgeline when Shoulder width makes

15.0n two-lane two-way roadways, the work and protection vehicles should pull over periodically to allow motor vehicle traffic to pass. If motorists are not allowed to pass the work convoy, a DO NOT PASS (R4-1) sign should be placed on the back of the rearmost protection vehicle.

Texas Department	t of Transportatio		Traffic perations Division Standard
MOBILE	CONTROL OPERATI D PAVEME	ONS NT	
	EMOVAL (3-3)-1	4	
		-)T ck: TxDOT
TCP	(3-3)-1	OT DW: TXDO	DT CK:TxDOT Highway
FILE: tcp3-3.dgn © TxDOT September 1987 REVISIONS	(3-3)-1 DN: TxDOT Ск: ТxD	DT DW: TXDC	
FILE: tcp3-3.dgn © TxDOT September 1987	(3-3)-1 DN: TxDOT ск: TxD солт sect јо	OT DW: TXDO 3 8 FN	HIGHWAY

"DO NOT PASS" SIGN (R4-1) and NO-PASSING ZONES

- Prior to the beginning of construction, all currently striped no-passing zones shall be signed with the DO NOT PASS (R4-1) signs and PASS WITH CARE (R4-2) signs placed at the beginning and end of each zone for each direction of travel except as otherwise provided herein. Signs marking these individual no-passing zones need not be covered prior to construction if the signs supplement the existing pavement markinas.
- At the discretion of the Engineer, in areas of numerous no-passing zones, several zones may be combined as a single zone. If passing is to be prohibited over one or more lengthy sections, a DO NOT PASS sign and a NEXT XX MILES (R20-1TP) plaque may be used at the beginning of such zones. The DO NOT PASS sign and the NEXT XX MILES plaque should be repeated every mile to the end of the no-passing zone. In areas where there is considerable distance between no-passing zones, the end of the no-passing zone may be signed with a PASS WITH CARE sign and a NEXT XX MILES plaque.
- с. Depending on traffic volumes and length of sections, it may be desirable to prohibit passing throughout the project to prevent damage to windshield and lights. The DO NOT PASS sign and NEXT XX MILES plaque should be used and repeated as often as necessary for this purpose. Where several existing zones are to be combined into one individual no-passing zone, the sign at the beginning of the zone should be covered until the surfacing operation has passed this location so as not to have the DO NOT PASS sign conflict with the existing pavement markings. Also, unless one days operation completes the entire length of such combined zones, appropriate DO NOT PASS and PASS WITH CARE signs should be placed at the beginning and end of the no-passing zones where the surfacing operation has stopped for the day.
- D. R4-1 and R4-2 are to remain in place until standard pavement markings are installed.

"NO CENTER LINE" SIGN (CW8-12)

- Center line markings are yellow pavement markings that delineate the separation of travel lanes that Α. have opposite directions of travel on a roadway. Divided highways do not typically have center line markinas.
- At the time construction activity obliterates the existing center line markings(low volume roads may not have an existing centerline), a NO CENTER LINE (CW8-12) sign should be erected at the beginning of the work area, at approximately 2 mile intervals within the work area, beyond major intersections and other locations deemed necessary by the Engineer.
- C. The NO CENTER LINE signs are to remain in place until standard pavement markings are installed.

"LOOSE GRAVEL" SIGN (CW8-7)

- When construction begins, a LOOSE GRAVEL (CW8-7) sign should be erected at each end of the work area Α. and repeated at intervals of approximately 2 miles in rural areas and closer in urban areas.
- B. The LOOSE GRAVEL signs are to remain in place until the condition no longer exists.

PAVEMENT MARKINGS

- Temporary markings for surfacing projects shall be Temporary Flexible-reflective Roadway Marker Tabs Α. unless otherwise approved by the Engineer. Tabs are to be installed to provide true alignment for striping crews or as directed by the Engineer. Tabs will be placed at the spacing indicated. Tabs should be applied to the pavement
- no more than two (2) days before the surfacing is applied. After the surfacing is rolled and swept, the cover over the reflective strip shall be removed.
- Tabs shall not be used to simulate edge lines.
- C. Tab placement for overlay/inlay operations shall be as shown on the WZ(STPM) standard sheet.

COORDINATION OF SIGN LOCATIONS

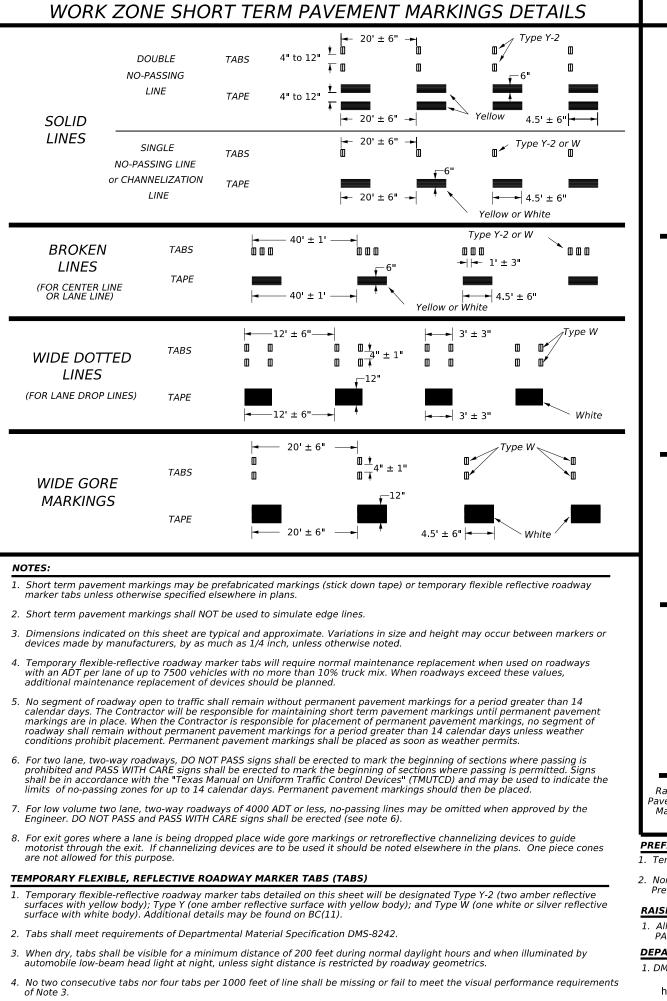
- A. The location of warning signs at the beginning and end of a work area are to be coordinated with other signing typically shown on the Barricade and Construction Standards for project limits to ensure adequate sign spacing.
- Where possible the ROAD WORK AHEAD (CW20-1D), LOOSE GRAVEL (CW8-7), and NO CENTER LINE (CW8-12) signs should be placed in the sequence shown following the OBEY WARNING SIGNS STATE LAW (R20-3T) and the TRAFFIC FINES DOUBLE (R20-5T) sign, and one "X" sign spacing prior to the CONTRACTOR (G20-6T)sign typically located at or near the limits of surfacing. LOOSE GRAVEL and NO CENTER LINE signs will then be repeated as described above.

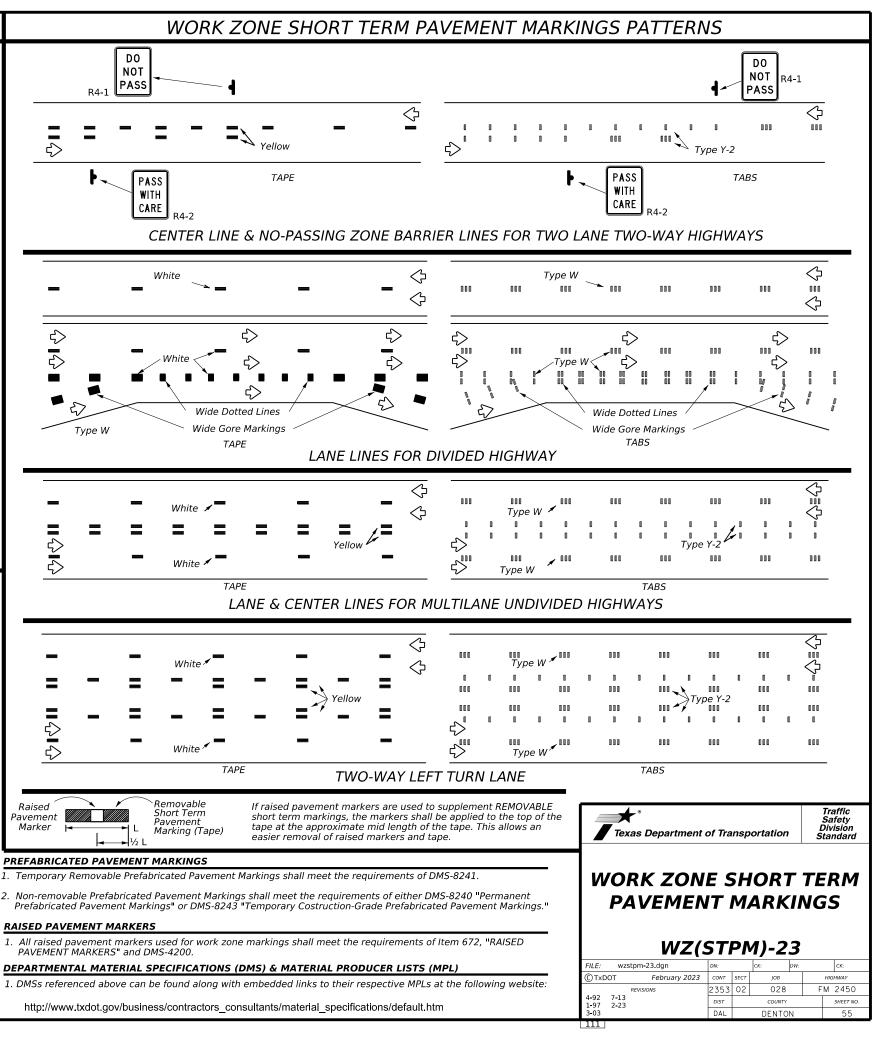
Posted Speed X	Minimum Sign Spacing "X" Distance
30	120'
35	160'
40	240'
45	320'
50	400'
55	500'
60	600'
65	700′
70	800'
75	900′

* Conventional Roads Only

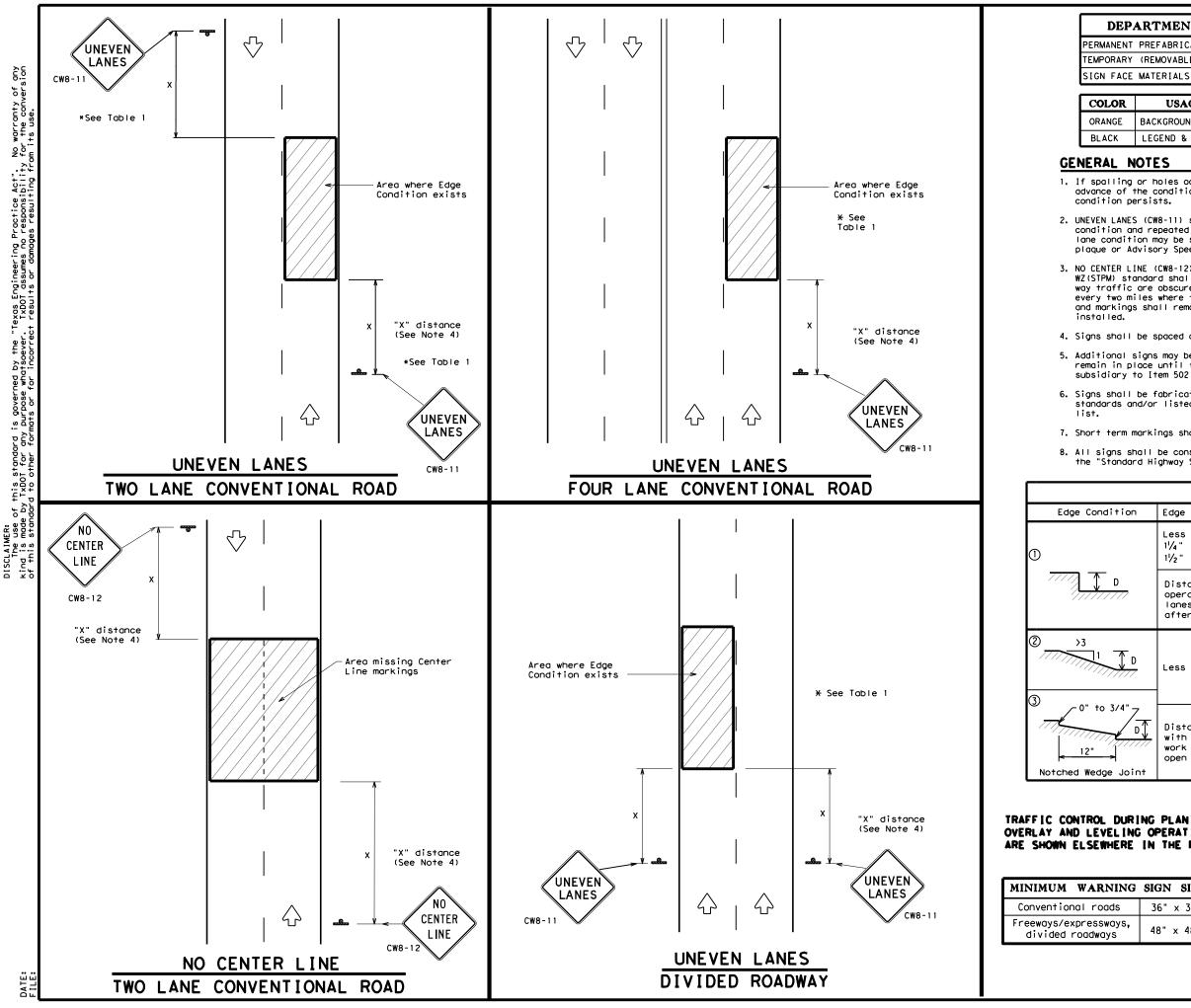
		TYPICAL	USAGE	
MOBILE	SHORT DURATION		INTERMEDIATE TERM STATIONARY	LONG TERM STATIONARY
			1	✓

GENERAL NOTES


- The traffic control devices detailed on this sheet will be furnished and erected as directed by the Engineer on sections of roadway where tabs must be placed prior to the surfacing operation which will cover or obliterate the existing pavement markings.
- The devices shown on this sheet are to be used to 2. supplement those required by the BC Standards or others required elsewhere in the plans.
- Signs shall be erected as detailed on the BC 3. Standards or the Compliant Work Zone Traffic Control Devices List (CWZTCD) on supports approved for Long-Term / Intermediate-Term Work Zone Sign Supports.
- When surfacing operations take place on divided highways, freeways or expressways, the size of diamond shaped construction warning signs shall be 48" x 48".
- Signs on divided highways, freeways and expressways 5. will be placed on both right and left sides of the roadway based on roadway conditions as directed by the Engineer.


Texas Department of Transportation

Traffic Operation Division Standard


TRAFFIC CONTROL DETAILS FOR SURFACING OPERATIONS

		TC	Р(7 -	1)-	1	3		
LE:	tcp7-1.dgn		DN: T)	<dot< th=""><th>ск: TxDOT</th><th>DW:</th><th>TxDC</th><th>)T</th><th>ск: ТхDOT</th></dot<>	ск: TxDOT	DW:	TxDC)T	ск: ТхDOT
)TxDOT	March 1991		CONT	SECT	JOB			нIC	GHWAY
	REVISIONS		2353	02	028		F	М	2450
-92 4-98 -97 7-13			DIST		COUNTY				SHEET NO.
-9/ /-13			DAL		DENTO	N			54

of any conver for the noine DOT by the whats nned 205e is gov any pi f this standard i by TxDOT for a

DEPARTMENTAL MATERIAL SPECIFICATIONS

DMS-8240

DMS-8300

PERMANENT PREFABRICATED PAVEMENT MARKINGS TEMPORARY (REMOVABLE) PREFABRICATED PAVEMENT MARKINGS DMS-8241

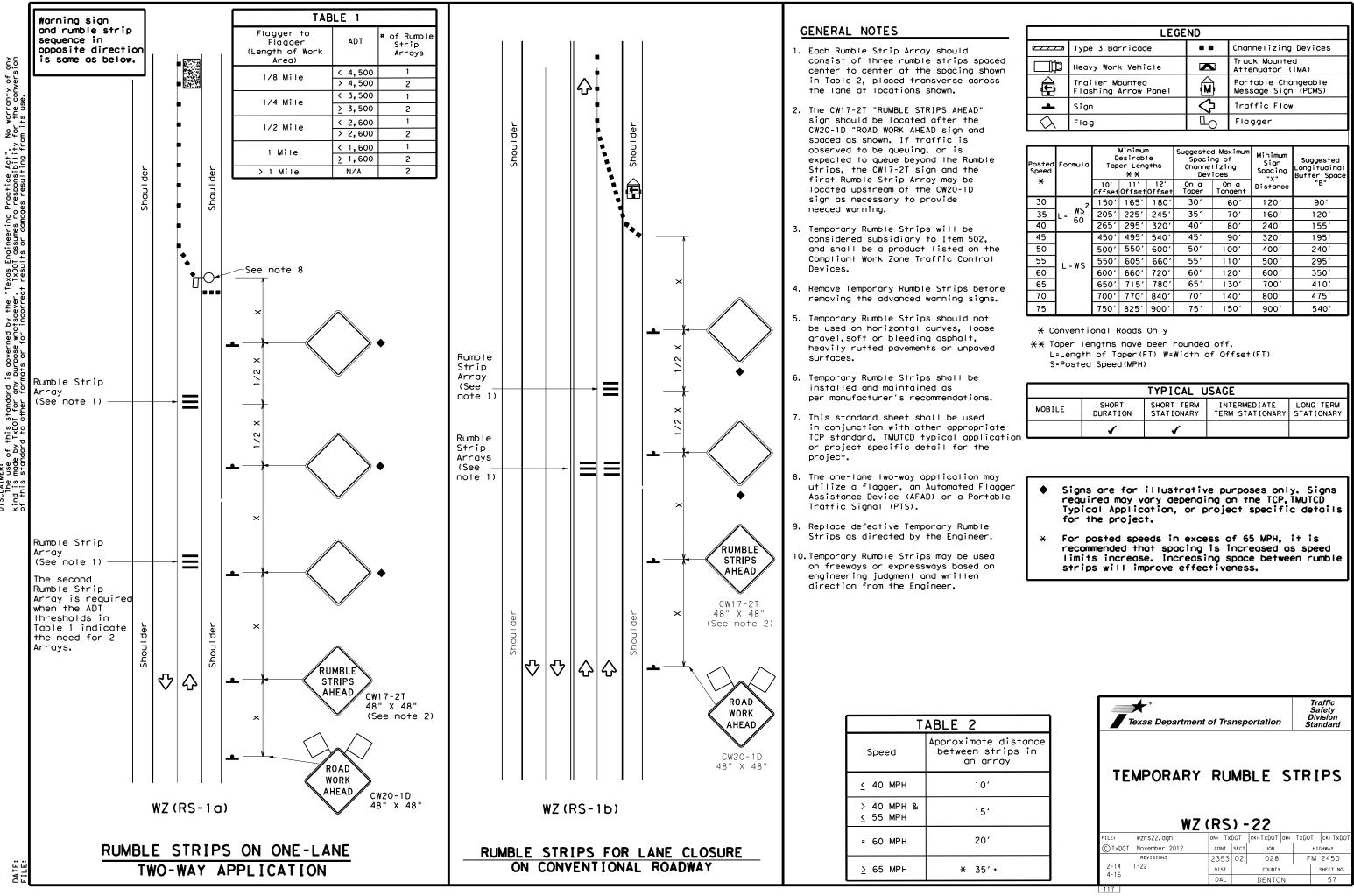
Ł	USAGE	SHEETING MATERIAL
	BACKGROUND	TYPE B _{FL} OR TYPE C _{FL} SHEETING
	LEGEND & BORDERS	ACRYLIC NON-REFLECTIVE SHEETING

1. If spalling or holes occur, ROUGH ROAD (CW8-8) signs should be placed in advance of the condition and be repeated every two miles where the

 UNEVEN LANES (CW8-11) signs shall be installed in advance of the condition and repeated every mile. Signs installed along the uneven lane condition may be supplemented with the NEXT XX MILES (CW7-3aP) plaque or Advisory Speed (CW13-1P) plaque.

3. NO CENTER LINE (CW8-12) signs and temporary pavement markings as per the WZ(STPM) standard shall be installed if yellow centerlines separating two way traffic are obscured or obliterated. Repeat NO CENTER LINE signs every two miles where the center line markings are not in place. The signs and markings shall remain in place until permanent pavement markings are

4. Signs shall be spaced at the distances recommended as per BC standards.

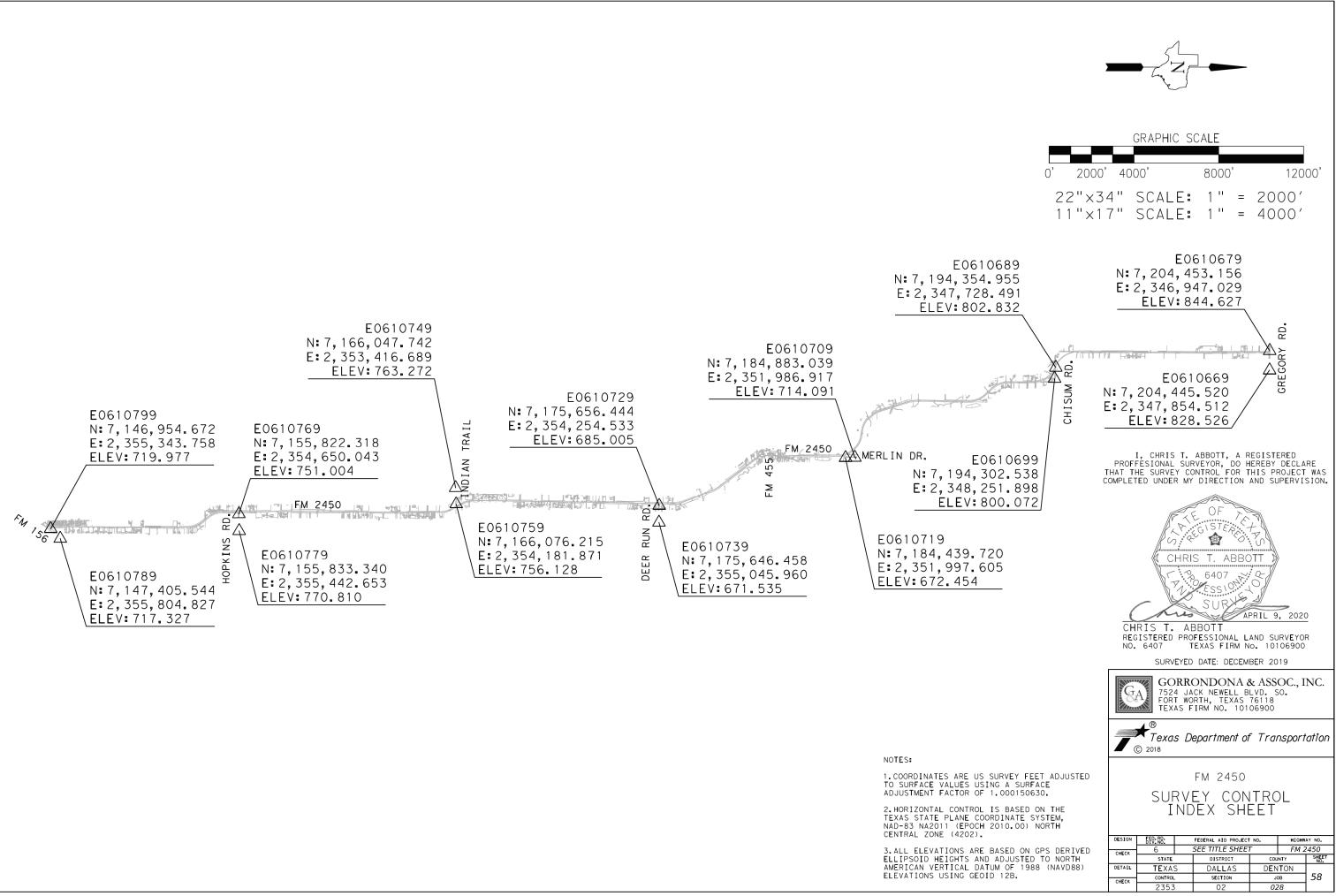

5. Additional signs may be required as directed by the Engineer. Signs shall remain in place until final surface is applied. Signs shall be considered subsidiary to Item 502 "BARRICADES, SIGNS AND TRAFFIC HANDLING."

6. Signs shall be fabricated and mounted on supports as shown on the BC standards and/or listed on the "Compliant Work Zone Traffic Control Devices"

7. Short term markings shall not be used to simulate edge lines.

All signs shall be constructed in accordance with the details found in the "Standard Highway Sign Designs for Texas," latest edition.

	Т	ABLE 1					
ion	Edge Height (D)	* Warnir	ng Devic	es		
	Less than or 1¼" (maximum 1½" (typica)	-planing)	Sig	n: CW8-1	1		
7	Distance "D" operations ar lanes with ea after work op	nd 2" for ove dge condition	erlay operat n 1 are open	ions if	uneven		
, D	Less than or	equal to 3"	si	gn: CW8-	11		
	Distance "D" may be a maximum of 3" if uneven lanes with edge condition 2 or 3 are open to traffic after work operations cease. Uneven lanes should not be open to traffic when "D" is greater than 3".						
ING O	PLANING, PERATIONS THE PLANS,	Texas	。 5 Department (of Transp	ortation	Traffic Operation Division Standard	
			SIGN	ING	FOR		
IG SIG	GN SIZE		UNEVE	N I	ANFS		
	6" × 36"						
5 , 4	8" × 48"		₩Z	(UL)	-13		
•		FILE: W2	zul-13.dgn	DN: TxDOT	CK: TXDOT DW:	TxDOT CK:Tx	:DOT
		C TxDOT Ap	oril 1992	CONT SECT	JOB	HIGHWAY	
		REV	ISIONS	2353 02	028	FM 2450)
		8-95 2-98 7-1	13	DIST	COUNTY	SHEET N	NO.
		1-97 3-03	-	DAL	DENTON	56	
		112		1 =	DENTON		_


ied by the "Texas Engineering Practice Act", whatsoever. TxDDT assumes no responsibility or incorrect results or damages resulting fro SCLAIMER: The use of this standard nd is made by TxDOT for an +his econdard to other for

ed	
wn	
s	

	LEGEND							
	Type 3 Barricade		Channelizing Devices					
	Heavy Work Vehicle		Truck Mounted Attenuator (TMA)					
Ð	Trailer Mounted Flashing Arrow Panel		Portable Changeable Message Sign (PCMS)					
4	Sign	\Diamond	Traffic Flow					
\bigtriangleup	Flag	LO	Flagger					

Posted Formula Speed		Desirable Taper Lengths X X			Suggested Maximum Spacing of Channelizing Devices		Minimum Sign Spacing "x"	Suggested Longitudinal Buffer Space	
*		10' Offset	11' Offset	12' Offset	On a Taper	On a Tangent	Distance	"B"	
30	<u>ws</u> ²	150'	165'	180'	30′	60 <i>'</i>	120'	90 <i>'</i>	
35	$L = \frac{WS}{60}$	205'	225′	245'	35′	70′	1601	120'	
40	60	265'	295'	320'	40′	80′	240'	155′	
45		450'	495′	540'	45′	90′	320'	195'	
50		500'	550'	600′	50 <i>'</i>	100′	400'	240'	
55	L=WS	550'	605′	660 <i>'</i>	55 <i>'</i>	110'	500 <i>ʻ</i>	295′	
60	1 - "3	600 <i>'</i>	660'	720'	60 <i>'</i>	120'	600'	350′	
65		650′	715′	780′	65′	130'	700′	410′	
70		700′	770'	840′	70'	140'	800′	475′	
75		750′	825′	900′	75'	150′	900'	540′	

	TYPICAL USAGE						
	MOBILE	SHORT DURATION	SHORT TERM STATIONARY	INTERMEDIATE TERM STATIONARY	LONG TERM STATIONARY		
e tion		1	1				

HORIZONTAL ALIGNMENT REPORT	
Alignment name: BL CL-54 Alignment description: Report Created: Sunday, October 15, 2023 Time: 2:25:52 PM	
STATION X Y	
POT 0+00.000 R1 2351891.937 PC 0+23.852 R1 2351891.935 Tangential Direction: \$0.005°W Tangential Length: 23.852	7180518.184 7180494.332
PC 0+23.852 R1 2351891.935 PI 0+84.070 R1 2351891.929	7180494.332 7180434.114 180494.315 7180386.015
PT 1+40.075 R1 2351928.161 PC 2+67.232 R1 2352004.667 Tangential Direction: S36.989°E Tangential Length: 127.157	7180386.015 7180284.449
PC 2+67.232 R1 2352004.667 PI 2+72.842 R1 2352008.042 CC 2352643.665 7. PT 2+78.452 R1 2352011.480 Radius: 800.000 Delta: 0.804° Left Degree of Curvature(Arc): 7.162° Length: 11.220 Tangent: 5.610 Chord: 11.220 Middle Ordinate: 0.020 External: 0.020 Tangent Back Direction: S36.989°E Radial Direction: S37.391°E Radial Direction: S37.793°E S57.793°E S57.793°E	7180284.449 7180279.967 180765.782 7180275.534
PT 2+78.452 R1 2352011.480 Pl 3+41.516 R1 2352050.127 Tangential Direction: S37.793°E Tangential Length: 63.064	7180275.534 7180225.699
Pl 3+41.516 R1 2352050.127 Pl 9+33.170 R1 2352405.574 Tangential Direction: S36.925°E Tangential Length: 591.654	7180225.699 7179752.717
Pl 9+33.170 R1 2352405.574 PC 25+73.503 R1 2353385.109 Tangential Direction: S36.667°E Tangential Length: 1640.333	7179752,717 7178436.965
PC 25+73.503 R1 2353385.109 PI 27+33.963 R1 2353480.929 CC 2352412.584 7. PT 28+92.568 R1 2353539.968 Radius: 1212.436 2353539.968 Delta: 15.078° Right 2000 Degree of Curvature(Arc): 4.726° 4.726° Length: 319.065 318.145 Middle Ordinate: 10.481 External: External: 10.572 Tangent Back Direction: \$33.33°W Chord Direction: \$23.33°W S2.333°W Chord Direction: \$29.128°E Radial Direction: \$29.128°E Radial Direction: \$21.589°E	7178436.965 7178308.257 177712.951 7178159.053
PT 28+92.568 R1 2353539.968 Pl 30+39.509 R1 2353594.033 Tangential Direction: S21.589°E Tangential Length: 146.941	7178159.053 7178022.420
PI 30+39.509 R1 2353594.033 PI 44+04.916 R1 2354097.186 Tangential Direction: S21.623°E Tangential Length: 1365.407	7178022.420 7176753.100
Pl 119+69.830 R2 2355266.086 Pl 151+25.793 R2 2355246.649 Tangential Direction: S0.353°W Tangential Length: 3155.963	7150933.553 7147777.649

44+69.014 R1 2354118.765 7176692.744 46+34.974 R1 2354174.636 7176536.472 2353227.229 7176373.998 47+97.595 R1 2354174.025 7176370.513 946.803 PC PI CC PT 946.803 19.884° Right Radius Delta: Degree of Curvature(Arc): 6.051° Length: 328.581 Tangent: 165.960 Chord: 326.935 Middle Ordinate: 14.218 Middle Ordinate: 14.218 External: 14.435 Tangent Back Direction: S19.673°E Radial Direction: S70.327°W Chord Direction: S9.731°E Radial Direction: N89.789°W Radial Direction: N89.789°W Tangent Ahead Direction: S0.211°W PT 47+97.595 R1 2354174.025 PI 49+13.912 R1 2354173.602 Tangential Direction: S0.208°W Tangential Length: 116.317 7176370.513 7176254.197 PI 49+13.912 R1 2354173.602 PI 51+60.386 R1 2354167.991 Tangential Direction: 51.305°W Tangential Length: 246.473 7176254.197 7176007.788 Pl 51+60.386 R1 2354167.991 Pl 74+15.242 R1 2354117.786 Tangential Direction: S1.276°W Tangential Length: 2254.856 7176007.788 7173753.490 PI 74+15.242 R1 2354117.786 PI 82+43.749 R1 2354100.294 Tangential Direction: 51.210°W Tangential Length: 828.507 7173753.490 7172925.168 PI 82+43.749 R1 2354100.294 PI 119+58.961 R1 2354041.967 Tangential Direction: S0.900°W Tangential Length: 3715.212 7172925.168 7169210.414 Pl 119+58.961 R1 2354041.967 PC 142+82.857 R1 2354009.264 Tangential Direction: S0.806°W Tangential Length: 2323.896 7169210.414 7166886.747 PC 142+82.857 R1 2354009.264 7166886.747 PI 145+37.984 R1 2354005.674 7166631.646 CC 2355079.158 7166871.690 PT 147+83.757 R1 2354117.576 7166402.371 145+37.984 R1 2354005.674 /166651.646 2355079.158 7166871.690 147+83.757 R1 2354117.576 7166402.371 5: 1070.000 Raanus. Delta: 20.0-Degree of Curvature(Arc): 5.35. Length: 500.900 Tangent: 255.126 Chord: 496.339 29.17 5.355° Chord: 29.177 Middle Ordinate: 29.995 Tangent Back Direction: 50.806°W Radial Direction: N89.194°W Chord Direction: 512.605°E Padial Direction: 553.984°W S26.016° Tangent Ahead Direction: S26.016°E PT 147+83.757 R1 2354117.576 Pl 148+78.270 R1 2354159.031 Tangential Direction: \$26.016°E Tangential Length: 94.512 7166402.371 7166317.435 PI 148+78.270 R1 2354159.031 PI 153+79.061 R1 2354393.350 Tangential Direction: \$27.898°E Tangential Length: 500.791 7166317.435 7165874.845 Pl 153+79.061 R1 2354393.350 7165874.845 PC 155+16.641 R1 2354453.522 7165751.120 Tangential Direction: S25.935°E Tangential Length: 137.580 155+16.641 R1 2354453.522 716575 157+06.257 R1 2354536.452 7165580 2353577.024 7165324.847 7165751.120 7165580.601 PC PI CC PT 158+91.194 R1 2354549.405 7165391.428 Radius: 974.658 22.018° Right Delta: Degree of Curvature(Arc): 5.879° Length: 374.553 Tangent: 189.616 NOTES: Tangent: 189.616 Chord: 372.252 Middle Ordinate: 17.937 External: 18.273 ngent Back Direction: S25.935°E Radial Direction: S64.065°W (1) HORIZONTAL DATA SHOWN ON THIS PAGE IS FOR DESIGN PURPOSE ONLY. Tangent Back Direction: (2) DO NOT USE THIS INFORMATION FOR CONSTRUCTION Radial Direction: Chord Direction: (3) PERFORM WIDENING OF THE PROJECT ACCORDING TO THE TYPICAL SECTIONS. S14.926°E

Radial Direction:

Tangent Ahead Direction:

S86.083°W

S3.917°E

159+28.988 R1 2354551.987 7165 160+37.611 R1 2354559.407 71652 2351777.725 7165163.76. 161+46.124 R1 2354558.351 7165 5: 2780.758 : 4.474° Right PC PI CC PT Radius: Delta: Degree of Curvature(Arc): 2.060° Length: 217.136 Tangent: 108.623 Chord: 217.081 Middle Ordinate: External: 2.121 Tangent Back Direction: S3.917°E Radial Direction: S86.083°W Chord Direction: S1.680°E Badial Direction: N89.443°W S0.557 PT 161+46.124 R1 2354558.351 PI 162+01.198 R1 2354557.816 Tangential Direction: S0.557°W Tangential Length: 55.074 7164 71650 PI 162+01.198 R1 2354557.816 PI 172+61.916 R1 2354560.992 Tangential Direction: S0.172°E Tangential Length: 1060.719 7165 7164 PI 172+61.916 RI 2354560.992 71640 PI 181+31.249 RI 2354565.752 71631 Tangential Direction: S0.314°E Tangential Length: 869.332 Pl 181+31.249 R1 2354565.752 71631 EQNBK 185+84.000 R1 2354561.806 71 EQNAHD 0+00.000 R2 2354561.806 71 Pl 7+80.352 R2 2354555.004 716191 Tangential Direction: 50.499°W Tangential Length: 1233.104 PI 7+80.352 R2 2354555.004 71619: PI 14+06.088 R2 2354551.845 71612 Tangential Direction: S0.289°W Tangential Length: 625.735 PI 14+06.088 R2 2354551.845 71612 PC 52+47.356 R2 2354523.865 7157 Tangential Direction: S0.417°W Tangential Length: 3841.268 52+47.356 R2 2354523.865 71574 53+70.535 R2 2354522.967 71573 2359023.745 7157418.90. 54+93.652 R2 2354528.810 71572 5: 4500.000 3.136° Left 1.272° PC PI CC PT Radius Delta: Degree of Curvature(Arc): 1. Length: 246.296 Tangent: 123.179 Chord: 246.265 Middlo Ordinate: 266.265 1 273° Middle Ordinate: 1.685 External: 1.686 ngent Back Direction: 50.417°W Midale Urainate: 1.060 External: 1.686 Tangent Back Direction: S0.417°W Radial Direction: N89.583°W Chord Direction: S1.151°E Radial Direction: S87.281°W Tangent Ahead Direction: S2.719°E PT 54+93.652 R2 2354528.810 PI 57+96.939 R2 2354543.195 Tangential Direction: S2.719°E Tangential Length: 303.287 7157 7156902.519 PI 57+96.939 R2 2354543.195 PI 69+71.435 R2 2354537.193 Tangential Direction: S0.293°W Tangential Length: 1174.496 7156902.519 7155728.038

PI 69+71.435 R2 2354537.193 7155728.038 PC 76+23.044 R2 2354534.442 7155076.435 Tangential Direction: S0.242°W Tangential Length: 651.609

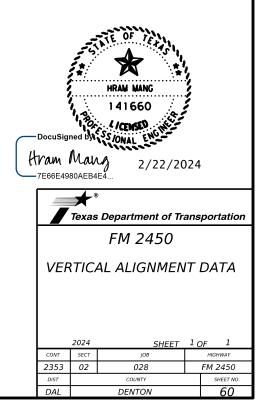
(4) TO VERIFY THE GEOMETRIC DATA SEE AS-BUILT PROJECT.

	PC 76+23.044 R2 2354534.442 7155076.435 PI 80+19.086 R2 2354532.771 7154680.397 CC 2355640.141 7155071.768
65353.723 5245.354 762	PT 83+83.645 R2 2354782.926 7154373.360 Radius: 1105.709 Delta: 39.413° Left
65136.736	Degree of Curvature(Arc): 5.182° Length: 760.601 Tangent: 396.042 Chord: 745.693
	Middle Ordinate: 64.759 External: 68.787 Tangent Back Direction: \$0.242°W
	Radial Direction: N89.758°W Chord Direction: S19.465°E Radial Direction: S50.829°W Tangent Ahead Direction: S39.171°E
65136.736	PT 83+83.645 R2 2354782.926 7154373.360 PC 87+39.494 R2 2355011.903 7154100.967 Tangential Direction: \$40.051°E Tangential Length: 355.849
5081.664	PC 87+39.494 R2 2355011.903 7154100.967
	PI 91+35.936 R2 2355267.000 7153797.501 CC 2354145.303 7153372.492
5081.664 4020.951	PT 95+02.162 R2 2355277.048 7153401.187 Radius: 1132.109 Delta: 38.598° Right
	Degree of Curvature(Arc): 5.061° Length: 762.667 Tangent: 396.441
54020.951 53151.631	Chord: 748.327 Middle Ordinate: 63.618
	External: 67.406 Tangent Back Direction: S40.051°E Radial Direction: S49.949°W Chord Direction: S20.752°E
3151.631 7162698.897 7162698.897	Radial Direction: S88.548°W Tangent Ahead Direction: S1.452°E
918.574	PT 95+02.162 R2 2355277.048 7153401.187 PI 96+29.221 R2 2355277.866 7153274.131 Tangential Direction: \$0.369°E Tangential Length: 127.059
.918.574 1292.847	rungendu Length. 127.055
	Pl 96+29.221 R2 2355277.866 7153274.131 Pl 107+60.977 R2 2355273.297 7152142.384 Tangential Direction: S0.231°W Tangential Length: 1131.756
1292.847 57451.681	
	Pl 107+60.977 R2 2355273.297 7152142.384 Pl 119+69.830 R2 2355266.086 7150933.553 Tangential Direction: S0.342°W Tangential Length: 1208.853
57451.681 7328.505	
902 97205.465	Pl 119+69.830 R2 2355266.086 7150933.553 Pl 151+25.793 R2 2355246.649 7147777.649 Tangential Direction: \$0.353°W Tangential Length: 3155.963
	PI 151+25.793 R2 2355246.649 7147777.649 PI 152+43.117 R2 2355247.402 7147660.328
	Tangential Direction: \$0.368°E Tangential Length: 117.324
	PI 152+43.117 R2 2355247.402 7147660.328 POT 161+14.402 R2 2355275.097 7146789.483 Tangential Direction: S1.822°E Tangential Length: 871.285
57205.465 6902.519	

B Texas Department of Transportation FM 2450 HORIZONTAL ALIGNMENT DATA 2024 SHEET ¹ OF CONT SECT HIGHWAY 2353 02 028 FM 2450 DIST COUNTY SHEET NO. 59 ΠΔΙ DENTON

	EVATION	VPC 52+08.079 R1 VPI 55+70.853 R1 VPT 59+33.626 R1 Length: 725.547 Entrance Grade: 0.002 Exit Grade: 0.016 K Value =: 500.053 Middle Ordinate (E): 1.316	683.654 684.353 690.316	VPC 5+26.191 R2 VPI 12+26.191 R2 VPT 19+26.191 R2 VHP 7+01.061 R2 Length: 1400.000 Entrance Grade: 0.002 Exit Grade: -0.012 K Value =: 1010.392 Middle Ordinate (E): -2.425	763.900 765.112 756.624 764.051
POT -0+10.580 R1 VPC 0+30.221 R1 Tangent Grade: 0.002 Tangent Length: 40.801	677.796 677.892	VPT 59+33.626 R1 VPC 83+11.331 R1 Tangent Grade: 0.016 Tangent Length: 2377.704	690.316 729.396	VPT 19+26.191 R2 VPC 25+37.700 R2 Tangent Grade: -0.012 Tangent Length: 611.509	756.624 749.209
VPC 0+30.221 R1 VPI 1+21.993 R1 VPT 2+13.764 R1 VHP 0+41.784 R1 Length: 183.543 Entrance Grade: 0.002 Exit Grade: -0.035 K Value =: 48.769 Middle Ordinate (E): -0.863	677.892 678.110 674.874 677.906	VPC 83+11.331 R1 VPI 84+69.045 R1 VPT 86+26.759 R1 VHP 84+34.388 R1 Length: 315.428 Entrance Grade: 0.016 Exit Grade: -0.026 K Value =: 74.870 Middle Ordinate (E): -1.661	729.396 731.988 727.936 730.407	VPC 25+37.700 R2 VPI 30+12.700 R2 VPT 34+87.700 R2 VLP 29+96.262 R2 Length: 950.000 Entrance Grade: -0.012 Exit Grade: 0.013 K Value =: 378.186 Middle Ordinate (E): 2.983	749.209 743.450 749.622 746.429
VPT 2+13.764 R1 VPC 5+16.169 R1 Tangent Grade: -0.035 Tangent Length: 302.404	674.874 664.209	VPT 86+26.759 R1 VPC 90+69.664 R1 Tangent Grade: -0.026 Tangent Length: 442.906	727.936 716.556	VPT 34+87.700 R2 VPC 52+81.461 R2 Tangent Grade: 0.013 Tangent Length: 1793.761	749.622 772.931
VPC 5+16.169 R1 VPI 6+66.169 R1 VPT 8+16.169 R1 Length: 300.000 Entrance Grade: -0.035 Exit Grade: -0.007 K Value =: 107.993 Middle Ordinate (E): 1.042	664.209 658.920 657.797	VPC 90+69.664 R1 VPI 92+49.282 R1 VPT 94+28.899 R1 VLP 92+38.860 R1 Length: 359.235 Entrance Grade: -0.026 Exit Grade: 0.029 K Value =: 65.851 Middle Ordinate (E): 2.450	716.556 711.941 717.124 714.382	VPC 52+81.461 R2 VPI 56+06.461 R2 VPT 59+31.461 R2 VHP 55+25.177 R2 Length: 650.000 Entrance Grade: 0.013 Exit Grade: -0.022 K Value =: 187.552 Middle Ordinate (E): -2.816	772.931 777.155 770.114 774.515
VPT 8+16.169 R1 VPC 16+65.295 R1 Tangent Grade: -0.007 Tangent Length: 849.126	657.797 651.441	VPT 94+28.899 R1 VPC 97+03.417 R1 Tangent Grade: 0.029 Tangent Length: 274.518	717.124 725.047	VPT 59+31.461 R2 VPC 62+10.045 R2 Tangent Grade: -0.022 Tangent Length: 278.584	770.114 764.080
VPC 16+65.295 R1 VPI 20+85.475 R1 PVCC 25+05.655 R1 VLP 20+31.280 R1 Length: 840.360 Entrance Grade: -0.007 Exit Grade: 0.010	651.441 648.296 652.373 650.072	VPC 97+03.417 R1 VPI 100+34.118 R1 VPT 103+64.819 R1 Length: 661.402 Entrance Grade: 0.029	725.047 734.590 734.956	VPC 62+10.045 R2 VPI 68+66.700 R2 VPT 75+23.355 R2 Length: 1313.310 Entrance Grade: -0.022	764.080 749.855 749.182
K Value =: 488.966 Middle Ordinate (E): 1.805 PVCC 25+05.655 R1 VPI 27+30.088 R1 PVRC 29+54.522 R1 Length: 448.866 Entrance Grade: 0.010	652.373 654.550 658.719	Exit Grade: 0.001 K Value =: 238.305 Middle Ordinate (E): -2.295 VPT 103+64.819 R1 VPC 103+86.672 R1 Tangent Grade: 0.001 Tangent Length: 21.853	734.956 734.980	Exit Grade: -0.001 K Value =: 636.344 Middle Ordinate (E): 3.388 VPT 75+23.355 R2 VPC 83+57.526 R2 Tangent Grade: -0.001 Tangent Length: 834.171	749.182 748.328
Exit Grade: 0.019 Exit Grade: 0.019 K Value =: 505.954 Middle Ordinate (E): 0.498 PVRC 29+54.522 R1	658.719	VPC 103+86.672 R1 VPI 104+86.672 R1 VPT 105+86.672 R1 Length: 200.000	734.980 735.090 738.357	VPC 83+57.526 R2 VPI 88+32.526 R2 VPT 93+07.526 R2 VLP 83+96.497 R2 Length: 950.000	748.328 747.842 759.213 748.308
VPI 31+34.499 R1 VPT 33+14.476 R1 Length: 359.954 Entrance Grade: 0.019	662.061 662.823	Entrance Grade: 0.001 Exit Grade: 0.033 K Value =: 63.363 Middle Ordinate (E): 0.789		Entrance Grade: -0.001 Exit Grade: 0.024 K Value =: 380.551 Middle Ordinate (E): 2.964	
Exit Grade: 0.004 K Value ≕ 250.986 Middle Ordinate (E): -0.645	662.022	VPT 105+86.672 R1 VPC 113+15.702 R1 Tangent Grade: 0.033 Tangent Length: 729.031	738.357 762.174	VPT 93+07.526 R2 VPC 94+23.713 R2 Tangent Grade: 0.024 Tangent Length: 116.187	759.213 761.994
VPT 33+14.476 R1 VPC 38+59.583 R1 Tangent Grade: 0.004 Tangent Length: 545.107 VPC 38+59.583 R1 VPI 39+02.172 R1 VPT 39+44.761 R1 Length: 85.178	662.823 665.130 665.310 665.310 666.561	VPC 113+15.702 R1 VPI 114+89.040 R1 VPT 116+62.378 R1 VHP 115+64.265 R1 Length: 346.676 Entrance Grade: 0.033 Exit Grade: -0.013 K Value =: 76.085 Middle Ordinate (E): -1.974	762.174 767.837 765.602 766.234	VPC 94+23.713 R2 VPI 100+77.234 R2 VPT 107+30.754 R2 VHP 101+70.151 R2 Length: 1307.041 Entrance Grade: 0.024 Exit Grade: -0.018 K Value =: 311.799 Middle Ordinate (E): -6.849	761.994 777.640 765.890 770.929
Entrance Grade: 0.004 Entrance Grade: 0.029 Exit Grade: 0.029 K Value =: 33.882 Middle Ordinate (E): 0.268		VPT 116+62.378 R1 VPC 120+59.473 R1 Tangent Grade: -0.013 Tangent Length: 397.094	765.602 760.481	VPT 107+30.754 R2 VPC 112+32.252 R2 Tangent Grade: -0.018 Tangent Length: 501.498	765.890 756.873
VPT 39+44.761 R1 VPC 42+07.922 R1 Tangent Grade: 0.029 Tangent Length: 263.161	666.561 674.290	VPC 120+59.473 R1 VPI 126+60.027 R1 VPT 132+60.580 R1 VLT 131+18.450 R1	760.481 752.737 753.776 753.653	VPC 112+32.252 R2 VPI 117+32.252 R2 VPT 122+32.252 R2	756.873 747.883 743.995
VPC 42+07.922 R1 VPI 44+78.893 R1 VPT 47+49.864 R1 Length: 541.942	674.290 682.249 682.771	Length: 1201.108 Entrance Grade: -0.013 Exit Grade: 0.002 K Value =: 821.222 Middle Ordinate (E): 2.196		Length: 1000.000 Entrance Grade: -0.018 Exit Grade: -0.008 K Value =: 980.008 Middle Ordinate (E): 1.276	
Entrance Grade: 0.029 Entrance Grade: 0.029 Exit Grade: 0.002 K Value =: 197.468 Middle Ordinate (E): -1.859		VPT 132+60.580 R1 EQNBK 185+84.000 R1 EQNAHD 0+00.000 R2 VPC 5+26.191 R2	753.776 763.900	VPT 122+32.252 R2 VPC 144+33.350 R2 Tangent Grade: -0.008 Tangent Length: 2201.098	743.995 726.880
VPT 47+49.864 R1 VPC 52+08.079 R1 Tangent Grade: 0.002 Tangent Length: 458.215	682.771 683.654	Tangent Grade: 0.002 Tangent Length: 5849.611		VPC 144+33.350 R2 VPI 149+33.350 R2	726.880 722.992

DN: CK: DW:


1:54:36 PM ectwiseonline 2/22/2024 pw://txdof. DATE:

NOTES:

VERTICAL DATA SHOWN
 ON THIS PAGE IS FOR DESIGN PURPOSE ONLY.
 DO NOT USE THIS INFORMATION FOR CONSTRUCTION.

(3) PERFORM WIDENING OF THE PROJECT ACCORDING TO THE TYPICAL SECTIONS.

(4) TO VERIFY THE GEOMETRIC DATA SEE AS-BUILT PROJECT.

	Supe	erelevation : LT		Superelevation : RT			
CURVE NO	Point Type	STATION	Cross Slope	Point Type	Station	Cross Slope	
	Start Point	0+00.000 R1	-0.04	Start Point	0+00.000 R1	0.04	
1	Full Super	0+59.642 R1	-0.06	Full Super	0+59.642 R1	0.06	
I	Full Super	1+04.285 R1	-0.06	Full Super	1+04.285 R1	0.06	
	End Point	1+67.468 R1	-0.039	End Point	1+67.468 R1	0.039	
	Normal Crown	24+00.000 R1	-0.02	Normal Crown	24+00.000 R1	-0.02	
	Normal Crown	24+09.826 R1	-0.02	Normal Crown	24+09.826 R1	-0.02	
	Level Crown	24+69.475 R1	0	Full Super	25+99.510 R1	-0.044	
	Reverse Crown	25+29.125 R1	0.02	Full Super	28+66.561 R1	-0.044	
2	Full Super	25+99.510 R1	0.044	Normal Crown	30+56.245 R1	-0.02	
2	Full Super	28+66.561 R1	0.044	Normal Crown	31+00.000 R1	-0.02	
	Reverse Crown	29+36.947 R1	0.02				
	Level Crown	29+96.596 R1	0				
	Normal Crown	30+56.245 R1	-0.02				
	Normal Crown	31+00.000 R1	-0.02				
	Normal Crown	41+00.000 R1	-0.02	Normal Crown	41+00.000 R1	-0.02	
	Normal Crown	42+92.214 R1	-0.02	Normal Crown	44+11.513 R1	-0.02	
	Level Crown	43+51.863 R1	0	Full Super	44+98.302 R1	-0.049	
3	Reverse Crown	44+11.513 R1	0.02	Full Super	47+68.308 R1	-0.049	
	Full Super	44+98.302 R1	0.049	Normal Crown	48+55.097 R1	-0.02	
	Full Super	47+68.308 R1	0.049	Normal Crown	51+00.000 R1	-0.02	
	Reverse Crown	48+55.097 R1	0.02				
	Level Crown	49+14.746 R1	0				
	Normal Crown	49+74.395 R1	-0.02				
	Normal Crown	51+00.000 R1	-0.02				

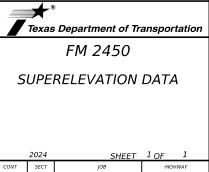
Superelevation :: IT Superelevation :: RT Normal Crown 140+00.000 R1 -0.02 Normal Crown 141+12.500 R1 -0.02 Normal Crown 141+12.500 R1 -0.02 Normal Crown 141+12.500 R1 -0.02 Full Super 143+10.535 R1 -0.046 Level Crown 141+72.149 R1 0.02 Full Super 147+56.080 R1 -0.02 Full Super 143+10.535 R1 0.046 Normal Crown 153+41.273 R1 -0.02 Full Super 148+34.817 R1 0.046 Level Crown 154+00.571 R1 0.02 Level Crown 148+34.817 R1 -0.02 Full Super 158+05.071 R1 0.049 Normal Crown 148+34.817 R1 -0.02 Full Super 158+06.204 R1 -0.02 Normal Crown 148+34.817 R1 -0.02 Full Super 158+45.71 R1 0.049 Normal Crown 138+40.802 R1 -0.02 Full Super 158+42.264 R1 0.02 Full Super 158+43.178 R1 -0.02 Reverse Crown 158+42.264 R1 0.02 <t< th=""><th></th><th>C</th><th></th><th></th><th colspan="3">Superal austion · DT</th></t<>		C			Superal austion · DT		
Normal Crown 141+12.500 R1 -0.02 Normal Crown 141+12.500 R1 -0.02 Full Super 143+10.535 R1 -0.046 Level Crown 141+72.149 R1 0 Full Super 147+56.080 R1 -0.046 Reverse Crown 142+31.0535 R1 0.02 Normal Crown 153+41.273 R1 -0.02 Full Super 143+10.535 R1 0.046 Normal Crown 153+40.922 R1 0 Reverse Crown 148+34.817 R1 0.02 Reverse Crown 154+60.571 R1 0.02 Normal Crown 148+34.817 R1 0.02 Normal Crown 158+65.571 R1 0.049 Normal Crown 148+54.115 R1 -0.02 Normal Crown 158+66.660 R1 0 Normal Crown 158+68.020 R1 -0.02 Reverse Crown 159+27.318 R1 0.02 Full Super 159+46.808.020 R1 -0.02 Reverse Crown 159+27.318 R1 0.02 Full Super 159+44.318 R1 -0.026 Reverse Crown 159+47.264 R1 0.02 Normal Crown 160+66.563 R1 -0.02		· · ·		0.02			0.02
Full Super 143+10.535 R1 -0.046 Level Crown 141+72.149 R1 0 Full Super 147+56.080 R1 -0.02 Full Super 143+10.535 R1 0.02 Normal Crown 149+54.115 R1 -0.02 Full Super 143+10.535 R1 0.046 Normal Crown 153+41.273 R1 -0.02 Full Super 147+55.080 R1 0.046 Level Crown 154+60.571 R1 0.02 Level Crown 148+94.466 R1 0 Full Super 155+45.571 R1 0.02 Normal Crown 148+94.466 R1 0 Normal Crown 158+62.264 R1 0.049 Normal Crown 153+41.273 R1 -0.02 Reverse Crown 158+67.669 R1 0 Normal Crown 158+68.202 R1 -0.049 Full Super 158+67.669 R1 0.02 Normal Crown 158+62.264 R1 -0.02 Reverse Crown 159+44.318 R1 0.02 Full Super 158+62.264 R1 -0.02 Reverse Crown 159+47.218 R1 0.02 Normal Crown 169+65.63 R1 -0.02 Rev							
Full Super 147+56.080 R1 -0.046 Reverse Crown 142+31.798 R1 0.02 Normal Crown 149+54.115 R1 -0.02 Full Super 143+10.335 R1 0.046 Normal Crown 153+41.273 R1 -0.02 Full Super 147+56.080 R1 0.046 Level Crown 154+00.922 R1 0 Reverse Crown 148+34.817 R1 0.02 Reverse Crown 154+60.571 R1 0.02 Level Crown 148+34.817 R1 -0.02 Normal Crown 158+62.054 R1 -0.049 Normal Crown 148+94.466 R1 -0.02 Normal Crown 158+62.264 R1 -0.02 Normal Crown 158+45.571 R1 -0.02 Level Crown 158+67.669 R1 0 Normal Crown 158+45.571 R1 -0.02 Reverse Crown 159+47.318 R1 0.02 Full Super 158+45.571 R1 -0.02 Reverse Crown 159+47.264 R1 0 Normal Crown 160+66.563 R1 -0.02 Level Crown 160+66.51 R1 -0.02 Normal Crown 161+47.794 R1 -0.02							
Normal Crown 149+54.115 R1 -0.02 Full Super 143+10.535 R1 0.046 Normal Crown 153+41.273 R1 -0.02 Full Super 147+56.080 R1 0.046 Level Crown 154+00.922 R1 0 Reverse Crown 148+34.817 R1 0.02 Reverse Crown 154+05.771 R1 0.02 Level Crown 148+94.466 R1 0 Full Super 155+45.571 R1 0.049 Normal Crown 153+41.273 R1 -0.02 Normal Crown 158+08.020 R1 0.02 Normal Crown 158+45.571 R1 -0.02 Full Super 158+62.264 R1 0.049 Full Super 158+45.571 R1 -0.02 Reverse Crown 159+27.318 R1 0.02 Full Super 158+45.264 R1 -0.02 Reverse Crown 159+43.18 R1 0.02 Normal Crown 160+66.563 R1 -0.02 I Level Crown 160+66.513 R1 0.02 Normal Crown 162+67.092 R1 -0.02 Full Super 161+30.794 R1 0.02 Normal Crown 162+67.092 R1 -0.02		· · ·					
Normal Crown 153+41.273 R1 -0.02 Full Super 147+56.080 R1 0.046 Level Crown 154+00.571 R1 0.02 Level Crown 148+34.817 R1 0.02 Reverse Crown 158+65.571 R1 0.02 Level Crown 148+94.466 R1 0 Full Super 155+45.571 R1 0.02 Normal Crown 149+54.115 R1 -0.02 Normal Crown 158+62.264 R1 0.049 Normal Crown 158+45.571 R1 -0.02 Reverse Crown 158+62.264 R1 0.049 Full Super 158+62.264 R1 -0.02 Reverse Crown 159+27.318 R1 0.02 Full Super 158+62.264 R1 -0.026 Reverse Crown 159+47.364 R1 0.02 Normal Crown 160+66.563 R1 -0.02 Level Crown 160+66.563 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Full Super 161+47.794 R1 0.02 Normal Crown 162+67.092 R1 -0.02 Reverse Crown 162+67.092 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Level Crown 154+00.922 R1 0 Reverse Crown 148+34.817 R1 0.02 Reverse Crown 154+60.571 R1 0.02 Level Crown 148+94.466 R1 0 Full Super 155+45.571 R1 0.049 Normal Crown 135+41.273 R1 -0.02 Normal Crown 158+08.020 R1 0.049 Normal Crown 153+41.273 R1 -0.02 Full Super 158+62.264 R1 0.049 Full Super 155+45.571 R1 -0.02 Reverse Crown 159+27.318 R1 0.02 Full Super 158+62.264 R1 -0.049 Full Super 159+47.264 R1 0.02 Normal Crown 160+66.563 R1 -0.02 Reverse Crown 160+66.563 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Level Crown 160+66.563 R1 -0.02 Normal Crown 162+07.438 R1 -0.02 Reverse Crown 161+7.794 R1 0.02 Normal Crown 163+00.000 R1 -0.02 Reverse Crown 162+07.438 R1 0 - - - Normal Crown					•		
Reverse Crown 154+60.571 R1 0.02 Level Crown 148+94.466 R1 0 Full Super 155+45.571 R1 0.049 Normal Crown 149+54.115 R1 -0.02 Normal Crown 158+68.020 R1 -0.02 Normal Crown 153+41.273 R1 -0.02 Full Super 158+62.669 R1 0 Normal Crown 158+62.020 R1 -0.02 Reverse Crown 159+27.318 R1 0.02 Full Super 159+43.571 R1 -0.02 Reverse Crown 159+47.318 R1 0.02 Full Super 159+43.318 R1 -0.026 Reverse Crown 159+47.264 R1 0.02 Normal Crown 160+66.563 R1 -0.02 Level Crown 160+66.563 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Full Super 161+30.794 R1 0.02 Normal Crown 163+00.000 R1 -0.02 Reverse Crown 161+47.794 R1 0.02 Normal Crown 163+00.000 R1 -0.02 Reverse Crown 162+67.092 R1 -0.02 Normal Crown 163+00.000 R2 -0.005 <					•		
4 Full Super 155+45.571 R1 0.049 Normal Crown 149+54.115 R1 -0.02 Normal Crown 158+08.020 R1 -0.02 Normal Crown 153+41.273 R1 -0.02 Full Super 158+62.264 R1 0.049 Full Super 155+45.571 R1 -0.02 Reverse Crown 159+27.318 R1 0.02 Full Super 158+62.264 R1 -0.049 Issuer 159+27.318 R1 0.02 Full Super 158+62.264 R1 -0.049 Full Super 159+47.318 R1 0.02 Full Super 159+44.318 R1 -0.02 Reverse Crown 159+47.264 R1 0.02 Normal Crown 160+66.563 R1 -0.02 Level Crown 160+66.563 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Full Super 161+30.794 R1 0.02 Normal Crown 162+67.092 R1 -0.02 Reverse Crown 162+67.092 R1 -0.02 - - - Normal Crown 162+67.092 R1 -0.02 - - - Normal Crown		Level Crown	154+00.922 R1		Reverse Crown	148+34.817 R1	
Normal Crown 158+08.020 R1 -0.02 Normal Crown 153+41.273 R1 -0.02 Full Super 158+62.264 R1 0.049 Full Super 155+45.571 R1 -0.049 Level Crown 158+67.669 R1 0 Normal Crown 158+08.020 R1 -0.02 Reverse Crown 159+47.318 R1 0.02 Full Super 159+44.318 R1 -0.02 Reverse Crown 159+47.264 R1 0.02 Normal Crown 160+66.563 R1 -0.02 Level Crown 160+66.563 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Full Super 161+30.794 R1 0.02 Normal Crown 163+00.000 R1 -0.02 Reverse Crown 162+67.092 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Reverse Crown 161+30.794 R1 0.02 - - - - Normal Crown 162+67.092 R1 -0.02 - - - - Normal Crown 162+67.092 R1 -0.02 - - - - - - </td <td></td> <td></td> <td>154+60.571 R1</td> <td>0.02</td> <td>Level Crown</td> <td>148+94.466 R1</td> <td>-</td>			154+60.571 R1	0.02	Level Crown	148+94.466 R1	-
4 Full Super 158+62.264 R1 0.049 Full Super 155+45.571 R1 -0.049 Level Crown 158+67.669 R1 0 Normal Crown 158+62.264 R1 -0.02 Reverse Crown 159+27.318 R1 0.02 Full Super 158+62.264 R1 -0.049 Full Super 159+44.318 R1 0.026 Full Super 159+44.318 R1 -0.026 Reverse Crown 159+47.264 R1 0.02 Normal Crown 160+66.563 R1 -0.02 Level Crown 160+66.563 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Full Super 161+30.794 R1 0.026 Normal Crown 163+00.000 R1 -0.02 Reverse Crown 162+67.092 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 - - - Normal Crown 162+67.092 R1 -0.02 - - Normal Crown 162+		Full Super	155+45.571 R1	0.049	Normal Crown	149+54.115 R1	-0.02
4 Level Crown 158+67.669 R1 0 Normal Crown 158+08.020 R1 -0.02 Reverse Crown 159+27.318 R1 0.02 Full Super 158+62.264 R1 -0.049 Full Super 159+44.318 R1 0.026 Full Super 159+44.318 R1 -0.026 Reverse Crown 159+47.264 R1 0.02 Normal Crown 160+66.563 R1 -0.02 Level Crown 160+66.563 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Normal Crown 161+30.794 R1 0.026 Normal Crown 163+00.000 R1 -0.02 Reverse Crown 161+47.794 R1 0.02 Normal Crown 162+67.092 R1 -0.02 Level Crown 162+67.092 R1 -0.02 - - Normal Crown 163+00.000 R1 -0.02 - - - Normal Crown 163+00.000 R1 -0.02 - - - Normal Crown 163+00.000 R2 0.005 Start Point 75+00.000 R2 -0.02 Full Super 76+50.304 R2 </td <td></td> <td>Normal Crown</td> <td>158+08.020 R1</td> <td>-0.02</td> <td>Normal Crown</td> <td>153+41.273 R1</td> <td>-0.02</td>		Normal Crown	158+08.020 R1	-0.02	Normal Crown	153+41.273 R1	-0.02
Level Crown 158+67.669 R1 0 Normal Crown 158+08.020 R1 -0.02 Reverse Crown 159+27.318 R1 0.02 Full Super 158+62.264 R1 -0.049 Full Super 159+44.318 R1 0.026 Full Super 159+44.318 R1 -0.026 Reverse Crown 159+47.264 R1 0.02 Normal Crown 160+66.563 R1 -0.02 Level Crown 160+66.563 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Full Super 161+30.794 R1 0.026 Normal Crown 163+00.000 R1 -0.02 Reverse Crown 162+67.092 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Level Crown 162+67.092 R1 -0.02 - - Normal Crown 162+67.092 R1 -0.02 -	4	Full Super	158+62.264 R1	0.049	Full Super	155+45.571 R1	-0.049
Full Super 159+44.318 R1 0.026 Full Super 159+44.318 R1 -0.026 Reverse Crown 159+47.264 R1 0.02 Normal Crown 160+66.563 R1 -0.02 Level Crown 160+66.563 R1 0 Full Super 161+30.794 R1 -0.02 Normal Crown 160+66.563 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Full Super 161+47.794 R1 0.02 Normal Crown 163+00.000 R1 -0.02 Reverse Crown 162+67.092 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Normal Crown 162+67.092 R1 -0.02	7	Level Crown	158+67.669 R1	0	Normal Crown	158+08.020 R1	-0.02
Reverse Crown 159+47.264 R1 0.02 Normal Crown 160+66.563 R1 -0.02 Level Crown 160+66.563 R1 0 Full Super 161+30.794 R1 -0.02 Normal Crown 160+66.563 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Full Super 161+30.794 R1 0.026 Normal Crown 163+00.000 R1 -0.02 Reverse Crown 161+47.794 R1 0.02 - - - Level Crown 162+67.092 R1 -0.02 - - - Normal Crown 162+67.092 R1 -0.02 - - - Normal Crown 163+00.000 R1 -0.02 - - - Normal Crown 163+00.000 R2 0.005 Start Point 75+00.000 R2 -0.002 Full Super 76+50.304 R2 -0.046 Level Crown 75+14.006 R2 0 Full Super 83+56.385 R2 -0.046 Reverse Crown 75+3.655 R2 0.02 Normal Crown 85+72.333 R2 -0.02 Full Super <td></td> <td>Reverse Crown</td> <td>159+27.318 R1</td> <td>0.02</td> <td>Full Super</td> <td>158+62.264 R1</td> <td>-0.049</td>		Reverse Crown	159+27.318 R1	0.02	Full Super	158+62.264 R1	-0.049
Level Crown 160+06.914 R1 0 Full Super 161+30.794 R1 -0.026 Normal Crown 160+66.563 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Full Super 161+30.794 R1 0.026 Normal Crown 163+00.000 R1 -0.02 Reverse Crown 161+47.794 R1 0.02 Normal Crown 163+00.000 R1 -0.02 Level Crown 162+07.443 R1 0 Normal Crown 162+07.092 R1 -0.02 Normal Crown 163+00.000 R1 -0.02 Normal Crown 163+00.000 R1 -0.02 Start Point 75+00.000 R2 0.005 Start Point 75+00.000 R2 -0.002		Full Super	159+44.318 R1	0.026	Full Super	159+44.318 R1	-0.026
Normal Crown 160+66.563 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Full Super 161+30.794 R1 0.026 Normal Crown 163+00.000 R1 -0.02 Reverse Crown 161+47.794 R1 0.02 Level Crown 162+67.092 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 Normal Crown 162+67.092 R1 -0.02 <td< td=""><td></td><td>Reverse Crown</td><td>159+47.264 R1</td><td>0.02</td><td>Normal Crown</td><td>160+66.563 R1</td><td>-0.02</td></td<>		Reverse Crown	159+47.264 R1	0.02	Normal Crown	160+66.563 R1	-0.02
Full Super 161+30.794 R1 0.026 Normal Crown 163+00.000 R1 -0.02 Reverse Crown 161+47.794 R1 0.02		Level Crown	160+06.914 R1	0	Full Super	161+30.794 R1	-0.026
Reverse Crown 161+47.794 R1 0.02 Image: constraint of the system of		Normal Crown	160+66.563 R1	-0.02	Normal Crown	162+67.092 R1	-0.02
Level Crown 162+07.443 R1 0 Image: Crown 162+67.092 R1 -0.02 Normal Crown 163+00.000 R1 -0.02 Image: Crown 163+00.000 R1 -0.02 Normal Crown 163+00.000 R1 -0.02 Image: Crown 163+00.000 R2 0.005 Start Point 75+00.000 R2 0.005 Start Point 75+10.000 R2 -0.005 Full Super 76+50.304 R2 -0.046 Level Crown 75+73.655 R2 0.02 Full Super 83+56.385 R2 -0.046 Reverse Crown 75+73.655 R2 0.02 Normal Crown 85+52.333 R2 -0.02 Full Super 76+50.304 R2 0.046 Normal Crown 85+72.000 R2 -0.02 Full Super 83+56.385 R2 0.046 Normal Crown 86+91.298 R2 0.02 Evel Crown 84+33.034 R2 0.02 Full Super 87+66.456 R2 0.045 Normal Crown 85+52.333 R2 -0.02 Full Super 94+75.200 R2 0.045 Normal Crown 85+52.333 R2 -0.02 Full		Full Super	161+30.794 R1	0.026	Normal Crown	163+00.000 R1	-0.02
Normal Crown 162+67.092 R1 -0.02 Image: Constant of the second secon		Reverse Crown	161+47.794 R1	0.02			
Normal Crown 163+00.000 R1 -0.02 Image: Comparison of the compar		Level Crown	162+07.443 R1	0			
Start Point 75+00.000 R2 0.005 Start Point 75+00.000 R2 -0.005 Full Super 76+50.304 R2 -0.046 Level Crown 75+14.006 R2 0 Full Super 83+56.385 R2 -0.046 Reverse Crown 75+73.655 R2 0.02 Normal Crown 85+52.333 R2 -0.02 Full Super 76+50.304 R2 0.046 Normal Crown 85+72.000 R2 -0.02 Full Super 83+56.385 R2 0.046 Normal Crown 85+72.000 R2 -0.02 Full Super 83+56.385 R2 0.046 Level Crown 86+31.649 R2 0 Reverse Crown 84+33.034 R2 0.02 Reverse Crown 86+91.298 R2 0.02 Level Crown 84+92.684 R2 0 Full Super 87+66.456 R2 0.045 Normal Crown 85+52.333 R2 -0.02 Full Super 94+75.200 R2 0.045 Normal Crown 85+52.333 R2 -0.02 Full Super 94+75.000 R2 0.045 Normal Crown 85+52.00 R2 -0.045 Level Crown		Normal Crown	162+67.092 R1	-0.02			
Full Super 76+50.304 R2 -0.046 Level Crown 75+14.006 R2 0 Full Super 83+56.385 R2 -0.046 Reverse Crown 75+73.655 R2 0.02 Normal Crown 85+52.333 R2 -0.02 Full Super 76+50.304 R2 0.046 Normal Crown 85+72.000 R2 -0.02 Full Super 76+50.304 R2 0.046 Normal Crown 85+72.000 R2 -0.02 Full Super 83+56.385 R2 0.046 Level Crown 86+31.649 R2 0 Reverse Crown 84+33.034 R2 0.02 Full Super 87+66.456 R2 0.02 Level Crown 84+92.684 R2 0 Full Super 87+66.456 R2 0.045 Normal Crown 85+52.333 R2 -0.02 Full Super 94+75.200 R2 0.045 Normal Crown 85+72.000 R2 -0.02 Reverse Crown 95+50.358 R2 0.02 Full Super 87+66.456 R2 -0.045 Level Crown 96+10.007 R2 0 Full Super 94+75.200 R2 -0.045 Normal Crown		Normal Crown	163+00.000 R1	-0.02			
Full Super 76+50.304 R2 -0.046 Level Crown 75+14.006 R2 0 Full Super 83+56.385 R2 -0.046 Reverse Crown 75+73.655 R2 0.02 Normal Crown 85+52.333 R2 -0.02 Full Super 76+50.304 R2 0.046 Normal Crown 85+72.000 R2 -0.02 Full Super 76+50.304 R2 0.046 Normal Crown 85+72.000 R2 -0.02 Full Super 83+56.385 R2 0.046 Level Crown 86+31.649 R2 0 Reverse Crown 84+33.034 R2 0.02 Full Super 87+66.456 R2 0.02 Level Crown 84+92.684 R2 0 Full Super 87+66.456 R2 0.045 Normal Crown 85+52.333 R2 -0.02 Full Super 94+75.200 R2 0.045 Normal Crown 85+72.000 R2 -0.02 Reverse Crown 95+50.358 R2 0.02 Full Super 87+66.456 R2 -0.045 Level Crown 96+10.007 R2 0 Full Super 94+75.200 R2 -0.045 Normal Crown							
Full Super 83+56.385 R2 -0.046 Reverse Crown 75+73.655 R2 0.02 Normal Crown 85+52.333 R2 -0.02 Full Super 76+50.304 R2 0.046 Normal Crown 85+72.000 R2 -0.02 Full Super 83+56.385 R2 0.046 Level Crown 86+31.649 R2 0 Reverse Crown 84+33.034 R2 0.02 5 Reverse Crown 86+91.298 R2 0.02 Level Crown 84+92.684 R2 0 6 Full Super 87+66.456 R2 0.045 Normal Crown 85+52.333 R2 -0.02 7 Full Super 94+75.200 R2 0.045 Normal Crown 85+52.333 R2 -0.02 8 Full Super 94+75.200 R2 0.045 Normal Crown 85+72.000 R2 -0.02 9 Full Super 95+50.358 R2 0.02 Full Super 87+66.456 R2 -0.045 1 Level Crown 96+10.007 R2 0 Full Super 94+75.200 R2 -0.045 1 Level Crown 96+69.656 R2 -0.02		Start Point	75+00.000 R2	0.005	Start Point	75+00.000 R2	-0.005
Normal Crown 85+52.333 R2 -0.02 Full Super 76+50.304 R2 0.046 Normal Crown 85+72.000 R2 -0.02 Full Super 83+56.385 R2 0.046 Level Crown 86+31.649 R2 0 Reverse Crown 84+33.034 R2 0.02 Reverse Crown 86+91.298 R2 0.02 Level Crown 84+92.684 R2 0 Full Super 87+66.456 R2 0.045 Normal Crown 85+52.333 R2 -0.02 Full Super 94+75.200 R2 0.045 Normal Crown 85+72.000 R2 -0.02 Full Super 94+75.200 R2 0.045 Normal Crown 85+72.000 R2 -0.02 Reverse Crown 95+50.358 R2 0.02 Full Super 87+66.456 R2 -0.045 Level Crown 96+10.007 R2 0 Full Super 94+75.200 R2 -0.045 Normal Crown 96+69.656 R2 -0.02 Normal Crown 96+69.656 R2 -0.02		Full Super	76+50.304 R2	-0.046	Level Crown	75+14.006 R2	0
Normal Crown 85+72.000 R2 -0.02 Full Super 83+56.385 R2 0.046 Level Crown 86+31.649 R2 0 Reverse Crown 84+33.034 R2 0.02 Reverse Crown 86+91.298 R2 0.02 Level Crown 84+92.684 R2 0 Full Super 87+66.456 R2 0.045 Normal Crown 85+52.333 R2 -0.02 Full Super 94+75.200 R2 0.045 Normal Crown 85+72.000 R2 -0.02 Reverse Crown 95+50.358 R2 0.02 Full Super 87+66.456 R2 -0.045 Level Crown 96+10.007 R2 0 Full Super 94+75.200 R2 -0.045 Normal Crown 96+69.656 R2 -0.02 Normal Crown 96+69.656 R2 -0.02		Full Super	83+56.385 R2	-0.046	Reverse Crown	75+73.655 R2	0.02
Level Crown 86+31.649 R2 0 Reverse Crown 84+33.034 R2 0.02 Reverse Crown 86+91.298 R2 0.02 Level Crown 84+92.684 R2 0 Full Super 87+66.456 R2 0.045 Normal Crown 85+52.333 R2 -0.02 Full Super 94+75.200 R2 0.045 Normal Crown 85+72.000 R2 -0.02 Reverse Crown 95+50.358 R2 0.02 Full Super 87+66.456 R2 -0.045 Level Crown 96+10.007 R2 0 Full Super 94+75.200 R2 -0.045 Normal Crown 96+69.656 R2 -0.02 Normal Crown 96+69.656 R2 -0.02		Normal Crown	85+52.333 R2	-0.02	Full Super	76+50.304 R2	0.046
5 Reverse Crown 86+91.298 R2 0.02 Level Crown 84+92.684 R2 0 Full Super 87+66.456 R2 0.045 Normal Crown 85+52.333 R2 -0.02 Full Super 94+75.200 R2 0.045 Normal Crown 85+72.000 R2 -0.02 Reverse Crown 95+50.358 R2 0.02 Full Super 87+66.456 R2 -0.045 Level Crown 96+10.007 R2 0 Full Super 94+75.200 R2 -0.045 Normal Crown 96+69.656 R2 -0.02 Normal Crown 96+69.656 R2 -0.02		Normal Crown	85+72.000 R2	-0.02	Full Super	83+56.385 R2	0.046
Full Super 87+66.456 R2 0.045 Normal Crown 85+52.333 R2 -0.02 Full Super 94+75.200 R2 0.045 Normal Crown 85+72.000 R2 -0.02 Reverse Crown 95+50.358 R2 0.02 Full Super 87+66.456 R2 -0.045 Level Crown 96+10.007 R2 0 Full Super 94+75.200 R2 -0.045 Normal Crown 96+69.656 R2 -0.02 Normal Crown 96+69.656 R2 -0.02		Level Crown	86+31.649 R2	0	Reverse Crown	84+33.034 R2	0.02
Full Super 94+75.200 R2 0.045 Normal Crown 85+72.000 R2 -0.02 Reverse Crown 95+50.358 R2 0.02 Full Super 87+66.456 R2 -0.045 Level Crown 96+10.007 R2 0 Full Super 94+75.200 R2 -0.045 Normal Crown 96+69.656 R2 -0.02 Normal Crown 96+69.656 R2 -0.02	5	Reverse Crown	86+91.298 R2	0.02	Level Crown	84+92.684 R2	0
Full Super 94+75.200 R2 0.045 Normal Crown 85+72.000 R2 -0.02 Reverse Crown 95+50.358 R2 0.02 Full Super 87+66.456 R2 -0.045 Level Crown 96+10.007 R2 0 Full Super 94+75.200 R2 -0.045 Normal Crown 96+69.656 R2 -0.02 Normal Crown 96+69.656 R2 -0.02		Full Super	87+66.456 R2	0.045	Normal Crown	85+52.333 R2	-0.02
Reverse Crown 95+50.358 R2 0.02 Full Super 87+66.456 R2 -0.045 Level Crown 96+10.007 R2 0 Full Super 94+75.200 R2 -0.045 Normal Crown 96+69.656 R2 -0.02 Normal Crown 96+69.656 R2 -0.02		· · · ·	94+75.200 R2	0.045	Normal Crown	85+72.000 R2	-0.02
Level Crown 96+10.007 R2 0 Full Super 94+75.200 R2 -0.045 Normal Crown 96+69.656 R2 -0.02 Normal Crown 96+69.656 R2 -0.02				0.02	Full Super		-0.045
Normal Crown 96+69.656 R2 -0.02 Normal Crown 96+69.656 R2 -0.02		Level Crown	96+10.007 R2	0	•	94+75.200 R2	-0.045
		Normal Crown		-0.02			-0.02
I NOTHALCIOWIL 37TOUOUU NZ TOUZ NOTHALCIOWIL 37TOUOUU NZ I TOUZ	F	Normal Crown	97+00.000 R2	-0.02	Normal Crown	97+00.000 R2	-0.02

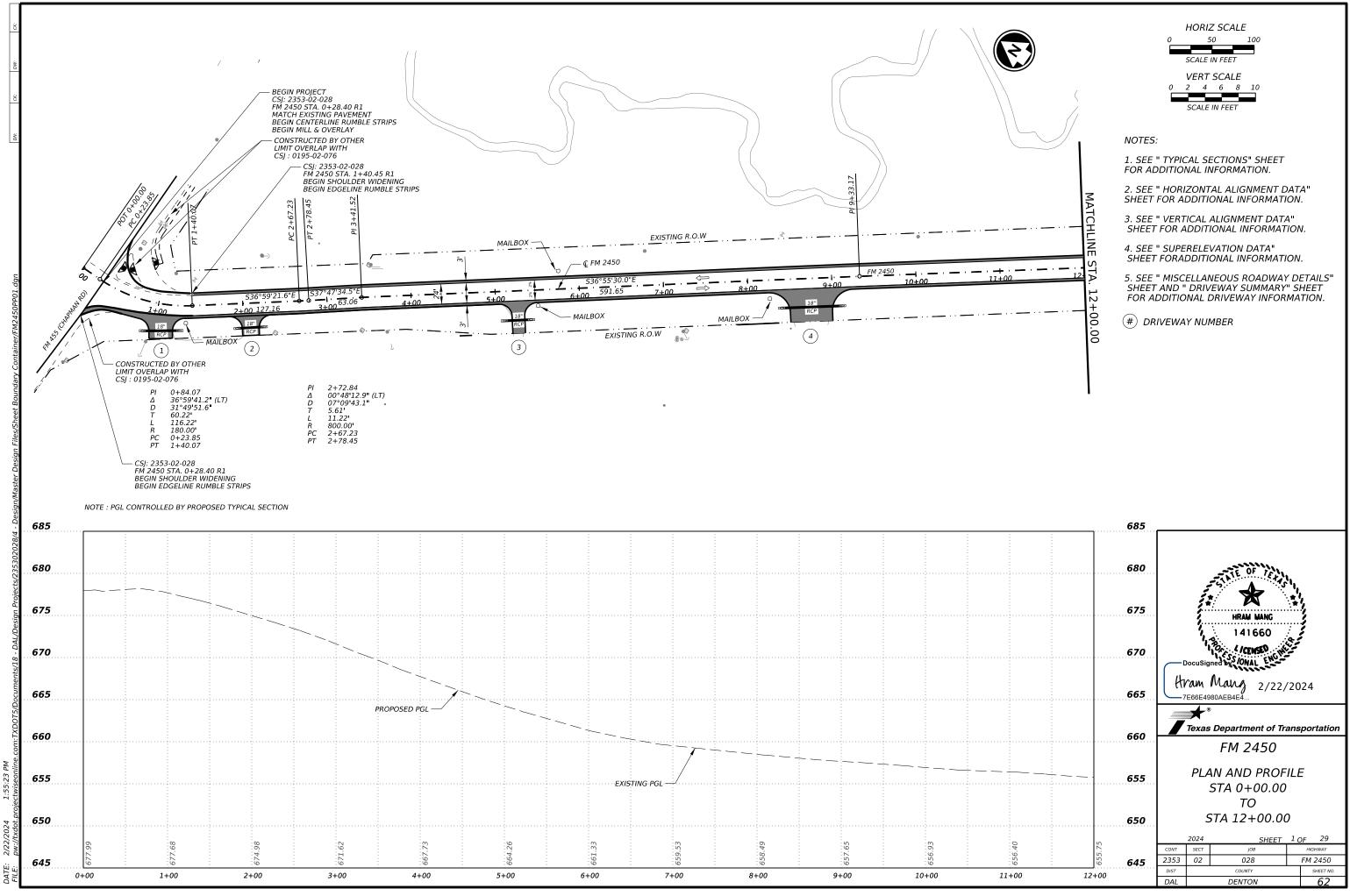
NOTES:

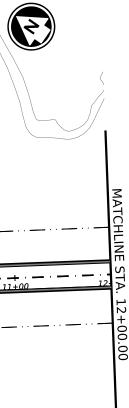
(1) SUPERELEVATION DATA SHOWN ON THIS PAGE IS FOR DESIGN PURPOSE ONLY.

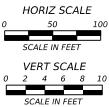
(2) DO NOT USE THIS INFORMATION FOR CONSTRUCTION.

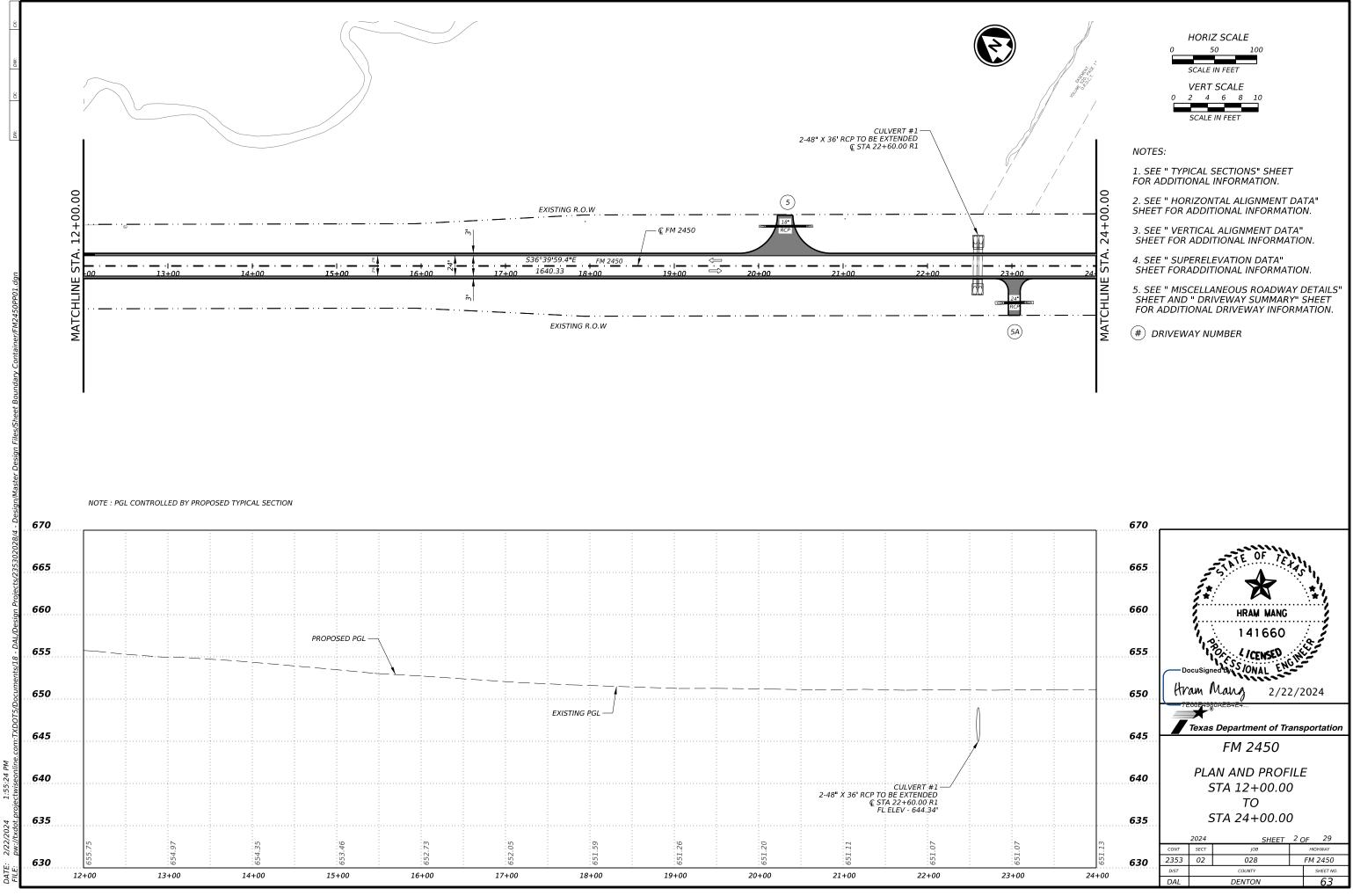
(3) PERFORM WIDENING OF THE PROJECT ACCORDING TO THE TYPICAL SECTIONS.

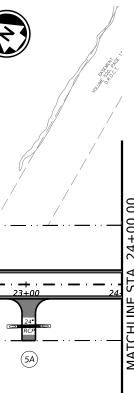

(4) TO VERIFY THE GEOMETRIC DATA SEE AS-BUILT PROJECT.

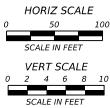

1:54:57 PM 2/22/2024 pw://txdof. DATE: FILE:

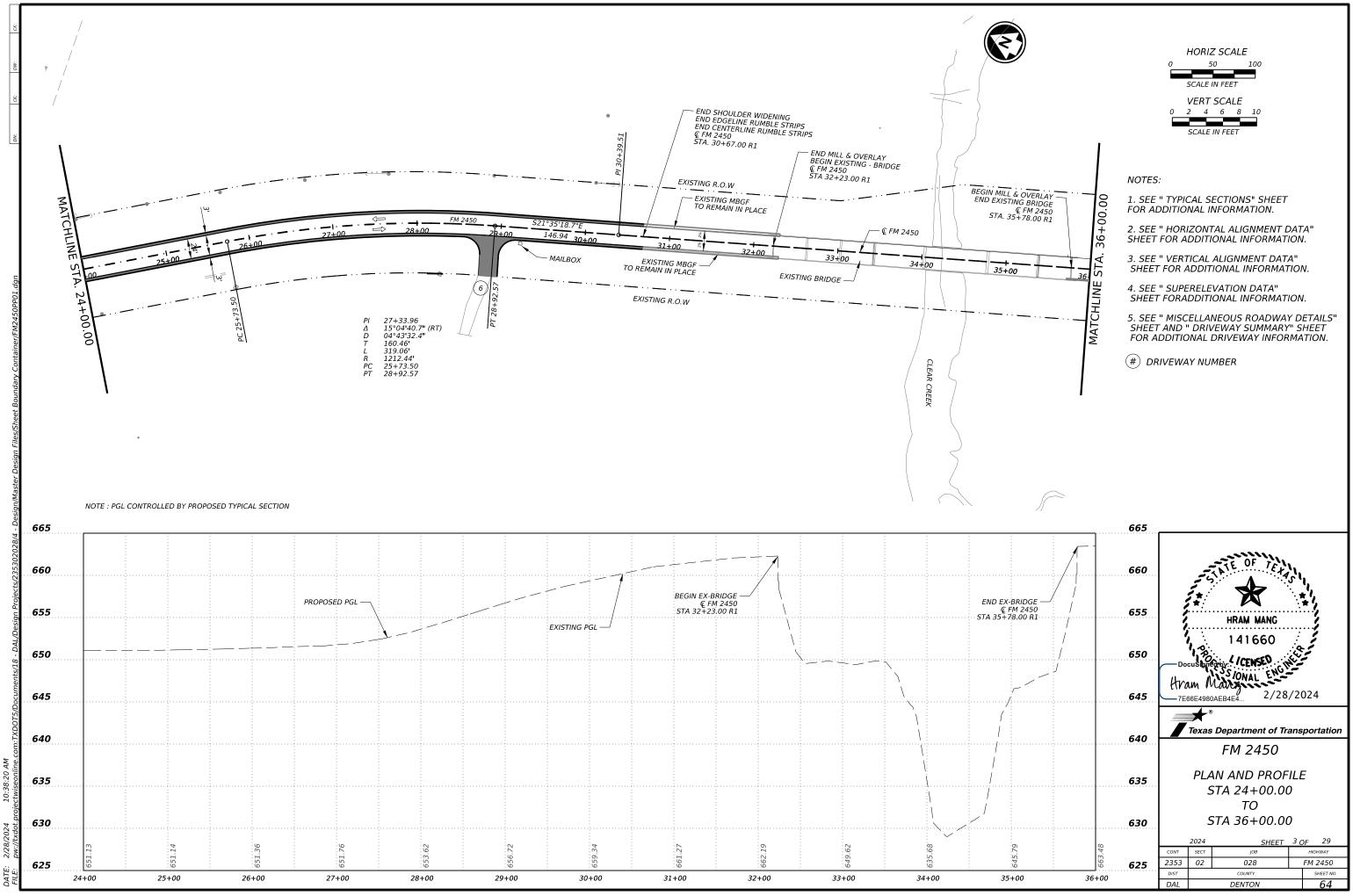


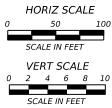


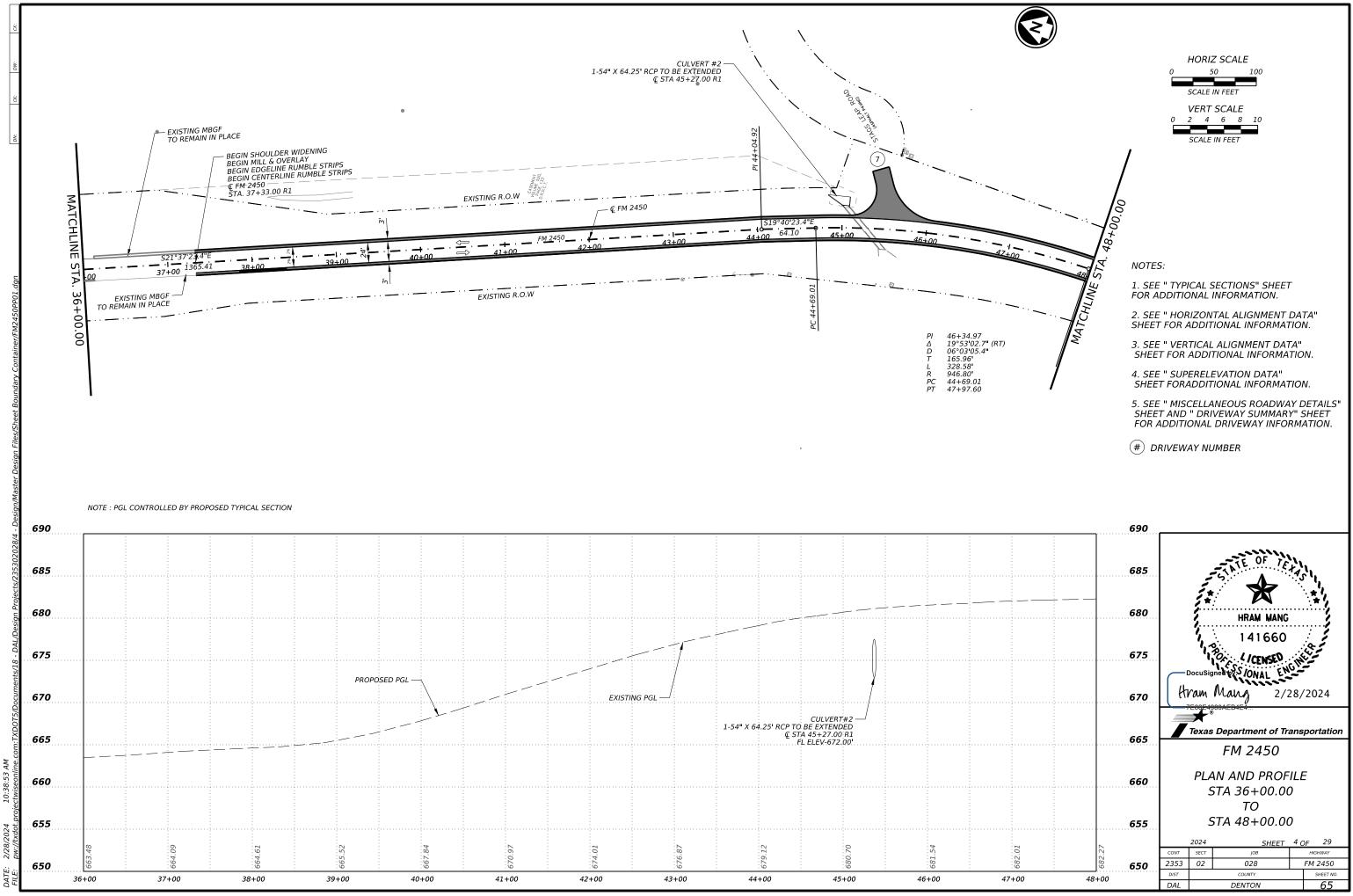


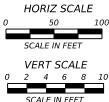

2024	SHEET	10	F 1	
SECT	JOB	HIGHWAY		
02	028	FM 2450		
	COUNTY		SHEET NO.	
	DENTON		61	
	SECT	SECT JOB 02 028 COUNTY	SECT JOB 02 028 H COUNTY	

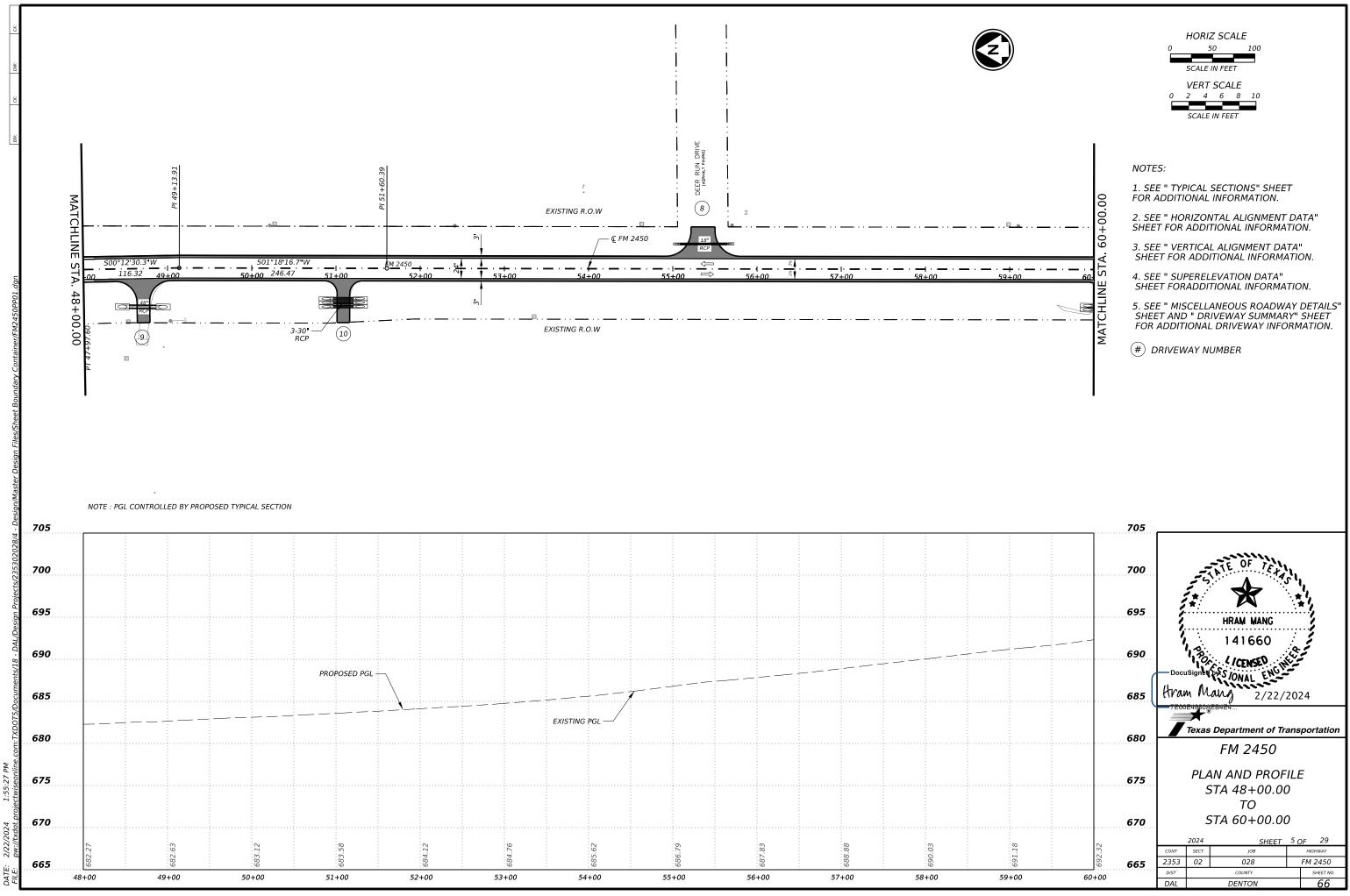


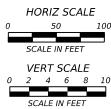


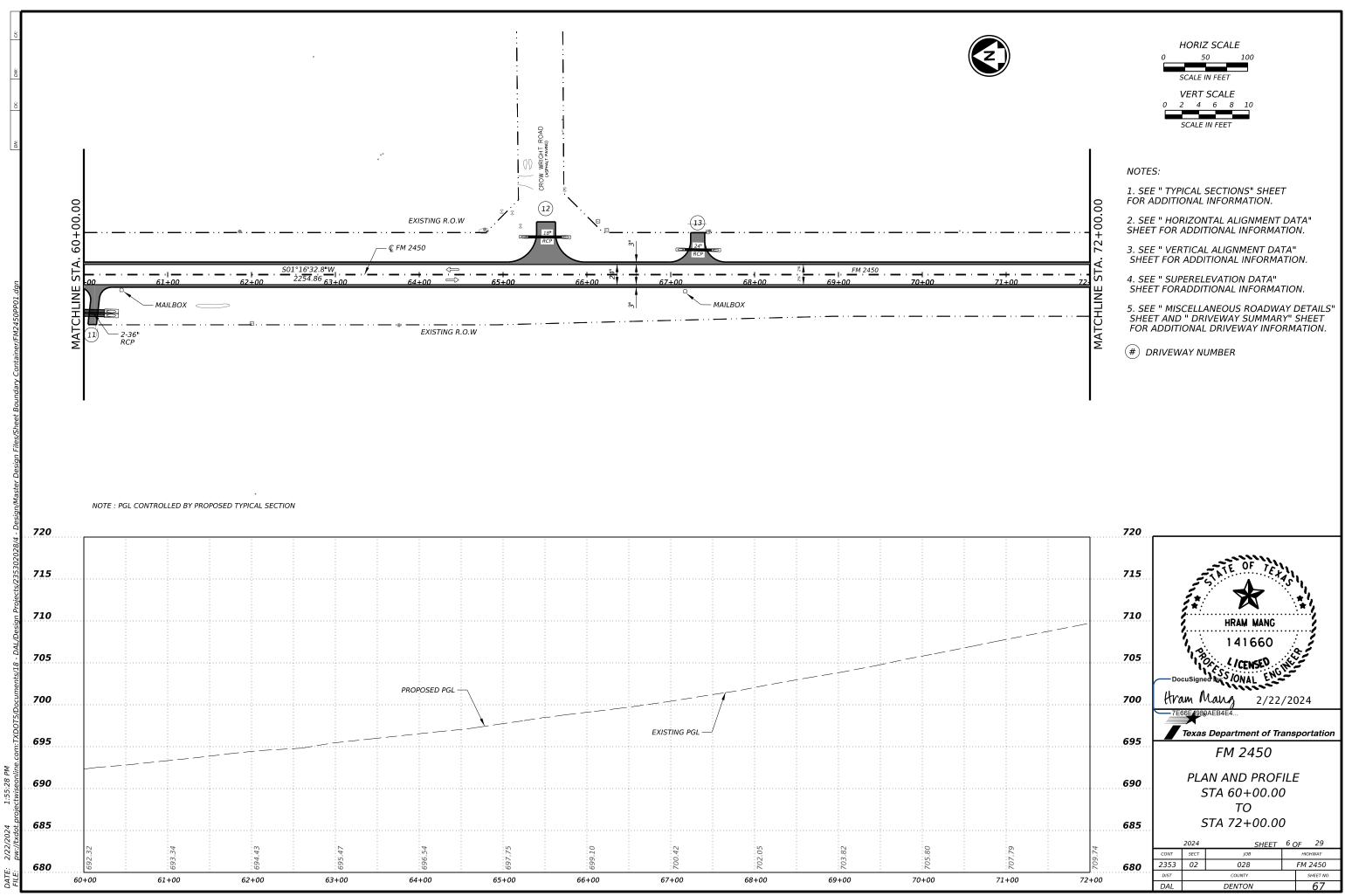


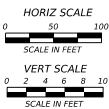


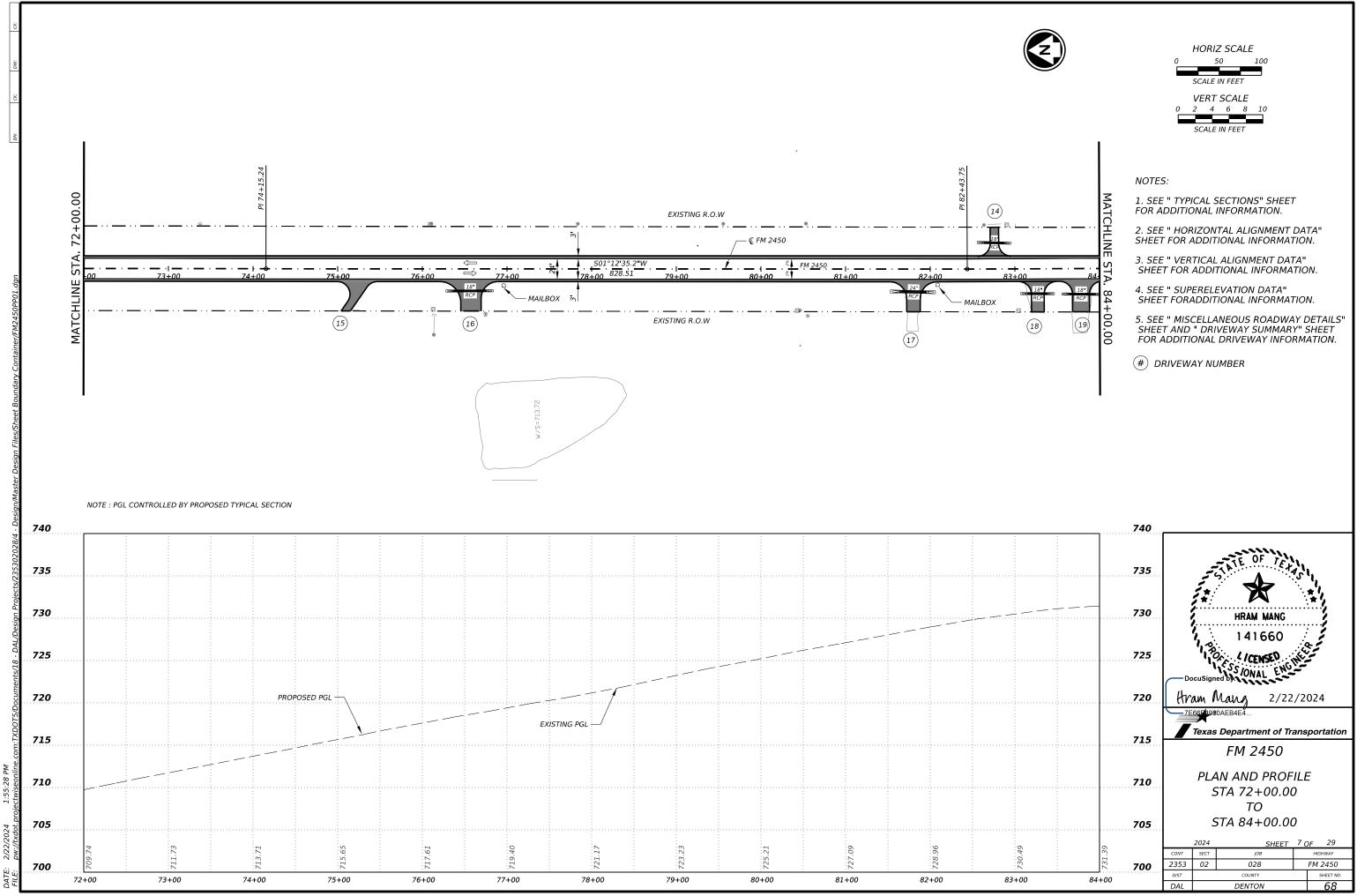


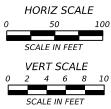


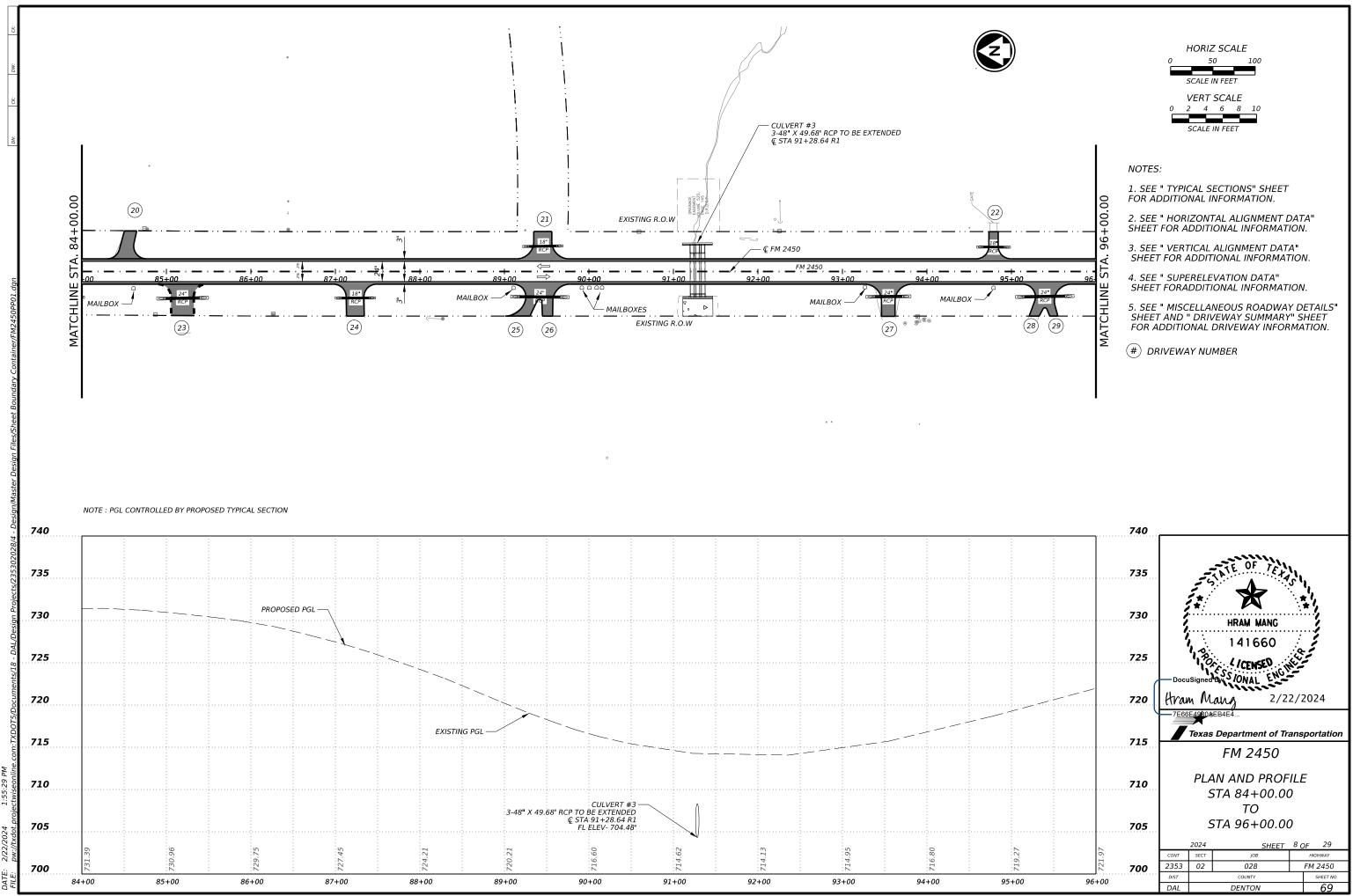


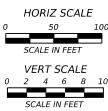


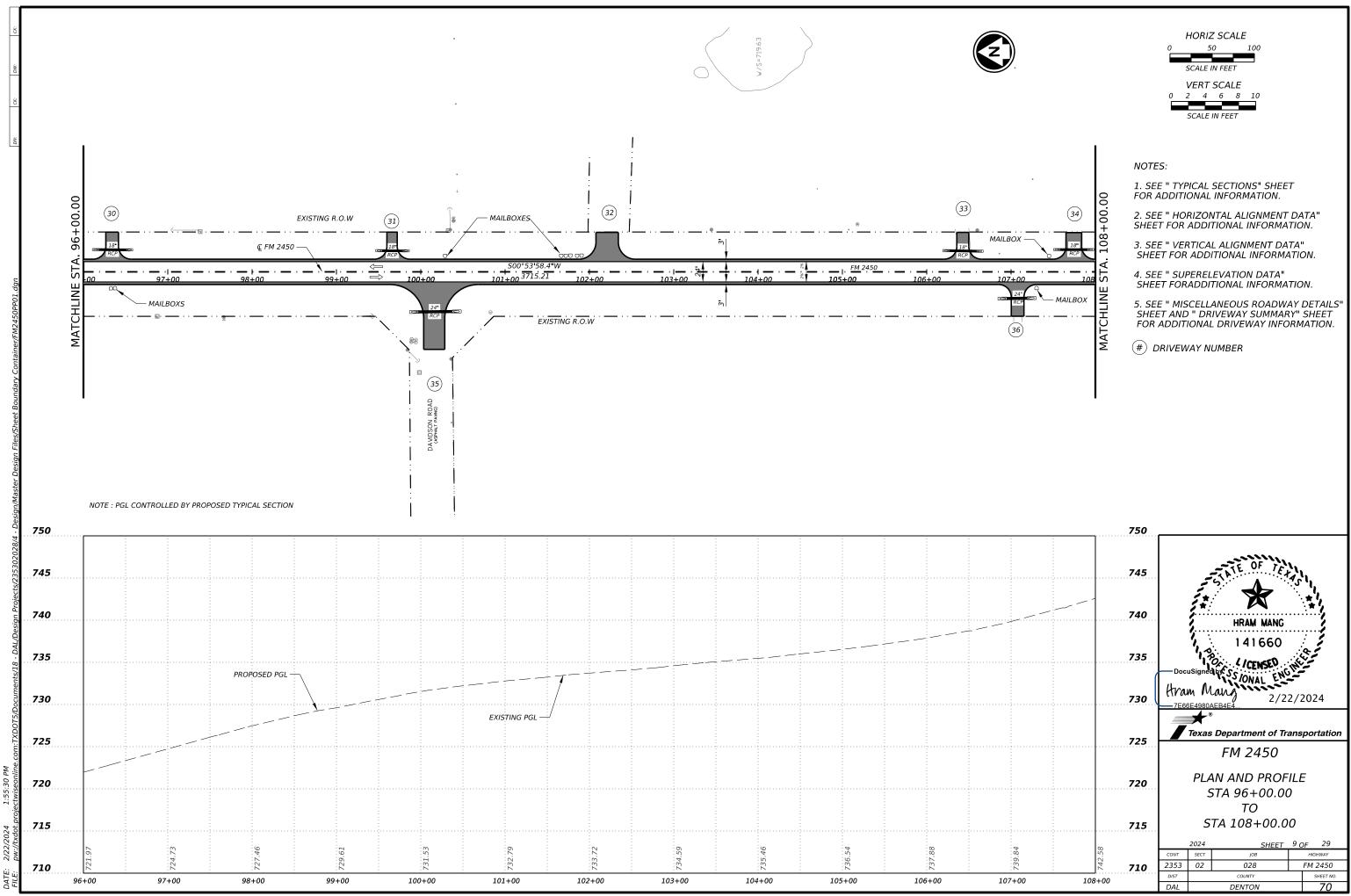




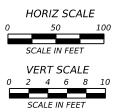


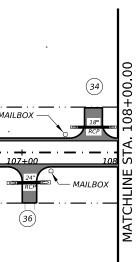


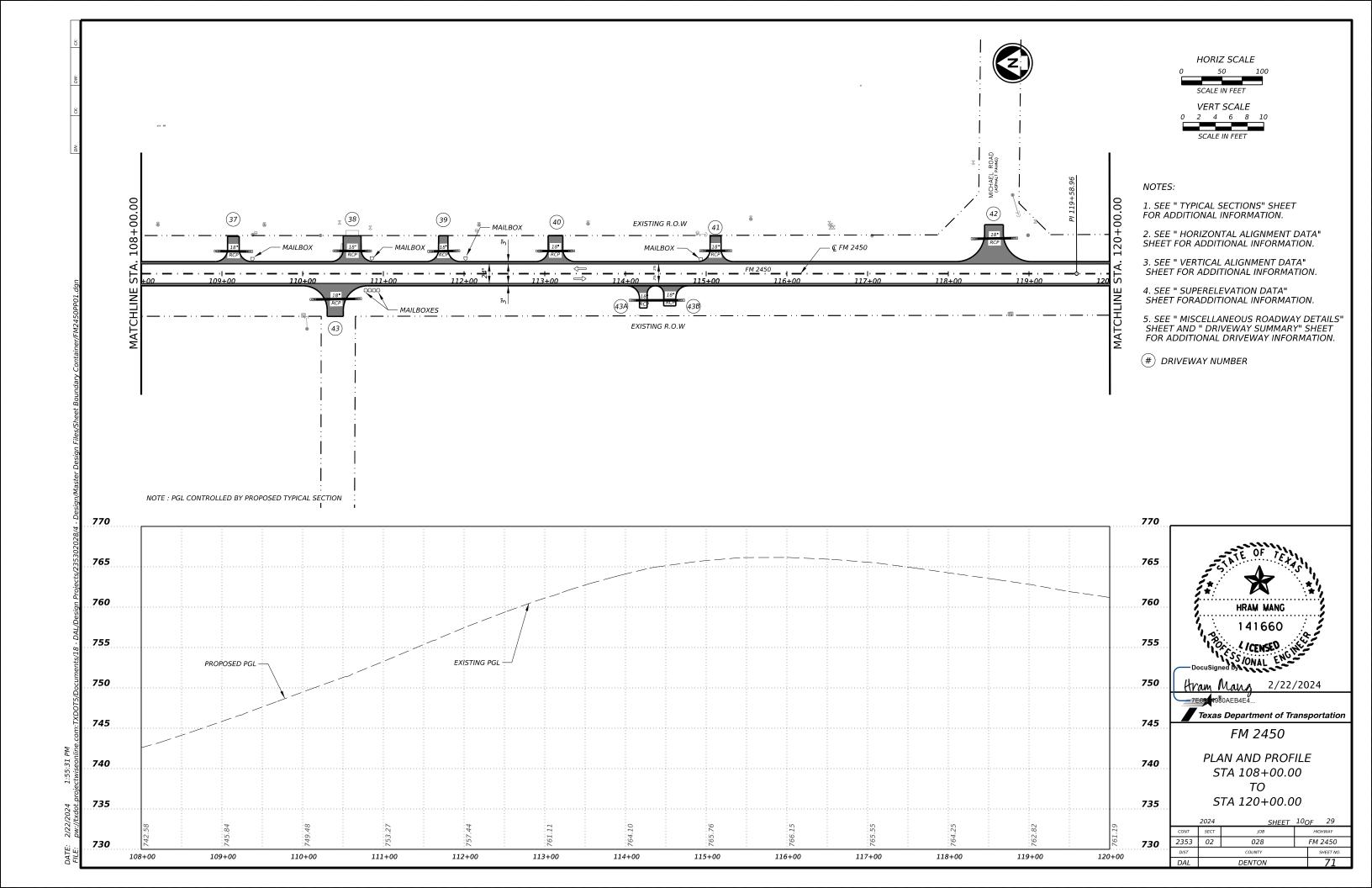


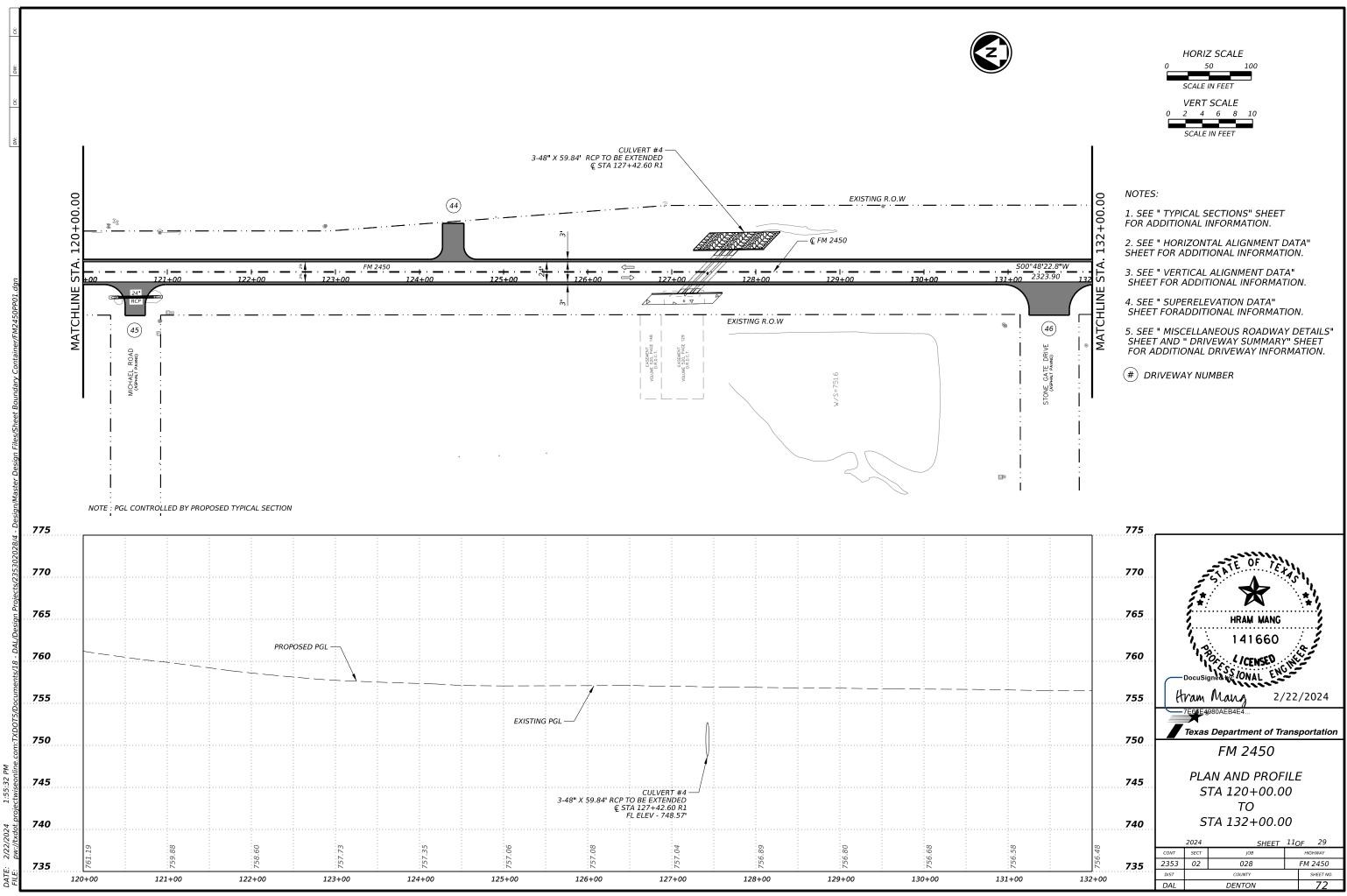

1:55:29 024

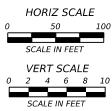
2/2

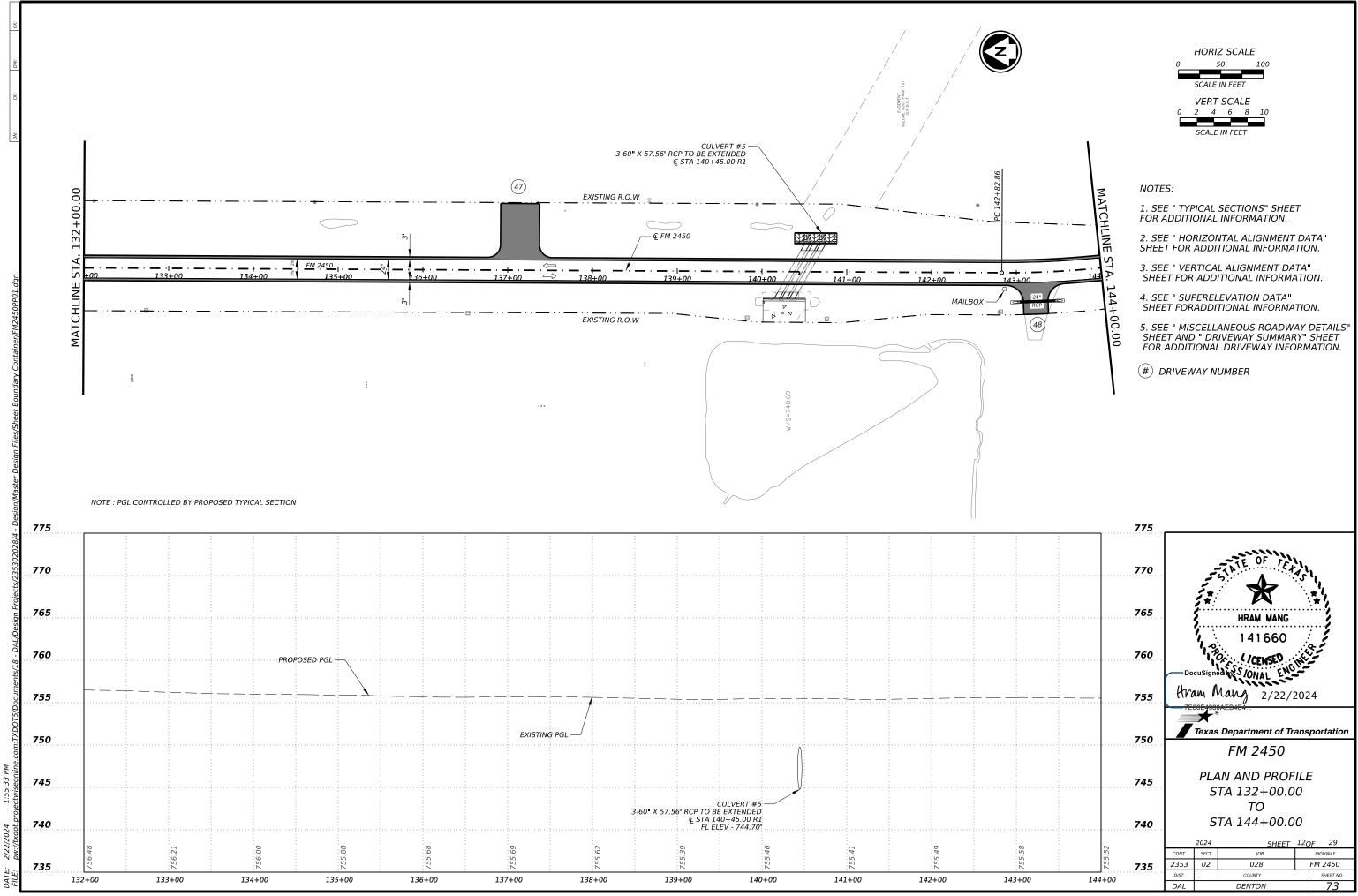


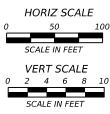


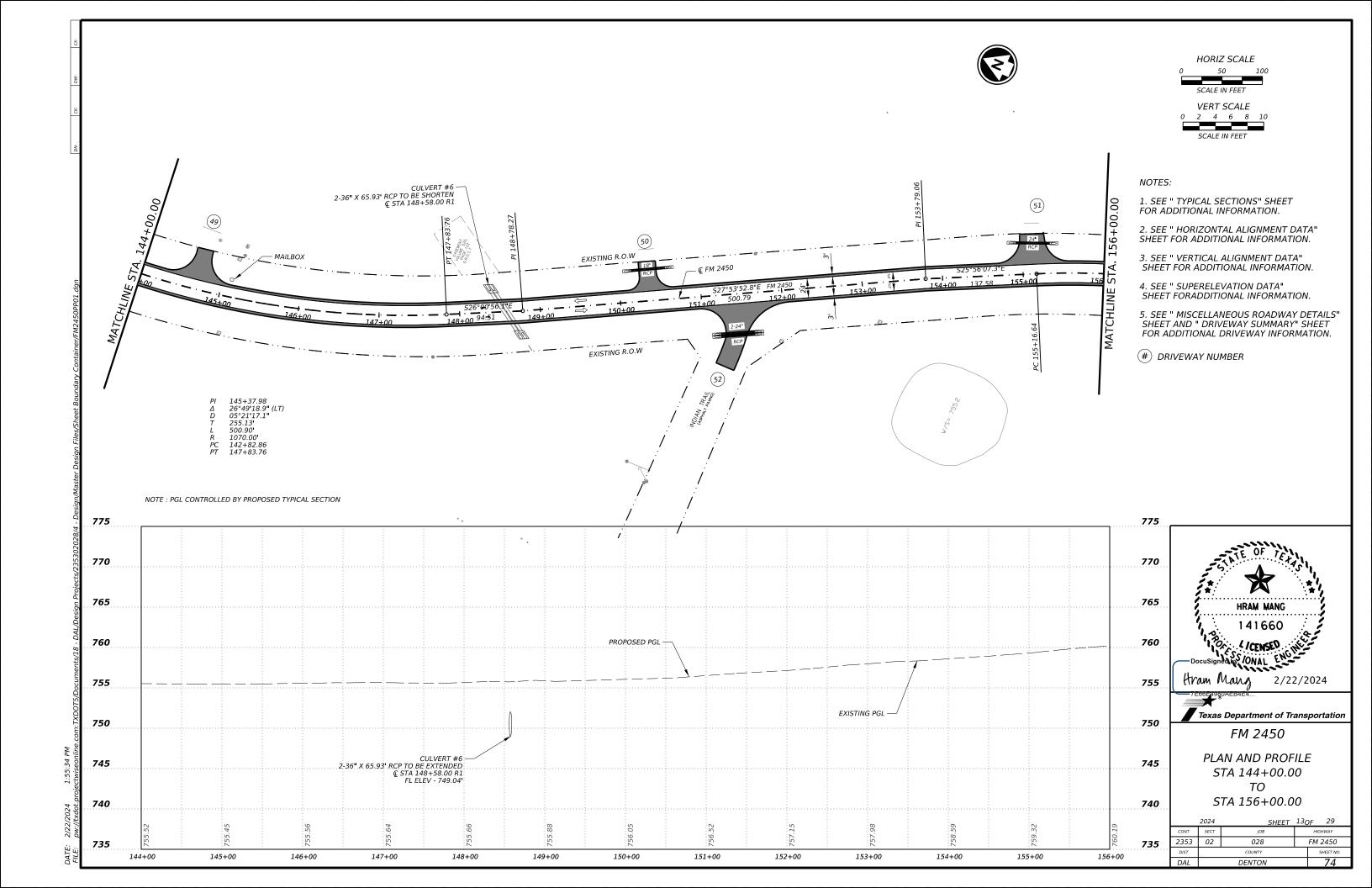


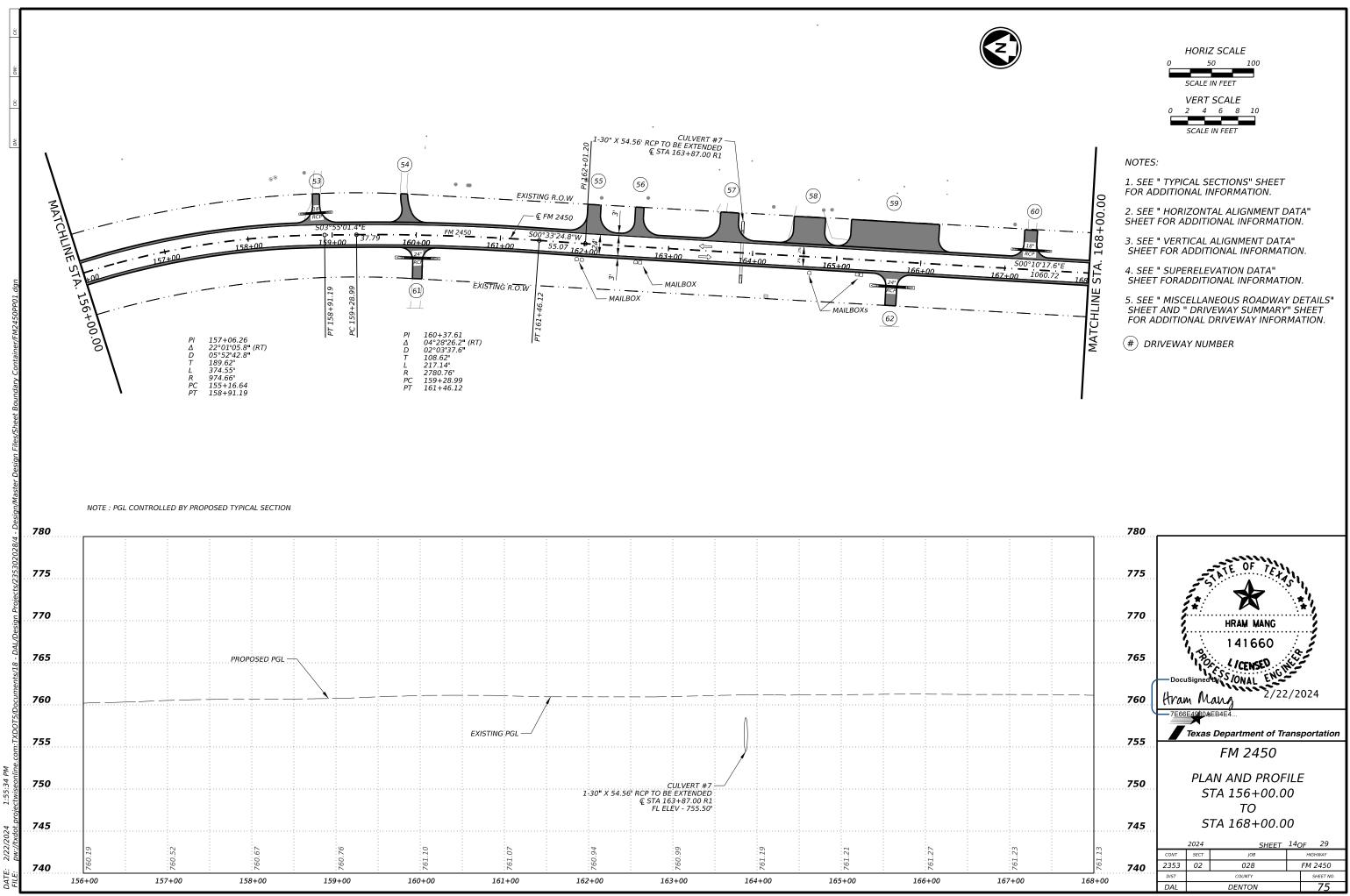


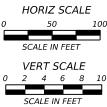


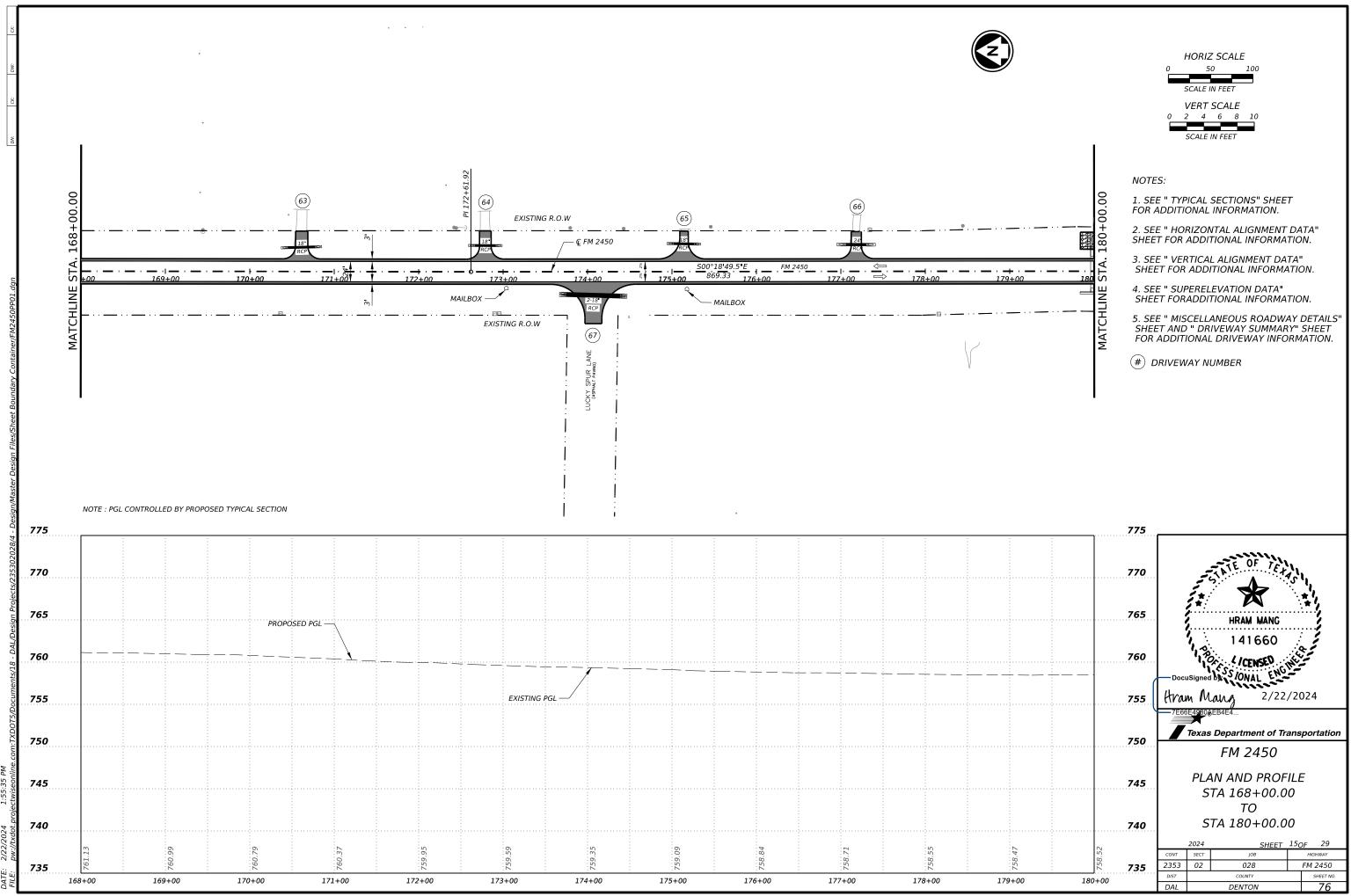


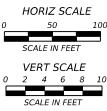


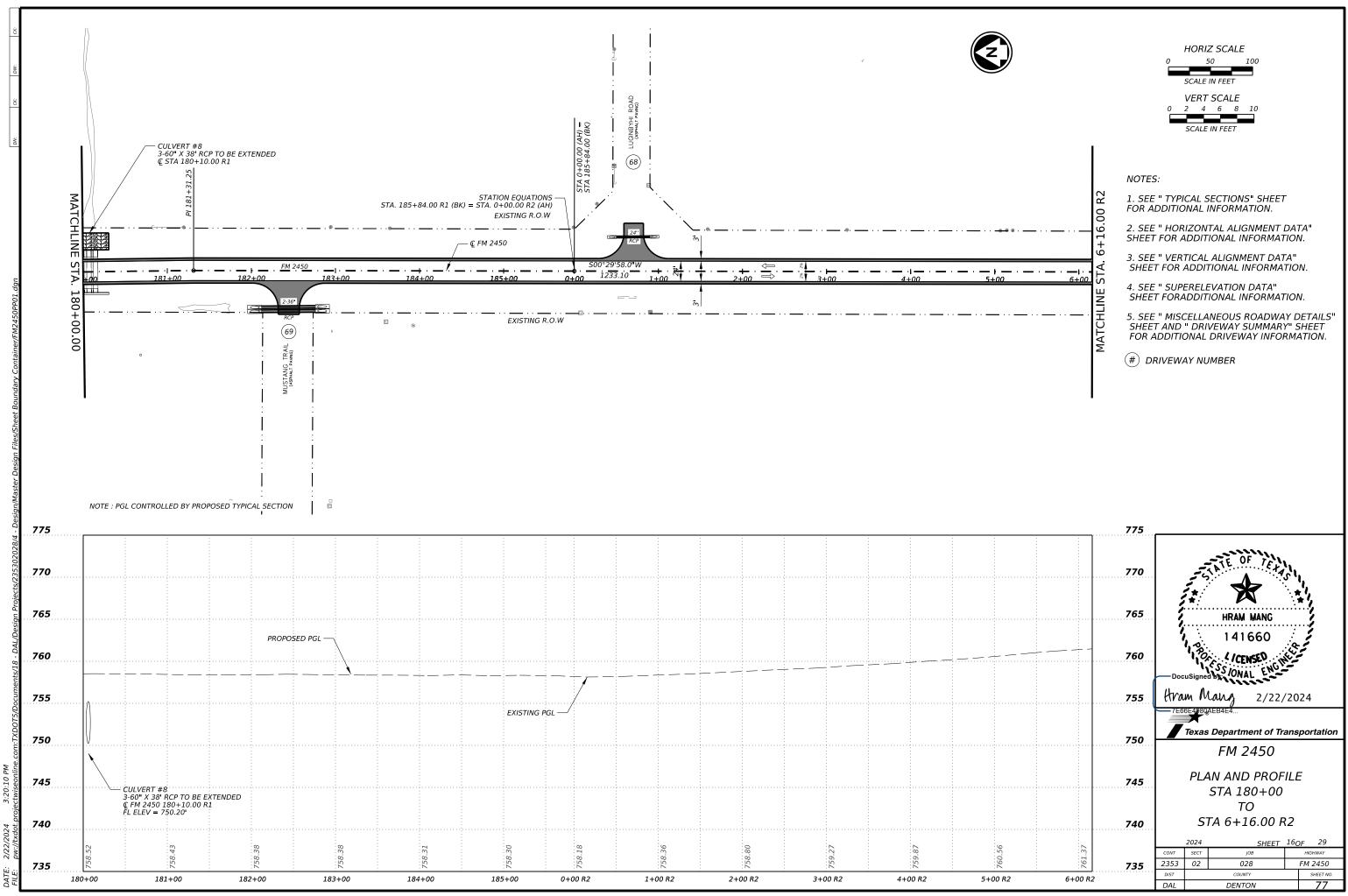


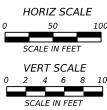


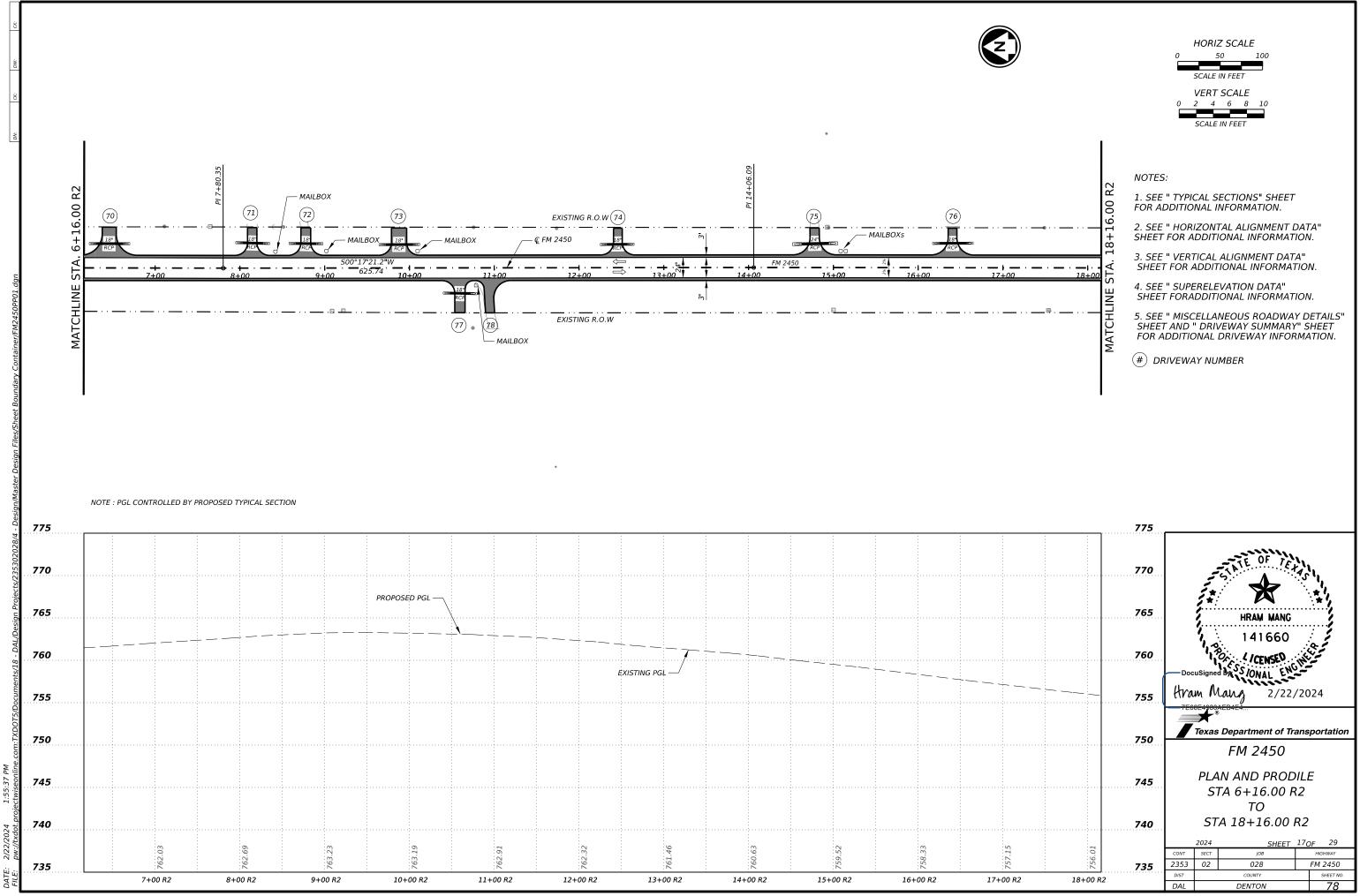


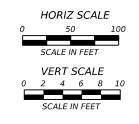


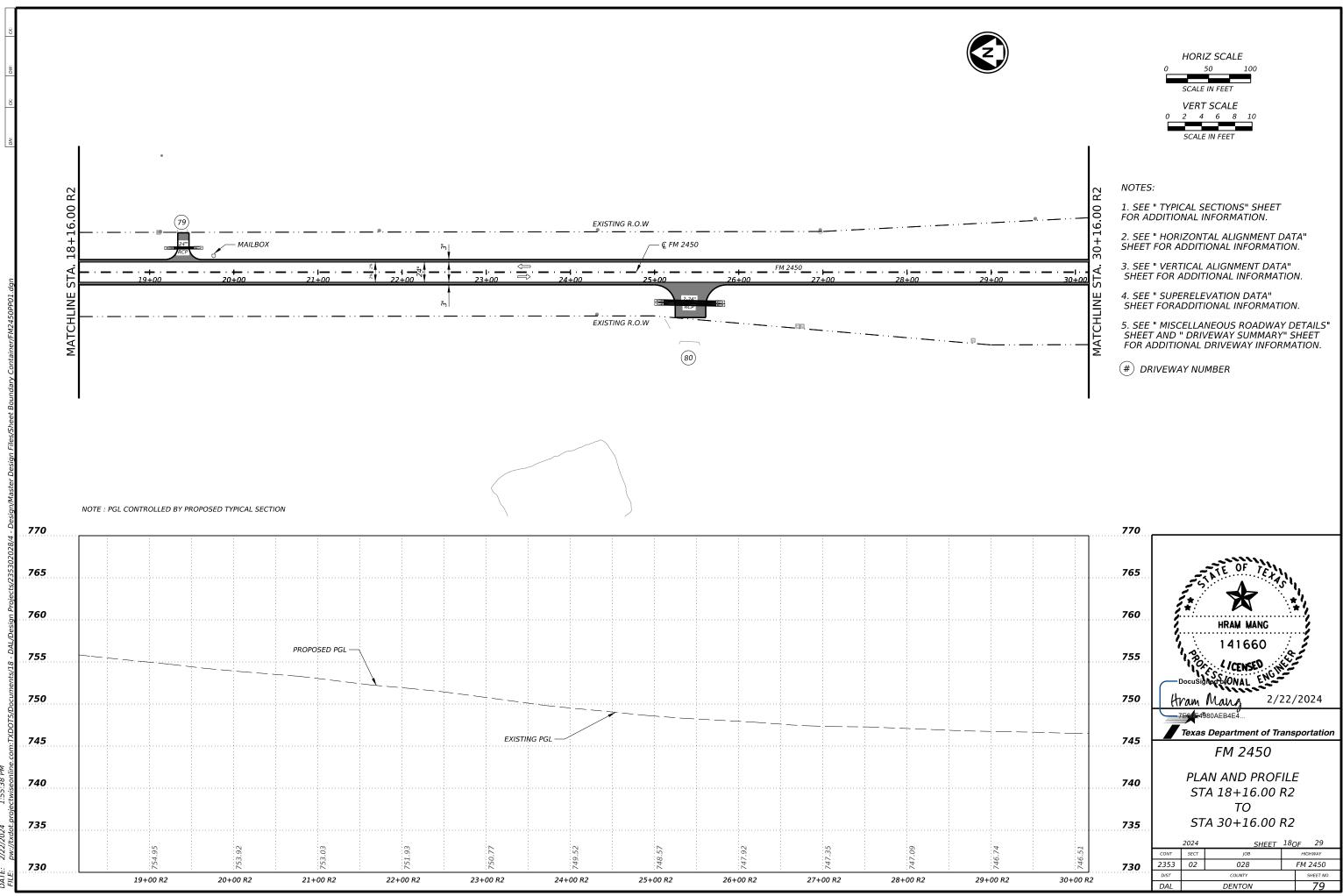


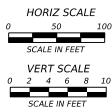


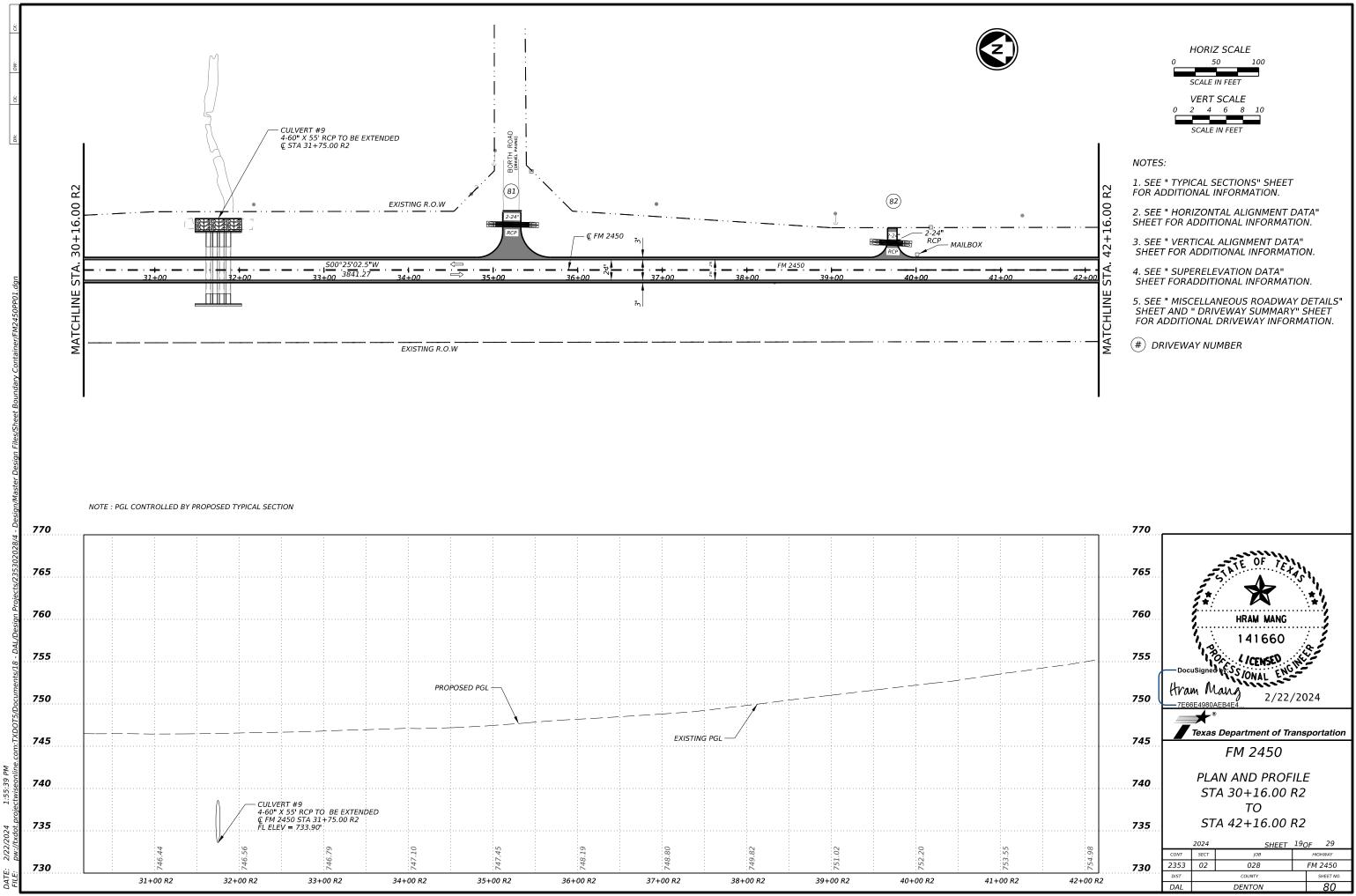

M 1:55:35 024 2/2



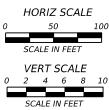


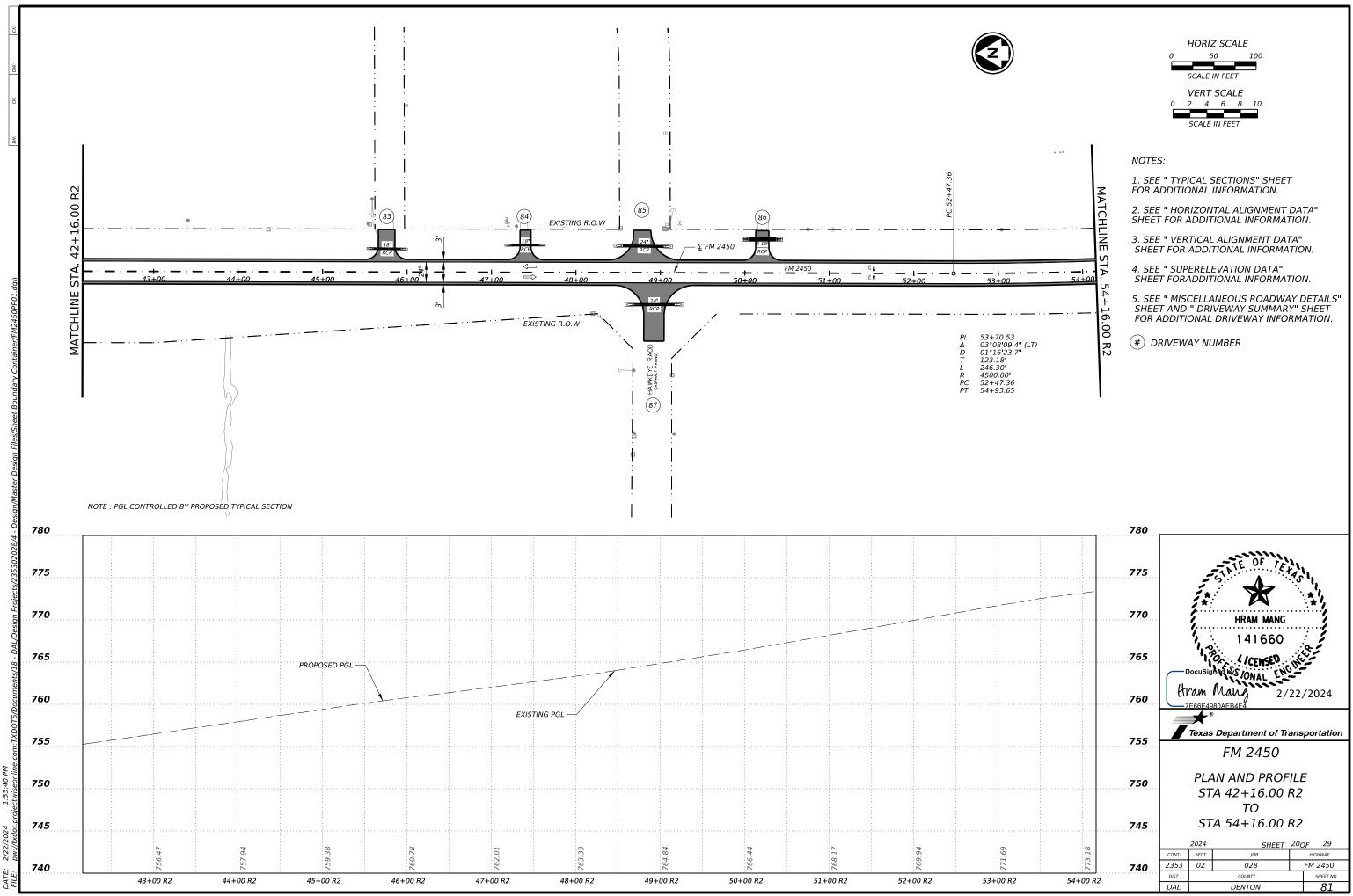


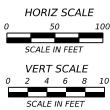


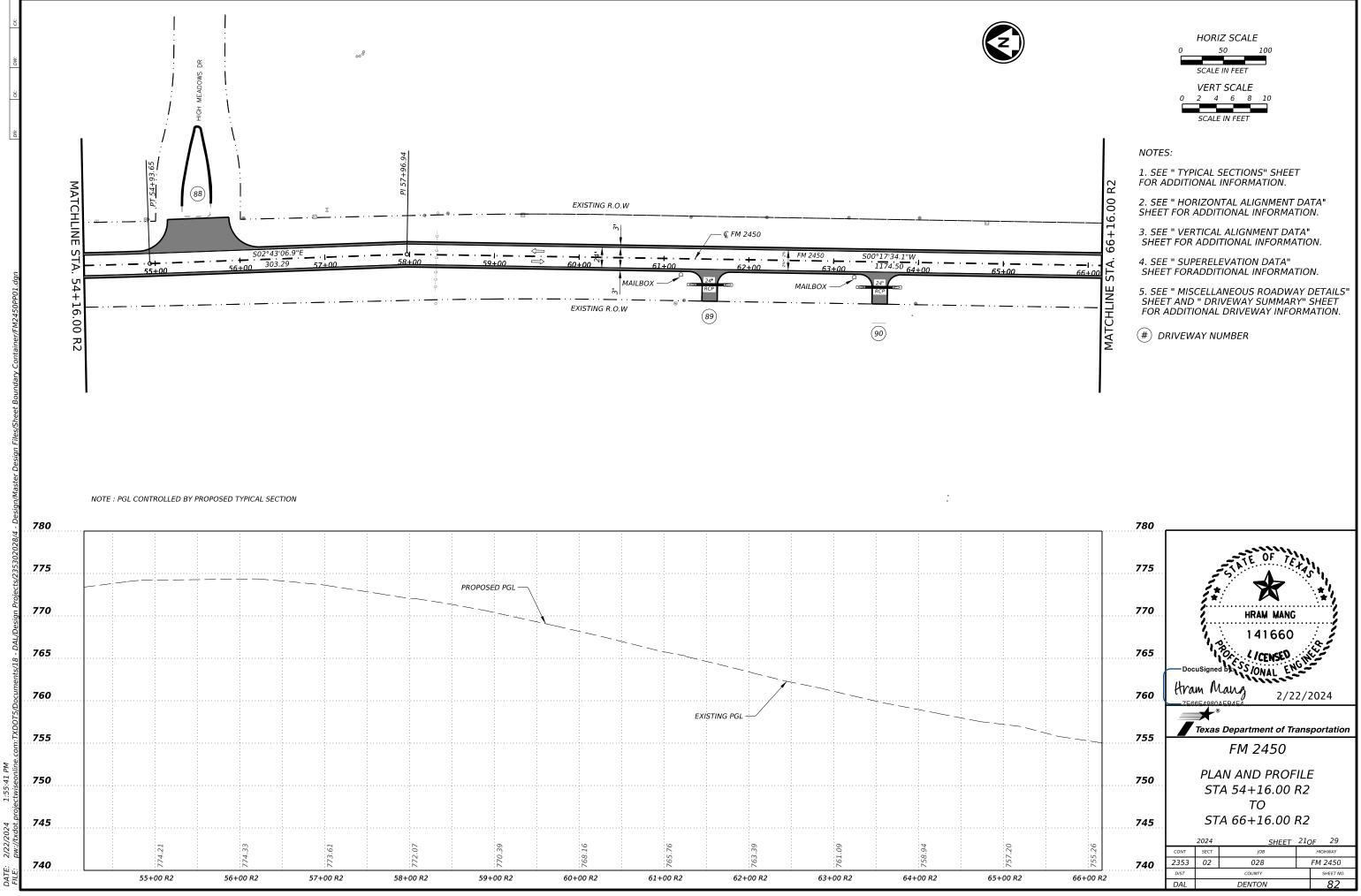


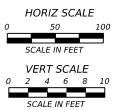
1:55:)24

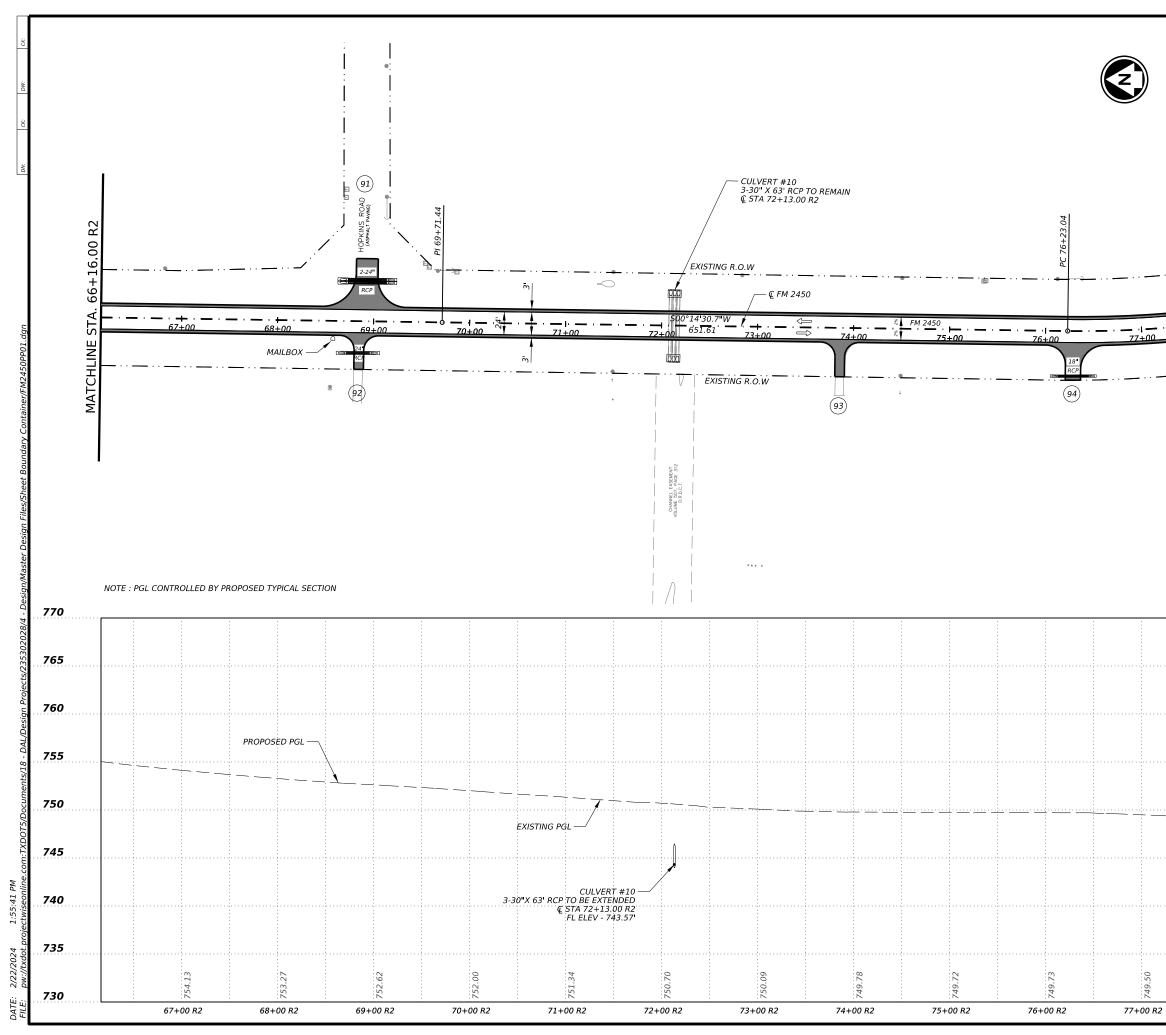

38



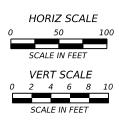







M

024


2/2

DATE:

NOTES:

MATCHLINE

STA

18+

ົດ

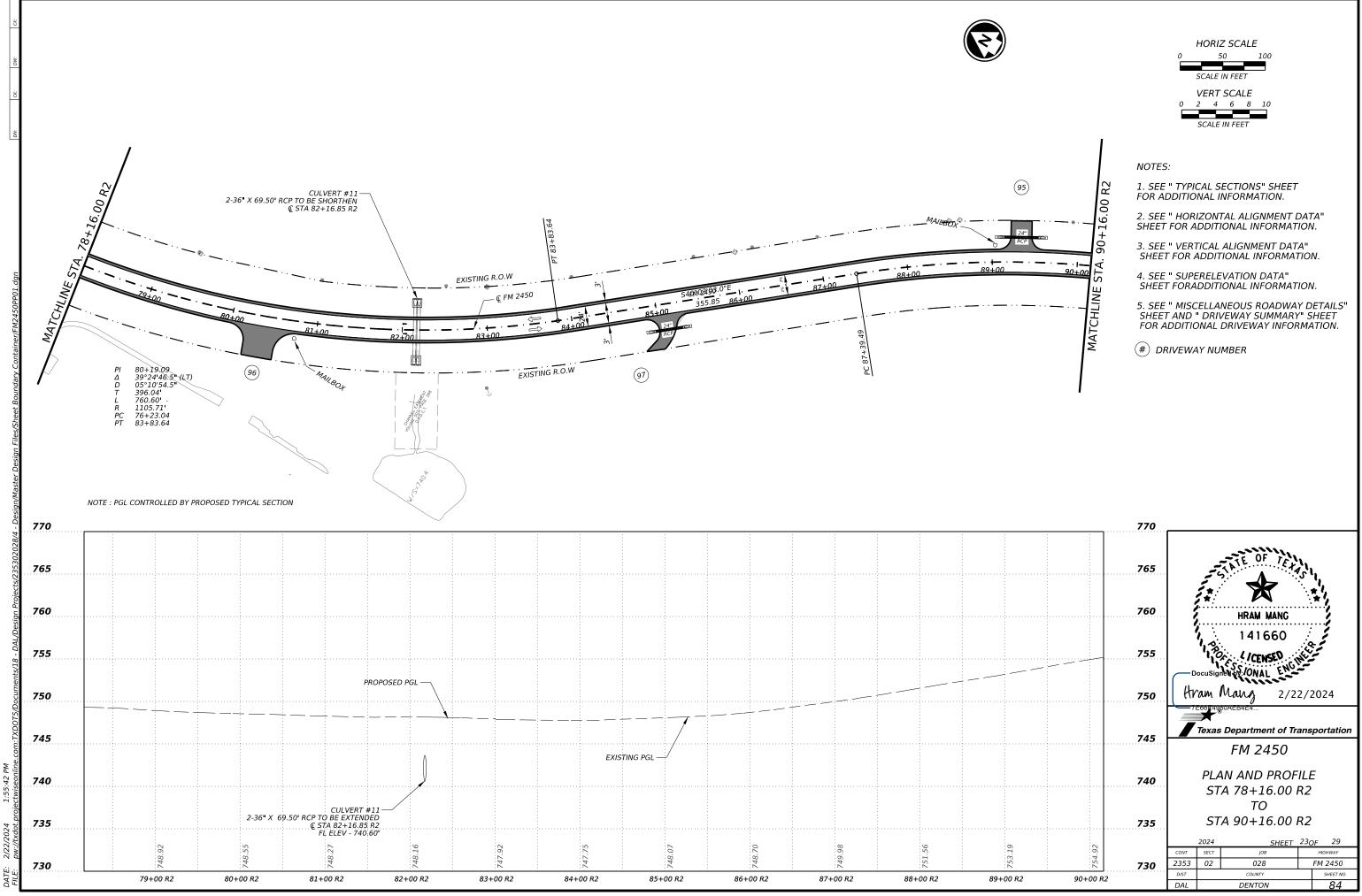
i9

R

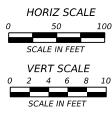
78±00

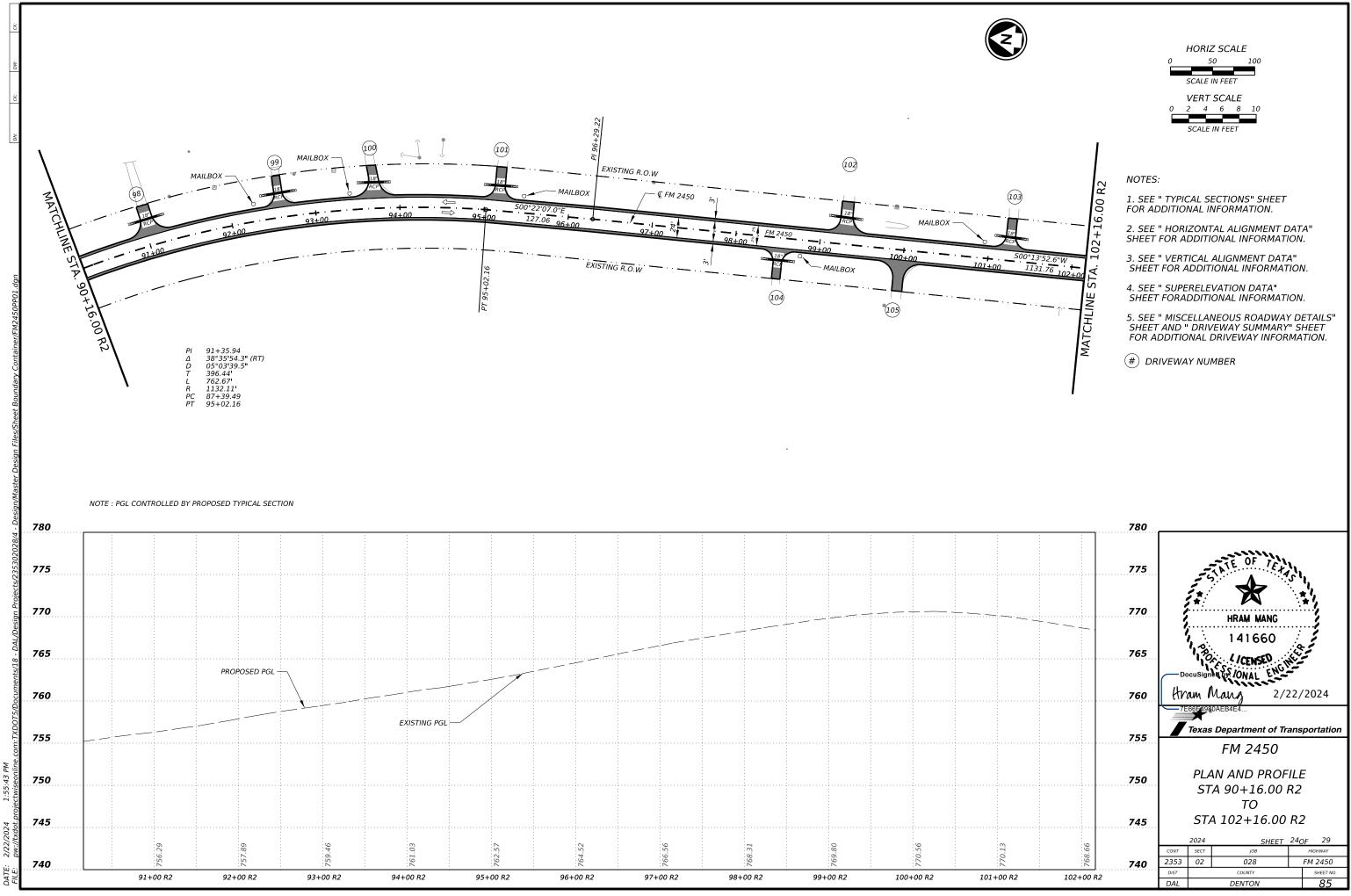
1. SEE " TYPICAL SECTIONS" SHEET FOR ADDITIONAL INFORMATION.

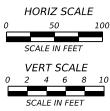
2. SEE " HORIZONTAL ALIGNMENT DATA" SHEET FOR ADDITIONAL INFORMATION.

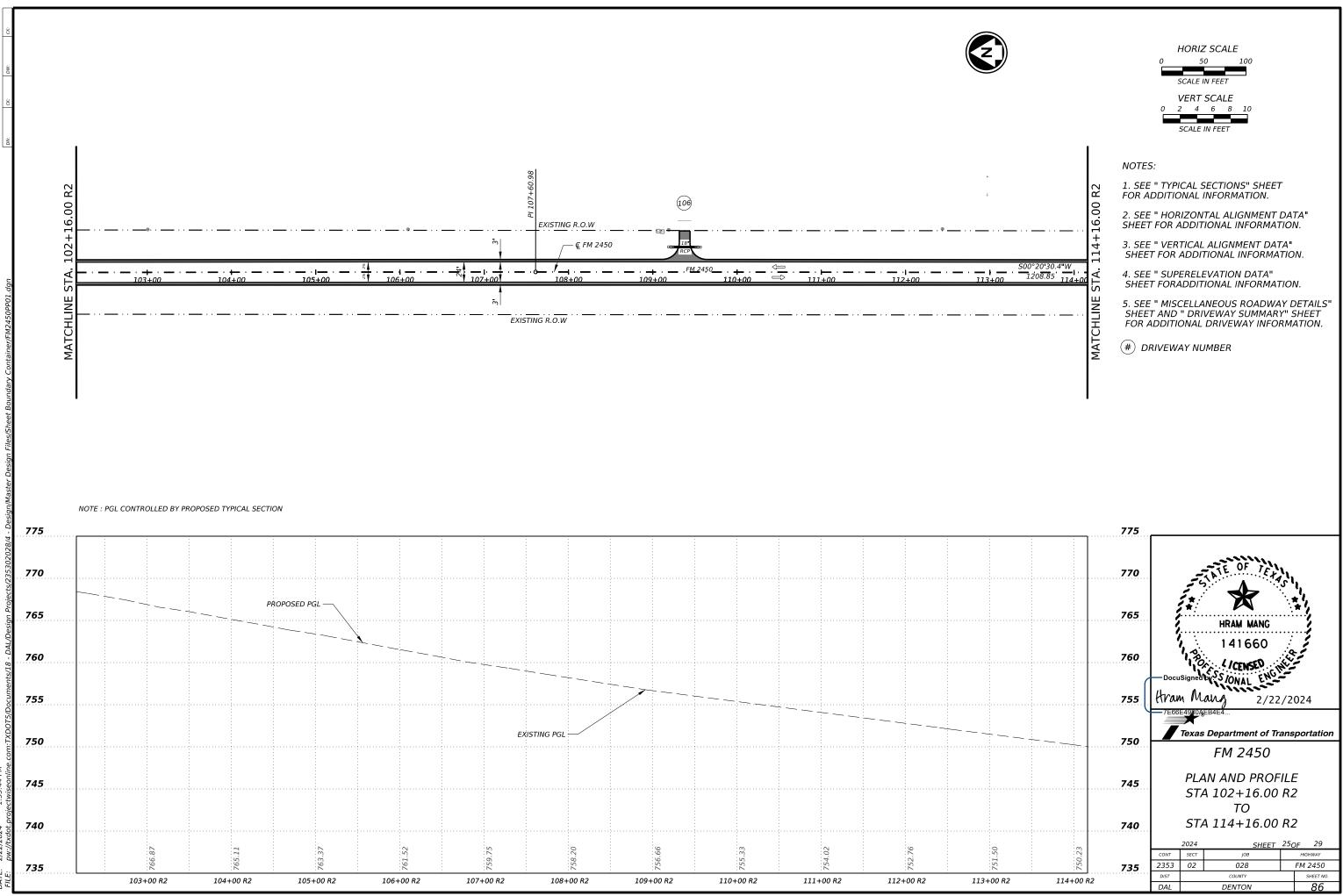

3. SEE " VERTICAL ALIGNMENT DATA" SHEET FOR ADDITIONAL INFORMATION.

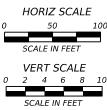
4. SEE " SUPERELEVATION DATA" SHEET FORADDITIONAL INFORMATION.

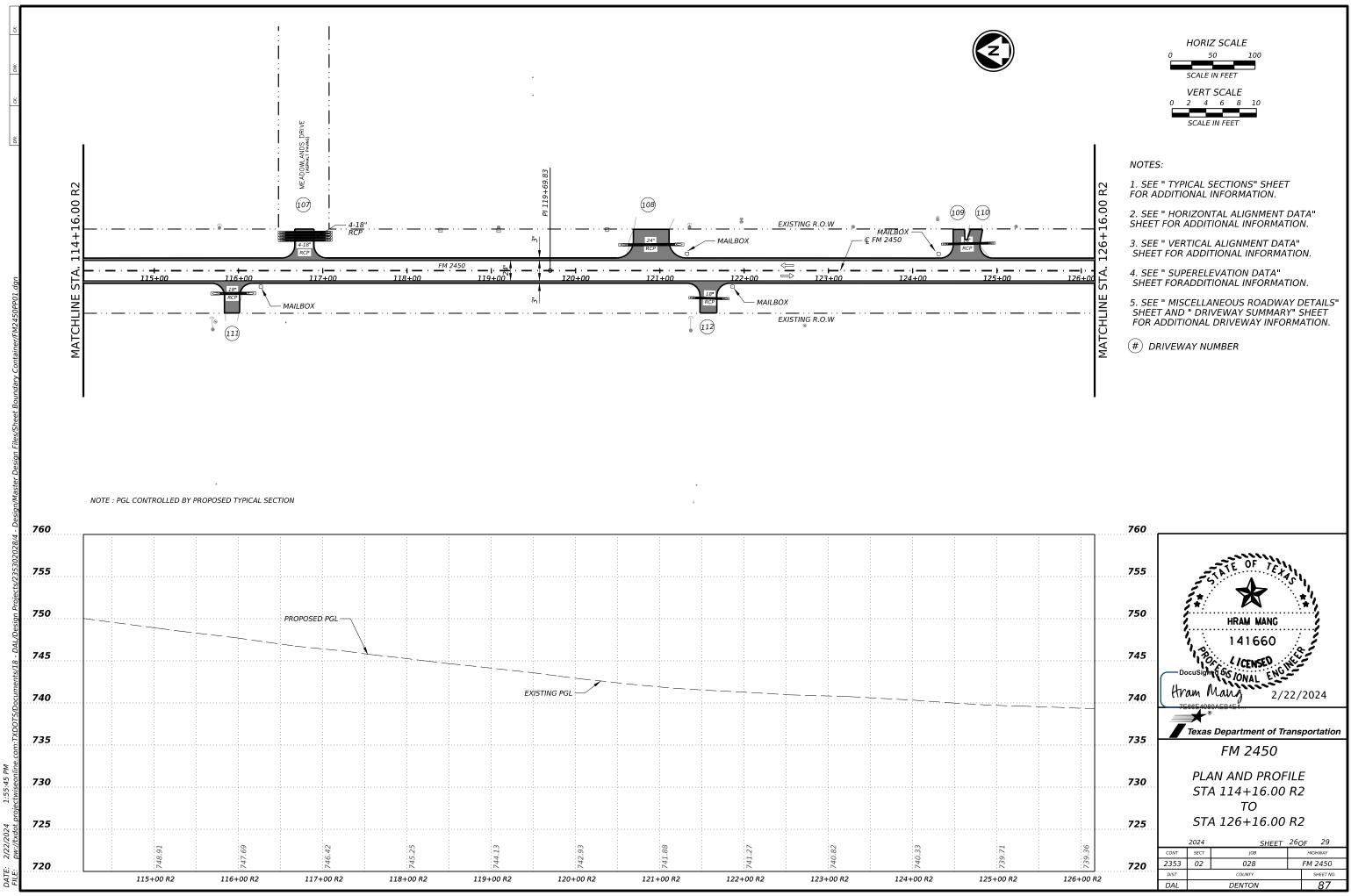

5. SEE " MISCELLANEOUS ROADWAY DETAILS" SHEET AND " DRIVEWAY SUMMARY" SHEET FOR ADDITIONAL DRIVEWAY INFORMATION.

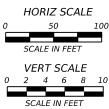

DRIVEWAY NUMBER

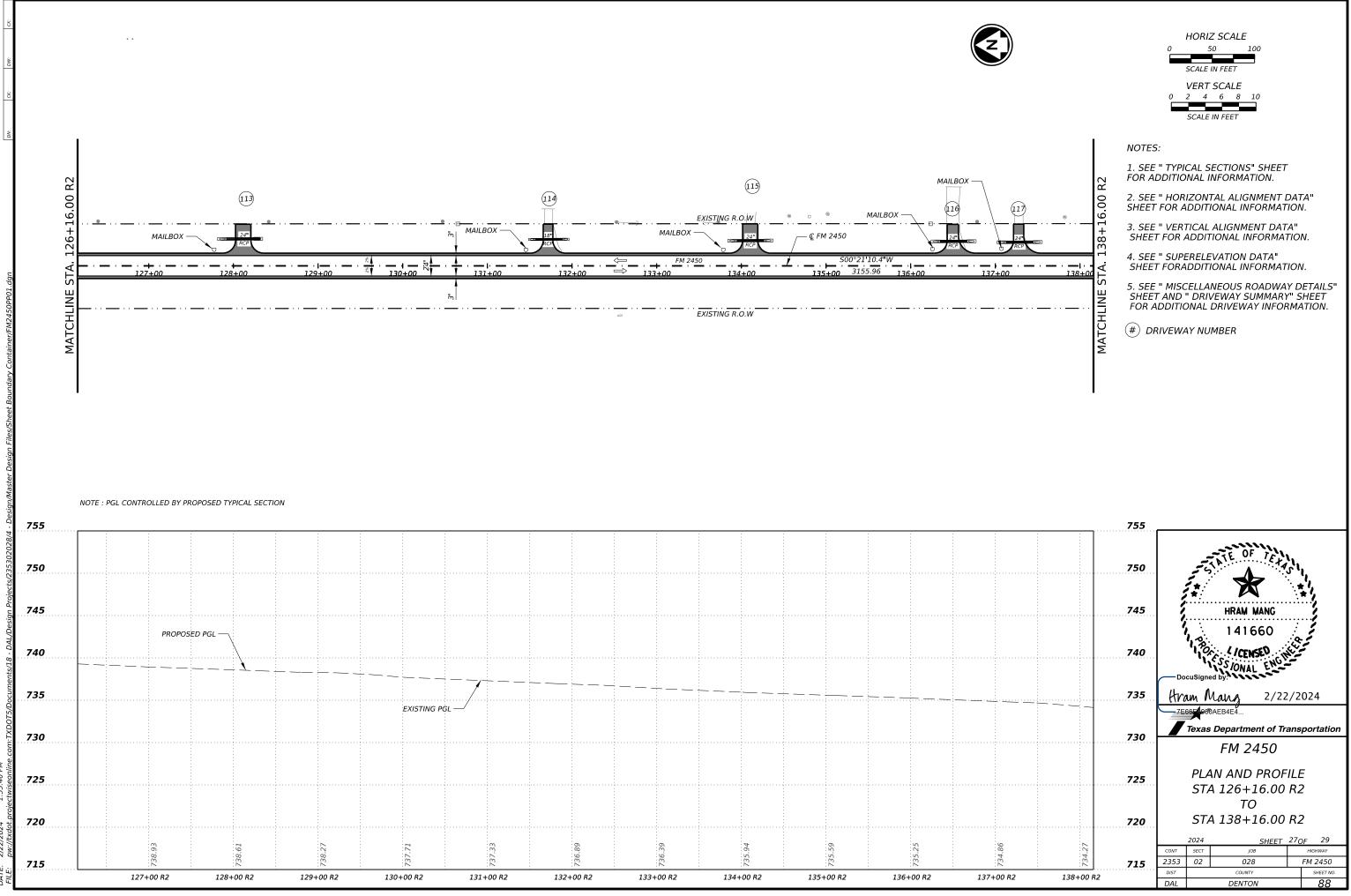

	,	770				
		765		سرم	TIE OF TEL	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
		760			HRAM MANG	*
		755	D	ocuSigr	141660	IN-LA ANA
		750	Hr	am 1	Mang 2/2	22/2024
		745	1	Texas	Department of Tr	ansportation
		740			FM 2450 N AND PROF	
		735			A 66+16.00 TO A 78+16.00	
.50	30		CONT	2024 _{SECT}	SHEET	22 _{OF} 29 _{HIGHWAY}
749	749.	730	2353	02	028	FM 2450
		, 30	DIST		COUNTY	SHEET NO.
7+00 R2	78+00 R2		DAL		DENTON	83

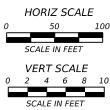


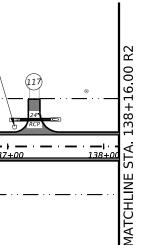


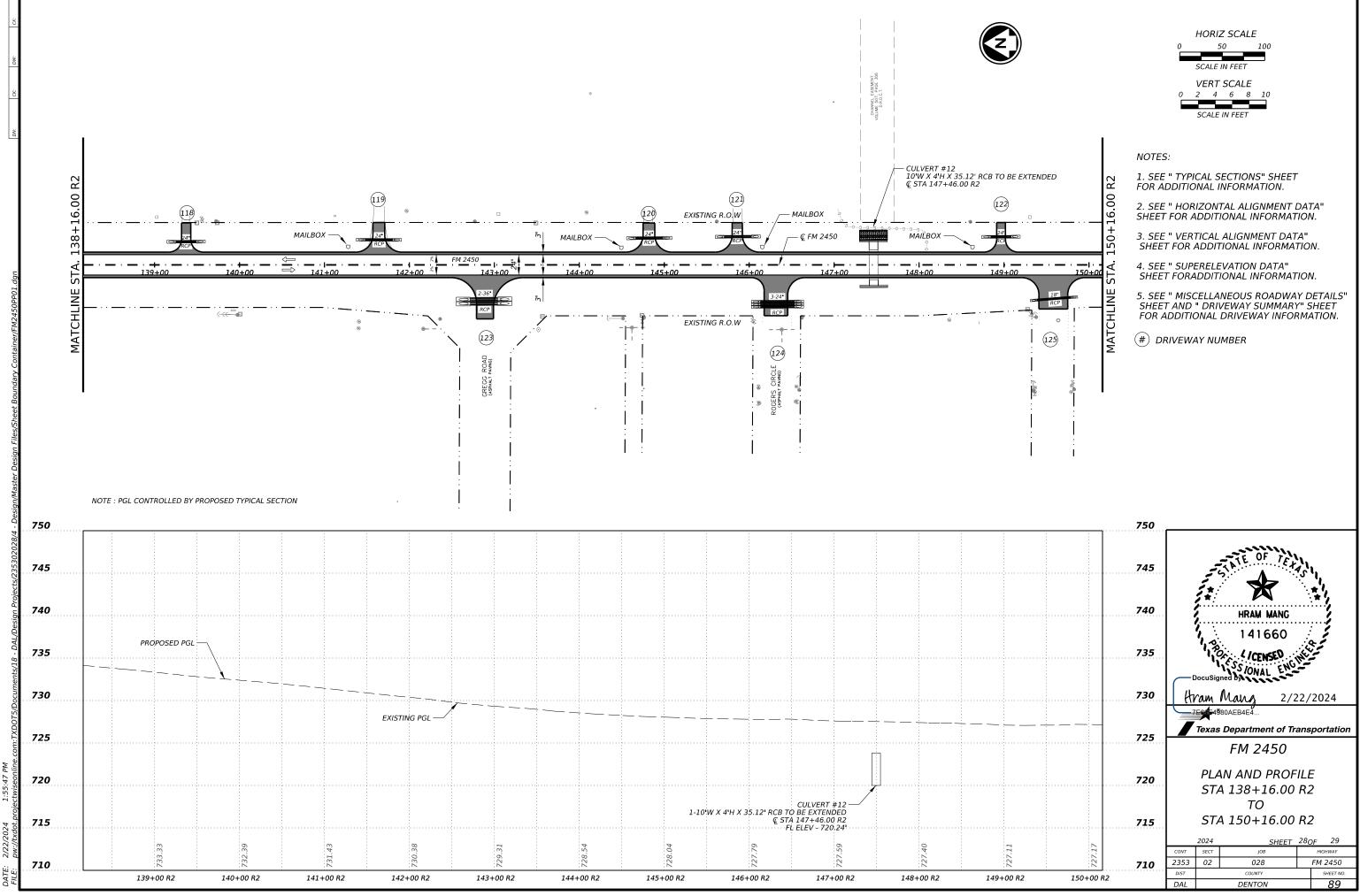



44 1:55. 024 2/2 DATE:

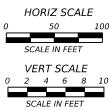


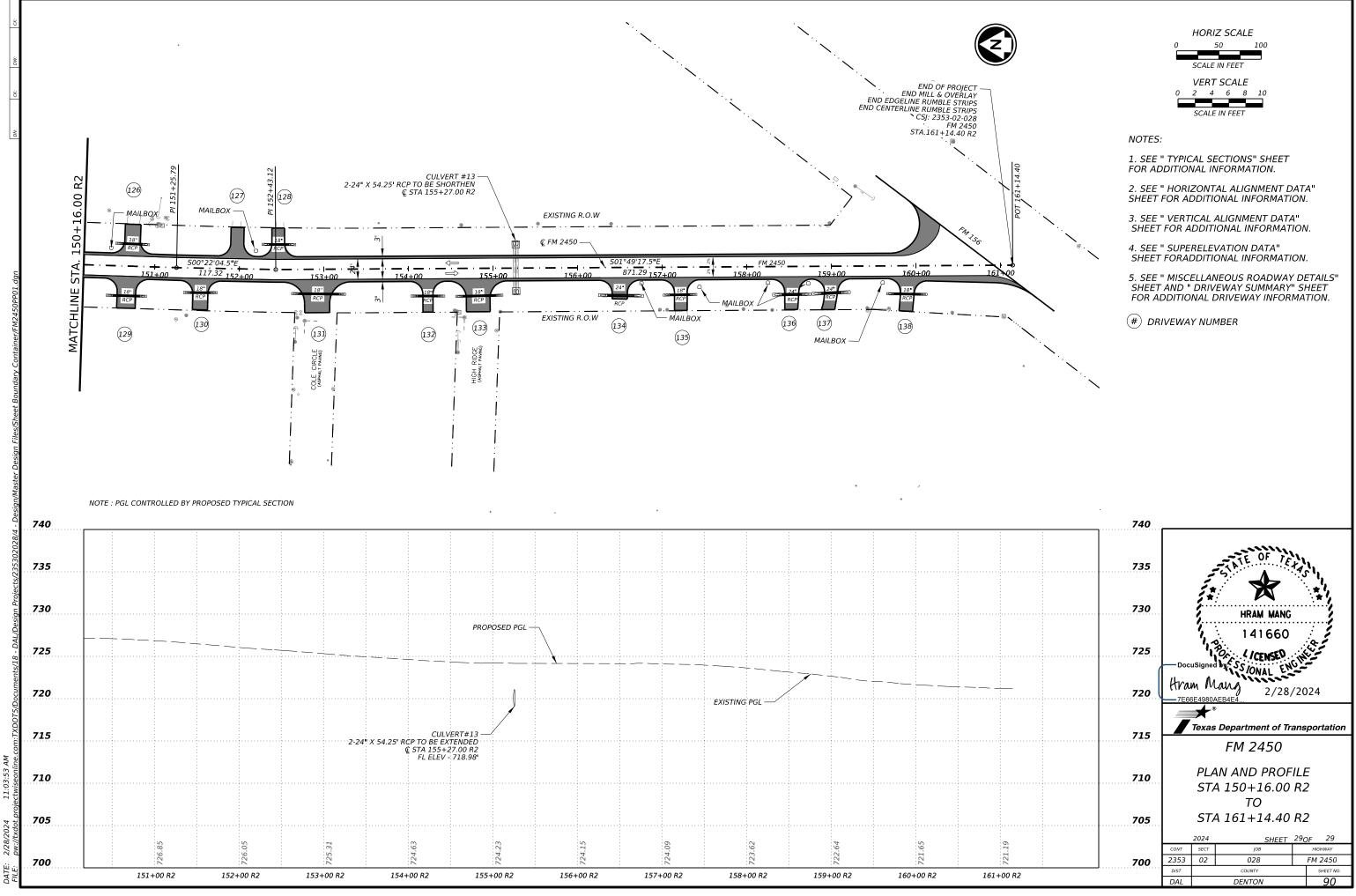


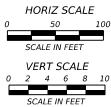


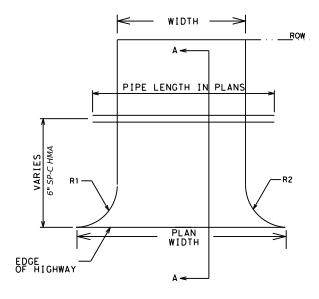


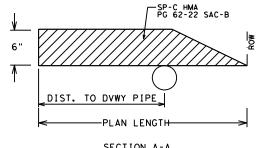
46 1:55:)24 2/2 DATE:

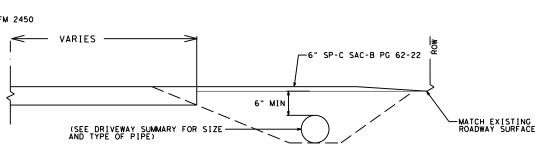


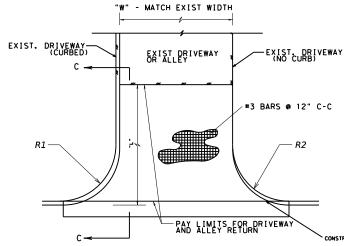


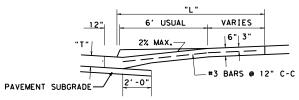







ASPHALT CONCRETE DRIVEWAY PAVEMENT COUNTY, CITY, OR STATE ROAD W/PIPE REPLACEMENT OVERLAY DETAIL


<u>Plan view</u>

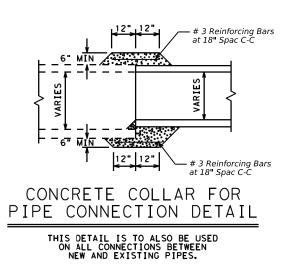


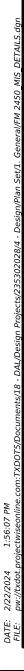
CROSS SECTION DRIVEWAY WITH PIPE

SECTION C-C

- NOTES: 1) DRIVEWAY LOCATIONS MAY BE SHIFTED AT TIME OF CONSTRUCTION AS DIRECTED BY THE ENGINEER TO MATCH EXISTING CONDITIONS. 2) OMIT PAYMENT FOR CURB WITHIN LIMITS OF DRIVEWAY. CURBS ON DRIVEWAYS SHALL BE CONSIDERED SUBSIDIARY TO THE PRICE BID PER SQUARE YARD FOR DRIVEWAY AND WILL NOT BE PAID FOR DIRECTLY.

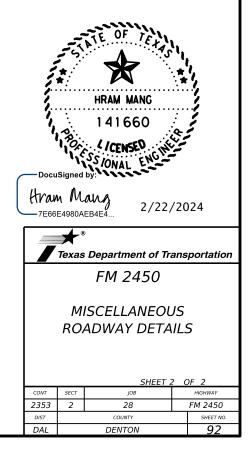
€ FM 2450

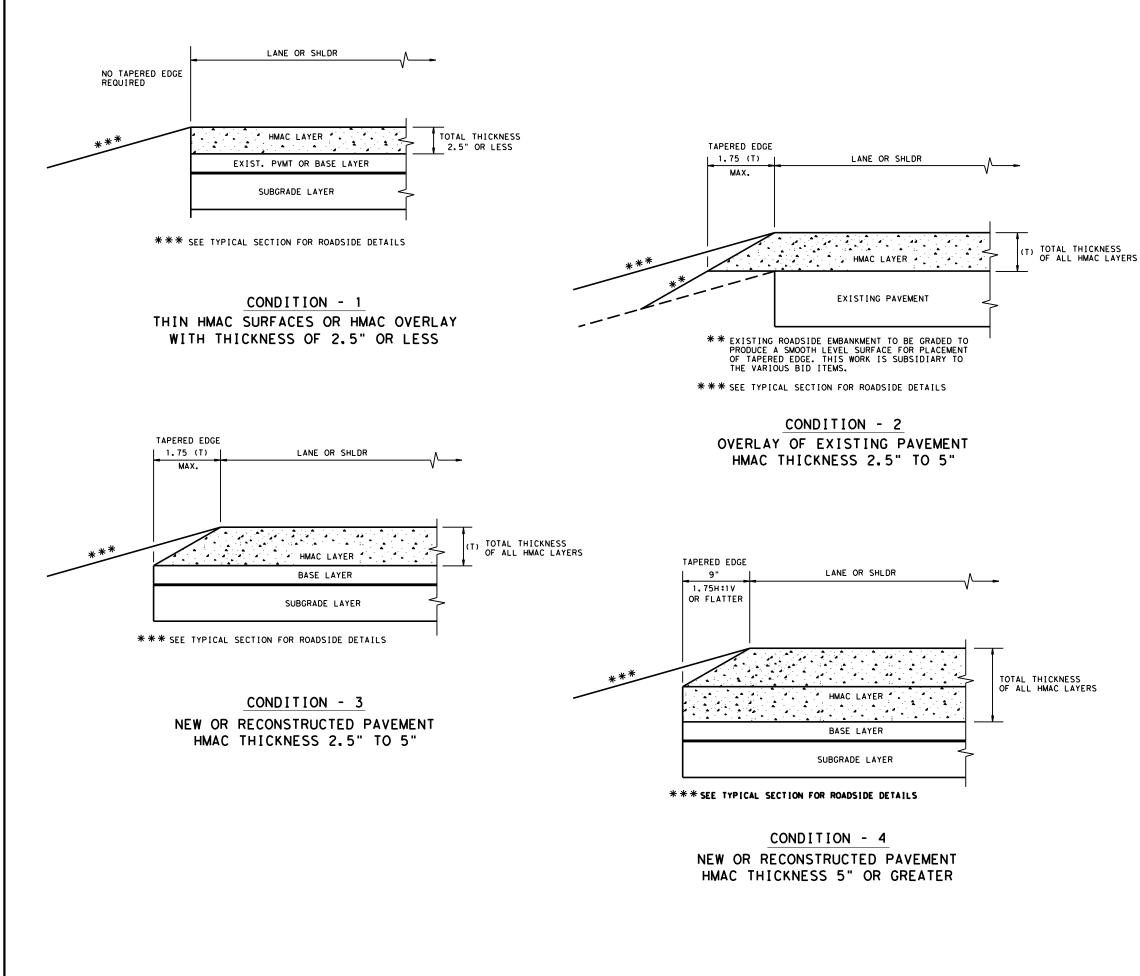

Ма 1:56:06 2/22/2024 DATE:


CONSTRUCTION JOINT

次 HRAM MANG 141660 </CENSED INSSIONAL ENC. DocuSigr Hram Mang 2/22/2024 -7E66E4980AEB4E4... Texas Department of Transportation FM 2450 MISCELLANEOUS ROADWAY DETAILS SHEET 1 OF 2 CONT SECT HIGHWAY 2353 02 FM 2450 28 DIST COUNTY SHEET NO. 91

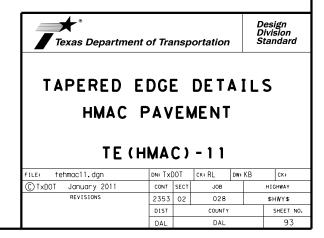
DENTON

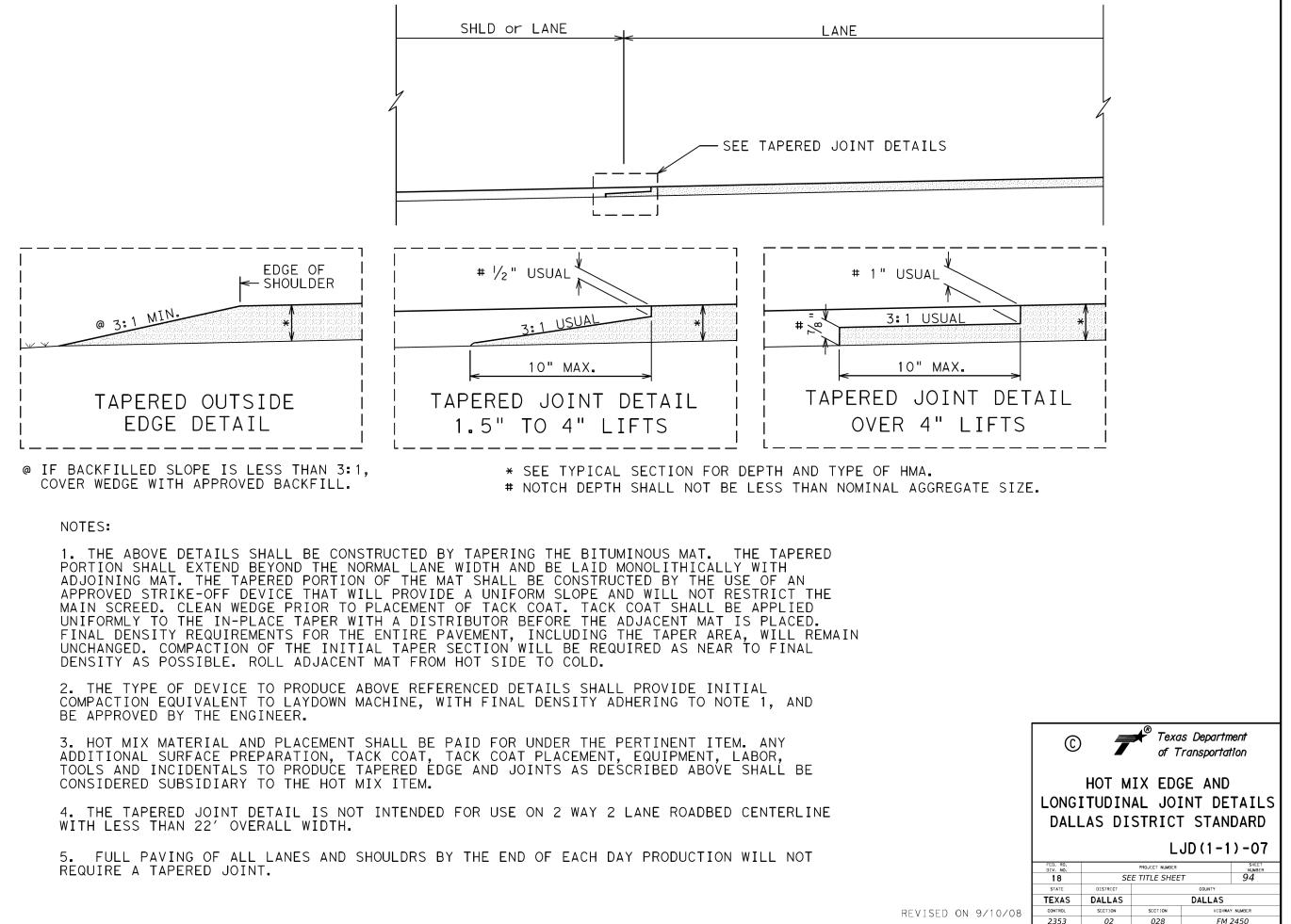

DAL



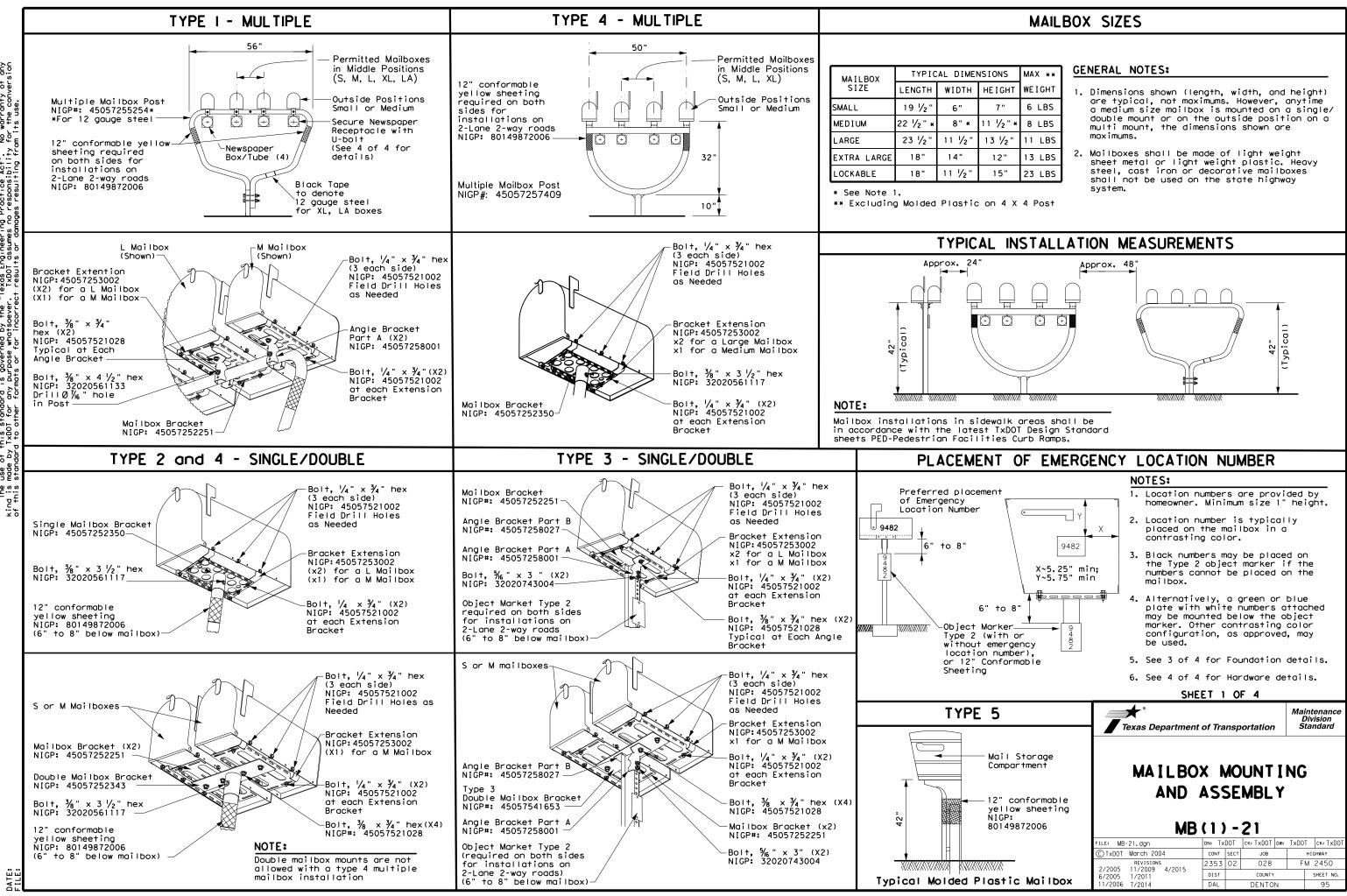
NOTES:

- 1. SEE THE TxDOT BARRICADE AND CONSTRUCTION AND TRAFFIC CONTROL PLAN STANDARDS FOR ADDITIONAL INFORMATION.
- 2. SEE CULVERT LAYOUTS FOR ADDITIONAL INFORMATION.
- 3. CULVERTS SHALL BE CONSTRUCTED FROM DOWNSTREAM TO UPSTREAM.
- 4. MAINTAIN POSITIVE DRAINAGE DURING CULVERT CONSTRUCTION.
- 5. MATCH EXISTING CROSS SLOPES AND ELEVATIONS.
- 6. PROVIDE DAYTIME ONE-WAY TRAFFIC CONTROL AS NECESSARY FOR PHASED CONSTRUCTION.

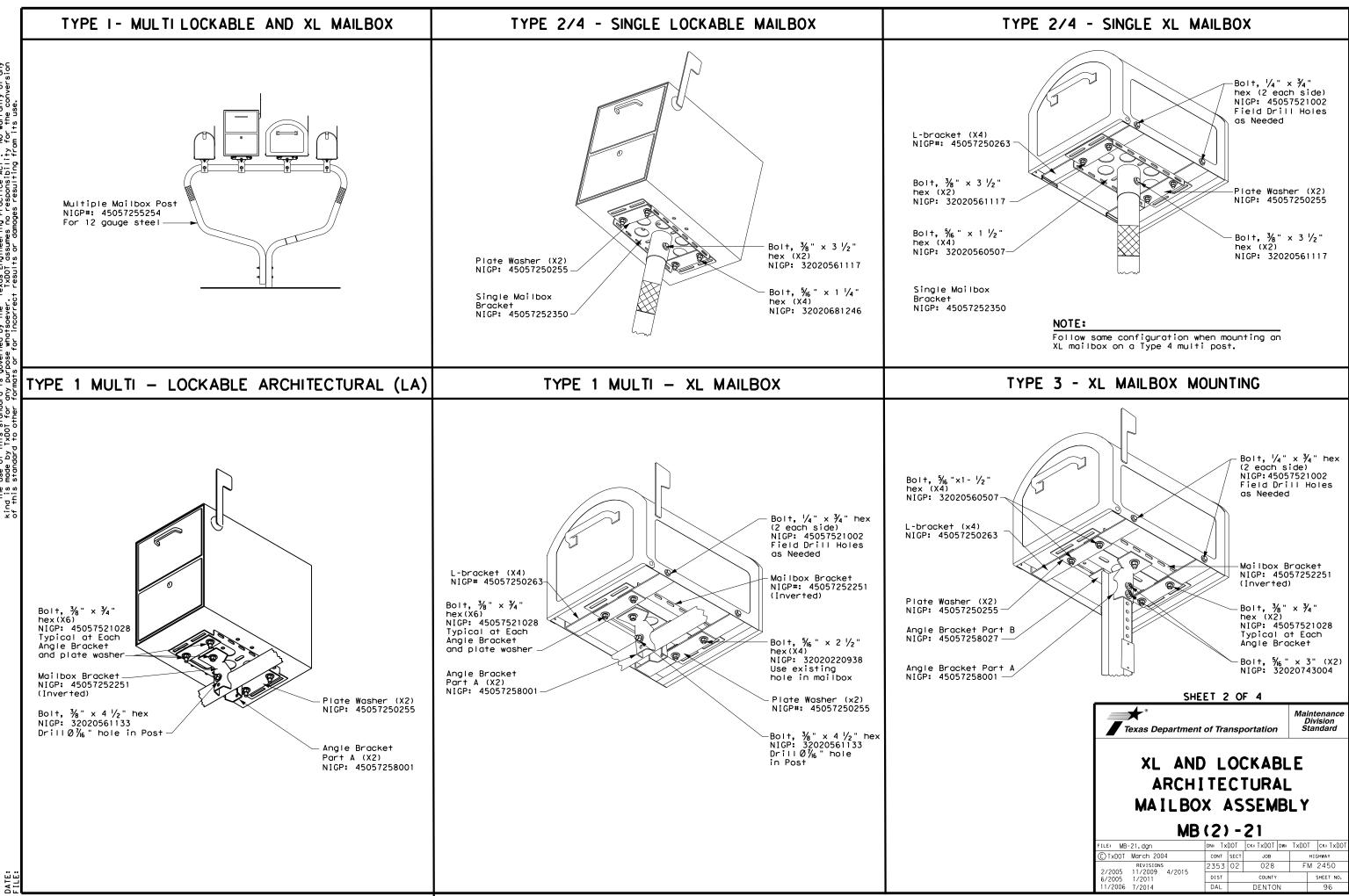




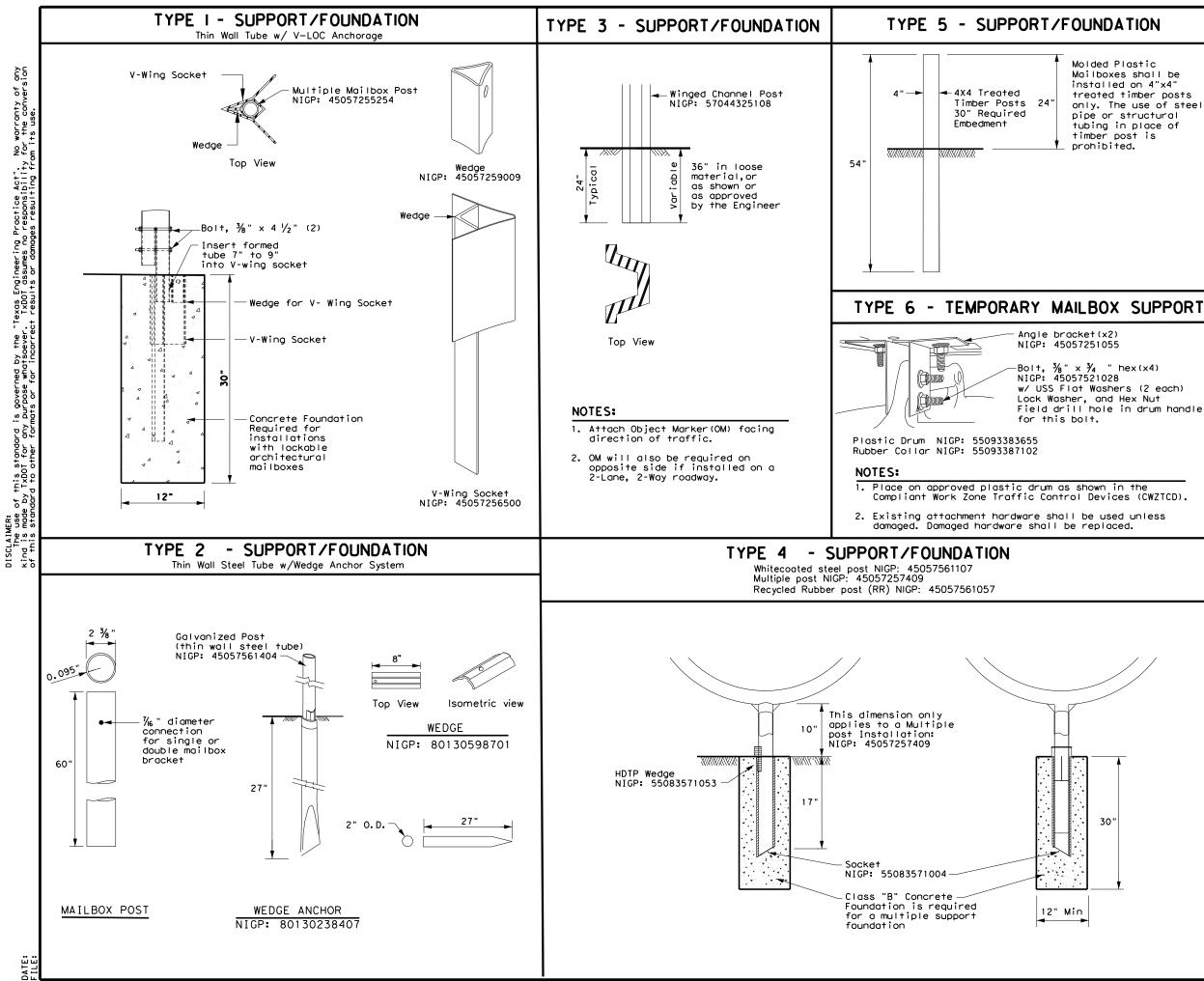
(NOT TO SCALE)


GENERAL NOTES

- 1. UNLESS OTHERWISE SHOWN IN THE PLANS, A VERTICAL EDGE IS PERMISSIBLE FOR HMAC PLACED GREATER THAN 5" BELOW THE EDGE OF PAVEMENT AND FOR THICKNESS OF HMAC LESS THAN 2.5"
- 2. FOR FURTHER INFORMATION REGARDING THE ROADSIDE AND PAVEMENT DETAILS, SEE TYPICAL SECTIONS.
- 3. PAYMENT FOR TAPERED EDGE WILL BE IN ACCORDANCE WITH APPLICABLE ITEMS IN THE CONTRACT.
- 4. THE SLOPE OF THE TAPERED EDGE SHALL BE 1.75H:1V OR FLATTER.
- 5. THE TAPERED EDGE SHALL BE PRODUCED BY USE OF A SCREED ATTACHMENT CAPABLE OF PRODUCING A SMOOTH COMPACTED SURFACE. ADDITIONAL COMPACTING EFFORT BEHIND THE SCREED IS NOT REQUIRED.



EM 2450



warranty of any the conversion Šç. actice Act". esponsibility p c this st TxDOT ٩ç AER. Use Dage A L S

IONS	MAX **
EIGHT	WEIGHT
7"	6 LBS
½" *	8 LBS
3 1⁄2 "	11 LBS
12"	13 LBS
15"	23 LBS

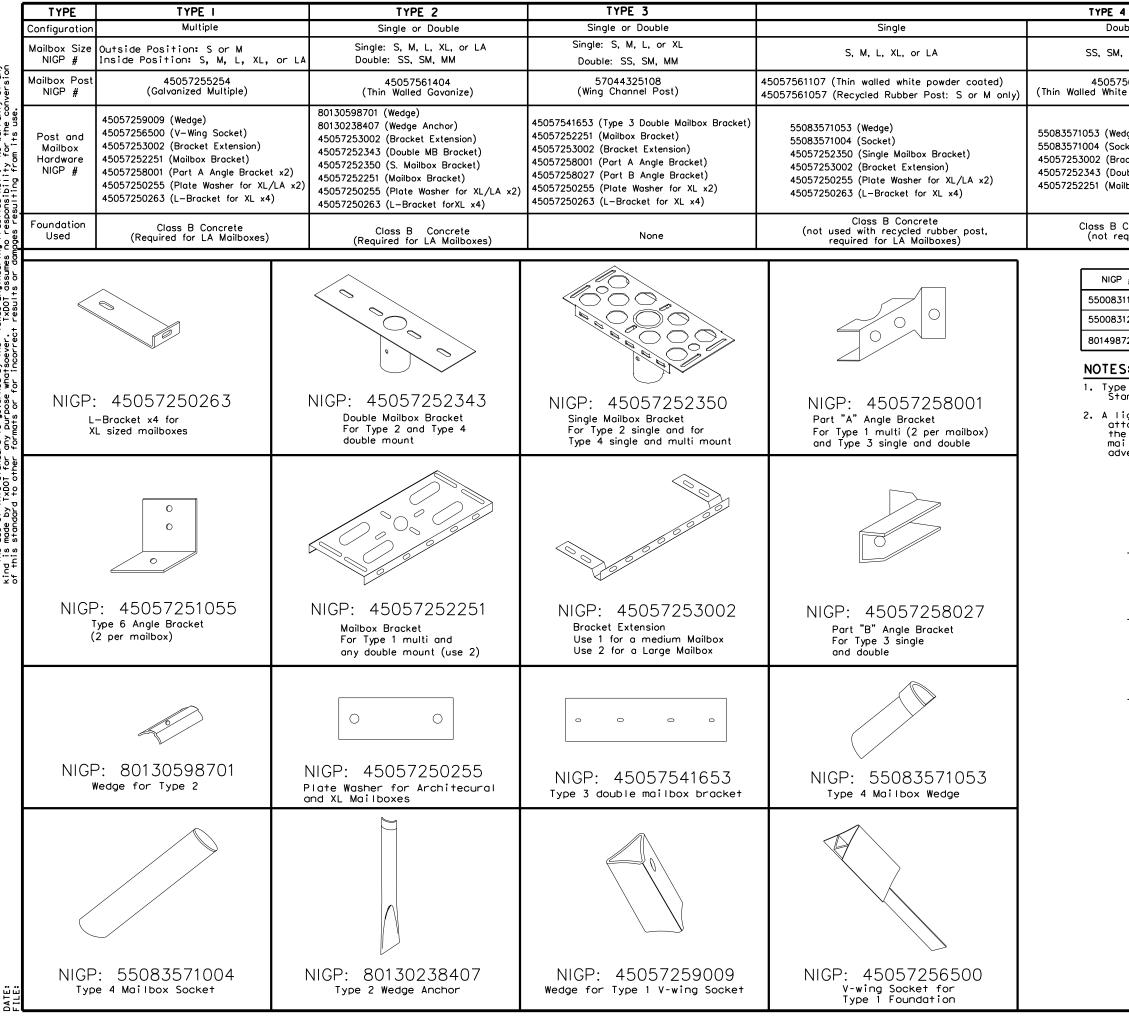
No warranty of any for the conversion Texas Engineering Practice Act". TxDOT assumes no responsibility t results or damages resulting fro TxDOT for other ° of DISCLAIMER: The use of kind is mode

Molded Plastic Mailboxes shall be installed on 4"x4" treated timber posts only. The use of steel pipe or structural tubing in place of timber post is

Field drill hole in drum handle

GENERAL NOTES:

- 1. Erect post plumb or vertical.
- 2. When galvanized part is required galvanize in accordance with Item 445.
- Use a concrete footing as shown or when directed. Concrete footing will be required when soils do not hold the support/foundations in a stable condition, only on Type 1, Type 2, and Type 4


SHEET 3 OF 4

* Texas Department of Transportation Maintenance Division Standard

MAILBOX SUPPORT AND FOUNDATION

MB	(3)	-21

FILE: MB-21.dgn	DN:		ск:	DW:	CK:			
© TxDOT March 2004	CONT	SECT	JOB		HIGHWAY			
REVISIONS 2/2005 11/2009 4/2015	2353	02	028	F	M 2450			
6/2005 1/2011	DIST		COUNTY		SHEET NO.			
11/2006 7/2014	DAL		DENTO	N	97			

SCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any nd is made by TxDOT for any purpose wortscever. TXDOT assumes no responsibility for the conversion this standard to other formats or for incorrect results or damages resulting from its use.

4			TYPE 5	TYPE 6								
ıble		Multiple	Single	Single								
, or MM	l	Outside Position: S or M Inside Position: S, M, L, or XL	Molded Plastic	S, or M								
561107 e Powd	er Coated)	45057257409 (White Powder Coated Multiple)	4x4 Timber	Construction Barrel								
uble Mo	ktension) unt Brocket) acket x2)	55083571053 (Wedge) 55083571004 (Socket) 45057253002 (Bracket Extension) 45057252350 (Single Mount Bracket) 45057250255 (Plate Washer for XL x2) 45057250263 (L-Bracket for XL x4)	None	45057251055 Angle Brocket (x2)								
Concret quired)		Class B Concrete	None	None								
#	OBJE	CT MARKERS AND CONFORMABLE SHEETIN	G									
" 11759		4"x4" (3 Needed) for Type 3 Wing Chann	-									
12906	•	6"x12" (1 needed) for Type 3 Wing Chann										
72006		nable Reflective Yellow Sheeting for Flexibl										
5:												
-	ject marke	r in accordance with Traffic Eng	ineerin	a								
tached e mail, exertis vertis Type S MP Type WC RR TWW TWG TIW Type Ty 1 Ty 2 Ty 3 Ty 4	to mailbo box, present tend beyon- ing, excep of Mailbd = Single = Double = Multiple = Multiple = Molded H of Post - = Winged = Recycle = Thin Wa = Thin Wa = Thin Wa = Timber of Founde = V-Loc = Wedge A = Winged	Plastic Channel Post d Rubber Hed White Tubing Hed Galvanized Tubing ation nchor Steel System Channel post nchor Plastic System	iot touc ry of ti lisplay	n ne								
		SHEET 4 OF	4	Maintenance								
		Texas Department of Transpo	ortation	Division Standard								
	NIGP PARTS LIST AND COMPATIBILITY MB(4)-21											
		FILE: MB-21.dgn DN: TxDOT	ск: TxDOT Dw:	1								
		CTXDOT March 2004 CONT SECT REVISIONS 2353 02	JOB 0.2.8	HIGHWAY FM 2450								

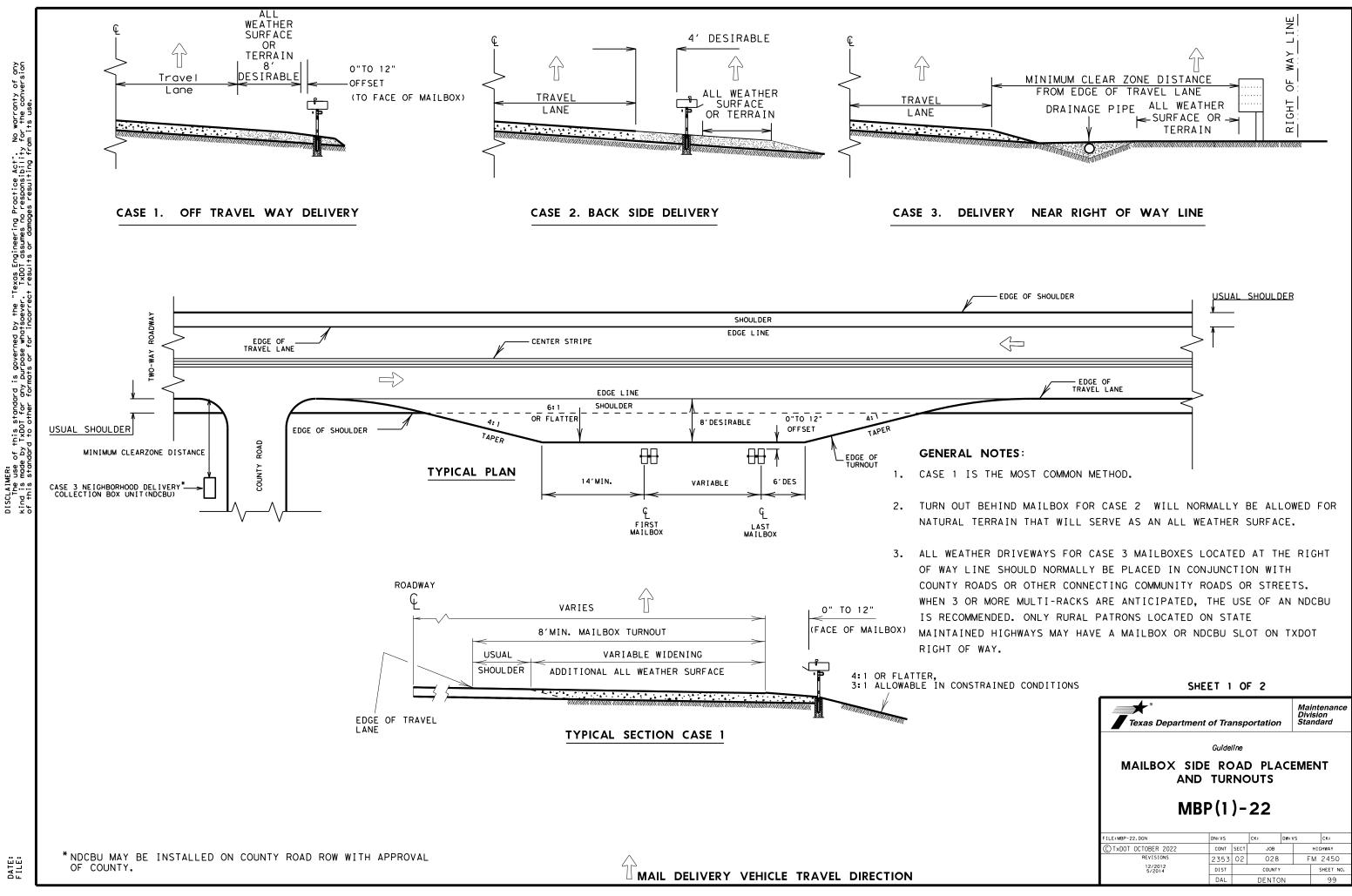
REVISIONS 11/2009 4/2015 1/2011

7/2014

2/2005

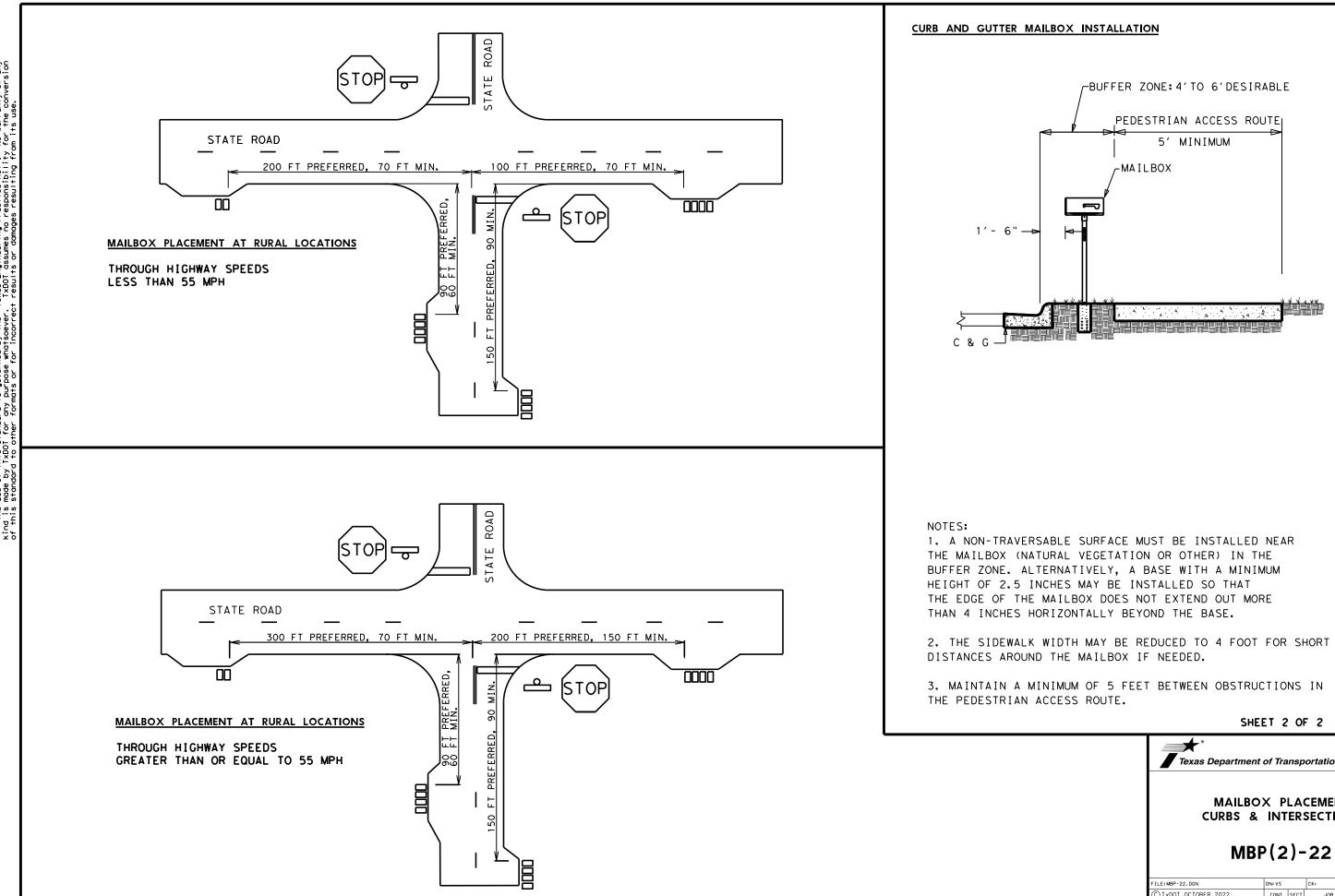
6/2005 11/2006 COUNTY

DENTON


2353 02

DIST

DAL


SHEET NO.

98

OF COUNTY.

Texas Department	of Tra	nsp	ortation	Div	intenance ision ndard								
Guideline MAILBOX SIDE ROAD PLACEMENT AND TURNOUTS MBP(1)-22													
FILE: MBP-22. DGN	DN: VS		CK:	DW:VS	CK:								
© TxDOT OCTOBER 2022	CONT	SECT	JOB		HIGHWAY								
REVISIONS	2353	02	028	F	M 2450								
12/2012 5/2014	DIST		COUNTY		SHEET NO.								
	DAL		DENTO	N	99								

is governed by the "Texas Engineering Practice Act". No warranty of any purpose whatsoever. TxDDT assumes no responsibility for the conversion mats or for incorrect results or domages resultion from its use.

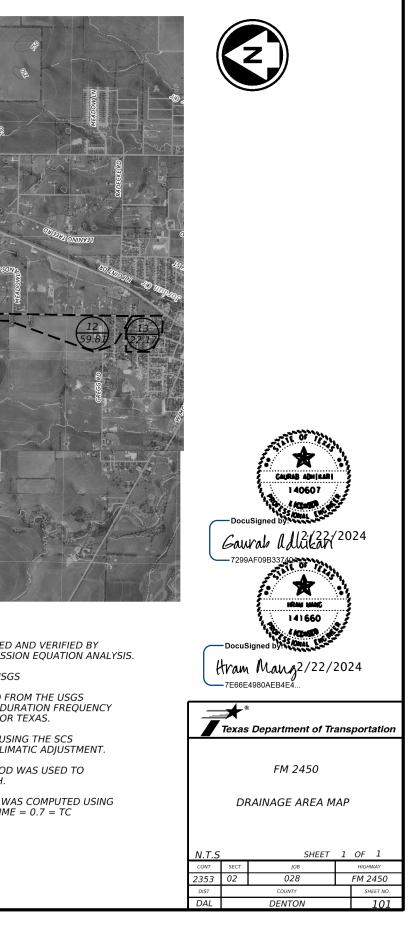
Texas Department	of Tra	nsp	ortation		Maint Divisio Stand	
MAILBO CURBS & MBF	INT	ER	SECTIO		S	
FILE:MBP-22.DGN	DN: VS		CK:	DW:VS	;	CK:
© TxDOT OCTOBER 2022	CONT	SECT	JOB		нI	GHWAY
REVISIONS	2353	02	028		FΜ	2450
12/2012 5/2014	DIST		COUNTY			SHEET NO.
	DAL		DENTO	١		100

			RUN OFF CA	LCULATION				1	0 YR	100 YR		
CULVERT	DA	STA	METHOD	AREA (Acres)	CURVE NO	С	TC	I	Q	I	Q	
1	1	22+60.00 R1	NRCS	84.3	N/A	0.45	30	3.97	150.49	5.99	227.02	
2	2	45+27.00 R1	NRCS	74.6	N/A	0.66	46	3.04	149.7	4.60	226.48	
3	3	91+28.64 R1	NRCS	111.4	N/A	0.57	33	3.75	237.96	5.66	359.18	
**4	4	127+42.60 R1	**	259	75	N/A	N/A	N/A	311	N/A	565.00	
**5	5	140+45.00 R1	**	248.6	86	N/A	N/A	N/A	426	N/A	681.00	
6	6	148+50.00 R1	NRCS	76.32	N/A	0.42	32	3.82	122.39	5.76	184.70	
7	7	163+87.00 R1	NRCS	29.87	N/A	0.31	27	4.22	39.11	6.37	58.97	
**8	8	180+10.00 R1	**	211.54	79	N/A	N/A	N/A	288	N/A	497.00	
**9	9	31+75.00 R2	**	365.2	80	N/A	N/A	N/A	488	N/A	839.00	
10	10	72+13.00 R2	NRCS	49.98	N/A	0.54	31	3.89	105.05	5.87	158.49	
11	11	82+16.85 R2	NRCS	49.46	N/A	0.52	30	3.97	102.09	5.99	154.00	
12	12	147+46.00 R2	NRCS	59.81	N/A	0.52	40	3.33	107.40	5.03	162.31	
13	13	155+27.00 R2	NRCS	22.17	N/A	0.52	30	3.97	47.52	5.99	71.69	

NOTES:

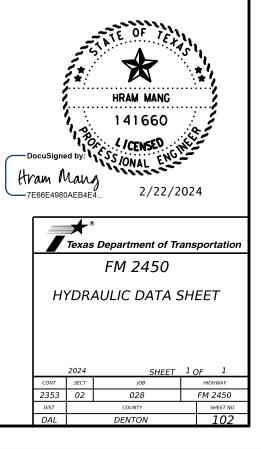
1. RUNOFF COMPUTATIONS PERFORMED AND VERIFIED BY HEC-HMS 4.2 AND OMEGA EM REGRESSION EQUATION ANALYSIS.

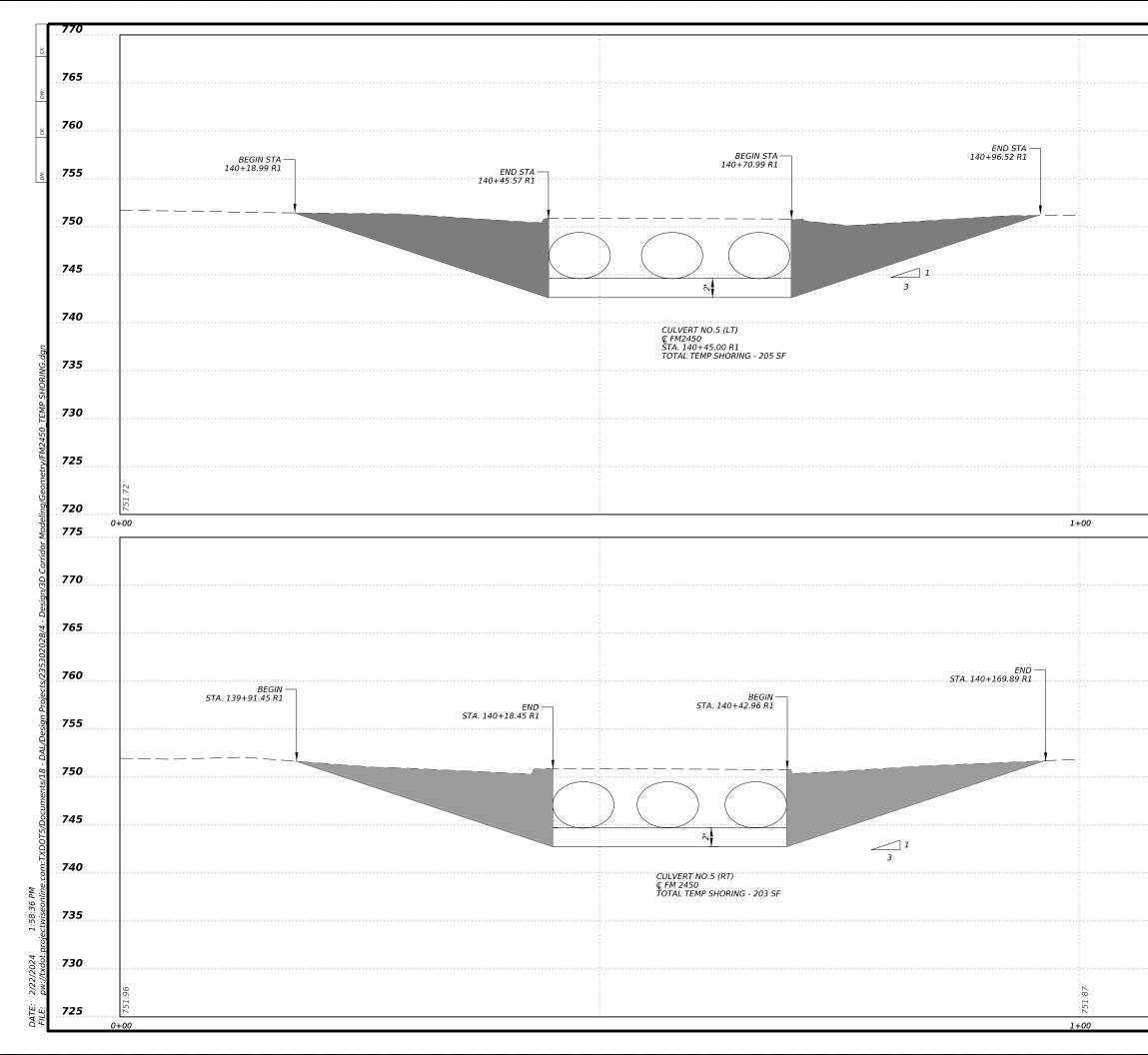
2. SOURCE OF TOPOGRAPHY DATA : USGS

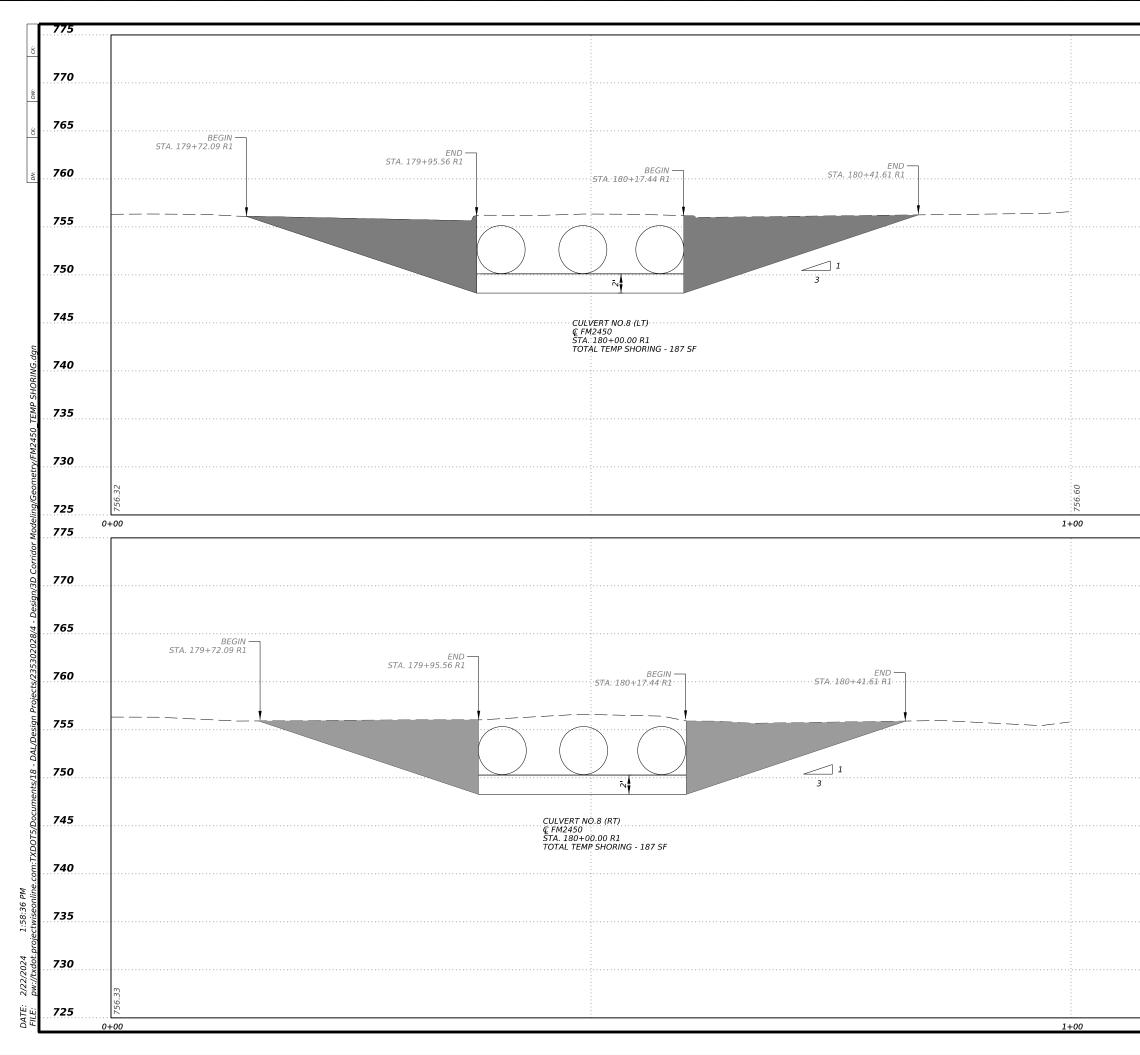

3. RAINFALL DEPTHS WERE OBTAINED FROM THE USGS REPORT 2004-5041 ATLAS OF DEPTH-DURATION FREQUENCY OF PRECIPITATION ANNUAL MAXIMA FOR TEXAS.

4. RUNOFF VOLUME WAS COMPUTED USING THE SCS CURVE NUMBER LOSS MODEL WITH CLIMATIC ADJUSTMENT.

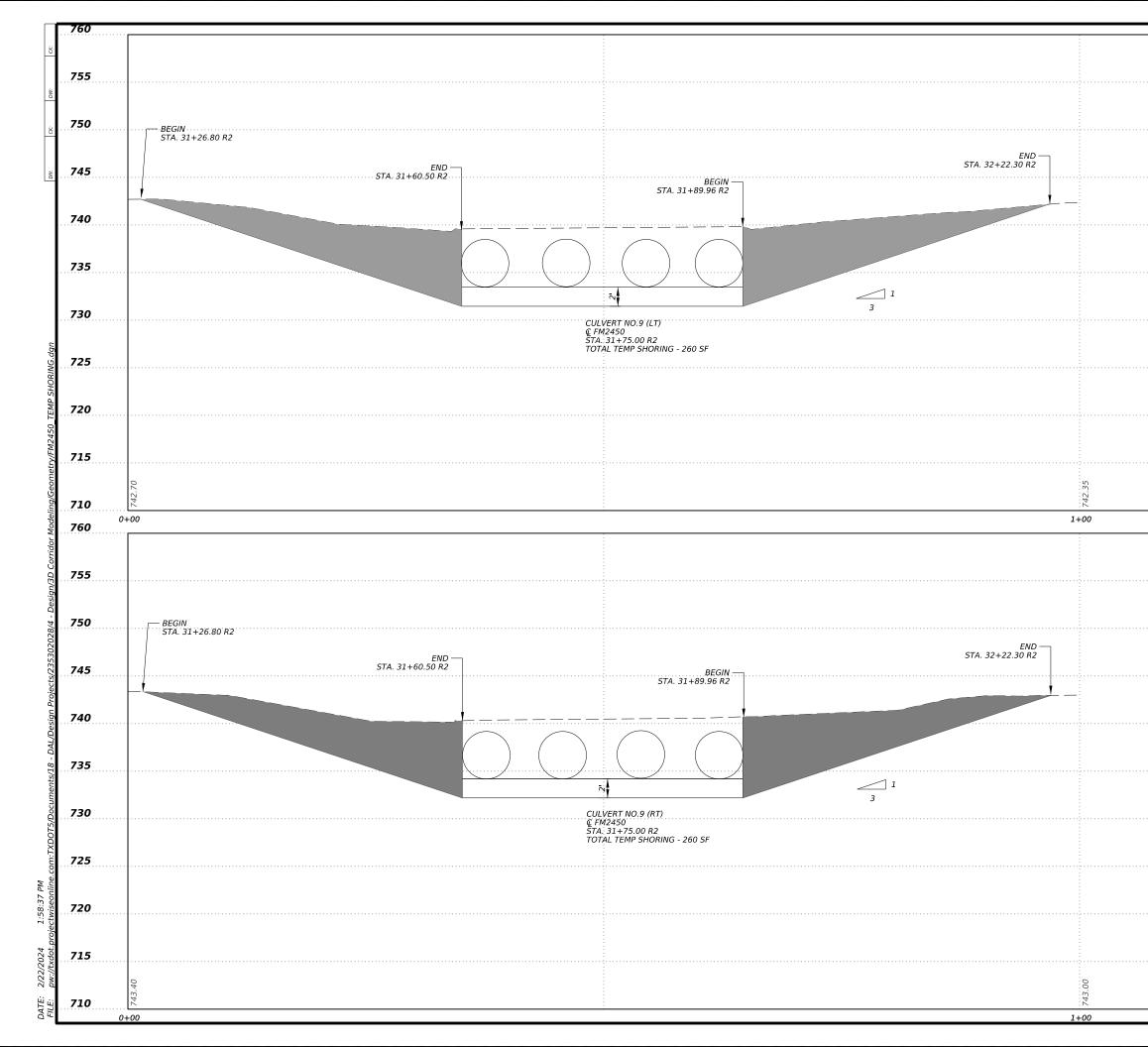
5. THE SCS UNIT HYDROGRAPH METHOD WAS USED TO DEVELOP DISCHARGE HYRDROGRAPH.

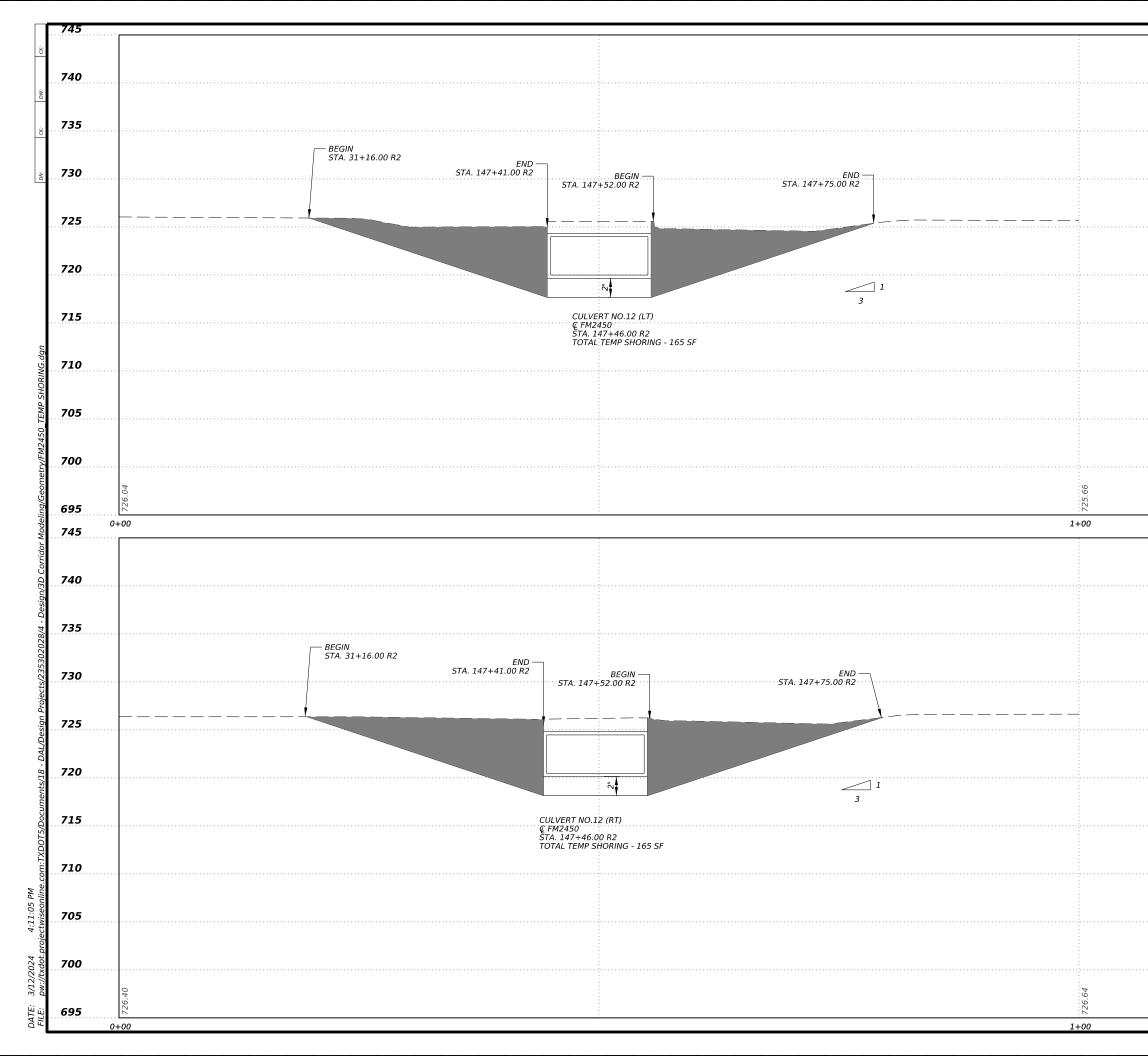

6. THE TIME OF CONCENTRATON (TC) WAS COMPUTED USING THE KERBY-KERPICH METHOD. LAG TIME = 0.7 = TC

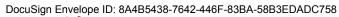

** SEE NOTE FOR CALCULATION DETAILS

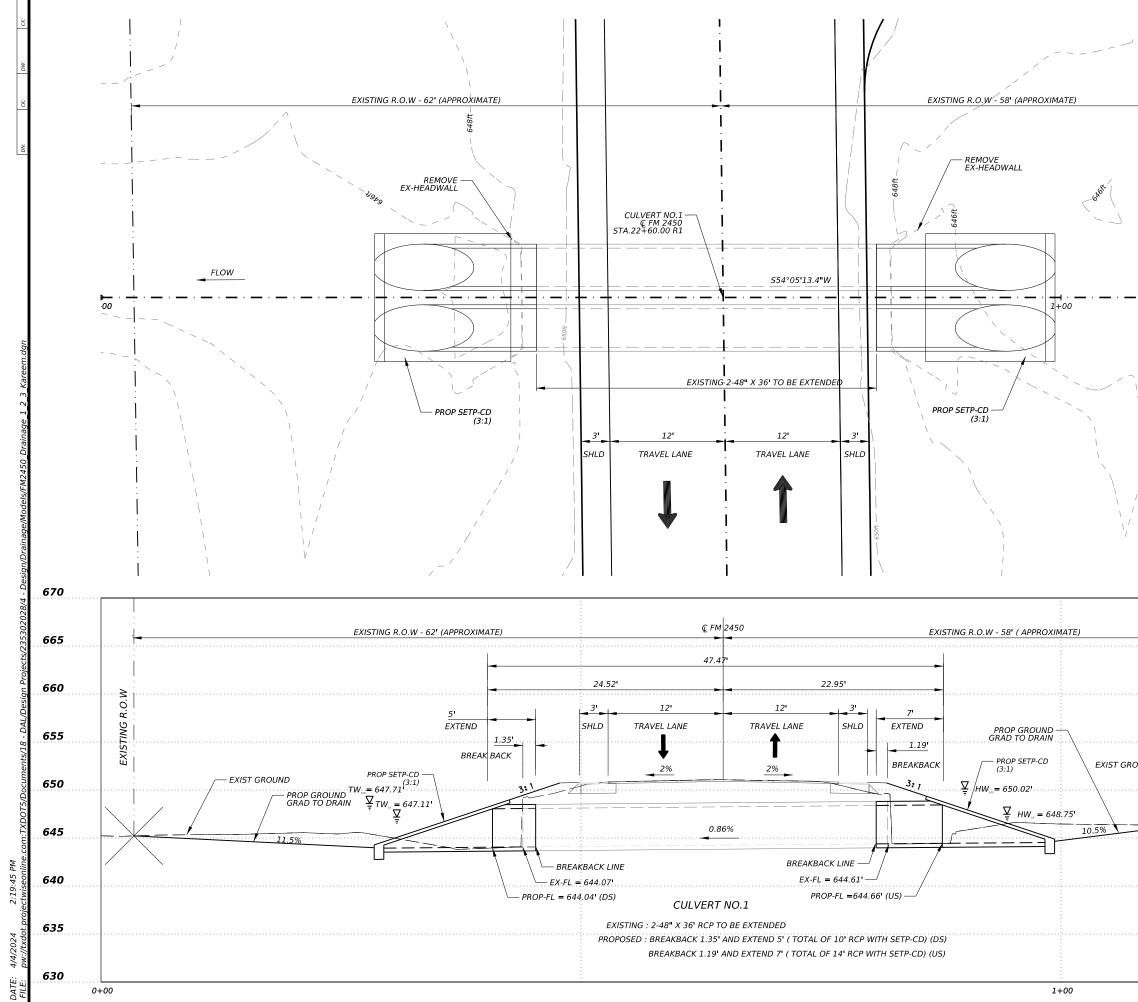

DN: CK: DW:

								С	ULVER	T HYDF	RAULIC	DATA												
STATION Culvert # ROADW		ROADWAY		DESCRIPTION		DECODIDENCI			ALLOWABLE HEADWATER		10 YEAR (DESIGN)								100 \	YEAR (CHI	ECK)			COMMENTS
					DRAINAGE AREA ID	Watershed Area	(FT)	FLOW "Q" (CFS)	HW ELEV (FT)	HW DEPTH (FT)	TW ELEV (FT)	TW DEPTH (FT)	OUTLET VEL (FT/S)	TW VEL (FT/S)	FLOW "Q" (CFS)	HW ELEV (FT)	HW DEPTH (FT)	TW ELEV (FT)	TW DEPTH (FT)	OUTLET VEL (FT/S)	TW VEL (FT/S)			
22+60 R1	Culvert #1	FM 2450	EXISTING	2-48" X 36' RCP	- DA-1	84	650.53	148.38	648.66	4.05	646.66	2.59	11.26	3.63	223.83	650.40	5.79	647.23	3.16	12.69	4.05	Stralght		
EL COTT	outroit #1	11112100	PROPOSED	2 - 48" X 47.47' RCP	5	84.3		150.49	648.75	4.09	647.11	3.07	11.61	3.71	227.02	650.02	5.87	647.71	3.67	13.06	4.12	Straight		
45+27 R1	Culvert #2	FM 2450	EXISTING	1-54"X64.28' RCP	- DA-2	72	679.90	148.86	678.07	5.86	673.27	1.58	12.31	10.82	225.21	679.85	8.16	673.61	1.92	13.38	12.06	Straight		
40.21111	GUIVEIT#2	1112400	PROPOSED	1-54"X68' RCP	BAL	74.6	0/0.00	149.70	678.10	5.89	673.17	1.48	12.33	10.73	226.48	680.39	8.18	673.50	1.81	13.39	11.99	Stralght		
91+28.64 R1	Culvert #3	FM 2450	EXISTING	3-48"X49.68' RCP		DA-3	713.38	234.87	709.10	4.40	706.37	2.02	10.04	11.53	354.30	711.63	6.93	706.79	2.44	11.32	12.48	Straight		
91+20.04 KT	Culvert#3	FW 2430	PROPOSED	3-48"X63.33' RCP	DA-3		713.30	237.96	709.01	4.27	706.29	2.04	10.80	11.57	359.18	710.98	6.24	706.71	2.46	12.23	12.86	Straight		
127+42.60 R1	Culvert #4	FM 2450	EXISTING	3-48" X 59.84' RCP	- DA-4	205	755.98	290.86	753.77	5.09	751.62	3.17	9.07	4.26	440.92	756.75	8.07	752.35	3.90	11.77	4.77	Straight		
127742.00 KT	Culvert #4	FWI 2450	PROPOSED	3-48" X 73' RCP	DA-4	259	755.96	311.00	754.11	5.38	751.68	3.28	9.40	4.34	565.00	758.00	9.27	752.80	4.40	12.91	5.09	Stralght		
440-45 04	0.1	EM 0450	EXISTING	3-60" X 57.56' RCP	DAG	304	754.05	464.06	750.71	5.97	748.33	3.72	9.88	4.77	703.39	753.71	8.97	749.19	4.58	12.44	5.35	Straight		
140+45 R1	Culvert #5	FM 2450	PROPOSED	3-60" X 76' RCP	- DA-5	248.6	754.35	426.00	750.41	5.63	748.14	3.56	9.50	4.66	681.00	753.39	8.61	749.09	4.51	12.18	5.30	Straight		
440.50 D4	0.1.1.1/0	EN 0450	EXISTING	2-36" X 65.93' RCP	54.0	53	754.40	105.19	753.11	3.82	751.29	2.22	8.83	4.45	158.68	755.19	6.06	751.74	2.67	11.65	4.95	Straight		
148+58 R1	Culvert #6	FM 2450	EXISTING	2-36" X 62.07' RCP	- DA-6	76.32	754.42	122.39	754.71	5.63	751.19	2.38	9.65	4.63	184.70	756.38	7.30	751.67	2.86	10.98	5.14	Straight		
100.07.01	0.1.1/7	51.0450	EXISTING	1-30" X 54.56' RCP		11	700.04	29.69	758.52	2.88	756.14	0.85	8.11	5.32	44.79	759.99	4.35	756.34	1.05	9.72	5.97	Straight		
163+87 R1	Culvert #7	FM 2450	EXISTING	1-30" X 54' RCP	- DA-7	29.87	760.21	39.11	759.39	3.72	756.10	0.98	9.93	5.75	58.97	761.33	5.66	756.32	1.20	11.42	6.43	Stralght		
100,10 51	0.1.1.1/0	EN 0450	EXISTING	3-60" X 38' RCP	54.0	270	757.44	413.81	755.63	5.33	753.62	3.51	10.54	4.62	626.84	758.11	7.81	754.43	4.32	11.58	5.18	Straight		
180+10 R1	Culvert #8	FM 2450	PROPOSED	3-60" X 52' RCP	- DA-8	211.54	757.41	288.00	754.50	4.18	752.98	3.21	10.03	4.40	497.00	756.51	6.19	753.92	3.85	11.09	4.86	Straight		
04.75 00	0.1.1.10	51.0.150	EXISTING	4-60" X 55' RCP		354	74454	647.42	743.36	9.22	737.42	3.96	14.48	5.12	978.47	13.89	748.03	738.36	4.90	16.72	5.75	Straight		
31+75 R2	Culvert #9	FM 2450	PROPOSED	4-60" X 86.70' RCP	- DA-9	365.2	744.54	488.00	740.84	6.37	736.88	3.77	14.44	4.98	839.00	747.18	10.82	737.99	4.53	15.88	5.51	Stralght		
70:40 00	Out and #40	EMONES	EXISTING	3-30" X 62' RCP	DA 40	47	740.00	108.21	747.21	3.58	744.98	1.47	8.42	8.75	163.23	749.26	5.63	745.30	1.79	11.37	9.75	Straight		
72+13 R2	Culvert #10	FM 2450	PROPOSED	3-30" X 62' RCP	- DA-10	49.98	749.60	105.05	747.33	3.70	744.96	1.45	8.28	8.68	158.49	749.89	6.26	745.27	1.76	11.08	9.67	Straight		
00.40.05 50	0.1	EMONES	EXISTING	2-36" X 69.50' RCP	DA 11	49	747.00	101.14	744.51	3.69	742.09	1.59	8.65	7.28	152.57	746.55	5.75	742.43	1.93	11.29	8.11	Straight		
82+16.85 R2	Culvert #11	FM 2450	PROPOSED	2-36" X 60.11' RCP	- DA-11	49.46	747.00	102.09	744.51	4.58	742.13	1.59	8.69	7.30	154.00	746.49	5.83	742.47	1.93	11.37	8.12	Straight		
447-40-00	0.4.4.1.1.1.1	FMOLEC	EXISTING	1-10'X4'-35.12 ' BOX	DA 10	59	700.00	105.74	723.03	2.89	721.11	1.12	9.79	12.91	159.82	723.83	3.35	721.36	1.37	10.88	14.43	Straight		
147+46 R2	Culvert #12	FM 2450	PROPOSED	1-10'X4'-54.87' BOX	- DA-12	59.81	726.30	107.40	723.17	2.56	720.96	1.12	11.36	13.65	162.31	723.97	3.36	721.22	1.38	11.96	14.49	Straight		
155.07.00	01.186	FLIGHTS	EXISTING	2-24" X 54.25' RCP	54.40	22	700.00	47.16	722.29	3.22	719.85	0.97	8.19	7.03	71.14	724.23	5.16	720.07	1.19	11.12	7.87	Straight		
155+27 R2	Culvert #13	FM 2450	PROPOSED	2-24" X 52.43' RCP	DA-13	22.17	723.00	47.52	722.33	3.26	719.85	0.97	8.23	7.05	71.69	724.24	5.17	720.08	1.20	11.16	7.89	Stralght		



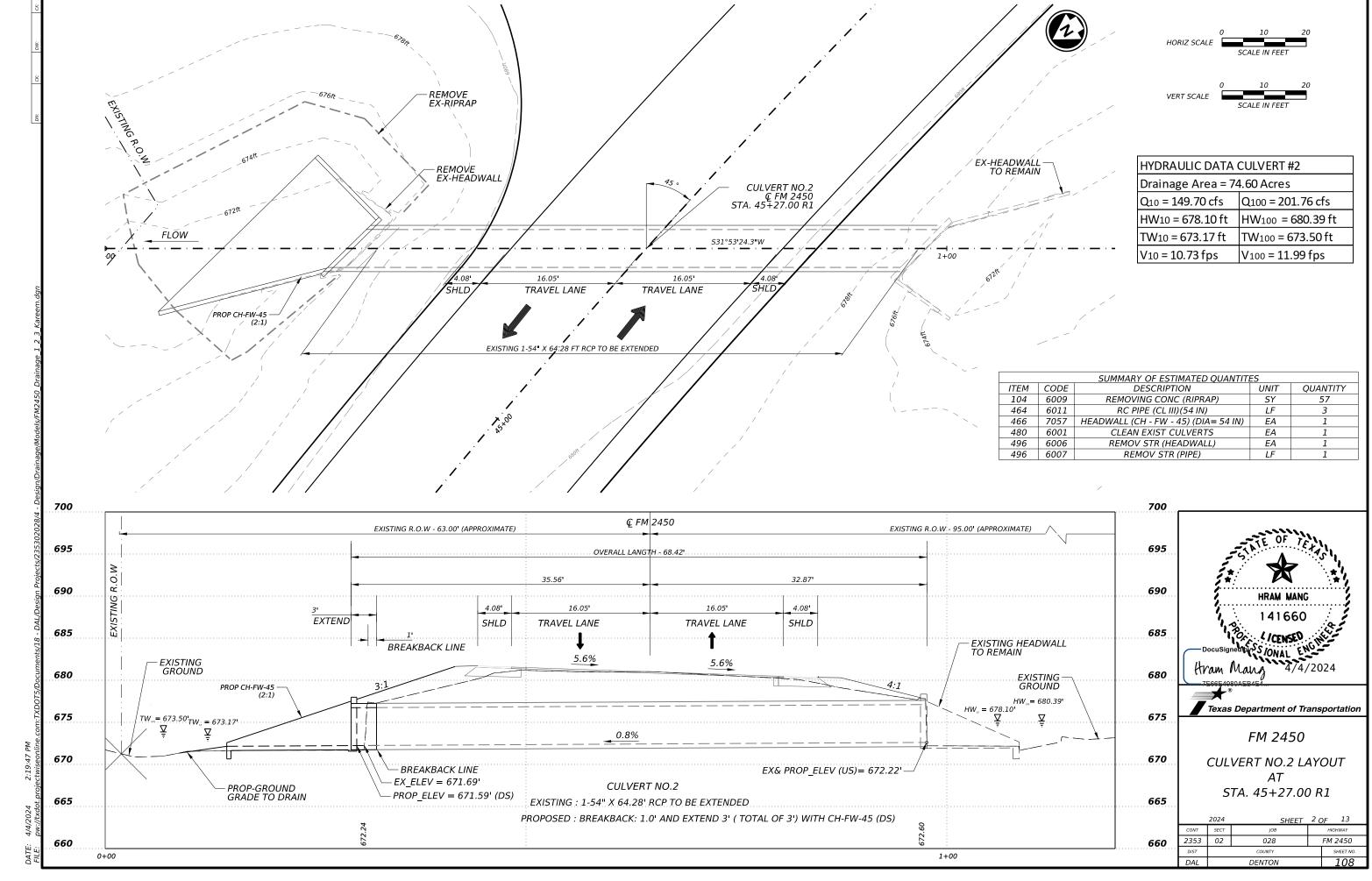

770	
 765	0 2 4 6 8 10 SCALE IN FEET
 760	
 755	
 750	
 745	
 740	
 735	
 730	
 725	
720 775	
 770	
 765	TE OF JOY
 760	
 755	HRAM MANG 141660
 750	Docusignition Stonal ENG Hram Mang 2/22/2024
 745	Z/22/2024 7E66E4980AEB4E4 2/22/2024 Texas Department of Transportation
 740	FM 2450
 735	SPECIAL TEMPORARY SHORING CULVERT NO.5
730	
 ,	2024 SHEET ¹ OF 4
	CONT SECT JOB HIGHWAY 2353 02 028 FM 2450
725	Z353 U2 U28 FM 2450 DIST COUNTY SHEET NO.
	DAL DENTON 103

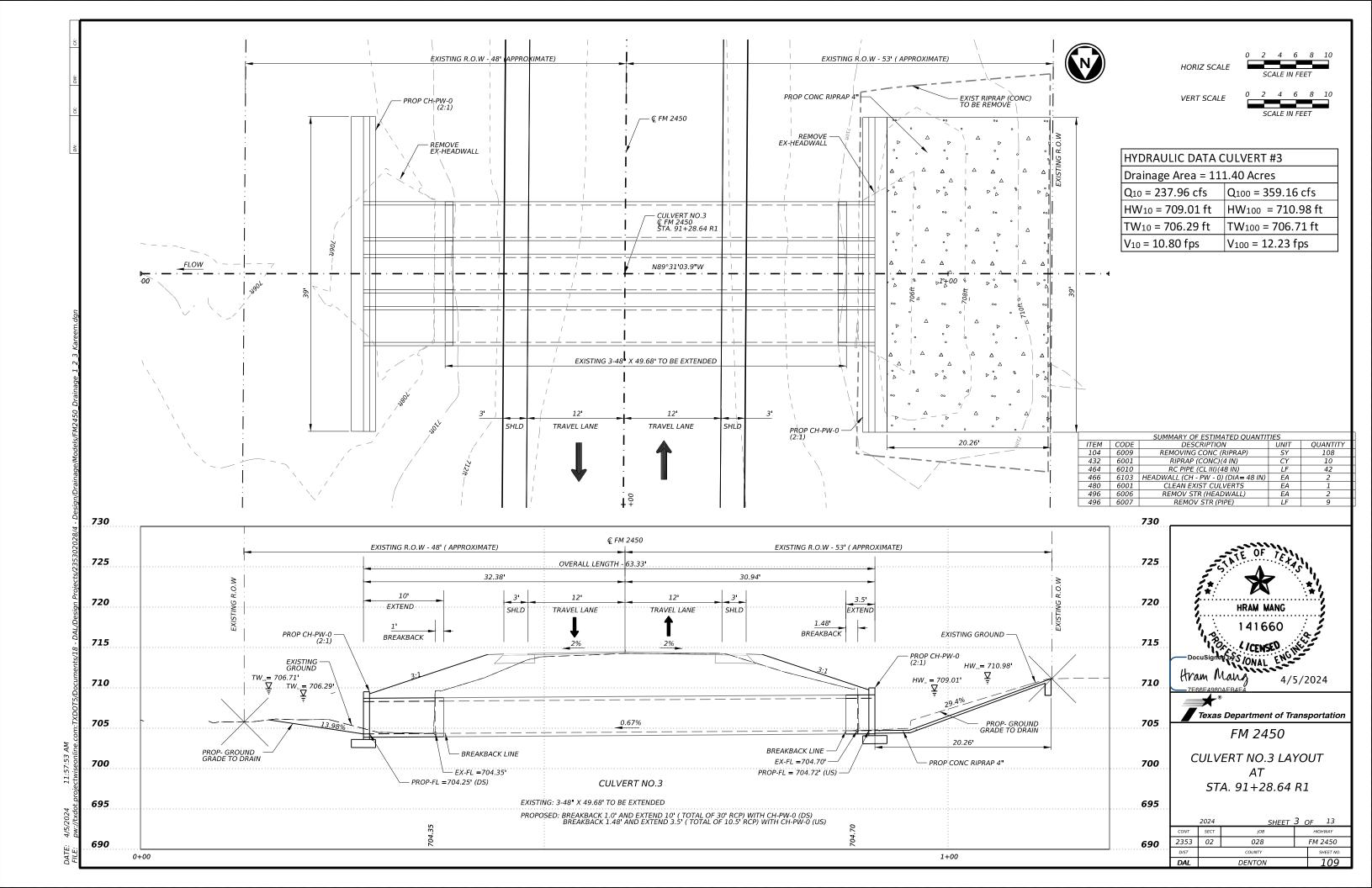

 775	
 770	0 2 4 6 8 10 SCALE IN FEET
 765	
 760	
 755	
 750	
 745	
 740	
 735	
 730	
 725 775	
 770	
 765	
 760	
 755	HRAM MANG
 750	Hram Mang 2/22/2024
 745	7E66E4980AEB4E4
 740	Texas Department of Transportation FM 2450
 735	SPECIAL TEMPORARY SHORING CULVERT NO.8
 730	
	2024 SHEET 2 OF 4 CONT SECT JOB HIGHWAY
	2353 02 028 FM 2450
 725	DIST COUNTY SHEET NO.
	DAL DENTON 104

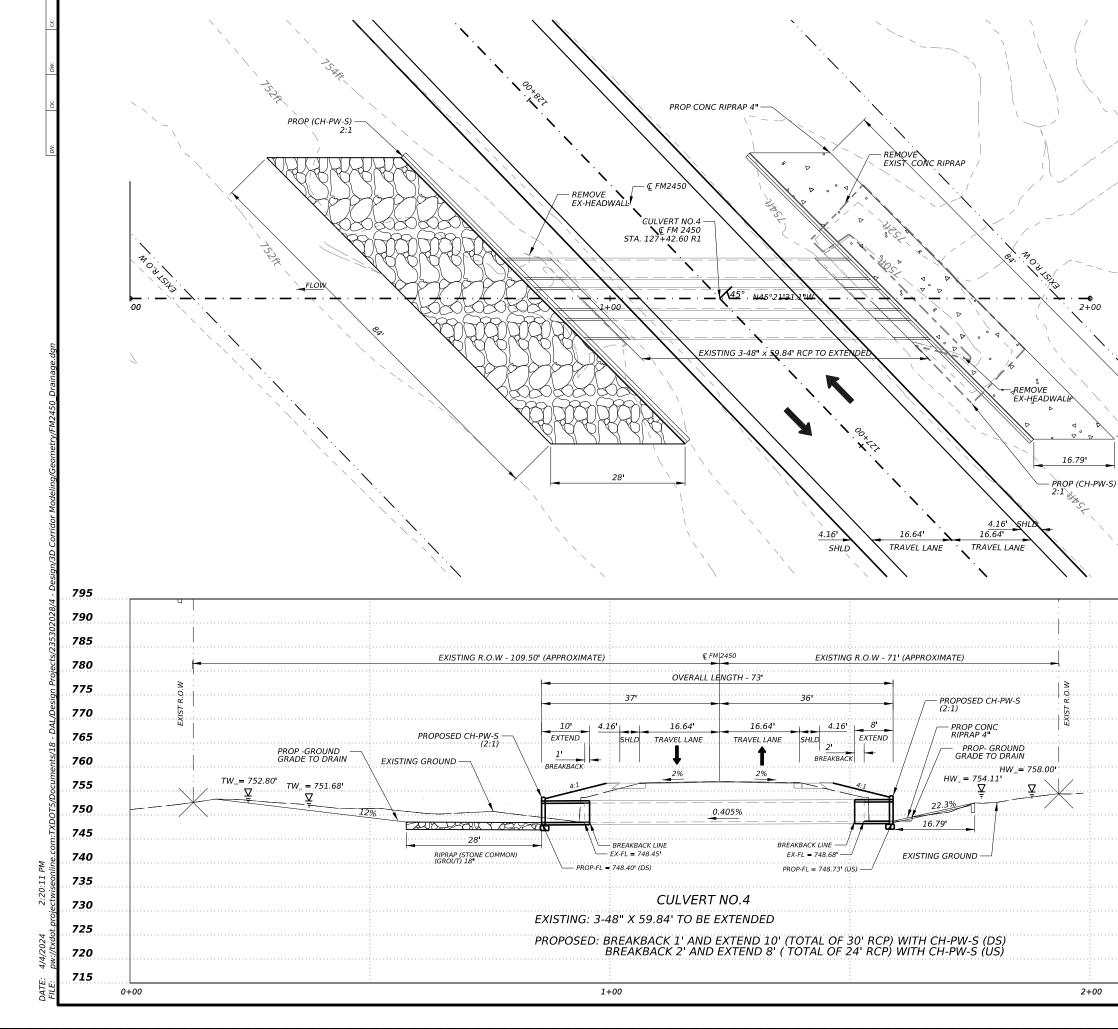


760	
 755	0 2 4 6 8 10 SCALE IN FEET
 750	
 745	
 740	
 735	
 730	
 725	
 720	
 715	
710 760	
 755	
 750	
 745	TE OF ICHAS
 740	HRAM MANG
 735	Hram Mary 2/22/2024
 730	Texas Department of Transportation
 725	FM 2450
 720	SPECIAL TEMPORARY SHORING CULVERT NO.9
 715	2024 SHEET 3 OF 4
	CONT SECT JOB HIGHWAY
	2353 02 028 FM 2450
710	DIST COUNTY SHEET NO.
	DAL DENTON 105




745 740 0 2 4 6 8 10	
740 0 2 4 6 8 10	
SCALE IN FEET	
735	
730	
725	
720	
710	
705	
695 745	
740	
735	
730	
725 HRAM MANG	
720 1 So. 4 /CENSED North	
715	
710 FM 2450	511
705 SPECIAL TEMPORARY SHORING CULVERT NO.12	
700 2024 SHEET OF	
CONT SECT JOB HIGHWAY	
695 02 028 FM 2450	О.
DAL DENTON 100	õ

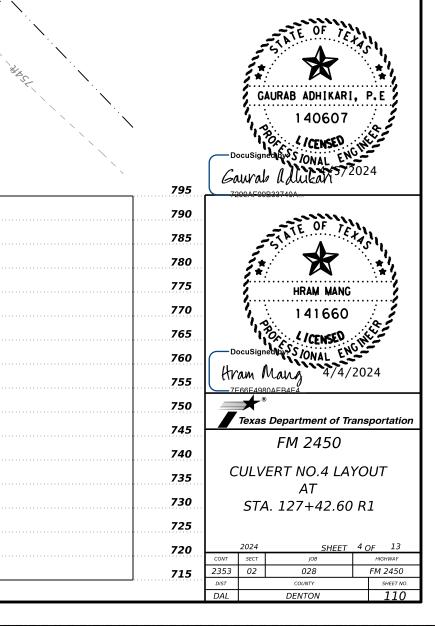

Image: Team of the second s								
Implified Action Implified Action Implified Action Implified Action Implified Action <t< th=""><th></th><th>1</th><th></th><th></th><th></th><th>SCALE</th><th>SCALE</th><th>IN FEET</th></t<>		1				SCALE	SCALE	IN FEET
Image Area = 34.3 Acres Quo = 150.49 cfs Quo = 227.02 cfs HWU0 = 648.75 ft HWU0 = 647.71 ft TW10 = 647.71 ft TW10 = 647.71 ft Yuo = 11.61 fps V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 13 fps Image Area = 36.3 Acres V100 = 10 = 20 + 20 + 20 + 20 + 20 + 20 + 20 + 2	<u> </u>						SCALE	IN FEET
ITEM CODE DESCRIPTION UNIT QUANTITY 464 6010 RC PIPE (CL III/(48 IN) LF 24 467 6474 SET (TY II) (48 IN) (RCP) (3: 1) (C) EA 1 496 6000 CLEAN EXIST CULVERTS EA 1 496 6000 REMOV STR (PIPE) LF 6 496 6007 REMOV STR (PIPE) LF 6 496 6007 REMOV STR (PIPE) LF 6 90 90 141660 1411660 1411660 90 90 90 15X 90 1411660 90 90 90 141660 1411660 1411660 90 90 90 1411660 1411660 1411660 90 90 90 1411660 1411660 1411660 90 90 90 1411660 1411660 1411660 90 90 1411660 1411660 1411660 1411660 1411660<				650ft	Draina Q10 = 1 HW10 = TW10 =	ge Area = 84 50.49 cfs = 648.75 ft = 647.11 ft	Acres Q100 HW10 TW10	= 227.02 cfs 00 = 650.02 ft 00 = 647.71 ft
ITEM CODE DESCRIPTION UNIT QUANTITY 464 6010 RC PIPE (CL III)(48 IN) LF 24 467 6474 SET (TY II) (48 IN) (RCP) (3: 1) (C) EA 1 496 6000 CLEAN EXIST CULVERTS EA 1 496 6000 REMOV STR (PIPE) LF 6 496 6000 REMOV STR (PIPE) LF 6 496 6007 REMOV STR (PIPE) LF 6 90 9000 STR (PIPE) LF 6 91 92 50 (OR ALL 1411660 1411660 91 91 STR (PIPE) LF 6 1411660 91 92 92 92 1411660 1411660 91 92 92 92 1411660 1411660 92 92 92 1411660 1411660 1411660 92 72 72 72 72 72 93 72		· / /						
ITEM CODE DESCRIPTION UNIT QUANTITY 464 6010 RC PIPE (CL III)(48 IN) LF 24 467 6474 SET (TY II) (48 IN) (RCP) (3: 1) (C) EA 1 496 6000 CLEAN EXIST CULVERTS EA 1 496 6000 REMOV STR (PIPE) LF 6 496 6000 REMOV STR (PIPE) LF 6 496 6007 REMOV STR (PIPE) LF 6 90 9000 STR (PIPE) LF 6 91 92 50 (OR ALL 1411660 1411660 91 91 STR (PIPE) LF 6 1411660 91 92 92 92 1411660 1411660 91 92 92 92 1411660 1411660 92 92 92 1411660 1411660 1411660 92 72 72 72 72 72 93 72				 : 				
ITEM CODE DESCRIPTION UNIT QUANTITY 464 6010 RC PIPE (CL III)(48 IN) LF 24 467 6474 SET (TY II) (48 IN) (RCP) (3: 1) (C) EA 1 496 6000 CLEAN EXIST CULVERTS EA 1 496 6000 REMOV STR (PIPE) LF 6 496 6000 REMOV STR (PIPE) LF 6 496 6007 REMOV STR (PIPE) LF 6 90 9000 STR (PIPE) LF 6 91 92 50 (OR ALL 1411660 1411660 91 91 STR (PIPE) LF 6 1411660 91 92 92 92 1411660 1411660 91 92 92 92 1411660 1411660 92 92 92 1411660 1411660 1411660 92 72 72 72 72 72 93 72		[I	ARY OF ESTIMA		ITIES	
ROUND ROUND GROUND	1	464 467 480 496	6010 6474 6001 6006	R SET (T) CLI REI	DESCRIPTION C PIPE (CL III)(48 (II) (48 IN) (RCP EAN EXIST CULV 40V STR (HEAD	 8 IN)) (3: 1) (C) /ERTS WALL)	UNIT LF EA EA EA	24 4 1
ROUND ROUND Coursigned So Jonal Hram Many 4/4/2024 TEGE4980AEB4E4 Texas Department of Transportation FM 2450 CULVERT NO.1 LAYOUT AT STA. 22+60.00 R1 2024 SHEET 1 OF 13 CONT SECT JOB HIGHWAY					_	TE	F TE	<u>.</u>
Image: Team of the second s	:ROUND —			EXISTING R.O.W	DocuSig	141	660 NSED	
FM 2450 CULVERT NO.1 LAYOUT AT STA. 22+60.00 R1 2024 SHEET 1 OF 13 CONT SECT JOB					1	· · · · · · · · · · · · · · · · · · · ·	4/4/2	024
CULVERT NO.1 LAYOUT AT STA. 22+60.00 R1 2024 SHEET 1 OF 13 CONT SECT JOB HIGHWAY			_/	\mathbf{i}	Texas			ansportation
AT STA. 22+60.00 R1 2024 <u>SHEET 1 OF 13</u> CONT <u>SECT JOB HIGHWAY</u>								(OUT
CONT SECT JOB HIGHWAY						AT	-	
					2024		SHEET	1.05 13
2353 02 028 FM 2450 DIST COUNTY SHEET NO.								
DAL DENTON 107					2353 02	028	в 3	highway FM 2450

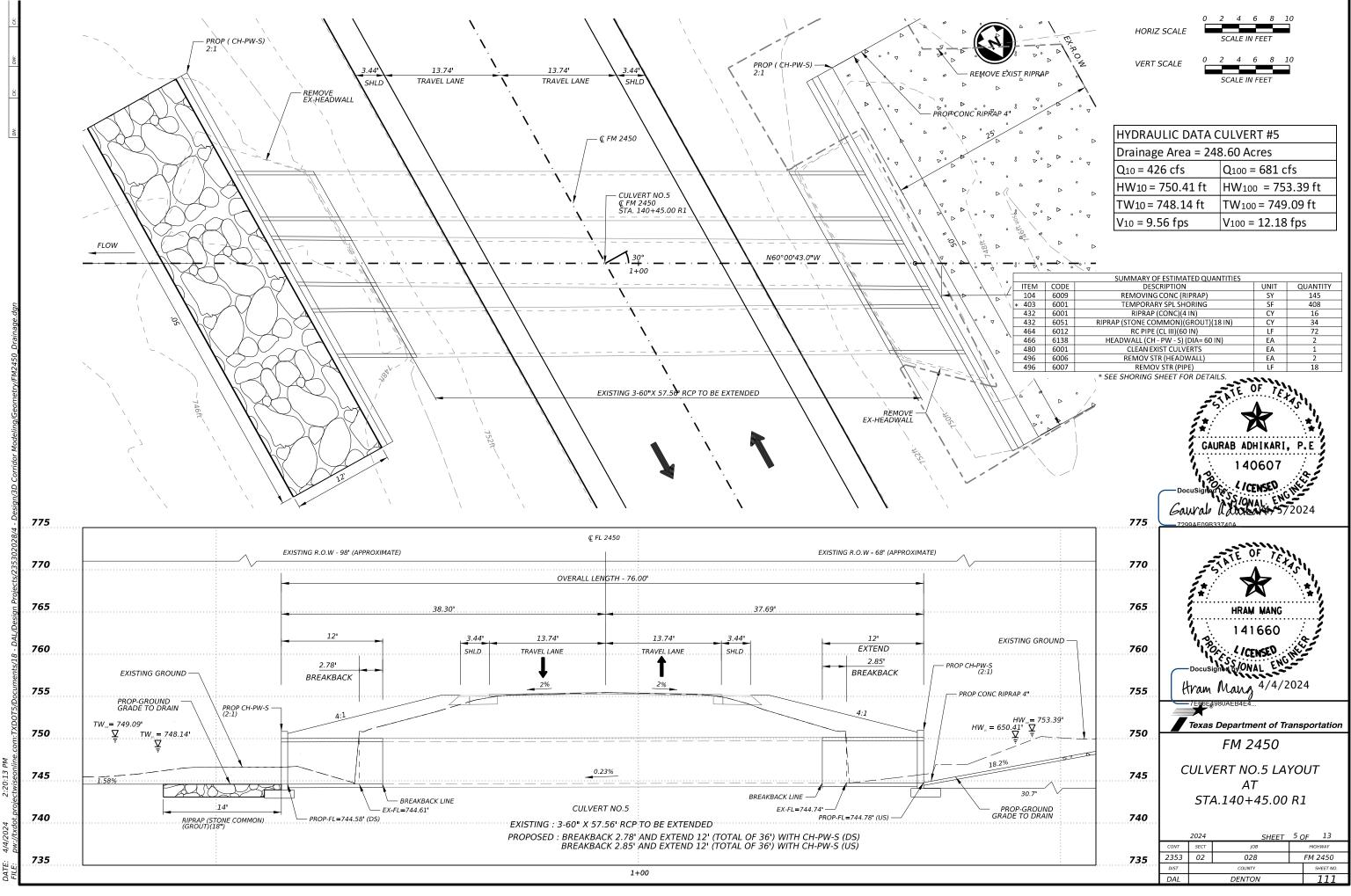


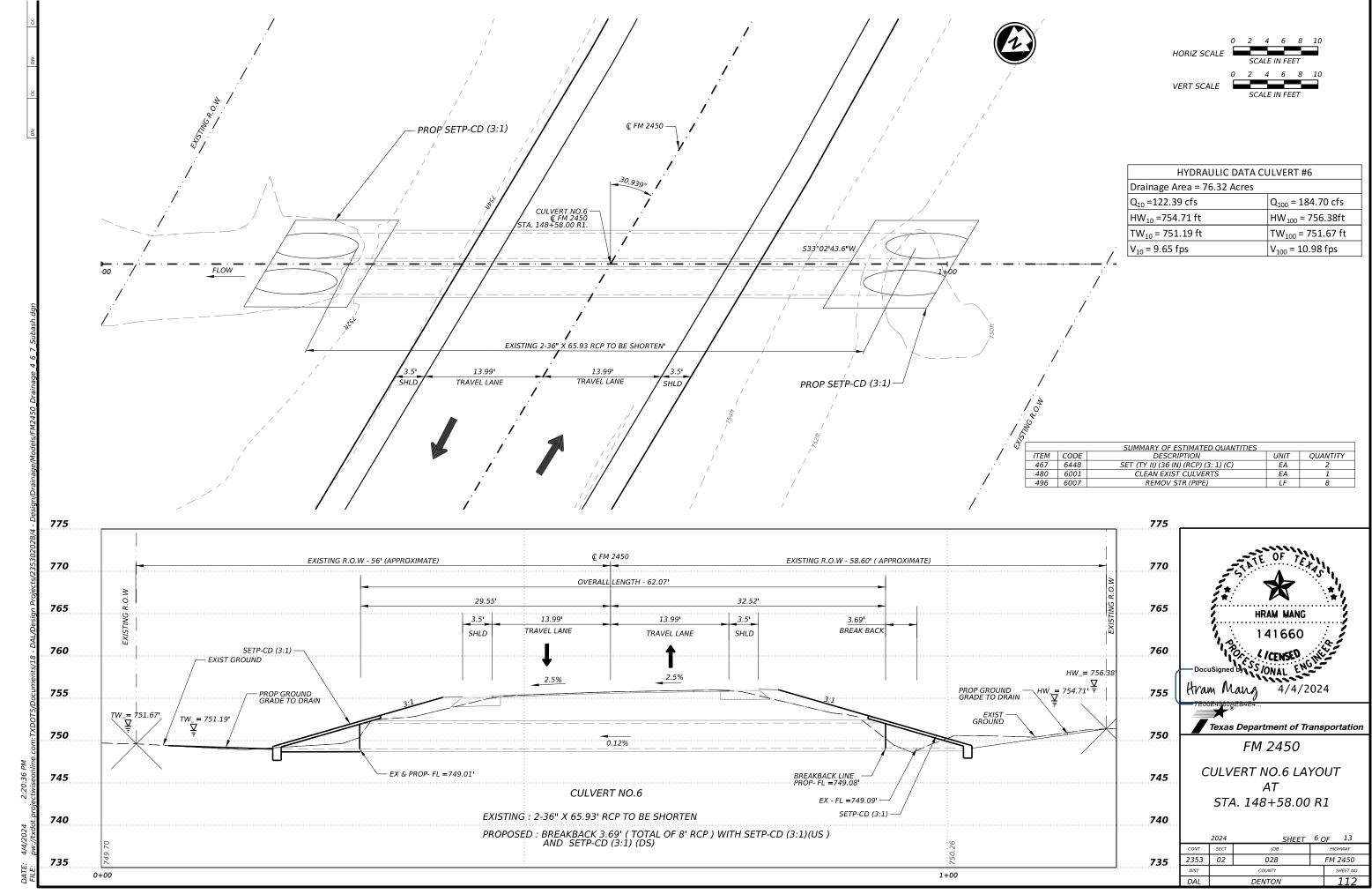
HYDRAULIC DATA CULVERT #2			
Drainage Area = 74.60 Acres			
Q ₁₀ = 149.70 cfs	Q100 = 201.76 cfs		
HW10 = 678.10 ft HW100 = 680.39 ft			
TW10 = 673.17 ft TW100 = 673.50 ft			
V10 = 10.73 fps V100 = 11.99 fps			

	SUMMARY OF ESTIMATED QUANTITES				
ITEM	CODE	DESCRIPTION	UNIT	QUANTITY	
104	6009	REMOVING CONC (RIPRAP)	SY	57	
464	6011	RC PIPE (CL III)(54 IN)	LF	3	
466	7057	HEADWALL (CH - FW - 45) (DIA= 54 IN)	EA	1	
480	6001	CLEAN EXIST CULVERTS	EA	1	
496	6006	REMOV STR (HEADWALL)	EA	1	
496	6007	REMOV STR (PIPE)	LF	1	

_	~	J
♥		、
1		Λ
7		"
)	/
-	/	

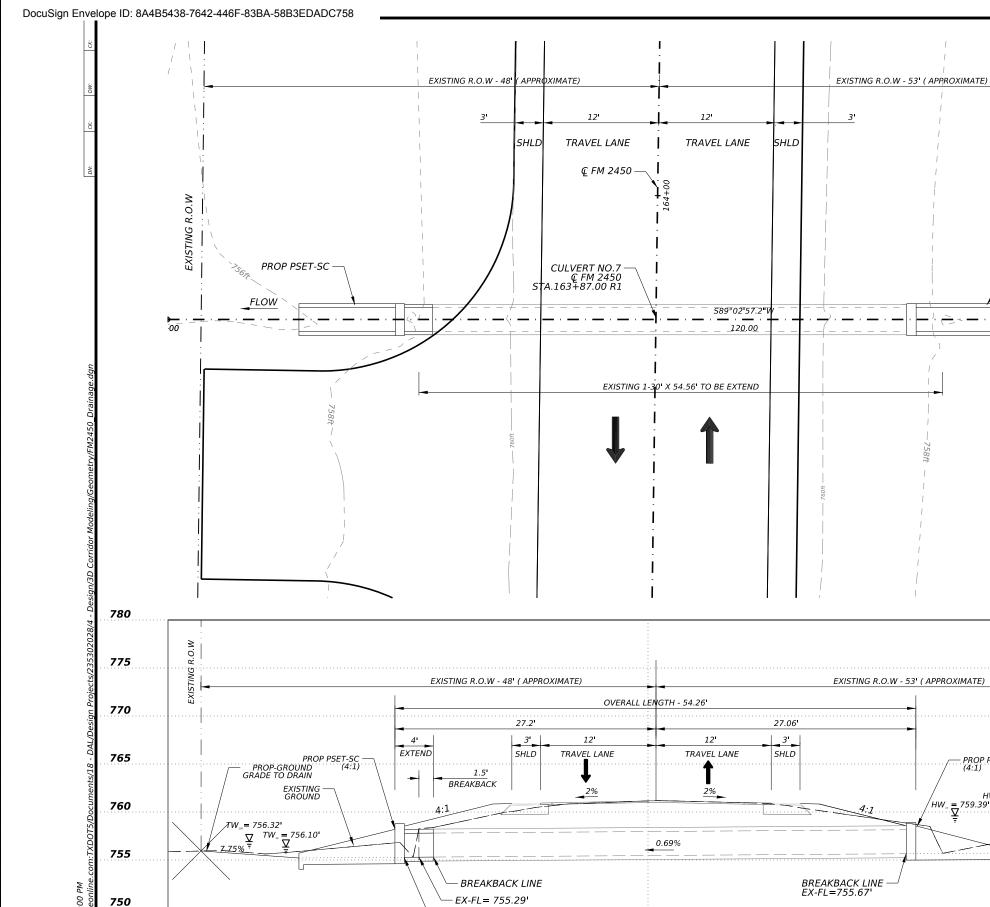

HORIZ SCALE


VERT SCALE


20

HYDRAULIC DATA CULVERT #4				
Drainage Area = 259 Acres				
Q10 = 311 cfs	Q100 = 565 cfs			
HW ₁₀ = 754.11 ft	HW100 = 758 ft			
TW10 = 751.68 ft TW100 = 752.80 ft				
V ₁₀ = 4.34 fps V ₁₀₀ = 5.09 fps				

	SUMMARY OF ESTIMATED QUANTITIES				
ITEM	CODE	DESCRIPTION	UNIT	QUANTITY	
104	6009	REMOVING CONC (RIPRAP)	SY	61	
432	6001	RIPRAP (CONC)(4 IN)	CY	17	
432	6051	RIPRAP (STONE COMMON)(GROUT)(18 IN)	CY	131	
464	6010	RC PIPE (CL III)(48 IN)	LF	54	
466	6136	HEADWALL (CH - PW - S) (DIA= 48 IN)	EA	2	
480	6001	CLEAN EXIST CULVERTS	EA	1	
496	6006	REMOV STR (HEADWALL)	EA	2	
496	6007	REMOV STR (PIPE)	LF	9	



	0	2	4	6	8	10
HORIZ SCALE		SC	ALE I	N FE	ET	
VERT SCALE	0 □	2	4	6	8	10
VENT SCALE		SC	ALE I	N FE	ΕT	

	HYDRAULIC DATA CULVERT #6		
	Drainage Area = 76.32 Acres		
	Q ₁₀ =122.39 cfs	Q ₁₀₀ = 184.70 cfs	
	HW ₁₀ =754.71 ft	HW ₁₀₀ = 756.38ft	
	TW ₁₀ = 751.19 ft	TW ₁₀₀ = 751.67 ft	
ì	V ₁₀ = 9.65 fps	V ₁₀₀ = 10.98 fps	
./_			

⊵∕.					
7			SUMMARY OF ESTIMATED QUANTITIES		
	ITEM	CODE	DESCRIPTION	UNIT	QUANTITY
	467	6448	SET (TY II) (36 IN) (RCP) (3: 1) (C)	EA	2
	480	6001	CLEAN EXIST CULVERTS	EA	1
	496	6007	REMOV STR (PIPE)	LF	8

- PROP-FL= 755.12' (DS)

CULVERT NO.7

00 2:21. ctiviis 4/4

745

740

0+00

BREAKBACK LINE -EX-FL=755.67' EXISTING: 1-30" X 54.56' RCP TO BE EXTENDED PROPOSED: BREAKBACK 1.5' AND EXTEND 4' OF RCP WITH PSET-SC (DS) INSTALL PSET-SC (US)

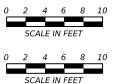
R.O.W

EXISTING

1+00

PROP PSET-SC

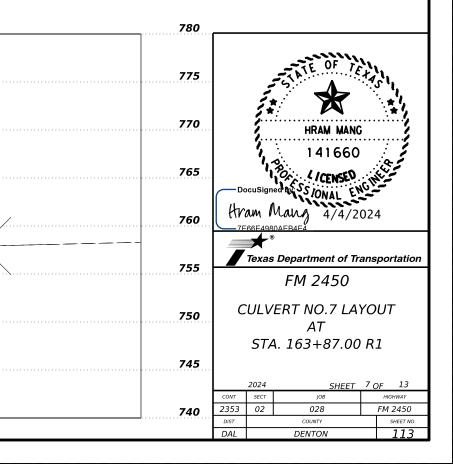
PROP-GROUND GRADE TO DRAIN

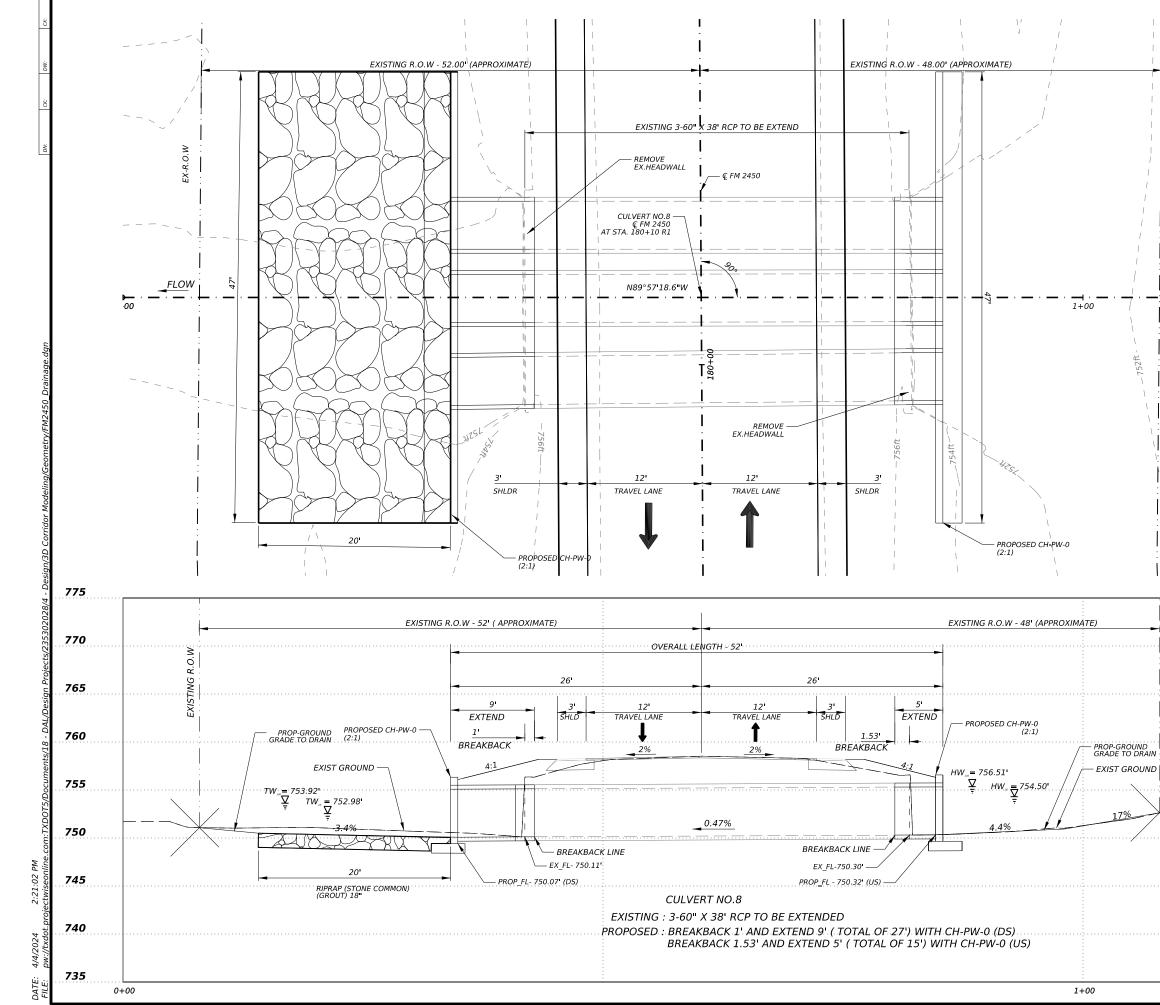

EXISTING -GROUND

45%

- PROP PSET-SC (4:1)

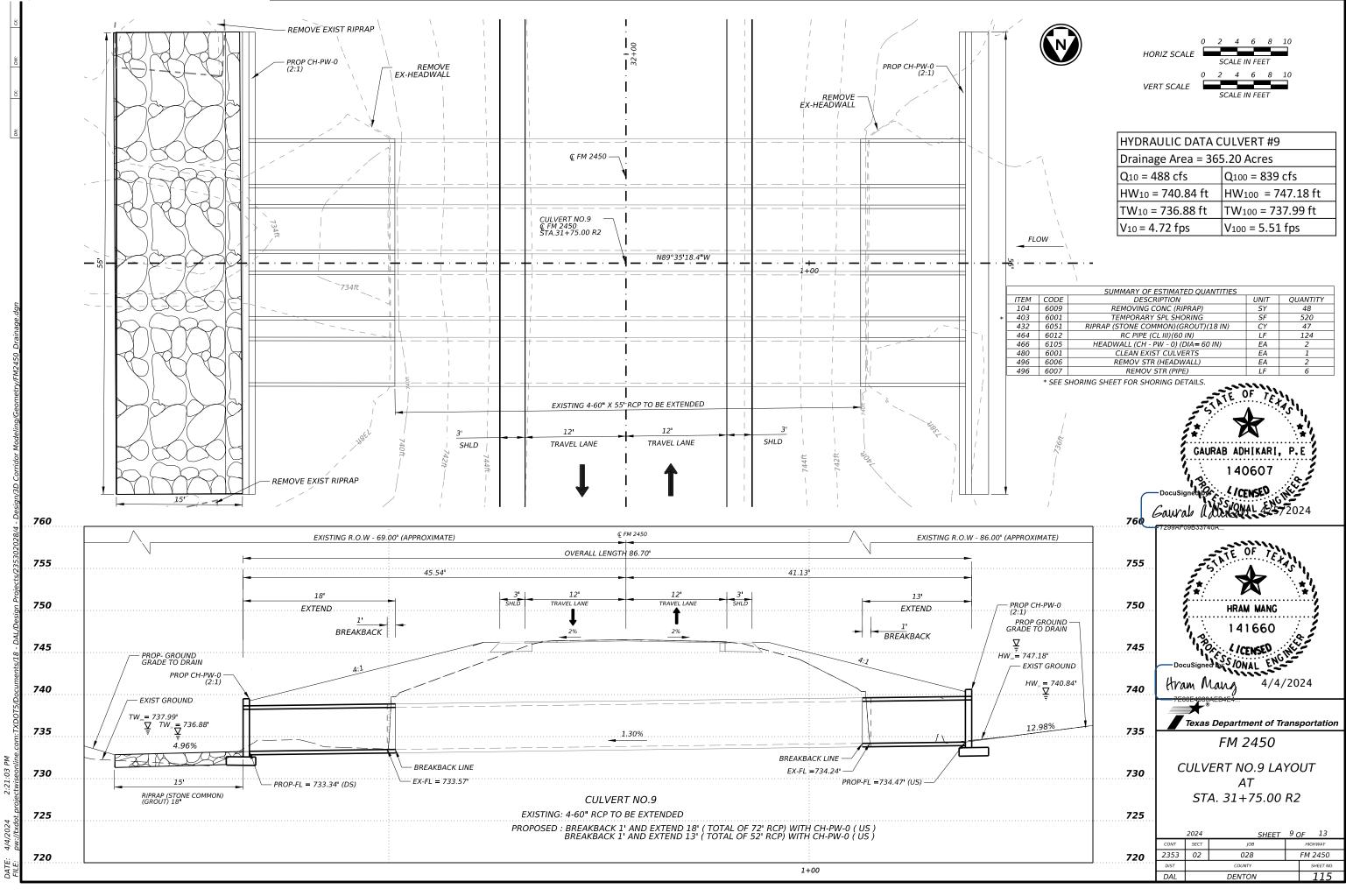
GKOL / HW_™ = 761.33' HW_™ = 759.39' ♀ ♀


HORIZ SCALE



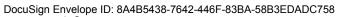
VERT SCALE

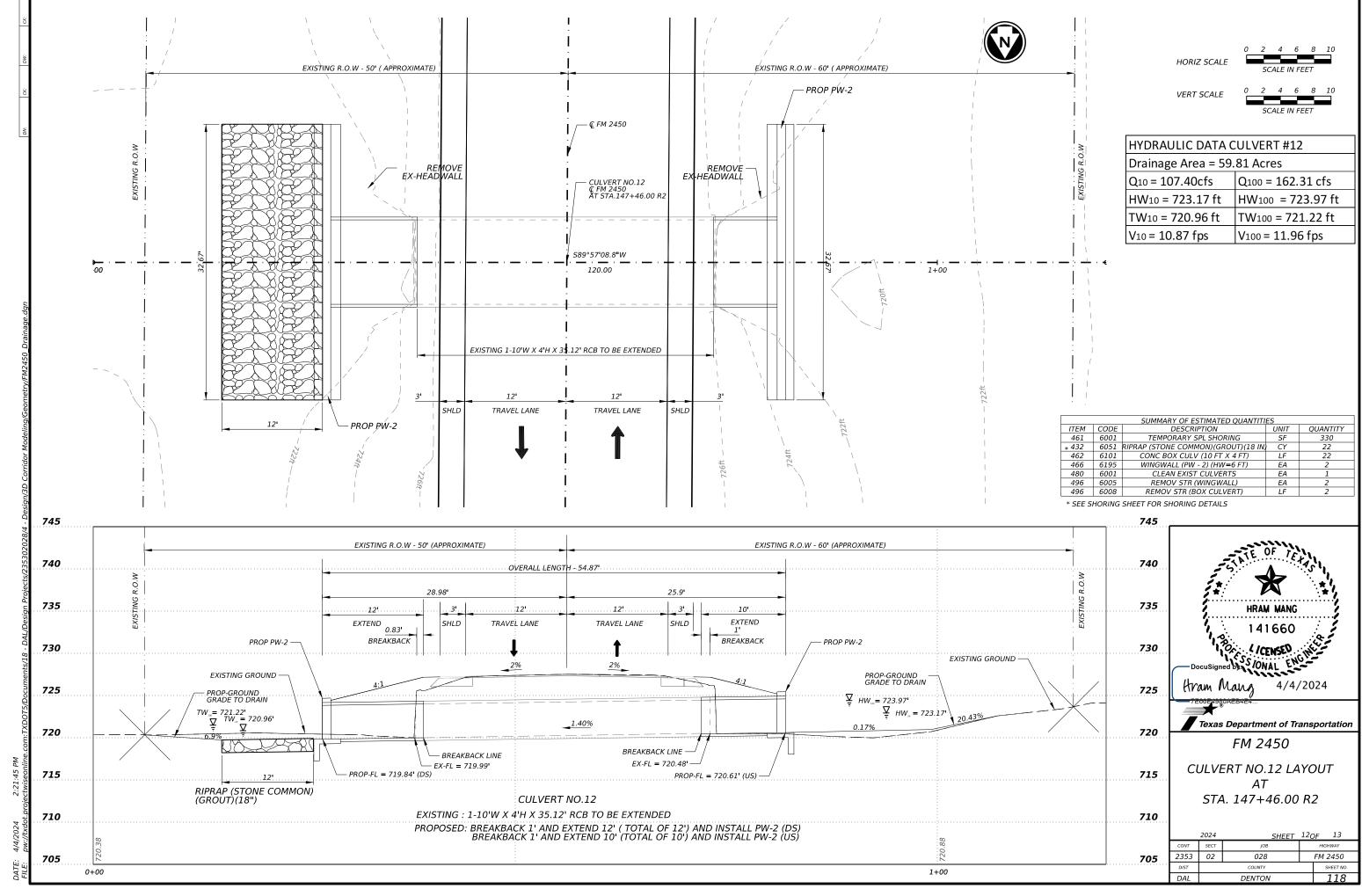
HYDRAULIC DATA CULVERT #7											
Drainage Area = 29.	87 Acres										
Q10 = 39.11 cfs	Q ₁₀₀ = 58.97 cfs										
HW10 = 759.39 ft	HW100 = 761.33 ft										
TW10 = 756.10 ft	TW100 = 756.32 ft										
V ₁₀ = 9.93 fps V ₁₀₀ = 11.42 fps											

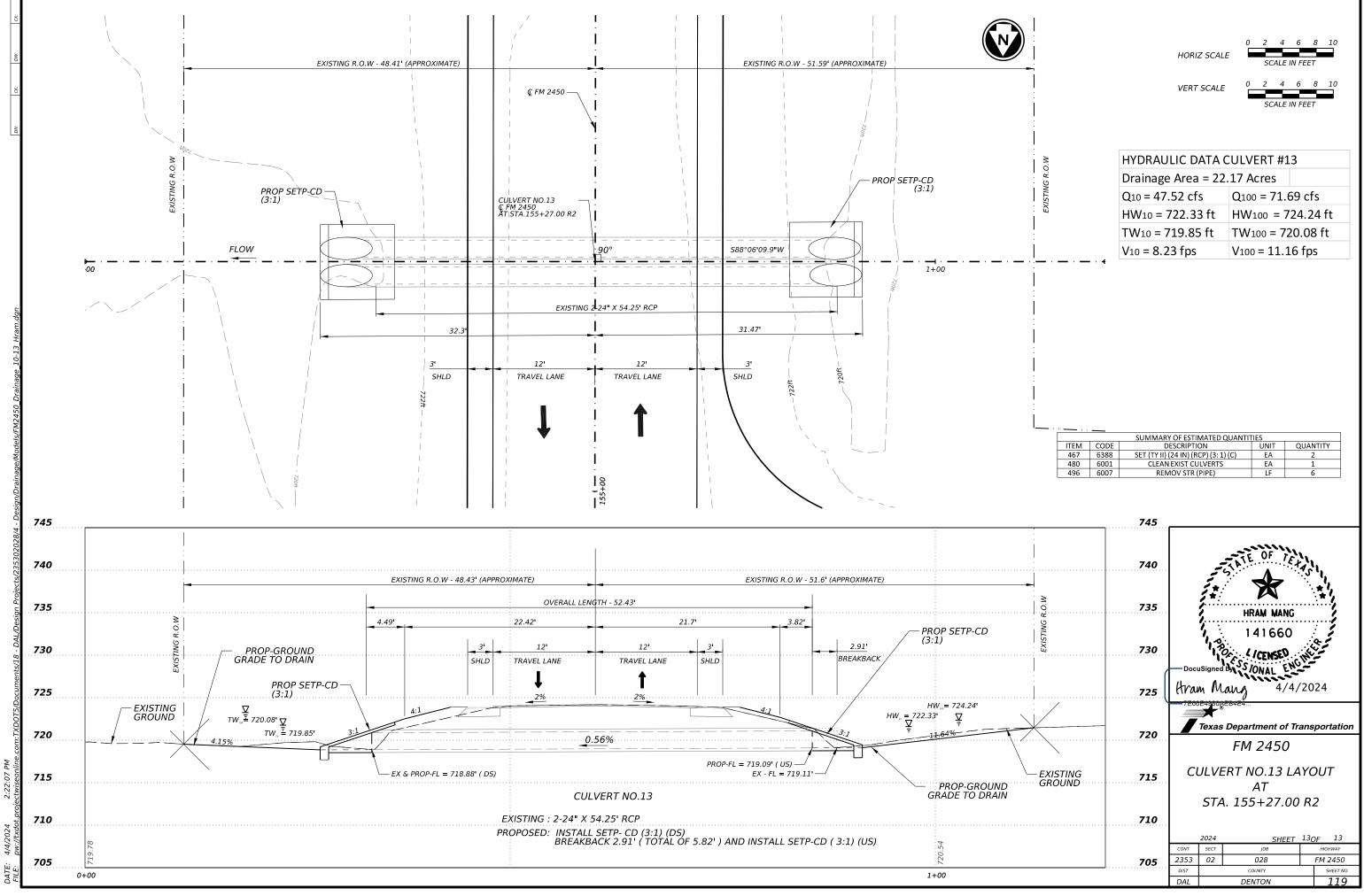

		SUMMARY OF ESTIMATED QUANTITIES		
ITEM	CODE	DESCRIPTION	UNIT	QUANTITY
464	6007	RC PIPE (CL III)(30 IN)	LF	4
467	6419	SET (TY II) (30 IN) (RCP) (4: 1) (C)	EA	2
480	6001	CLEAN EXIST CULVERTS	EA	1
496	6007	REMOV STR (PIPE)	LF	2



$HORIZ SCALE \qquad HORIZ SCALE IN FEET 0 2 4 6 8 10 VERT SCALE VERT SCALE VERT SCALE IN FEET 0 2 4 6 8 10 SCALE IN FEET 0 10 2 88 Cfs Q100 = 497 Cfs HW10 = 754.50 ft HW100 = 756.51 ft TW10 = 752.98 ft TW100 = 753.92 ft V10 = 9.51 fps V100 = 11.09 fps 0 10 10 10 10 10 10 10 10 10 10 10 10 10$	
SUMMARY OF ESTIMATED QUANTITIES ITEM CODE DESCRIPTION UNIT QUANTITY 403 6001 TEMPORARY SPL SHORING SF 374 432 6051 RIPRAP (STONE COMMON)(GROUT)(18 IN) CY 53 464 6012 RC PIPE (CL III)(60 IN) LF 42 466 6105 HEADWALL (CH - PW - 0) (DIA= 60 IN) EA 2 480 6001 CLEAN EXIST CULVERTS EA 1 496 6006 REMOV STR (HEADWALL) EA 2 496 6007 REMOV STR (PIPE) LF 9 * SEE SHORING SHEET FOR DETAILS.	
770 765 765 766 760 760 760 760 760 760 760 760 760 760 760 760 760 760 760 750 740	
2024 SHEET 8 OF 13 cont sect JOB HIGHWAY 2353 02 028 FM 2450 Dist county SHEET NO DIST DAL DENTON 114	5




HYDRAULIC DATA	CULVERT #10									
Drainage Area = 49	9.98 Acres									
Q ₁₀ = 105.05 cfs	Q ₁₀₀ = 158.49 cfs									
HW ₁₀ = 747.33 ft	HW ₁₀₀ = 749.89 ft									
TW ₁₀ = 744.96 ft	TW100 = 745.27 ft									
V ₁₀ = 8.28 fps V ₁₀₀ = 11.08 fps										


[SUMMARY OF ESTIMATED QUANTIT	IES	
	ITEM	CODE	DESCRIPTION	UNIT	QUANTITY
[467	6417	SET (TY II) (30 IN) (RCP) (3: 1) (C)	EA	2
	480	6001	CLEAN EXIST CULVERTS	EA	1

			SUMMARY OF ESTIMATED QUANTI	ΓIES	
ſ	ITEM	CODE	DESCRIPTION	UNIT	QUANTITY
	467	6448	SET (TY II) (36 IN) (RCP) (3: 1) (C)	EA	2
ſ	480	6001	CLEAN EXIST CULVERTS	EA	1
	496	6007	REMOV STR (PIPE)	LF	20

Culvert Station and/or Creek Name followed by applicable end (Lt, Rt or Both)	Description of Box Culvert No. Spans ~ Span X Height	Max Fill Height (Ft)	Applicable Box Culvert Standard 4	Applicable Wingwall or End Treatment Standard	Skew Angle (0°,15°, 30° or 45°)	Side Slope or Channel Slope Ratio (SL:1)	T Culvert Top Slab Thickness (In)	U Culvert Wall Thickness (In)	C Estimated Curb Height (Ft)	Hw (1) Height of Wingwall (Ft)	A Curb to End of Wingwall (Ft)	B Offset of End of Wingwall (Ft)	Lw Length of Longest Wingwall (Ft)	Ltw Culvert Toewall Length (Ft)	Atw Anchor Toewall Length (Ft)	Riprap Apron (CY)	Class (2) "C" Conc (Curb) (CY)	Class "C" Conc (Wingwall) (CY)	Total Wingwall Area (SF)
TA 147+46.00 R2 (CUL-12) (Both)	1 ~10' x 4'	3.5'	SCC - 10	PW - 2	0 °	2:1	8 "	7 "	1.000'	5.667'	N/A	N/A	9.333'	11.167'	N/A	0.0	0.8	15.0	200

NOTES:

₹.

4:17:51 projectw

2/22/2024

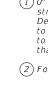
DAT

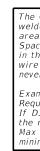
- Skew = 0° on SW-0, FW-0, SETB-CD, SETB-SW-0, and SETB-FW-0 standard sheets; 30° maximum for safety end treatment
- SL:1 = Horizontal : 1 Vertical
 - Side slope at culvert for flared or straight wingwalls.

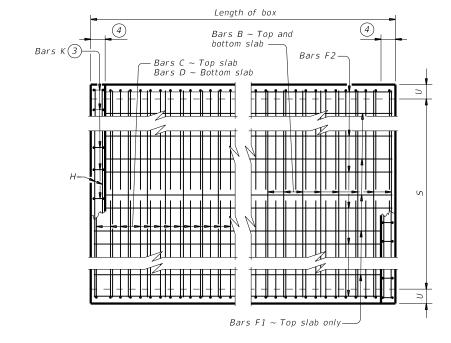
 - Channel slope for parallel wingwalls.
 Slope must be 3:1 or flatter for safety end treatments.
- T = Box culvert top slab thickness. Dimension can be found on the applicable box culvert standard sheet.
- U = Box culvert wall thickness. Dimension can be found on the applicable box culvert standard sheet.
- C = Curb height
- See applicable wing or end treatment standard sheets for calculations of Hw, A, B, Lw, Ltw, Atw, and Total Wingwall Area.
- Hw = Height of wingwall
- A = Distance from face of curb to end of wingwall (not applicable to parallel or straight wingwalls)
- B = Offset of end of wingwall (not applicable to parallel or straight wingwalls)
- Lw = Length of longest wingwall.
- Ltw = Length of culvert toewall (not applicable when using riprap apron)

Atw = Length of anchor toewall (applicable to safety end treatment only) Total Wingwall Area = Wingwall area in sq. ft. for two wingwalls (one structure end) if Lt or Rt. Area for four wingwalls (two structure ends) if Both.

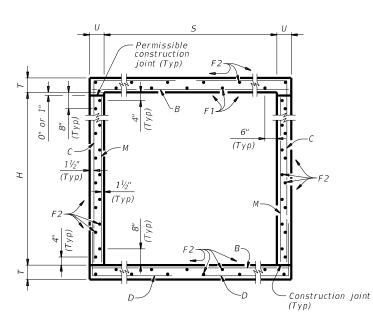
- (2) Concrete volume shown is for box culvert curb only. For curbs using the Box Culvert Rail Mounting Details (RAC) standard sheet quantities shown must be increased by a factor of 2.25. If Class S concrete is required for the top slab of the culvert, also provide Class S concrete for the curb. Curb concrete is considered part of the Box Culvert for payment.
- (3) Concrete volume shown is total of wings, footings, culvert toewall (if any), anchor toewalls (if any) and wingwall toewalls. Riprap aprons, culverts, and curb quantities are not included.
- (4) Regardless of the type of culvert shown on this sheet, the Contractor has the option of furnishing cast-in-place or precast culverts unless otherwise shown elsewhere on the plans. If the Contractor elects to provide culverts of a different type than those shown on this sheet, it is the Contractor's responsibility to make the necessary adjustments to the dimensions and quantities shown.

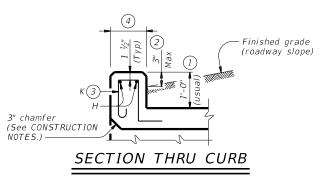


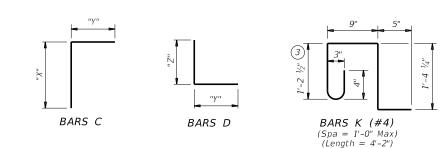

SPECIAL NOTE:


This sheet is a supplement to the box culvert standards. It is to be filled out by the culvert specifier and provides dimensions for the construction of the box culvert wingwalls and safety end treatments

An Excel 2010 spreadsheet to assist in completing this table can be downloaded from the Bridge Standards (English) web page on the TxDOT web site. The completed sheet must be signed, sealed, and dated by a licensed Professional Engineer.


Bridge Division Standard Texas Department of Transportation BOX CULVERT SUPPLEMENT WINGS AND END TREATMENTS BCS DN: TXDOT CK: TXDOT DW: TXDOT CK: TXDOT ILE: CD-BCS-20.dgn CTxDOT February 2020 JOB CONT 5 HIGHWA REVISION 2353 02 028 FM 2450 DAL DENTON 120





PLAN OF REINF STEEL

TYPICAL SECTION

2/20/2024 5.01.52 PM DOCUMENT NAME

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act." No warranty of any kind is made by TxDOT for any purpose whatso TXDOT assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use.

(1) O" Min to 5'-O" Max. Estimated curb heights are shown elsewhere in the plans. For be share of the pedestrian rail or curbs taller than 1'-0", refer to the Extended Curb Details (ECD) standard sheet. For structures with T631 or T631LS bridge rail, refer to the Mounting Details for T631 & T631LS Rails (T631-CM) standard sheet. Refer to the Rail Anchorage Curb (RAC) standard sheet for structures with bridge rail other than T631 or T631LS.

- For vehicle safety, the following requirements must be met:
 For structures without bridge rail, construct curbs no more than 3" above finished grade.

 For structures with bridge rail, construct curbs flush with finished grade.
 Reduce curb heights, if necessary, to meet the above requirements. No changes will be made in quantities and no additional compensation will be allowed for this work.

(3) For curbs less than 1'-0" high, tilt Bars K or reduce bar height as necessary to maintain cover. For curbs less than 3" high, Bars K may be omitted.

(4) 1'-O" typical. 2'-3" when the Rail Anchorage Curb (RAC) standard sheet is referred to elsewhere in the plans.

The Contractor may replace Bars B, C, D, E, F1, F2, M, Y, and/or Z with deformed welded wire reinforcement (WWR) meeting the requirements of ASTM A1064. The area of required reinforcement may be reduced by the ratio of 60 ksi / 70 ksi. Spacing of WWR is limited to 4" Min and 18" Max. When required, provide lap splices in the WWR of the same length required for the equivalent bar size, rounded up for wire sizes between conventional bar sizes. The lap length required for WWR is never less than the lap length required for uncoated #4 bars.

Example conversion: Replacing No. 6 Gr 60 at 6" Spacing with WWR. Required WWR = (0.44 sq. in. per 0.5 ft.) x (60 ksi / 70 ksi) = 0.755 sq. in. per ft. If D30.6 wire is used to meet the 0.755 sq. in. per ft. requirement in this example, the required spacing = (0.306 sq. in.) / (0.755 sq. in. per ft.) x (12 in. per ft.) = 4.86" Max spacing. Required lap length for the provided D30.6 wire is 2'-1" (the same minimum lap length required for uncoated #5 bars, as listed under MATERIAL NOTES).

CONSTRUCTION NOTES:

Do not use permanent forms. Chamfer the bottom edge of the top slab 3" at the entrance. Optionally, raise construction joints shown at the flow line by a maximum of 6". If this option is taken, Bars M may be cut off or raised, Bars C and D may be reversed. MATERIAL NOTES:

- Provide Grade 60 reinforcing steel.
- Provide galvanized reinforcing steel if required elsewhere in the plans. Provide Class C concrete (f'c = 3,600 psi) for culvert barrel and curb, with the
- following exceptions: provide Class S concrete (f'c = 4,000 psi) for top slabs of

- culverts with overlay,
 culverts with 1-to-2 course surface treatment, or
 culverts with the top slab as the final riding surface.
- Provide bar laps, where required, as follows:
- Uncoated or galvanized ~ #4 = 1'-8" Min
 Uncoated or galvanized ~ #5 = 2'-1" Min
- Uncoated or galvanized $\sim #6 = 2'-6''$ Min
- Uncoated or galvanized ~ #7 = 3'-3" Min

GENERAL NOTES:

Designed according to AASHTO LRFD Bridge Design Specifications for the range of fill heights shown.

See the Single Box Culverts Cast-In-Place Miscellaneous Detail (SCC-MD) standard sheet for details pertaining to skewed ends, angle sections, and lengthening.

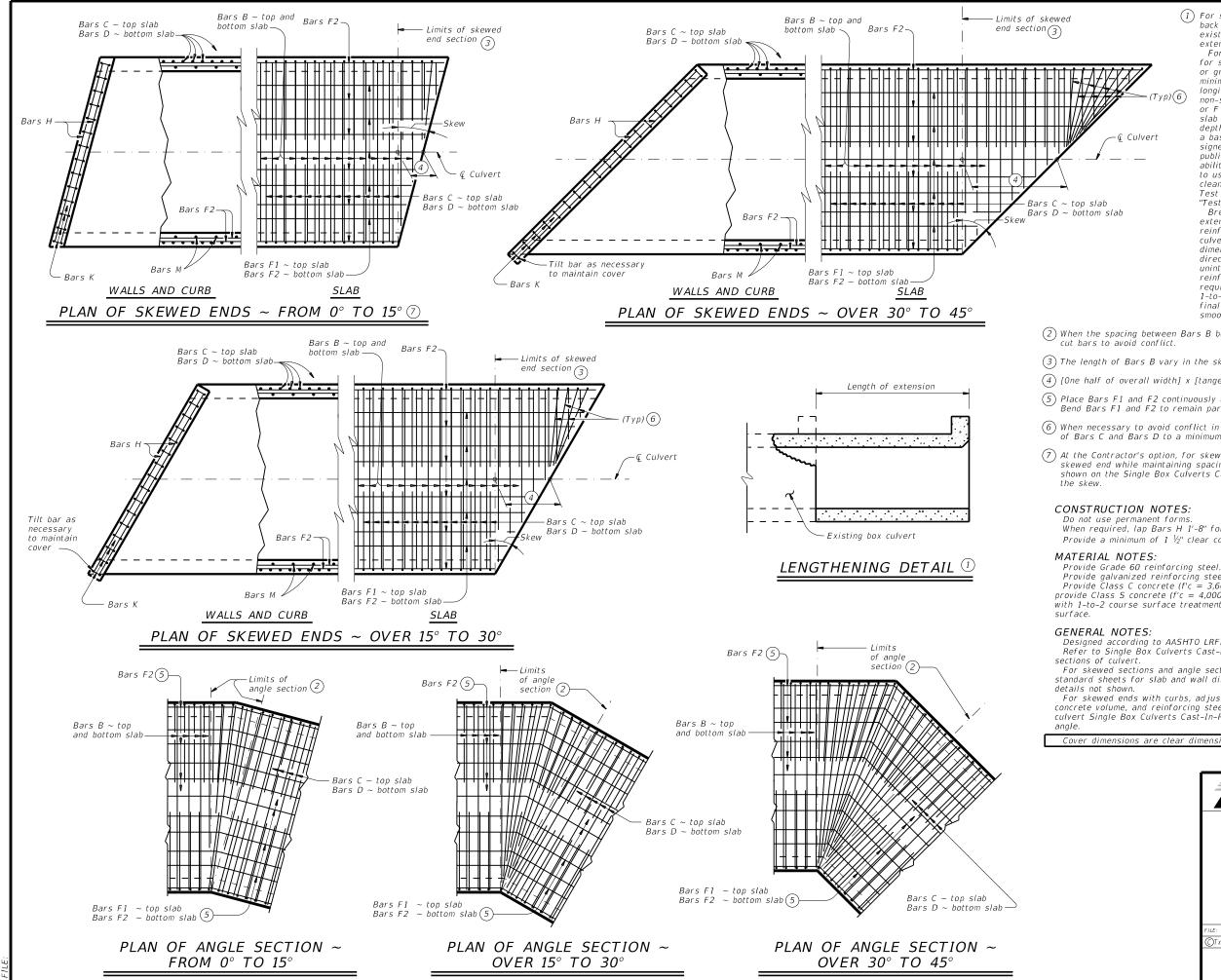
Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing bar dimensions shown are out-to-out of bar

HL93 LOADING			SHEE	Т	1 OF	3
Texas Department	of Tra	nsp	ortation	,		lge sion ndard
SINGLE B CAST 0' T	-IN	'-P '0'		E	RT	S
FILE: CD-SCC10-21.dqn	DN: TE	BE	ск: ВМР	DW:	TxD0T	CK: TXDOT
CTxDOT February 2020	CONT	SECT	JOB		HI	GHWAY
REVISIONS	2353	02	028		FM	2450
04/2021 Updated X values.	DIST		COUNTY			SHEET NO.
	DAL		DENTON	1		121

	SECTI MENS	ION SIONS	ŀ	5										BIL	.LS OF	REII	VFO	RCIN	IG STEI	EL (Foi	- Box	Length	= 40	feet)									C	UAN	TITI	ES
_ 11	THE NO	10113		HEI		Bars	В					Ba	rs C						Bars D			Bar	s M ~ #	≠4	Bars F1 at 18"		E	ars F2 at 18"		Bars H 4 ~ #4	Bar	rs K Prof	er Foot Barrel	Cu	urb	Tota
5	Н	Т	U		Size	Spa	Length	Weight	No.	Size	Spa	Length	Weight	" X "	" Y "	No.	Size	eds Le	ength Weig	nt "Y"	" Z "	No. Spa	Length	wt	No. Lengt	h Wt	No.	Length	Weight	Length	Wt No.	Wt Con (CY	Rein (Lb,	f Conc (CY)	Reinf (Lb)	Conc (CY)
" - 0"	4' - 0''	8"	7" 7	7' 16	2 #6	6" 1	0' - 11''	2,656	162	#6	6"	10' - 4''	2,514	4' - 6''	5' - 10''	162	#6 6	5" 8	' - 11'' 2,170	5' - 10	3' - 1''	108 9"	4' - 0''	289	7 39' - 9	" 186	37	39' - 9''	982	10' - 11''	29 24	67 0.72	4 219.	9 0.8	96	29.8
' - 0''	4' - 0''	9"	7" 1	0' 16	2 #6	6" 1	0' - 11''	2,656	162	#6	6"	10' - 5''	2,535	4' - 7''	5' - 10''	162	#6 6	5" 9	' - 0'' 2,190		3' - 2''	108 9"	4' - 0''	289	7 39' - 9	" 186	37	39' - 9''	982	10' - 11''	29 24	67 0.79			96	32.5
" - 0"	4' - 0''	10"	8" 1	3' 16	_	6" 1		2,697	162	-		10' - 7''	2,575	4' - 8''	5' - 11''	-	#6 6		' - 2" 2,230			82 12"	4' - 0''		7 39' - 9		37	39' - 9"			30 26	72 0.89				36.7
" - 0"	4' - 0''	11"	8" 1	6' 16				2,697					2,595	4' - 9''	5' - 11"	-	#6 6		' - 3'' 2,25			82 12"			7 39' - 9		-	39' - 9"		-	30 26				-	39.5
' - 0'' ' - 0''	4' - 0'' 4' - 0''	12" 13"	9 2 10" 2	'0' 16 '3' 16				2,737 2,778	162 162				2,636 2,656	4' - 10'' 4' - 11''	6' - 0'' 6' - 0''		#6 6 #6 6		' - 5'' 2,292 ' - 6'' 2,312		3' - 5'' 3' - 6''	108 9" 108 9"	4' - 0'' 4' - 0''		7 39' - 9 7 39' - 9		37 37	39' - 9'' 39' - 9''		11' - 3'' 11' - 5''	30 26 31 26					43.8 48.2
' - 0''	4' - 0''	13	10 2	6' 16	_			2,819	162				2,697	5' - 0''	6' - 1''		#6 6		- 8" 2,352		3' - 7''	108 9"	4' - 0''		7 39'-9		37	39' - 9''		11'- 7''	<i>31 26</i>	72 1.10				52.6
' - 0''	4' - 0''	15"	12" 3	_	2 #6	6" 1		2,859	162			11' - 3''	2,737	5' - 1''	6' - 2''	162			' - 10'' 2,393		3' - 8''	108 9"	4' - 0''		7 39' - 9		37	39' - 9"		11' - 9''	31 26					57.2
" - 0"	5' - 0''	8"	7" 7	7' 16	2 #6	6" 1	0' - 11''	2,656	162	#6	6"	11' - 4"	2,758	5' - 6''	5' - 10''	162	#6 6	5" 8	' - 11" 2,170		3' - 1''	108 9"	5' - 0''	361	7 39' - 9	" 186	41	39' - 9''	1,089	10' - 11''	29 24	67 0.76			96	31.5
" - 0"	5' - 0''	9"	7" 1	0' 16	2 #6	6" 1	0' - 11''	2,656	162	#6	6"	11' - 5''	2,778	5' - 7''	5' - 10''	162	#6 6	5" 9	'-0" 2,190	5' - 10	3' - 2''	108 9"	5' - 0''	361	7 39' - 9	" 186	41	39' - 9''	1,089	10' - 11''	29 24	67 0.83	6 231.	5 0.8	96	34.3
' - 0''	5' - 0''	10"	8" 1	3' 16	2 #6	6" 1		2,697	162		6"	11' - 7''	2,819	5' - 8''	5' - 11''		#6 6		' - 2'' 2,230		3' - 3''	82 12"	5' - 0''		7 39' - 9		41	39' - 9''		11' - 1''	30 26	+ +				38.7
- 0"	5' - 0''	11"	8" 1	6' 16	_	6" 1		2,697	162			11' - 8''	2,839	5' - 9''	5' - 11''	_	#6 6		' - 3'' 2,25		-	82 12"	5' - 0''		7 39' - 9		41	39' - 9''		11' - 1''	30 26					41.5
' - 0''	5' - 0''	12"		0' 16	_	6" 1		2,737	162			11' - 10''	2,879	5' - 10"	6' - 0''		#6 6		' - 5'' 2,29		3' - 5''	108 9"	5' - 0''		7 39' - 9		41	39' - 9"			30 26				-	46.0
- 0''	5' - 0'' 5' - 0''	13" 14"	10" 2	'3' 16 '6' 16				2,778	162	#6			2,900 2,940	5' - 11'' 6' - 0''	6' - 0'' 6' - 1''		#6 6		' - 6'' 2,312 ' - 8'' 2,352		3' - 6'' 3' - 7''	108 9" 108 9"	5' - 0''		7 39' - 9 7 39' - 9		41	39' - 9'' 39' - 9''		11' - 5'' 11' - 7''	31 26 31 26	72 1.24 72 1.36	_		-	50.7 55.4
- 0"	5 - 0	14	11" 2 12" 3	0' 16	_			2,819 3,891	162 162	#6 #6		12' - 1'' 12' - 3''	2,940	6' - 1''	6' - 1''		#6 6 #6 6		- 8 2,352		3 - 7	108 9 108 9"	5' - 0'' 5' - 0''		7 39 - 9		41	39 - 9 39' - 9''		11 - 7	31 26 31 26					60.1
- 0"	6' - 0''	8"	7" 7	7' 16	_		$\frac{1-3}{0'-11''}$		162				3,001	6' - 6''	5' - 10''				- 10 2,39		_	108 9"			7 39'-9		45				29 24					33.3
- 0"	6' - 0''	8"	7" 1	0' 16				2,656	162			12' - 4''	3,001	6' - 6''	5' - 10"		#6 6		' - 11" 2,170			108 9"	6' - 0''		7 39' - 9		45	39' - 9"	-		29 24	67 0.81		_	-	33.3
- 0''	6' - 0''	9"	8" 1	3' 16	2 #6	6" 1		2,697	162			12' - 6''	3,042	6' - 7''	5' - 11''		#6 6		' - 1" 2,210			82 12"	6' - 0''	329	7 39' - 9	" 186	45	39' - 9''			30 26	72 0.92				37.9
- 0''	6' - 0''	10"	8" 1	6' 16	2 #6	6" 1	1' - 1''	2,697	162	#6	6"	12' - 7''	3,062	6' - 8''	5' - 11''	162	#6 6	5" 9	' - 2'' 2,230			82 12"	6' - 0''	329	7 39' - 9	" 186	45	39' - 9''	1,195	11' - 1''	30 26	72 0.99	6 242.	5 0.8	102	40.7
- 0''	6' - 0''	12"	9" 2	0' 16	2 #6	6" 1	1' - 3''	2,737	162	#6	6"	12' - 10''	3,123	6' - 10''	6' - 0''	162	#6 6	5" 9	' - 5" 2,29	6' - 0''	3' - 5''	108 9"	6' - 0''	433	7 39' - 9	" 186	45	39' - 9''	1,195	11' - 3''	30 26	72 1.18			102	48.2
- 0"	6' - 0''	13"	10" 2	3' 16	2 #6			2,778	162	#6	6"		-	6' - 11''	6' - 0''	-	#6 6		' - 6'' 2,312		3' - 6''	108 9"	6' - 0''	433	7 39' - 9		45	39' - 9''		11' - 5"	31 26				103	53.1
- 0''	6' - 0''	14"	11" 2	6' 16				2,819	162				3,183	7' - 0''	6' - 1''		#6 6		' - 8'' 2,352		3' - 7''	108 9"	6' - 0''		7 39' - 9		45	39' - 9''		11' - 7''	31 26					58.1
- 0"	6' - 0''	15"	12" 3	'0' 16	_	6" 1	1' - 9"	3,891	162			13' - 3''	3,224	7' - 1''	6' - 2''	162	#6 6 #6 6		' - 10'' 2,393		3' - 8''	108 9" 108 9"	6' - 0''		7 39' - 9		45	39' - 9"		11' - 9''	31 26					63.1
- 0" - 0"	7' - 0'' 7' - 0''	8"	7" 1	7' 16 0' 16	_	6" 1	$\frac{0}{0'-11''}$	2,000	162 162	#6 #6		13' - 4'' 13' - 4''	3,244 3,244	7' - 6'' 7' - 6''	5' - 10'' 5' - 10''	-	#6 6		' - 11'' 2,170 ' - 11'' 2,170		-	108 9" 108 9"	7' - 0'' 7' - 0''		7 39' - 9 7 39' - 9		45 45	39' - 9'' 39' - 9''			29 24 29 24					35.0 35.0
- 0"	7' - 0''	9"	8" 1	3' 16				2,697	162			13' - 6''	3,285	7' - 7''	5' - 11''	162			- 1" 2,210			82 12"			7 39'-9		45	39' - 9''			<i>30 26</i>				-	39.8
- 0"	7' - 0''	10"	8" 1	6' 16				2,697	162			13' - 7''	3,305	7' - 8''	5' - 11"		#6 6		' - 2'' 2,230			82 12"			7 39' - 9		45				30 26		_		-	42.6
- 0''	7' - 0''	12"	9" 2	0' 16	2 #6	6" 1	1' - 3''	2,737	162	#6		13' - 10''	3,366	7' - 10''	6' - 0''		#6 6		' - 5" 2,29		3' - 5''	108 9"	7' - 0''		7 39' - 9	" 186	45	39' - 9''		11' - 3''	30 26				102	50.5
- 0''	7' - 0''	13"	10" 2	3' 16	2 #6	6" 1	1' - 5''	2,778	162	#6	6"	13' - 11''	3,386	7' - 11''	6' - 0''	162	#6 6	5" 9	' - 6" 2,312	2 6' - 0''	3' - 6''	108 9"	7' - 0''	505	7 39' - 9	" 186	45	39' - 9''	1,195	11' - 5''	31 26	72 1.36	8 259	1 0.9	103	55.6
- 0''	7' - 0''	14"	11" 2	6' 16	2 #6	6" 1	1' - 7''	2,819	162	#6	6"	14' - 1''	3,427	8' - 0''	6' - 1''	162	#6 6	5" 9	' - 8'' 2,352	2 6' - 1''	3' - 7''	108 9"	7' - 0''	505	7 39' - 9	" 186	45	39' - 9''	1,195	11' - 7''	31 26	72 1.49	8 262	1 0.9	103	60.8
-	7' - 0''	15"	12" 3	0' 16	2 #7			3,891	162				3,467	8' - 1''	6' - 2''		#6 6		' - 10'' 2,393		3' - 8''	108 9"	7' - 0''	505	7 39' - 9			39' - 9"			31 26				103	
- 0"	8' - 0''	8"	7" 7	7' 16	-		0' - 11''		-			14' - 4''		8' - 6''	5' - 10"				' - 11'' 2,170			108 9"			7 39' - 9		-		1,301		29 24					
- 0"	8' - 0''	8" 9"			_		$\frac{O'-11''}{1-1''}$			#6		14' - 4''		8' - 6''	5' - 10"				' - 11" 2,170		3' - 1''	108 9"			7 39' - 9		-		1,301	+		67 0.89			96	36.7
- 0" - 0"	8' - 0'' 8' - 0''	<u> </u>	8" 1 8" 1		2 #6 2 #6		$\frac{1'-1''}{1'-1''}$			#6 #6			3,528 3,548	8' - 7'' 8' - 8''	5' - 11'' 5' - 11''	-			' - 1'' 2,210 ' - 2'' 2,230		' 3' - 2'' ' 3' - 3''	82 12" 82 12"			7 39' - 9 7 39' - 9		_	39' - 9'' 39' - 9''	1,301 1,301		30 26 30 26	72 1.02 72 1.09			102 102	-
	8' - 0''	10					1' - 1'		162	-		14 - 7		8 - 8	6' - 0''		#6 6		- 2 2,230 ' - 5'' 2,291		3' - 5''	108 9"	8' - 0''		7 39 - 9		-		1,301		30 20 30 26				102	
	8' - 0''	13"	10" 2				1' - 5"		-	#6		14' - 11''		8' - 11''	6' - 0''		#6 6			2 6' - 0''	3' - 6''	108 9"	8' - 0''		7 39' - 9		-				31 26				102	
- 0"	8' - 0''	14"	11" 2		_		1' - 7''		-			15' - 1''		9' - 0''	6' - 1''	162			' - 8'' 2,352		3' - 7''	108 9"			7 39' - 9		_		1,301	11' - 7''		72 1.56				-
- 0''	8' - 0''	15"	12" 3	0' 16	2 #7	6" 1	1' - 9''	3,891	162	#6	6"	15' - 3''	3,711	9' - 1''	6' - 2''	162		5" 9											1,301	11' - 9''	31 26			5 00	103	69.0

DISCLAIMER: The use of this standard TYDDT accumes to resord

DATE: 2/21/2024 4:29:07 PM FILE: DOCUMENT NAME


0' TO 30' FILL

			S	CC-1	0		
FILE: CD-SCO	C10–21.dgn	DN: TI	3E	ск: ВМР	DW:	T x D0T	ск: ТхДОТ
(C)T x DOT	February 2020	CONT	SECT	JOB		HIC	SHWAY
	REVISIONS	2353	02	028		FM	2450
04/2021 Upda	ted X values.	DIST		COUNTY			SHEET NO.
		DAL		122			

		SECT		c	5 TH2								BILLS OF REINFORCING STEEL (For Box Length = 40 feet)																ΈS									
	DIN	MEINS	SION.	5	HEIG		E	Bars	В					Bar	s C						Bars	D			Bar	-s M ~	#4		ars F1 ~ at 18" S		Bars F2 at 18" .		Bars H 4 ~ #4	Bars K	Per of l	Foot Barrel	Curb	Total
5		Н	Т	U	FILL	No.	Size	Spa	Length	Wt	No.	Size	Spa T	Length	Wt	" X "	"Y"	No.	Size	ed Leng	th	Wt	"ү"	" Z "	No. Spa	Lengt	h Wt	No.	Length	Wt	No. Length	Wt	Length Wt	No. Wt	Conc (CY)	Reinf (Lb)	Conc Reint (CY) (Lb)	
10' -	· 0''	9' - 0''	8"	7"	7'	162 -	#6	6"	10' - 11''	2,656	5 162	#6 6	6" 1	5' - 4''	3,731	9' - 6''	5' - 10''	162	#6	6" 8' -	11" 2	2,170	5' - 10''	3' - 1''	108 9"	9' - 0	" 649	7	39' - 9''	186	53 39' - 9''	1,407	10' - 11'' 29	24 67	0.940	270.0	0.8 96	38.4 10,895
10' -	· 0''	9' - 0''	8"	7"	10'	162	#6		10' - 11''	-	-	#6 6			3,731	9' - 6''	5' - 10''						5' - 10''	3' - 1''	108 9"	9' - 0		7	39' - 9''	186	53 39' - 9''	1,407	10' - 11'' 29	24 67	0.940	270.0	0.8 96	38.4 10,895
10' -	0"	9' - 0''	9"	8"	13'	162	#6	6"	11' - 1''	2,697	7 162	#6 6	6'' 1	5' - 6''	3,772	9' - 7''	5' - 11''	162	#6	6" 9' -	1" 2	2,210	5' - 11''	3' - 2''	108 9"	9' - C	" 649	7	39' - 9''	186	53 39' - 9''	1,407	11' - 1'' 30	26 72	1.074	273.0	0.8 102	43.8 11,023
10' -	0"	9' - 0''	10"	8"	16'	162 -	#6	6"	11' - 1''	2,697	7 162	#6 6	6" 1	5' - 7''	3,792	9' - 8''	5' - 11''	162	#6	6" 9' -	2" 2	2,230	5' - 11''	3' - 3''	162 6"	9' - C	" 974	7	39' - 9''	186	53 39' - 9''	1,407	11' - 1'' 30	26 72	1.144	282.2	0.8 102	46.6 11,388
10' -	0"	9' - 0''	12"	9"	20'	162	#6	6"	11' - 3''	2,737	7 162	#6 6	6" 1	5' - 10''	3,853	9' - 10''	6' - 0''	162	#6	6" 9' -	5" 2	2,291	6' - 0''	3' - 5''	162 6"	9' - C	" 974	7	39' - 9''	186	53 39' - 9''	1,407	11' - 3'' 30	26 72	1.352			54.9 11,550
10' -	0"	9' - 0''	13"	10"	23'	162 -	#6	6"	11' - 5''	2,778	3 162	#6 6	6" 1	5' - 11''	3,873	9' - 11''	6' - 0''	162	#6	6" 9' -	6" 2	2,312	6' - 0''	3' - 6''	162 6"	9' - C	" 974	7	39' - 9''	186	53 39' - 9''	1,407	11' - 5'' 31	26 72	1.492	288.3	0.9 103	60.5 11,633
10' -	· 0''	9' - 0''	14"	11"	26'	162 -	#6	6"	11' - 7''	2,819	9 162	#6 6	6'' 1	6' - 1''	3,913	10' - 0''	6' - 1''	162	#6	6" 9' -	8" 2	2,352	6' - 1''	3' - 7''	162 6"	9' - C	" 974	7	39' - 9''	186	53 39' - 9''	1,407	11' - 7'' 31	26 72	1.634	291.3	0.9 103	66.2 11,754
10' -	0"	9' - 0''	15"	12"	30'	162	#7	6"	11' - 9''	3,891	1 162	#6 6	6" 1	6' - 3''	3,954	10' - 1''	6' - 2''	162	#6	6" 9' -	10" 2	2,393	6' - 2''	3' - 8''	162 6"	9' - 0	" 974	7	39' - 9''	186	53 39' - 9''	1,407	11' - 9'' 31	26 72	1.778	320.1	0.9 103	72.0 12,908
10' -	0" 1	10' - 0''	8"	7"	7'	162	#6	6"	10' - 11''	2,656	5 162	#6 6	6" 1	6' - 4''	3,974	10' - 6''	5' - 10''	162	#6	6" 8' -	11" 2	2,170	5' - 10''	3' - 1''	162 6"	10' - 0	" 1,082	7	39' - 9''	186	53 39' - 9''	1,407	10' - 11'' 29	24 67	0.984	286.9	0.8 96	40.2 11,571
10' -	· 0'' 1	10' - 0''	8"	7"	10'	162	#6	6"	10' - 11''	2,656	5 162	#6 6	6" 1	6' - 4''	3,974	10' - 6''	5' - 10''	162	#6	6" 8' -	11" 2	2,170	5' - 10''	3' - 1''	162 6"	10' - 0	" 1,082	7	39' - 9''	186	53 39' - 9''	1,407	10' - 11'' 29	24 67	0.984	286.9	0.8 96	40.2 11,571
10' -	0" 1	10' - 0''	9"	8"	13'	162 -	#6		11' - 1''	2,697	-	#6 6			4,015		5' - 11''	162					5' - 11''	3' - 2''	162 6"	10' - C	" 1,082	7	39' - 9''	186	53 39' - 9''	1,407	11' - 1'' 30	26 72	1.123	289.9	0.8 102	45.8 11,699
10' -	0" 1	10' - 0''	10"	8"	16'		#6		11' - 1''	2,697	-	#6 6	6" 1		4,035		5' - 11''	162	#6				5' - 11''	3' - 3''	162 6"	10' - C	" 1,082	7	39' - 9''	186	53 39' - 9''	1,407	11' - 1'' 30	26 72	1.193	290.9	0.8 102	48.6 11,739
10' -		10' - 0''	12"	9"					11' - 3''		-	#6 6				10' - 10''	6' - 0''	162					6' - 0''	3' - 5''	162 6"		- ,	7	39' - 9''	186	53 39' - 9''	1,407	11' - 3'' 30	26 72	1.407			57.1 11,901
10' -		10' - 0''	13"	10"					11' - 5''	,	_	#6 6					6' - 0''	162					6' - 0''	3' - 6''	162 6"	10' - 0		7	39' - 9''	186	53 39' - 9''	1,407	11' - 5'' 31	26 72	1.553		0.9 103	
10' -	-	10' - 0''	14"						11' - 7''		_					11' - 0''	6' - 1''	162					6' - 1''	3' - 7''	162 6"			7	39' - 9''	186	53 39' - 9''		11' - 7'' 31	26 72	1.702			69.0 12,106
10' -	0" 1	10' - 0''	15"	12"	30'	162	#7	6"	11' - 9''	3,891	162	#6 6	6" 1	7' - 3''	4,197	11' - 1''	6' - 2''	162	#6	6" 9' -	10" 2	2,393	6' - 2''	3' - 8''	162 6"	10' - 0	" 1,082	7	39' - 9''	186	53 39' - 9''	1,407	11' - 9'' 31	26 72	1.852	328.9	0.9 103	75.0 13,259

(5) For direct traffic culverts (fill height ≤ 2 ft.), identify the required box size and select the option with the minimum fill height.

HL93 LOADING			SHEE	Т	3 0	F 3		
Texas Department of Transportation						Bridge Division Standard		
SINGLE B CAST 0' T	-IN	'- P '0'		E	R	75		
FILE: CD-SCC10-21.dgn	DN: TE	BE	ск: ВМР	DW:	T x D0T	ск: ТхДОТ		
CTxDOT February 2020	CONT	SECT	JOB			HIGHWAY		
REVISIONS	2353	02	028			FM 2450		
04/2021 Updated X values.	DIST		COUNTY		SHEET NO.			
	DAL		DENTON	1		123		

(1) For skewed box culverts with less than 2'-0" of fill, break back the top slab to provide a 1'-10" minimum lap of the existing longitudinal bars with the longitudinal bars in the extension.

For non-skewed box culverts with less than 2'-0" of fill and for skewed or non-skewed culverts with a fill depth of 2'-0" or greater, break back the top slab to provide a 1'-10" minimum lap of the existing longitudinal bars with the longitudinal bars in the extension. Alternatively, if the box non-skewed, embed #6 anchor bars with a Type III, C, D , E or F anchor adhesive into the existing walls, top and bottom slab at 1'-6" center-to-center spacing. Minimum embedment depth is 8". Anchor adhesive chosen must be able to achieve a basic bond strength in tension, Nba, of 26.4 kips. Submit signed and sealed calculations or the manufacturer's published literature showing the proposed anchor adhesive's ability to develop this load to the Engineer for approval prio to use. Anchor installation, including hole size, drilling, and clean out, must be in accordance with Item 450, "Railing." Test adhesive anchors in accordance with Item 450.3.3, "Tests." Test 3 anchors per 100 anchors installed.

Break back wings and apron as necessary to install the extension. Clean and extend the exposed wingwall and apron reinforcing into the extension. When lengthening existing box culverts with dimensions different than current standard dimensions, form horizontal and vertical transitions as directed by the Engineer. Match bottom slabs to maintain ar uninterrupted flow line. Field bend existing and new reinforcing into transitions and maintain specified cover requirements. For top slabs of culverts with overlay, with 1-to-2 course surface treatment, or with the top slab as the final riding surface, adjust the "H" dimension to provide a smooth riding surface.

(2) When the spacing between Bars B becomes less than half of the normal spacing,

(3) The length of Bars B vary in the skewed end sections.

(4) [One half of overall width] x [tangent of the skew angle]

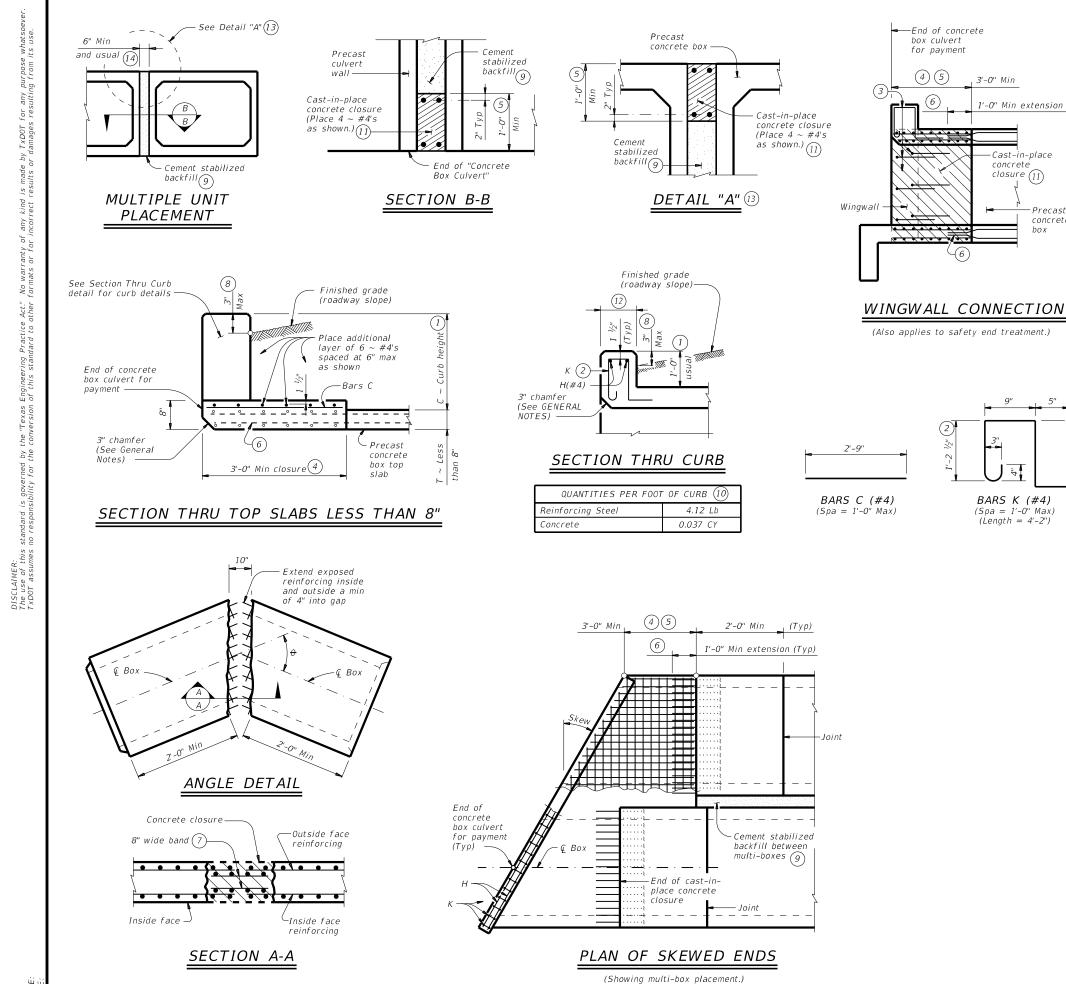
(5) Place Bars F1 and F2 continuously through the angle section. Bend Bars F1 and F2 to remain parallel to the walls of the box culvert.

(6) When necessary to avoid conflict in acute corners, shorten the slab extension leg of Bars C and Bars D to a minimum of 1'-6" for skews of 30° thru 45°.

(7) At the Contractor's option, for skews of 15° or less, place Bars B, C, and D parallel to the skewed end while maintaining spacing along centerline of box. Increase lengths of Bars B shown on the Single Box Culverts Cast-In-Place (SCC) standards sheets to accommodate

When required, lap Bars H 1'-8" for uncoated or galvanized bars. Provide a minimum of 1 1/2" clear cover.

Provide galvanized reinforcing steel, if required elsewhere in the plans. Provide Class C concrete (f'c = 3,600 psi) with these exceptions: provide Class S concrete (f'c = 4,000 psi) for top slabs of culverts with overlay, with 1-to-2 course surface treatment, or with the top slab as the final riding


Designed according to AASHTO LRFD Bridge Design Specifications. Refer to Single Box Culverts Cast-in-Place (SCC) standard sheets for details of straight

For skewed sections and angle sections, refer to Single Box Culverts Cast-in-Place (SCC) standard sheets for slab and wall dimensions, bar sizes, maximum bar spacing, and any other

For skewed ends with curbs, adjust length of Bars H, number of Bars K, curb concrete volume, and reinforcing steel weight by dividing the values shown on the culvert Single Box Culverts Cast-In-Place (SCC) standard sheets by the cosine of the skew

Cover dimensions are clear dimensions, unless noted otherwise.

HL93 LOADING								
Texas Department of Transportation Standard								
SINGLE E CAST MISCELLAI	-IN	'-P DU	LACE	ΤA				
FILE: CD-SCC-MD-20.dgn	DN: TX	DOT	CK: TXDOT DW:	T x D07	ск: ТхДОТ			
CTxDOT February 2020	CONT	SECT	JOB		HIGHWAY			
REVISIONS	2353	02	028	F	M 2450			
	DIST	DIST COUNTY			SHEET NO.			
	DAL DENTON							

(1) O" Min to 5'-O" Max. Estimated curb heights are shown elsewhere in the plans. For structures with pedestrian rail, bicycle rail, or curbs taller than 1'-0, refer to the Extended Curb Details (ECD) standard sheet. For structures with T631 or T631LS bridge rail, refer to the Mounting Details for T631 & T631LS Rails (T631-CM) standard sheet. Refer to the Box Culvert Rail Mounting Details (RAC) standard sheet for structures with bridge rail other than T631 or T631LS.

(2) For curbs less than 1'-0" high, tilt Bars K or reduce bar height as necessary to maintain cover. For curbs less than 3" high, Bars K may be omitted.

(3) Extend curb, wingwall, or safety end treatment reinforcing into concrete closure. Bend or trim, as necessary, any reinforcing that does not fit into closure area.

(4) Provide a 3'-0" Min cast-in-place concrete closure. Break back boxes in the field or cast boxes short. Provide bands of reinforcing in the closure that are the same size and spacing as in the precast box section. Provide #4 longitudinal reinforcement spaced at 12 inches Max within the closure. Except where shown otherwise, construct the cast-in-place closure flush with the inside and outside faces of the precast box section.

(5) For multiple unit placements, adjust the length of the closure for the interior walls as necessary. Provide a 3'-0" Min cast-in-place closure in the top slab, bottom slab, and exterior wall. See Section B-B detail when interior walls are cast full length.

(6) Extend precast box reinforcing a minimum of 1'-0" into concrete closure (Typ).

(7) Place bands of reinforcing matching the inside and outside face reinforcing in the gaps of the top and bottom slabs. Place a band matching the outside face reinforcing of the wall in the gaps of the walls (placed in the outside face only). Tack weld the bands to the exposed reinforcing at each point of contact.

(8) For vehicle safety, the following requirements must be met:

• For structures without bridge rail, construct curbs no more than 3" above finished grade.

 For structures with bridge rail, construct curbs flush with finished grade. Reduce curb heights, if necessary, to meet the above requirements. No changes will be made in quantities and no additional compensation will be allowed for this work.

(9) Cement stabilized backfill between boxes is considered part of the box culvert for payment.

(10) All curb concrete and reinforcing is considered part of the box culvert for payment.

(11) Any additional concrete and reinforcing required for the closures will be considered subsidiary to the box culvert for payment.

(12) 1'-0" typical. 2'-3" when the Box Culvert Rail Mounting Details (RAC) standard sheet is referred to elsewhere in the plans.

(13) For multiple unit placement with overlay, with 1 to 2 course surface treatment, or with the top slab as the final riding surface, provide wall closure as shown in Detail "A".

(14) This dimension may be increased with approval of the Engineer to allow the precast boxes to be tunneled or jacked in accordance with Item 476, "Jacking, Boring, or Tunneling Pipe or Box." No payment will be made for any additional material in the gap between adjacent boxes.

MATERIAL NOTES:

3'-0" Min

1'-0" Min extension

Cast-in-place

Precast

concrete

box

closure (11)

BARS K (#4)

(Spa = 1'-0'' Max)(Length = 4'-2'')

concrete

(6)

-(6)

Provide Grade 60 reinforcing steel.

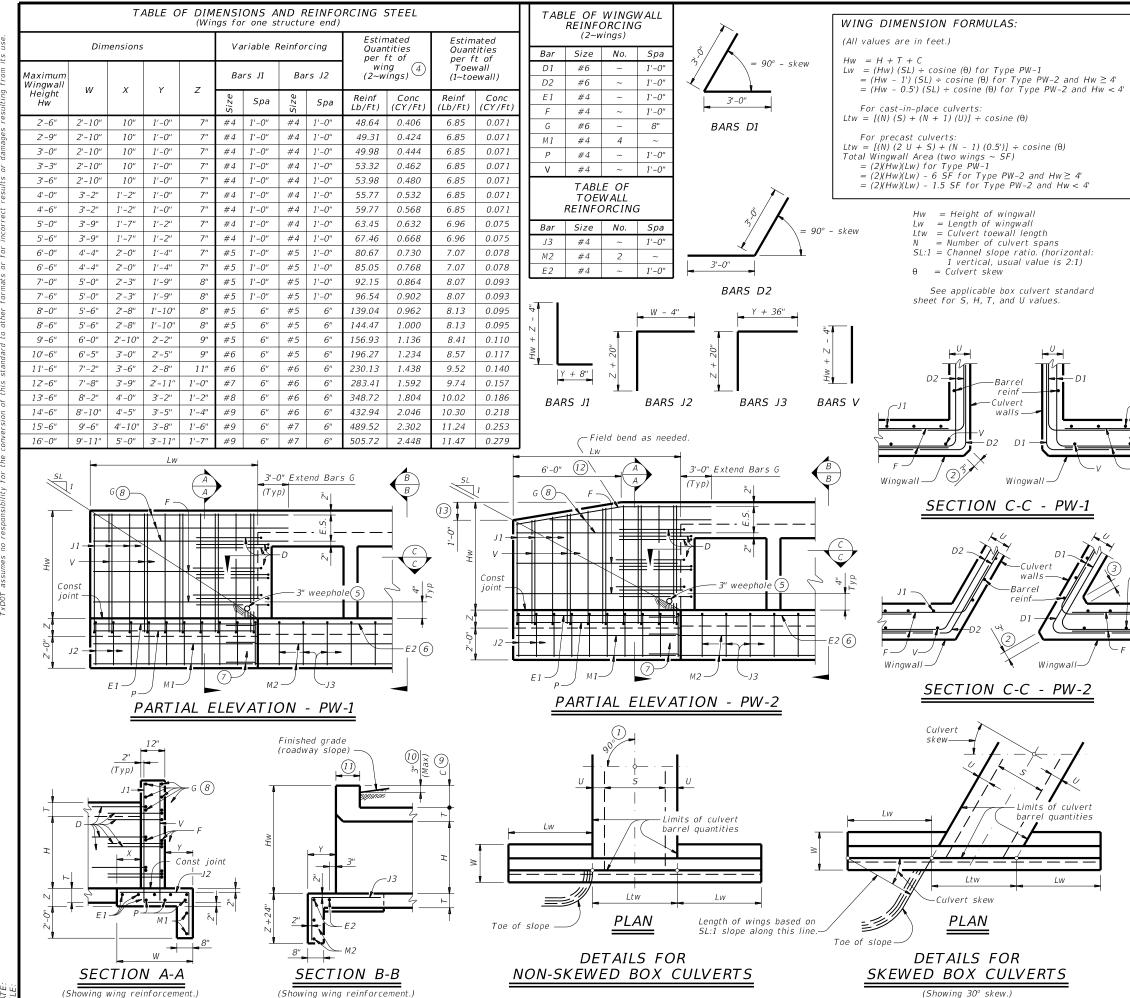
Provide ASTM A1064 welded wire reinforcement.

Provide Class C concrete (f'c = 3,600 psi) for the closures.

Provide cement stabilized backfill meeting the requirements of Item 400,

"Excavation and Backfill for Structures."

Any additional concrete required for the closures will be considered subsidiary to the box culvert.


GENERAL NOTES:

Designed according to AASHTO LRFD Bridge Design Specifications. Refer to the Single Box Culverts Precast (SCP) standard sheets for details and notes not shown.

Chamfer the bottom edge of the top slab closure 3 inches at culvert closure ends.

Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing bars dimensions are out-to-out of bars.

First Texas Department of Transportation Bridge Division Standard BOX CULVERTS PRECAST PRECAST MISCELLANEOUS DETAILS SCP-MD FULE: CD-SCP-MD-20.dgn DV: GAF COVT SECP-MD FULE: CD-SCP-MD-20.dgn DV: GAF COVT SECP-MD FULE: CD-SCP-MD-20.dgn DV: GAF COVT SECT JOB MIGHWAY REVISIONS 2353 02 028 FM 2450 DIST COUNTY	HL93 LOADING								
PRECAST MISCELLANEOUS DETAILS SCP-MD FILE: CD-SCP-MD-20.dgn DN: GAF CK: LMW DW: BWH/TxD0T CK: GAF ©T xD0T February 2020 cont sect 108 HIGHWAY REVISIONS 2353 O2 O28 FM 2450	Division								
FILE: CD-SCP-MD-20.dgn DN: GAF CK: LMW DW: BWH/TxD0T CK: GAF C)TxD0T February 2020 cont sect JOB HIGHWAY REVISIONS 2353 02 028 FM 2450	PR	EC	Α. Ο U	ST S D)ET	TAILS			
REVISIONS 2353 02 028 FM 2450	FILE: CD-SCP-MD-20.dgn	DN: GAF		ск: LMW	DW: B	VH/TxDOT ск: GAF			
2555 02 020 111 2450	CTxDOT February 2020	CONT	SECT	JOB		HIGHWAY			
DIST COUNTY SHEET NO.	REVISIONS	2353	02	02	8	FM 2450			
		DIST		COUN	SHEET NO.				
DAL DENTON 125		DAL		DENT	ON	125			

DATE: FILE:

- $1 Skew = 0^{\circ}$
- (2) At discharge end, chamfer may be $\frac{3}{4}$ " minimum.

(3) For 15° skew ~ 1" For 30° skew ~ 2" For 45° skew ~ 3"

- (4) Quantities shown are for two Type PW-1 wings. Adjust concrete volume for Type PW-2 wings. To determine estimated quantities for two wings, multiply the tabulated values by Lw. Quantities shown do not include weight of Bars D.
- \bigcirc Provide weepholes for Hw = 5'-0'' and greater. Fill around weepholes with coarse gravel.
- (6) Extend Bars E2 1'-6" minimum into the wingwall footing.
- (7) Lap Bars M1 1'-6" minimum with Bars M2.
- 8 Place Bars G as shown, equally spaced at 8" maximum. Provide at least two pairs of Bars G per wing.
- (9) 0" Min to 5'-0" Max. Estimated curb heights are shown elsewhere in the plans. For structures with pedestrian rail or curbs taller than 1'-0, refer to the Extended Curb Details (ECD) standard sheet. For structures with T631 or T631LS bridge rail, refer to the Mounting Details for T631 & T631LS Rails (T631-CM) standard sheet. Refer to the Box Culvert Rail Mounting Details (RAC) standard sheet for structures with bridge rail other than T631 or T631LS.
- (10) For vehicle safety, the following requirements must be met:
 - For structures without bridge rail, construct curbs no more than 3" above finished grade.
 For structures with bridge rail, construct surps fluch with
 - For structures with bridge rail, construct curbs flush with finished grade.

Reduce curb heights, if necessary, to meet the above requirements. No changes will be made in quantities and no additional compensation will be allowed for this work.

- (1) 1'-0" typical. 2'-3" when the Box Culvert Rail Mounting Details (RAC) standard sheet is referred to elsewhere in the plans.
- (12) 3'-0" for Hw < 4'.
- (13) 6" for Hw < 4'.

DESIGNER NOTES:

Type PW-1 can be used for all applications and must be used if railing is to be mounted to the wingwall. Type PW-2 can only be used for applications without a railing mounted to the wingwall.

MATERIAL NOTES:

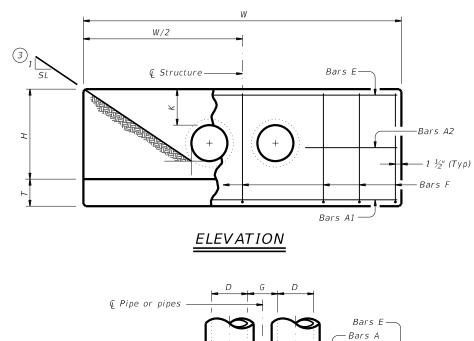
Provide Class C concrete (f'c=3,600 psi). Provide Grade 60 reinforcing steel. Provide galvanized reinforcing steel if required elsewhere in the plans.

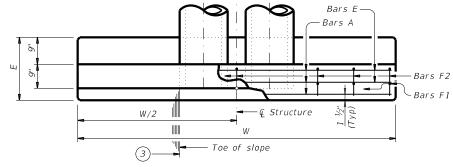
GENERAL NOTES:

Designed in accordance with AASHTO LRFD Bridge Design Specifications.

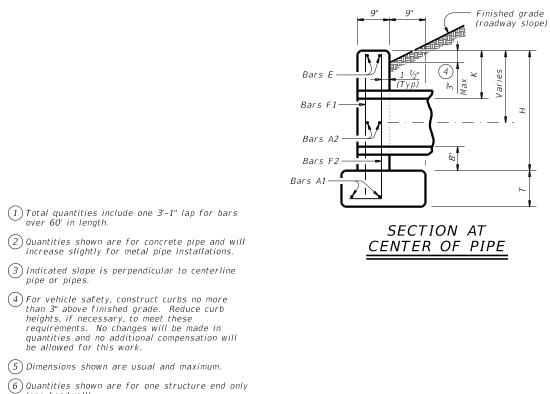
Depth of toewalls for wingwalls and culverts may be reduced or eliminated when founded on solid rock, when directed by the Engineer.

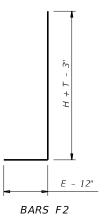
See Box² Culvert Supplement (BCS) standard sheet for wingwall type and additional dimensions and information. Quantities for concrete and reinforcing steel


resulting from the formulas given on this sheet are for the Contractor's information only.


Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing dimensions are out-to-out of bars.

Bridge Division Texas Department of Transportation								
CONCRET WITH PARA BOX TYPES PV	LLE CU	L I LV	VING ERTS	S	FC			
		ΡV	V					
FILE: CD-PW-20.dgn	DN: GAR	-	ск: САТ	DW:	T x D0T	ск: ТхD0Т		
CTxDOT February 2020	CONT	SECT	JOB			HIGHWAY		
REVISIONS	2353	02	028		F	M 2450		
	DIST		COUNTY			SHEET NO.		
	DAL		DENTO	N		126		


	what soever.	its use.	
	r any purpose	esulting from	
	by TxDOT for	r damages r	
	y kind is made	ect results o	
	No warranty of any		
	Act."	her formats	
	ing Pra	stan	
	exas Engineering	rsion of t	
	"ned by the "T	for the conve	
	andard is gover	responsibility	
AIMEK:	this st	imes no	
UISCLAI	The use of	TXDOT &	


	TABLE OF VARIABLE DIMENSIONS 5										
A	ND	QUANTI	TIES	FOR	ONE HL	EADW	ALL				
е	Pipe	Values f	or One P	Pipe	for Each						
Slope	Dia of (D)	W	Reinf (Lbs)	Conc (CY) (2)	W	Reinf (Lbs)	Conc (CY) (2)				
_	12"	9' - 0''	122	1.1	1' - 9''	15	0.2				
	15"	10' - 3''	136	1.3	2' - 2''	16	0.2				
	18"	11' - 6''	163	1.5	2' - 8''	19	0.3				
	21"	12' - 9''	200	1.8	3' - 1''	31	0.4				
	24"	12 9	217	2.1	3' - 7''	34	0.4				
	27"	15' - 3''	254	2.4	3' - 11''	37	0.5				
	30"	16' - 6''	272	2.7	4' - 4''	40	0.6				
2:1	33"	17' - 9''	314	3.1	4' - 8''	43	0.6				
0	36"	19' - 0''	371	3.9	5' - 1''	46	0.8				
	42"	21' - 6"	442	4.9	5' - 10''	52	1.0				
	48"	25' - 0''	569	6.4	6' - 7''	52	1.3				
	54"	27' - 6''	701	7.5	7' - 6''	82	1.6				
	60"	30' - 0''	794	8.8	8' - 3''	90	1.8				
	66"	32' - 6''	894	10.2	8' - 9''	96	2.0				
	72"	35' - 0''	1,055	11.7	9' - 4''	103	2.0				
_	12"	13' - 0''	175	1.6	9 - 4 1' - 9''	105	0.2				
	12	14' - 9''	193	1.9	2' - 2''	14	0.2				
	18"	16' - 6''	228	2.2	2 - 2 2' - 8''	17	0.2				
	21"	18' - 3''	220	2.2	2 - 8	31	0.3				
	21 24"	10 - 3 20' - 0''	323	2.0 3.0	3 - 1 3' - 7''	33	0.4				
	24	20 - 0	371	3.5	3 - 7	37	0.4				
	27 30''	21 - 9 23' - 6''	415	4.0	3 - 11 4' - 4''	40	0.5				
1.											
3:1	33"	25' - 3''	469	4.6	4' - 8'' 5' - 1''	43	0.6				
-	36"	27' - 0''	556	5.7		46	0.8				
	42"	30' - 6'' 35' - 6''	675	7.1 9.2	5' - 10'' 6' - 7''	52	1.0 1.3				
	48"		837			59					
	54"	39' - 0''	1,015	11.0	7' - 6''	84	1.6				
	60"	42' - 6''	1,171	12.9	8' - 3''	91	1.8				
	66"	46' - 0''	1,298	14.9	8' - 9''	98	2.0				
	72"	49' - 6''	1,561	17.1	9' - 4''	103	2.3				
	12"	17' - 0''	229	2.0	1' - 9''	15	0.2				
	15"	19' - 3''	266	2.4	2' - 2''	17	0.2				
	18"	21' - 6"	308	2.9	2' - 8''	19	0.3				
	21"	23' - 9''	382	3.5	3' - 1''	31	0.3				
	24"	26' - 0''	430	3.9	3' - 7"	34	0.4				
	27"	28' - 3''	486	4.7	3' - 11''	37	0.5				
1	30"	30' - 6''	539	5.2	4' - 4''	40	0.6				
4:1	33"	32' - 9''	603	6.0	4' - 8''	42	0.6				
	36"	35' - 0''	738	7.5	5' - 1''	47	0.8				
	42" 19"	39' - 6'' 46' - 0''	881	9.3	5' - 10''	52 61	1.0				
	48'' 54''	46' - 0'' 50' - 6''	1,102	12.1	6' - 7'' 7' - 6''	61 84	1.3				
		50' - 6'' 55' - 0''	1,364	14.4		84	1.6				
	60" 66"	55' - 0" 59' - 6"	1,547	16.9	8' - 3'' 8' 0''	91	1.8				
	66" 7.2"		1,741	19.5 22.4	8' - 9'' 9' - 4''	98 102	2.0				
	72"	64' - 0'' 25' - 0''	2,077 336		9' - 4'' 1' - 9''	102	2.3				
	12"			3.0	1' - 9'' 2' - 2''	14	0.2 0.2				
	15"	28' - 3'' 31' - 6''	384	3.6	2' - 2'' 2' - 8''	17					
	18"		452	4.2		19	0.3				
	21"	34' - 9''	581	5.1	3' - 1''	31	0.4				
	24"	38' - 0''	644	5.8	3' - 7''	34	0.4				
	27"	41' - 3''	737	6.9	3' - 11''	37	0.5				
1	30"	44' - 6''	807	7.7	4' - 4''	39	0.6				
6:1	33"	47' - 9''	912	8.9	4' - 8''	44	0.6				
	36"	51' - 0''	1,108	11.0	5' - 1''	48	0.8				
	42"	57' - 6"	1,318	13.7	5' - 10''	54	1.0				
	48"	67' - 0''	1,682	17.9	6' - 7''	59	1.3				
	54"	73' - 6"	2,072	21.3	7' - 6''	83	1.6				
	60"	80' - 0''	2,351	24.9	8' - 3''	89	1.8				
	66" 7 <i>2</i> "	86' - 6'' 93' - 0''	2,643 3,121	28.9 33.1	8' - 9'' 9' - 4''	96 101	2.0 2.3				

PLAN OF NON-SKEWED PIPES

(one headwall).

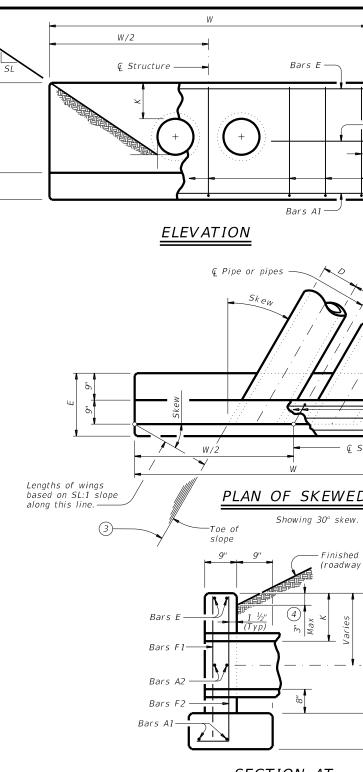
TABLE OF CONSTANT DIMENSIONS

Dia of Pipe (D)	G	к (5)	Н	Т	E
12"	0' - 9''	1' - 0''	2' - 8''	0' - 9''	1' - 9"
15"	0' - 11''	1' - O''	2' - 11"	0' - 9''	1' - 9"
18''	1' - 2''	1' - O''	3' - 2"	0' - 9''	1' - 9"
21"	1' - 4''	1' - 0''	3' - 5"	0' - 9''	2' - 0"
24''	1' - 7''	1' - O''	3' - 8''	0' - 9''	2' - 0"
27"	1' - 8''	1' - 0''	3' - 11"	0' - 9"	2' - 3"
30''	1' - 10''	1' - 0''	4' - 2''	0' - 9''	2' - 3"
33''	1' - 11''	1' - 0''	4' - 5"	0' - 9"	2' - 6"
36''	2' - 1''	1' - 0''	4' - 8''	1' - 0''	2' - 6"
42"	2' - 4''	1' - 0''	5' - 2"	1' - O''	2' - 9"
48''	2' - 7''	1' - 3''	5' - 11"	1' - O''	3' - 0"
54''	3' - 0''	1' - 3''	6' - 5"	1' - O''	3' - 3"
60"	3' - 3''	1' - 3''	6' - 11''	1' - O''	3' - 6"
66''	3' - 3''	1' - 3''	7' - 5"	1' - O''	3' - 9"
72"	3' - 4''	1' - 3''	7' - 11"	1' - 0"	4' - 0"

TABLE OF6REINFORCING STEEL

Bar	Size	Spa	No.
A1	#5	~	2
A2	#5	1' - 6''	~
Е	#5	~	2
F	#5	1' - 0''	~

MATERIAL NOTES: Provide Grade 60 reinforcing steel. Provide Class C concrete (f'c = 3,600 psi).


GENERAL NOTES: Designed according to AASHTO LRFD Bridge Design Specifications. Do not mount bridge rails of any type directly to these culvert headwalls. This standard may not be used for wall heights, H, exceeding the values shown.

Cover dimensions are clear dimensions, unless noted otherwise einforcing dimensions are out-to-out of bars.

Texas Department of Transportation									
CONCRETE HEADWALLS WITH PARALLEL WINGS FOR NON-SKEWED PIPE CULVERTS									
		С	H-PW-	0					
FILE: CD-CH-PW0-20.dgn	DN: TX	DOT	CK: TXDOT DW:	T x D 01	ск: ТхДОТ				
CTxDOT February 2020	CONT	SECT	JOB		HIGHWAY				
REVISIONS	2353	02	028	FM 2450					
DIST COUNTY SHEET NO									
	DAL		DENTON		127				

TABLE OF VARIABLE DIMENSIONS AND QUANTITIES FOR ONE HEADWALL \mathfrak{S}

				1 50			00		123		Skew					450	Chan		
0	ое (D)				Skew Values To	Be Ar	lded				Skew Values To	Be Ar	dded				Skew Values To	Be Ar	lded
Slope	of Pipe	Values f	or One Reinf	Pipe Conc	for Each			Values fo	or One Reinf	Pipe Conc	for Each			Values fo	or One Reinf	Pipe Conc	for Each		
	Dia (W	(Lbs)	(CY)	W	(Lbs)	(CY) (2)	W	(Lbs)	(CY)	W	(Lbs)	(CY) (2)	W	(Lbs)	(CY) (2)	W	(Lbs)	(CY)
	12" 15"	9' - 4'' 10' - 7''	124 136	1.1 1.3	1' - 9 ¾" 2' - 3"	15 17	0.2 0.2	10' - 5" 11' - 10"	130 159	1.2 1.5	2' - 0'' 2' - 6''	16 18	0.2 0.2	12' - 9'' 14' - 6''	159 191	1.5 1.8	2' - 5 ³ ⁄4" 3' - 0 ³ ⁄4"	17 20	0.3 0.3
	15	10 = 7 11' = 11''	165	1.5	2 - 3 2' - 9"	17	0.2	13' - 3"	174	1.5	2 - 0 3' - 1"	29	0.2	14 - 0 16' - 3''	207	2.1	$3' - 9\frac{1}{4}''$	33	0.5
	21"	13' - 2''	203	1.9	3' - 2 ¼''	31	0.4	14' - 9''	233	2.1	3' - 6 ¾''	33	0.4	18' - 0''	276	2.6	4' - 4 ¼''	36	0.5
	24"	14' - 6''	240	2.1	3' - 8 ¼"	34	0.4	16' - 2"	251	2.4	4' - 1 <u>34</u> "	36	0.5	19' - 10"	318	2.9	5' - 0 ¾"	39	0.6
	27"	15' - 9"	258	2.5	$4' - 0 \frac{3}{4}''$	38	0.5	17' - 7"	292	2.8	4' - 6 ¼''	39	0.6	21' - 7"	342	3.4	$5' - 6 \frac{1}{4}''$	44	0.7
2:1	30" 33"	17' - 1" 18' - 5"	297 320	2.8 3.3	$4' - 5 \frac{3}{4''}$ $4' - 9 \frac{3}{4''}$	40 43	0.6 0.6	19' - 1" 20' - 6"	311 358	3.1 3.6	5' - 0'' 5' - 4 ³ ⁄4''	42 46	0.6 0.7	23' - 4" 25' - 1"	388 439	3.8 4.4	6' - 1 ³ / ₄ " 6' - 7 ¹ / ₄ "	47 51	0.8 0.9
\sim	36"	19' - 8''	401	4.0		47	0.9	21' - 11"	422	4.5	$5' - 10 \frac{3}{4}''$	50	0.9	26' - 10"	517	5.5	7' - 2 ¼"	55	1.2
	42"	22' - 3''	476	5.0	6' - 0 ¾''	53	1.1	24' - 10"	528	5.6	6' - 8 ¾"	56	1.2	30' - 5"	634	6.9	8' - 3''	76	1.4
	48"	25' - 11"	577	6.6	6' - 9 ¾"	60	1.3	28' - 10"	637	7.3	7' - 7 ¼''	79	1.5	35' - 4"	791	9.0	9' - 3 ¾''	88	1.8
	54"	28' - 6"	711	7.8	7' - 9"	83	1.6	31' - 9"	781	8.7	8' - 8"	81	1.8	38' - 11"	958	10.7	$10' - 7 \frac{1}{4}''$	97	2.2
	60" 66"	31' - 1" 33' - 8"	805 907	9.2 10.6	8' - 6 ¹ ⁄4'' 9' - 0 ³ ⁄4''	91 98	1.9 2.1	34' - 8'' 37' - 6''	881 1,028	10.2 11.8	9' - 6 ¹ ⁄4" 10' - 1 ¹ ⁄4"	97 102	2.1 2.4	42' - 5" 46' - 0"	1,113 1,235	12.5 14.5	11' - 8'' $12' - 4 \frac{1}{4}''$	124 132	2.6 2.9
	72"	36' - 3"	1,071	12.1	9' - 8''	105	2.4	40' - 5"	1,207	13.5	$10' - 9\frac{1}{4}''$	110	2.6	49' - 6"	1,446	16.6	12 - 74 13' - 2 ¼''	141	3.2
	12"	13' - 6"	178	1.6	1' - 9 ¾"	15	0.2	15' - 0"	189	1.8	2' - 0''	15	0.2	18' - 5"	237	2.2	2' - 5 ¾''	17	0.2
	15"	15' - 3''	212	1.9	2' - 3''	17	0.2	17' - 0"	223	2.1	2' - 6"	17	0.3	20' - 10"	276	2.6	3' - 0 ¾"	20	0.3
	18"	17' - 1"	231	2.3	2' - 9"	19	0.3	19' - 1"	259	2.5	3' - 1"	29	0.3	23' - 4"	318	3.1	3' - 9 ¼"	32	0.4
	21" 24"	18' - 11'' 20' - 8''	306 345	2.7 3.1	3' - 2 ¼" 3' - 8 ¾"	31 35	0.4 0.4	21' - 1" 23' - 1"	339 384	3.0 3.5	3' - 6 ³ / ₄ " 4' - 1 ³ / ₄ "	33 36	0.4 0.5	25' - 10" 28' - 3"	413 462	3.7 4.2	$4' - 4 \frac{1}{4}''$ 5' - 0 $\frac{3}{4}''$	36 40	0.5 0.6
	24	20 - 8 22' - 6"	376	3.7	$3 - 8 \frac{7}{4}$ $4' - 0 \frac{3}{4}''$	38	0.4	25 - 1"	438	4.1	$4 - 1 \frac{7}{4}$ $4' - 6 \frac{1}{4}''$	39	0.5	20 - 3 30' - 9''	522	5.0	$5' - 6\frac{1}{4}''$	40	0.0
	30"	24' - 4''	422	4.1	4' - 5 ³ / ₄ "	40	0.6	27' - 2"	466	4.6	5' - 0"	42	0.6	33' - 3"	578	5.6	6' - 1 ³ / ₄ "	47	0.8
3:1	33"	26' - 2"	476	4.8	4' - 10"	43	0.6	29' - 2"	522	5.3	5' - 4 ³ ⁄4"	46	0.7	35' - 9"	644	6.5	6' - 7 ¼"	51	0.9
	36"	27' - 11"	590	5.9	5' - 3"	47	0.8	31' - 2"	645	6.6	5' - 10 ¾''	50	0.9	38' - 2''	787	8.0	7' - 2 ¼"	56	1.2
	42"	31' - 7"	684	7.3	$6' - 0 \frac{1}{4}''$	53	1.1	35' - 3"	776	8.2	$6' - 8 \frac{3}{4}''$	56	1.2	43' - 2"	933	10.0	8' - 3''	79	1.4
	48'' 54''	36' - 9" 40' - 5"	880 1,065	9.6 11.4	6' - 9 ³ / ₄ " 7' - 9"	61 85	1.3 1.6	41' - 0" 45' - 0"	953 1,185	10.7 12.7	7' - 7 ¼" 8' - 8"	81 89	1.5 1.8	50' - 2'' 55' - 2''	1,166 1,435	13.1 15.5	9' - 3 3 <u>4</u> " 10' - 7 1 <u>4</u> "	88 97	1.8 2.2
	60"	40 - 5	1,224	13.3	7 - 5 8' - 6 ¼"	93	1.9	49' - 1"	1,356	14.8	$9' - 6 \frac{1}{4}''$	96	2.1	60' - 1''	1,635	18.2	10 - 7 /4	124	2.2
	66"	47' - 7"	1,357	15.4	9' - 1''	98	2.1	53' - 1"	1,497	17.2	$10' - 1 \frac{1}{4''}$	103	2.3	65' - 1''	1,892	21.1	12' - 4 ¹ / ₄ "	130	2.9
	72"	51' - 3"	1,624	17.7	9' - 8''	105	2.3	57' - 2''	1,787	19.7	10' - 9 ¼"	109	2.6	70' - 0''	2,218	24.1	13' - 2 ¼"	139	3.2
	12"	17' - 7"	232	2.1	1' - 9 ¾"	15	0.2	19' - 8"	259	2.4	2' - 0"	16	0.2	24' - 0"	314	2.9	2' - 5 ¾"	18	0.2
	15"	19' - 11'' 22' - 3''	272	2.5	2' - 3'' 2' - 9''	17 19	0.2 0.3	22' - 3"	301	2.8	2' - 6" 3' - 1"	18 29	0.3 0.3	27' - 3'' 30' - 5''	361	3.5	$3' - 0 \frac{3}{4}''$	21	0.3
	18" 21"	22 - 3 24' - 7"	313 407	3.0 3.6	2 - 9 $3' - 2 \frac{1}{4}''$	31	0.3	24' - 10" 27' - 5"	344 446	3.3 4.0	3 - 1 3' - 6 ³ / ₄ "	29 33	0.3	30 - 5 33' - 7"	427 549	4.0 4.9	$3' - 9 \frac{1}{4}''$ $4' - 4 \frac{1}{4}''$	32 36	0.4 0.5
	24"	26' - 11"	455	4.1	3' - 8 3/4"	35	0.4	30' - 0"	499	4.5	4' - 1 ³ 4"	36	0.5	36' - 9"	609	5.6	5' - 0 ³ / ₄ "	40	0.6
	27"	29' - 3''	514	4.8	4' - 0 ¾''	38	0.5	32' - 7"	562	5.4	4' - 6 ¼''	40	0.6	39' - 11"	703	6.6	5' - 6 ¼"	43	0.7
1	30"	31' - 7"	568	5.4	4' - 5 ³ ⁄4"	40	0.6	35' - 3"	620	6.0	5' - 0''	42	0.6	43' - 2"	768	7.4	6' - 1 ¾"	49	0.8
4:1	33"	33' - 11"	634	6.2	4' - 10"	43	0.7	37' - 10"	710	7.0	5' - 4 ³ ⁄4"	46	0.7	46' - 4"	848	8.5	$6' - 7 \frac{1}{4}''$	52	0.9
	36" 42"	36' - 3" 40' - 11"	776 921	7.7 9.6	5' - 3'' 6' - 0 ¹ ⁄4''	48 53	0.9 1.0	40' - 5" 45' - 7"	868 1,022	8.6 10.7	5' - 10 ³ 4" 6' - 8 ³ 4"	49 57	0.9 1.2	49' - 6" 55' - 10"	1,058 1,262	10.6 13.1	7' - 2 ¼'' 8' - 3''	56 78	1.1 1.4
	48"	47' - 7"	1,152		6' - 10"	61	1.3	53' - 1"	1,268	14.0	7' - 7 ¹ /4"	80	1.5	65' - 1"	1,587	17.2	9' - 3 ³ / ₄ "	86	1.8
	54"	52' - 3''	1,416	14.9	7' - 9 ¼"	86	1.6	58' - 4"	1,589	16.6	8' - 8''	89	1.8	71' - 5"	1,924	20.4	10' - 7 ¼"	95	2.2
	60"	56' - 11"	1,606		8' - 6 ¾"	92	1.9	63' - 6"	1,806	19.5	9' - 6 ¼''	95	2.1	77' - 9"	2,192	23.9	11' - 8''	122	2.6
	66"	61' - 7"	1,819		$9' - 0 \frac{3}{4}''$	97	2.1	68' - 8"	2,019	22.5	$10' - 1 \frac{1}{4}''$	101	2.4	84' - 2"	2,472	27.6	$12' - 4 \frac{1}{4}''$	131	2.9
	72" 12"	66' - 3" 25' - 11"	2,150 342	23.2 3.1	9' - 8'' 1' - 9 ¾''	104 15	2.4 0.2	73' - 11" 28' - 10"	2,379 374	25.9 3.5	10' - 9 ¼'' 2' - 0''	108 16	2.6 0.2	90' - 6'' 35' - 4''	2,937 456	31.7 4.3	13' - 2 ¼" 2' - 5 ¾"	138 17	3.2 0.2
	12	29' - 3''	390	3.7	2' - 3''	17	0.2	20 - 10 32' - 7"	442	4.2	2 - 0 2' - 6"	18	0.2	39' - 11''	430 549	5.1	$2 - 5 \frac{74}{4}$ $3' - 0 \frac{3}{4}''$	20	0.2
	18"	32' - 7"	459	4.4	2' - 9''	20	0.3	36' - 4"	515	4.9	3' - 1"	29	0.3	44' - 7''	629	6.0	3' - 9 ¼"	33	0.4
	21"	36' - 0"	608	5.3	3' - 2 ¼"	31	0.4	40' - 2"	660	5.9	3' - 6 ¾''	33	0.4	49' - 2"	823	7.2	4' - 4 ¼"	38	0.5
	24"	39' - 4"	672	6.0	3' - 8 ³ / ₄ "	35	0.4	43' - 11"	748	6.7	4' - 1 ³ / ₄ "	36	0.5	53' - 9"	920	8.2	5' - 0 3/4"	42	0.6
	27"	42' - 8"	770	7.1	$4' - 0 \frac{3}{4}''$	38	0.5	47' - 8"	852	8.0	4' - 6 ¼''	41	0.5	58' - 4"	1,039	9.7	$5' - 6 \frac{1}{4}''$	45	0.7
6:1	30'' 33''	46' - 1'' 49' - 5''	839 947	8.0 9.2	4' - 5 ³ ⁄ ₄ " 4' - 10"	40 45	0.6 0.7	51' - 5" 55' - 2"	949 1,040	8.9 10.3	5' - 0" 5' - 4 ³ / ₄ "	44 48	0.6 0.7	62' - 11'' 67' - 6''	1,162 1,292	10.9 12.6	6' - 1 ³ / ₄ " 6' - 7 ¹ / ₄ "	48 50	0.8 0.9
9	36"	49 - 3 52' - 10"	1,151	9.2	4 - 10 5' - 3''	45	0.7	55 - 2		10.5	$5 - 4 \frac{7}{74}$ 5' - 10 $\frac{3}{4}$ "	40 51	1.0	72' - 1"	1,292		$7' - 2\frac{1}{4}''$	50	1.1
	42"	59' - 6"	1,365		6' - 0 ¼"	55	1.0	66' - 5"	1,530	15.8	6' - 8 ³ / ₄ "	57	1.2	81' - 4"	1,875		8' - 3''	76	1.4
	48''	69' - 4''	1,737	18.5	6' - 10''	59	1.3	77' - 4"	1,942	20.7	7' - 7 ¼"	79	1.5	94' - 9"	2,368	25.3	9' - 3 ¾"	86	1.8
	54"	76' - 1"	2,138		7' - 9 ¼"	83	1.6	84' - 10"		24.6	8' - 8''	87	1.8	103' - 11"	2,912		10' - 7 ¼"	95	2.2
	60" 66"	82' - 10"	2,426		8' - 6 ³ / ₄ "	90	1.9	92' - 5"	2,681	28.8	9' - 6 ¹ / ₄ "	94	2.1	113' - 2"	3,294		11' - 8"	122	2.6
	66" 7 <i>2</i> "	89' - 7'' 96' - 3''	2,730 3,218		9' - 0 ³ ⁄4" 9' - 8"	96 102	2.1 2.4	99' - 11" 107' - 5"				101 108	2.4 2.6	122' - 4" 131' - 6"	3,697 4 372	40.8	$12' - 4 \frac{1}{4}''$ $13' - 2 \frac{1}{4}''$	130 139	2.9 3.2
	L ′ [∠]	50 - 5	5,210	54.2	5.0	102	2.7	10, - 5	5,500	50.2	.0 9/4	100	2.0	101 - 0	7,372	40.0	• • • • • • •	1.00	5.2

SECTION AT CENTER OF PIPE

1) Total quantities include one 3'-1" lap for bars over 60' in length.

3

Quantities shown are for concrete pipe and will increase slightly for metal pipe installations.

(3) Indicated slope is perpendicular to centerline pipe or pipes.

(4) For vehicle safety, construct curbs no more than 3" above finished grade. Reduce curb heights, if necessary, to meet these requirements. No changes will be made in quantities and no additional compensation will be allowed for this work.

5 Dimensions shown are usual and maximum.

6 Quantities shown are for one structure end only (one headwall).

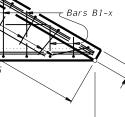
DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act." No warranty of any kind is made by TxDOT for any purpose whatsoev TxDOT assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use.

DATE:

	CONS	TABL STANT	E OF DIMENS	SIONS	
Dia of Pipe (L		к (5)	Н	Т	E
12"	0' - 9''	1' - 0''	2' - 8''	0' - 9''	1' - 9"
15"	O' - 11''	1' - 0''	2' - 11"	0' - 9"	1' - 9"
18''	1' - 2''	1' - 0''	3' - 2"	0' - 9"	1' - 9"
Bars A2 21"	1' - 4''	1' - 0''	3' - 5"	0' - 9"	2' - 0''
24"	1' - 7''	1' - 0''	3' - 8''	0' - 9''	2' - 0''
– 1½" (Тур) 27"	1' - 8''	1' - 0''	3' - 11"	0' - 9"	2' - 3''
Bars F 30"	1' - 10''	1' - 0''	4' - 2''	0' - 9"	2' - 3"
33"	1' - 11''	1' - 0''	4' - 5"	0' - 9"	2' - 6"
36"	2' - 1"	1' - 0''	4' - 8''	1' - 0''	2' - 6"
<u>42''</u> 48''	2' - 4'' 2' - 7''	1' - 0'' 1' - 3''	5' - 2" 5' - 11"	1' - 0'' 1' - 0''	2' - 9" 3' - 0"
54"	3' - 0''	1 - 3''	6' - 5"	$\frac{1 - 0}{1' - 0''}$	3' - 3"
60"	3' - 3"	1' - 3''	6' - 11"	1' - 0"	3' - 6"
66"	3' - 3''	1' - 3''	7' - 5"	1' - 0''	3' - 9"
72"	3' - 4''	1' - 3''	7' - 11"	1' - 0"	4' - 0''
Bars A Bars E		R	TAI EINFOR	BLE OF CING S	6 STEEL
7 ()		Ba	nr Size	Spa	No.
		A	1 #5	~	2
		Až	2 #5	1' - 6"	~
	E 2	E		~	2
Bars	F Z	F	#5	1' - 0"	~
IPES					$H + T - 3^{"}$
e e) M,	ATERIAL NC		ing stack	BARS	E - 12"
e e)	ATERIAL NC Provide Grade Provide Class E NERAL NO Designed accor ecifications. Do not mount b lvert headwal! This standard ceeding the va	60 reinforce C concrete (TES: rding to AAS pridge rails s. may not be	f'c = 3,600 HTO LRFD E of any type used for wa	psi). Bridge Desi directly to	<i>E</i> - 12" <i>F</i> 2 <i>gn</i> <i>these</i>
e e)	Provide Grade Provide Class ENERAL NO Designed accor ecifications. Do not mount b Vvert headwall: This standard	60 reinforc: C concrete (TES: rding to AAS oridge rails s. may not be lues shown. lear dimens	f'c = 3,600 HTO LRFD E of any type used for wa ions, unless	psi). Bridge Desi directly to II heights, noted othe	<i>E</i> - 12" <i>F</i> 2 <i>gn</i> <i>these</i> <i>H</i> ,
e e)	Provide Grade Provide Class ENERAL NO Designed accor coifications. Do not mount b lvert headwalls This standard ceeding the va mensions are c ng dimensions	60 reinforc: C concrete (TES: rding to AAS oridge rails s. may not be lues shown. lear dimens	f'c = 3,600 HTO LRFD L of any type used for wa ions, unless out of bars.	psi). Bridge Desi directly to III heights, noted othe	<i>E</i> - 12" <i>F</i> 2 <i>gn</i> <i>these</i> <i>H</i> ,
e e)	Provide Grade Provide Class of ENERAL NO Designed accor ecifications. Do not mount b livert headwalls This standard ceeding the va mensions are c ng dimensions Texas De CONO WITH	60 reinforcı C concrete (TES: ding to AAS oridge rails s. may not be lues shown. lear dimens are out-to-	f ^r c = 3,600 HTO LRFD L of any type used for wa ions, unless out of bars. f Transport F HEA LEL W LPE CL	psi). Bridge Desi directly to II heights, noted othe ation DWAL INGS F	E - 12" F2 gn these H, prwise. Bridge Division Standard LS OR
e e)	Provide Grade Provide Class of ENERAL NO Designed accor ecifications. Do not mount b livert headwalls This standard ceeding the va mensions are c ng dimensions Texas De CONO WITH	60 reinforci C concrete (TES: ding to AAS oridge rails s. may not be lues shown. lues shown. lues shown. Repartment o CRETE PARAL WED P	f ^r c = 3,600 HTO LRFD E of any type used for wa ions, unless out of bars. f Transport F HEA LEL W LEL W IPE CU CH-	psi). Bridge Desi directly to II heights, noted othe noted othe DWAL INGS F JLVERT	E - 12" F2 gn these H, Prwise. Bridge Division Standard LS OR S

sheet no. 128

COUNT


DENTON

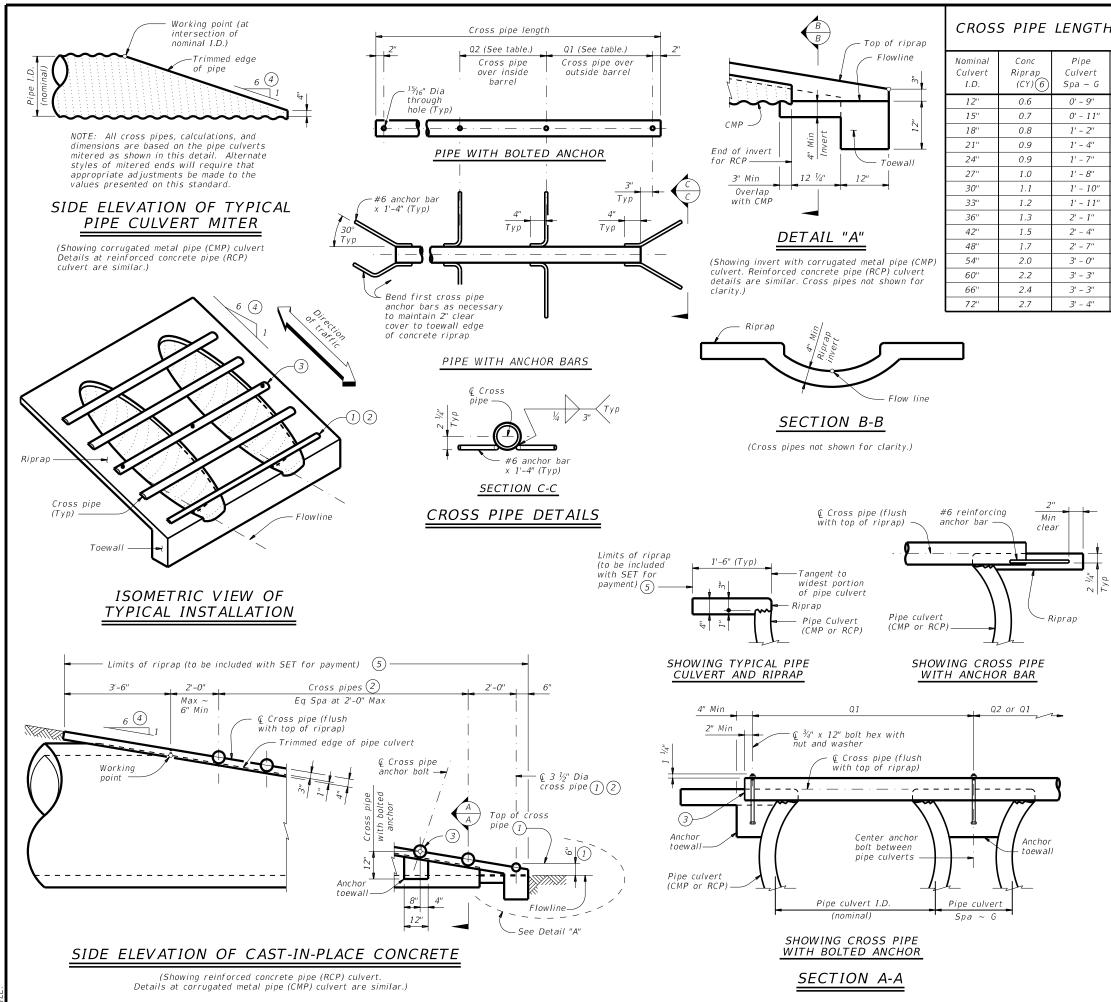

DIST DAL

TABLE OF VARIABLE DIMENSIONS AND QUANTITIES FOR ONE HEADWALL 5		antities shown are for concrete pipe and will rease slightly for metal pipe installations.	TABLE OF ⁽⁵⁾ REINFORCING STEEL	TABLE OF CONSTANT DIMENSIONS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		r vehicle safety, construct curbs no more on 3" above finished grade. Reduce curb ghts, if necessary, to meet these uirements. No changes will be made in antities and no additional compensation will	Bar Size Spa No. A #4 1' - 0" ~ B #3 1' - 6" ~ CL & CS #4 1' - 0" ~	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(Showing dimensions.)	allowed for this work. ovide a 1'-O" footing as shown where required maintain 4" minimum cover for pipes. mensions shown are usual and maximum. antities shown are for one structure end only	D #3 1' - 0" ~ E #5 ~ 4 F #5 ~ ~ G #3 ~ 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(or 6 Nin Ma	the headwall). The Length = 6" + 3" x $\left(\frac{12 \times H - 7}{12 \times L}\right)$ the x Length = 12 x H - 3" x $\left(\frac{12 \times H - 7}{12 \times L}\right)$ - 1" the headwall is a second	SL & SS#4~6 $VL \& VS$ #41' - 0"~ $WL \& WS$ #5~4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Spacing at 12" Max	e. '		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bars F Bars CS	rs E —Bars F Bars CL A Bars WL		
$ \prod_{i=1}^{n} \prod_{j=1}^{n} \frac{18' - 4' \frac{1}{2''}}{30''} \frac{6' - 0' \frac{1}{4''}}{6' - 4' \frac{1}{2''}} \frac{8' - 0''}{8' - 9''} \frac{16' - 0''}{16' - 0''} \frac{335}{335} \frac{3.3}{3.3} \frac{5' - 6' \frac{1}{2''}}{10''} \frac{88}{1.2} \frac{1.2}{1.4} \frac{33''}{33''} \frac{21' - 8' \frac{3}{4''}}{21' - 8' \frac{3}{4''}} \frac{6' - 9' \frac{1}{2''}}{9' - 6''} \frac{9' - 6''}{19' - 0''} \frac{19' - 0''}{421} \frac{4.4}{4.4} \frac{6' - 7' \frac{1}{4''}}{111} \frac{111}{1.6} \frac{1.6}{1.9} \frac{36''}{12''} \frac{23' - 5' \frac{1}{2''}}{12''} \frac{7' - 2' \frac{1}{4''}}{10' - 3''} \frac{10' - 3''}{20' - 6''} \frac{20' - 6''}{10''} \frac{470}{5.1} \frac{5.1}{7' - 2' \frac{1}{4''}} \frac{111}{12} \frac{1.6}{1.9} \frac{23' - 6''}{10''} \frac{579}{6.4} \frac{8' - 3''}{8' - 3''} \frac{168}{2.4} \frac{2.4}{18''} \frac{31' - 7' \frac{1}{4''}}{12''} \frac{8' - 0' \frac{1}{4''}}{14' - 9''} \frac{28' - 0''}{23' - 6''} \frac{722}{57} \frac{8.7}{57} \frac{9' - 3' \frac{3}{4''}}{10' - 3''} \frac{210}{3.2} \frac{3.2}{54'''} \frac{51' - 6''}{35' - 0' \frac{1}{4''}} \frac{31' - 0''}{15' - 6''} \frac{31' - 0''}{34' - 0''} \frac{842}{96} \frac{10.5}{10' - 7' \frac{1}{4''}} \frac{249}{4.0} \frac{4.0}{60'''} \frac{60'' - 38' - 5' \frac{1}{4'''}}{10' - 6''''} \frac{11' - 3''}{34' - 0'''} \frac{36' - 12' - 4' \frac{1}{2'''}}{338} \frac{3.5}{5.5} \frac{12'' - 10' \frac{1}{4'''}}{11' - 0' \frac{3}{4'''''}} 18' - 6''''''''''''''''''''''''''''''''''$	Bars WS - Bars SS - Bars S	Bars SL Bars SL	Bars B1-x	
$ \begin{array}{c} 12^{"} & 12^{"} - 6 & 34^{"} & 4^{'} - 3^{"} & 5^{'} - 8^{"} & 11^{'} - 4^{"} & 207 & 1.7 & 2^{'} - 5 & 34^{"} & 32 & 0.4 \\ \hline 15^{"} & 14^{'} - 7 & 34^{"} & 4^{'} - 7 & 14^{"} & 6^{'} - 8^{"} & 13^{'} - 4^{"} & 246 & 2.2 & 3^{'} - 0 & 34^{"} & 43 & 0.6 \\ \hline 18^{"} & 16^{'} - 8 & 34^{"} & 4^{'} - 11 & 12^{"} & 7^{'} - 8^{"} & 15^{'} - 4^{"} & 300 & 2.8 & 3^{'} - 9 & 43 & 0.6 \\ \hline 18^{"} & 16^{'} - 8 & 34^{"} & 4^{'} - 11 & 12^{"} & 7^{'} - 8^{"} & 15^{'} - 4^{"} & 300 & 2.8 & 3^{'} - 9 & 44 & 0.8 \\ \hline 21^{"} & 18^{'} - 9 & 34^{"} & 5^{'} - 3 & 34^{"} & 8^{'} - 8^{"} & 17^{'} - 4^{"} & 349 & 3.4 & 4^{'} - 4 & 14^{"} & 73 & 1.0 \\ \hline 24^{"} & 20^{'} - 10 & 34^{"} & 5^{'} - 8^{"} & 9^{'} - 8^{"} & 19^{'} - 4^{"} & 400 & 4.0 & 5^{'} - 0 & 34^{"} & 90 & 1.3 \\ \hline 27^{"} & 23^{'} - 0^{"} & 6^{'} - 0 & 14^{"} & 10^{'} - 8^{"} & 21^{'} - 4^{"} & 451 & 4.8 & 5^{'} - 6 & 12^{"} & 103 & 1.5 \\ \hline 30^{"} & 25^{'} - 1^{"} & 6^{'} - 4 & 12^{"} & 11^{'} - 8^{"} & 23^{'} - 4^{"} & 516 & 5.5 & 6^{'} - 1 & 12^{''} & 120 & 1.8 \\ \end{array}$	Toe of slope 6"	Bars VL1-x		NOTES:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>PLAN</u>	shed grade dway slope)	Provide Clu GENERAL Designed a Specification Do not mou these culver This stand	ccording to AASHTO LRFD Bridge Design s. int bridge rails of any type directly to
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bars E Conforms to SL:1 slope perpendicular to roadway Bars D1-x Bars WL or WS Bars VL1-x or VS1-x	Provide bars as needed to support Bar WL or WS on inside face of wall.	Reinforcing dimens	are clear dimensions, unless noted otherwise. ions are out-to-out of bars. Bridge Division
Ma Bars B	Bars SL or SS Bars CL or C Bars CL or C	S ^T Bars SL or SS Bars VI or	r vs on WIT	Department of Transportation CRETE HEADWALLS H FLARED WINGS FOR SKEW PIPE CULVERTS
Here the second	9" Min Bars G Bars G Bars B Bars B B Bars B B B Bars B B B B B B B B B B B B B B B B B B B	SECTION A-A	FILE: CD-CH-FW45-20 ©TxDOT Februa REVISIO	ry 2020 CONT SECT JOB HIGHWAY

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act." No warranty of any kind is made by TxDOT for any purpose whatsoever TxDOT assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use.

TAB	LE OF
CONSTANT	DIMENSIONS

DATE: FILE:

CROSS PIPE LENGTHS, REQUIRED PIPE SIZES, AND RIPRAP QUANTITIES

				U
Single Barrel ~ Q1	Multi- Barrel ~ Q1	Q2	Conditions for Use of Cross Pipes	Cross Pipe Sizes
N/A	2' - 1''	1' - 9''		
N/A	2' - 5''	2' - 2''		
N/A	2' - 10''	2' - 8''	3 or more pipe culverts	3" Std
N/A	3' - 2''	3' - 1''		(3.500" 0.D.)
N/A	3' - 6''	3' - 7''		
N/A	3' - 10''	3' - 11''	3 or more pipe culverts	
N/A	4' - 2''	4' - 4''	2 or more pipe culverts	3 ½″ Std (4.000″ 0.D.)
4' - 2''	4' - 5''	4' - 8''	All pipe culverts	(4.000 0.2.)
4' - 5''	4' - 9''	5' - 1''	All pipe sulverts	4" Std
4' - 11''	5' - 5''	5' - 10''	All pipe culverts	(4.500" 0.D.)
5' - 5''	6' - 0''	6' - 7''		
5' - 11''	6' - 9''	7' - 6''		
6' - 5''	7' - 4''	8' - 3''	All pipe culverts	5" Std
6' - 11''	7' - 10''	8' - 9''		(5.563" 0.D.)
7' - 5''	8' - 5''	9' - 4''		

(1) The proper installation of the first cross pipe is critical for vehicle safety. Place the top of the first cross pipe no more than 6" above the flow line.

(2) Provide cross pipes, except the first bottom pipe, of the size shown in the table. Provide a 3 1#2" standard pipe (4" 0.D.) for the first bottom pipe.

(3) Install the third cross pipe from the bottom of the culvert using a bolted connection. Ensure that riprap concrete does not flow into the cross pipe so as to permit disassembly of the bolted connection to allow cleanout access. At the Contractor's option, install all other cross pipes using the bolted connection details.

- $(\underbrace{4})$ Match cross slope as shown elsewhere in the plans. Cross slope of 6:1 or flatter is required for vehicle safety.
- (5) Riprap placed beyond the limits shown will be paid for as concrete riprap in accordance with Item 432, "Riprap."
- (6) Quantities shown are for one end of one reinforced concrete pipe (RCP) culvert. For multiple pipe culverts or for corrugated metal pipe (CMP) culverts, quantities will need to be adjusted. Riprap quantities are for contractor's information only.

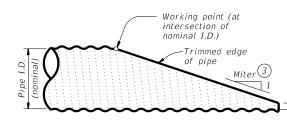
MATERIAL NOTES:

Synthetic fibers listed on the "Fibers for Concrete" Material Producer List (MPL) may be used in lieu of steel reinforcing in riprap concrete unless noted otherwise. Provide cross pipes that meet the requirements of ASTM A53 (Type E or S, Gr B), ASTM A500 (Gr B), or API 5LX52.

Provide ASTM A307 bolts and nuts. Galvanize all steel components, except concrete reinforcing, after fabrication. Repair galvanizing damaged during transport or

construction in accordance with the specifications.

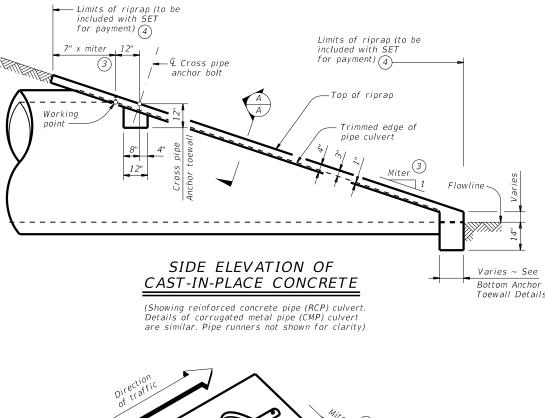
GENERAL NOTES:

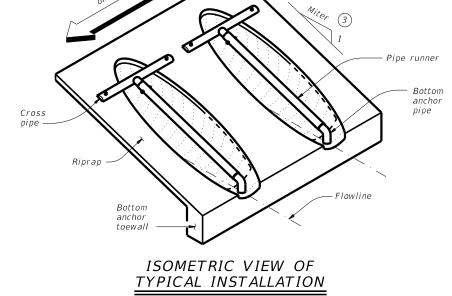

Cross pipes are designed for a traversing load of 10,000 pounds at yield as recommended by Research Report 280-2F, "Safety Treatment of Roadside Parallel-Drainage Structures", Texas Transportation Institute, March 1981.

Safety end treatments (SET) shown herein are intended for use in those installations where out of control vehicles are likely to traverse the openings approximately perpendicular to the cross pipes.

Construct concrete riprap and all necessary inverts in accordance with the requirements of Item 432, "Riprap." Payment for riprap and toewall is included in the Price Bid for each Safety End Treatment.

Texas Department	of Tra	nsp	ortation		Pridge Division Standard
SAFETY EN FOR 12" D PIPE	PIA	ТС) 72"	DIA	
TYPE II ~ PA	ARA	LLE	EL DF	RAIN	AGE
		SI	ETP-	PD	
FILE: CD-SETP-PD-20.dgn	DN: GAI		ск: САТ	DW: JRP	CK: GAF
CTxDOT February 2020	CONT	SECT	JOB		HIGHWAY
REVISIONS	2353	02	028	ŀ	M 2450
	DIST		COUNTY		SHEET NO.
	DAL		DENTC	N N	130


CROSS PIPE LENGTHS AND PIPE RUNNER LENGTHS 1



NOTE: All pipe runners, calculations, and dimensions are based on the pipe culverts mitered as shown in this detail. Alternate styles of mitered ends will require that appropriate adjustments be made to the values presented on this standard.

SIDE ELEVATION OF TYPICAL PIPE CULVERT MITER

(Showing corrugated metal pipe (CMP) culvert. Details of reinforced concrete pipe (RCP) culvert are similar.)

(Showing installation with no skew.)

								Pipe Runi	ner Length					
Nominal	Pipe Culvert	Cross Pipe		3:1 Sid	e Slope			4:1 Sid	e Slope			6:1 Sid	e Slope	
Culvert I.D.	Spa ~ G	Length	0° Skew	15° Skew	30° Skew	45° Skew	0° Skew	15° Skew	30° Skew	45° Skew	0° Skew	15° Skew	30° Skew	45° Skew
24''	1' - 7''	3' - 5''	N/A	N/A	N/A	5' - 10''	N/A	N/A	N/A	8' - 1''	N/A	N/A	N/A	12' - 9''
27"	1' - 8''	3' - 8''	N/A	N/A	5' - 5''	6' - 11''	N/A	N/A	7' - 7''	9' - 7''	N/A	N/A	11' - 11"	14' - 11''
30''	1' - 10''	3' - 11''	N/A	N/A	6' - 4''	8' - 0''	N/A	N/A	8' - 9''	11' - O''	N/A	N/A	13' - 8''	17' - 0''
33"	1' - 11''	4' - 2''	6' - 2''	6' - 5''	7' - 3''	9' - 1''	8' - 6''	8' - 10''	10' - 0''	12' - 5''	13' - 3"	13' - 9"	15' - 5"	19' - 2"
36"	2' - 1''	4' - 5''	6' - 11''	7' - 3''	8' - 2''	10' - 2''	9' - 6''	9' - 11''	11' - 2''	13' - 10''	14' - 9"	15' - 3"	17' - 2"	21' - 3"
42''	2' - 4''	4' - 11''	8' - 6''	8' - 10''	9' - 11''	12' - 4''	11' - 7''	12' - 0''	13' - 6''	16' - 8''	17' - 9"	18' - 5"	20' - 8''	25' - 7"
48''	2' - 7''	5' - 5''	10' - 1''	10' - 5''	11' - 9''	N/A	13' - 7''	14' - 2''	15' - 10''	N/A	20' - 9"	21' - 6"	24' - 2"	N/A
54''	3' - 0''	5' - 11''	11' - 8''	12' - 1''	N/A	N/A	15' - 8''	16' - 3''	N/A	N/A	23' - 10"	24' - 8"	N/A	N/A
60"	3' - 3''	6' - 5''	13' - 3''	N/A	N/A	N/A	17' - 9''	N/A	N/A	N/A	26' - 10''	N/A	N/A	N/A

ΤΥΡΙΟ	CAL PIP	E CULV	'ERT MI	TERS		IS WHERE PIP E NOT REQUII		STAN MAX	DARD P PIPE RU	PE SIZI NNER LI	ES AND ⁽¹⁾ ENGTHS
Side Slope	0° Skew	15° Skew	30° Skew	45° Skew	Nominal Culvert I.D.	Single Pipe Culvert	Multiple Pipe Culverts	Pipe Size	Pipe 0.D.	Pipe I.D.	Max Pipe Runner Length
3:1	3:1	3.106:1	3.464:1	4.243:1	12" thru 21"	Skews thru 45°	Skews thru 45°	2" STD	2.375"	2.067"	N/A
4:1	4:1	4.141:1	4.619:1	5.657:1	24"	Skews thru 45°	Skews thru 30°	3" STD	3.500"	3.068"	10' - 0''
6:1	6:1	6.212:1	6.928:1	8.485:1	27"	Skews thru 30°	Skews thru 15°	4" STD	4.500"	4.026"	19' - 8''
					30"	Skews thru 15°	Skews thru 15°	5" STD	5.563"	5.047"	34' - 2''
					33"	Skews thru 15°	Always required				
					36"	Normal (no skew)	Always required				
					42" thru 60"	Always required	Always required				
					-						

Nominal		3:1 Sid	e Slope			4:1 Sid	e Slope			6:1 Sid	e Slope	
Culvert I.D.	0° Skew	15° Skew	30° Skew	45° Skew	0° Skew	15° Skew	30° Skew	45° Skew	0° Skew	15° Skew	30° Skew	45° Skew
12"	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.6	0.7	0.7	0.7	0.8
15"	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.9
18''	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.8	0.8	0.8	0.9	1.0
21"	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.9	0.9	0.9	1.0	1.2
24''	0.6	0.7	0.7	0.8	0.8	0.8	0.8	1.0	1.0	1.0	1.1	1.3
27''	0.7	0.7	0.8	0.9	0.8	0.9	0.9	1.1	1.1	1.1	1.2	1.4
30''	0.8	0.8	0.8	0.9	0.9	0.9	1.0	1.2	1.2	1.2	1.3	1.6
33''	0.8	0.8	0.9	1.0	1.0	1.0	1.1	1.3	1.3	1.4	1.5	1.7
36''	0.9	0.9	0.9	1.1	1.1	1.1	1.2	1.4	1.4	1.5	1.6	1.8
42''	1.0	1.0	1.1	1.3	1.2	1.3	1.3	1.6	1.6	1.7	1.8	2.1
48''	1.1	1.1	1.2	N/A	1.4	1.4	1.5	N/A	1.9	1.9	2.1	N/A
54''	1.3	1.3	N/A	N/A	1.6	1.6	N/A	N/A	2.1	2.1	N/A	N/A
60"	1.4	N/A	N/A	N/A	1.7	N/A	N/A	N/A	2.3	N/A	N/A	N/A

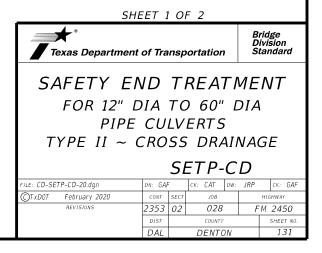
 $\begin{pmatrix} 1 \end{pmatrix}$ Provide pipe runner of the size shown in the tables. Provide cross pipe of the same size as the pipe runner. Provide cross pipe stub out and bottom anchor pipe of the next smaller size pipe as shown in the Standard Pipe Sizes and Max Pipe Runner Lengths table.

This standard allows for the placement of only one pipe runner across each culvert pipe opening. In order to limit the clear opening to be traversed by an errant vehicle, the following conditions must be met:

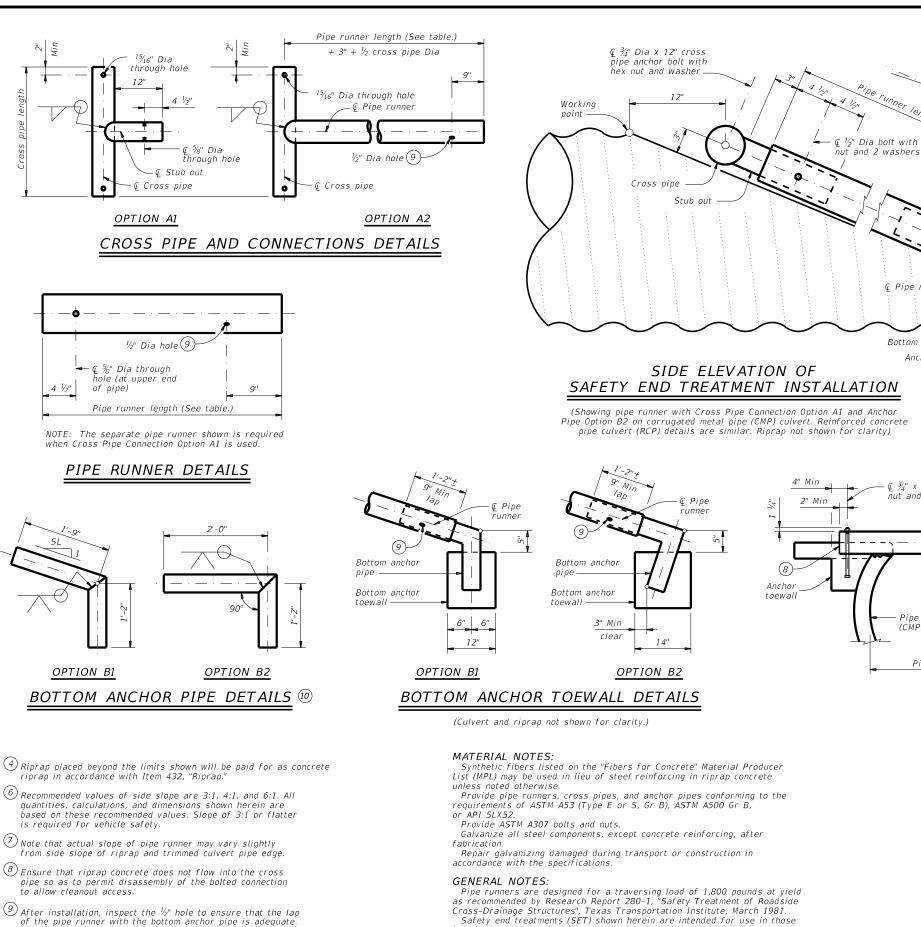
For 60" culvert pipes, the skew must not exceed 0°. For 54" culvert pipes, the skew must not exceed 15°. For 48" culvert pipes, the skew must not exceed 30°. For all culvert pipes izes 42" and less, the skew must

not exceed 45°

If the above conditions cannot be met, the designer should consider using a safety end treatment with flared wings. For further information, refer to the TxDOT Roadway Design Manual.

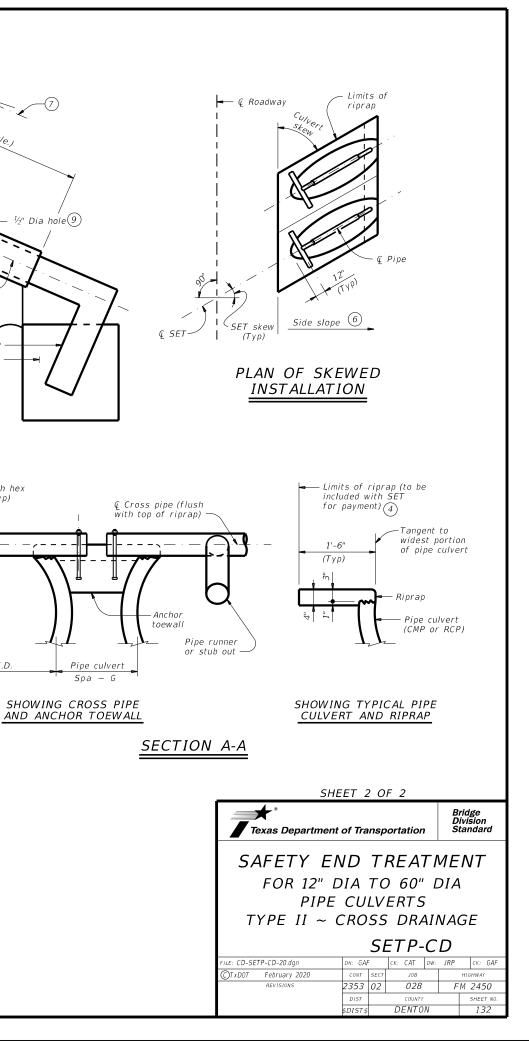

③ Miter = slope of mitered end of pipe culvert.

(4) Riprap placed beyond the limits shown will be paid for as concrete riprap in accordance with Item 432, "Riprap."


(5) Quantities shown are for one end of one reinforced concrete pipe (RCP) culvert. For multiple pipe culverts or for corrugated metal pipe (CMP) culverts, quantities will need to be adjusted. Riprap quantities are for Contractor's information only.

STAN	IDARD	PIPE	SI	ZES	AND
ΜΑΧ	PIPE	RUNN	ER	LEN	GTHS

ESTIMATED CONCRETE RIPRAP QUANTITIES (CY) (5)



it v L

- (9) After installation, inspect the $\frac{1}{2}$ " hole to ensure that the lap of the pipe runner with the bottom anchor pipe is adequate.
- (10) At fabricator's option, a heat bend to a smooth 5" radius or a manufactured elbow (of the same material as the runner) may be substituted for the mitered and welded joint in the bottom anchor pipe.

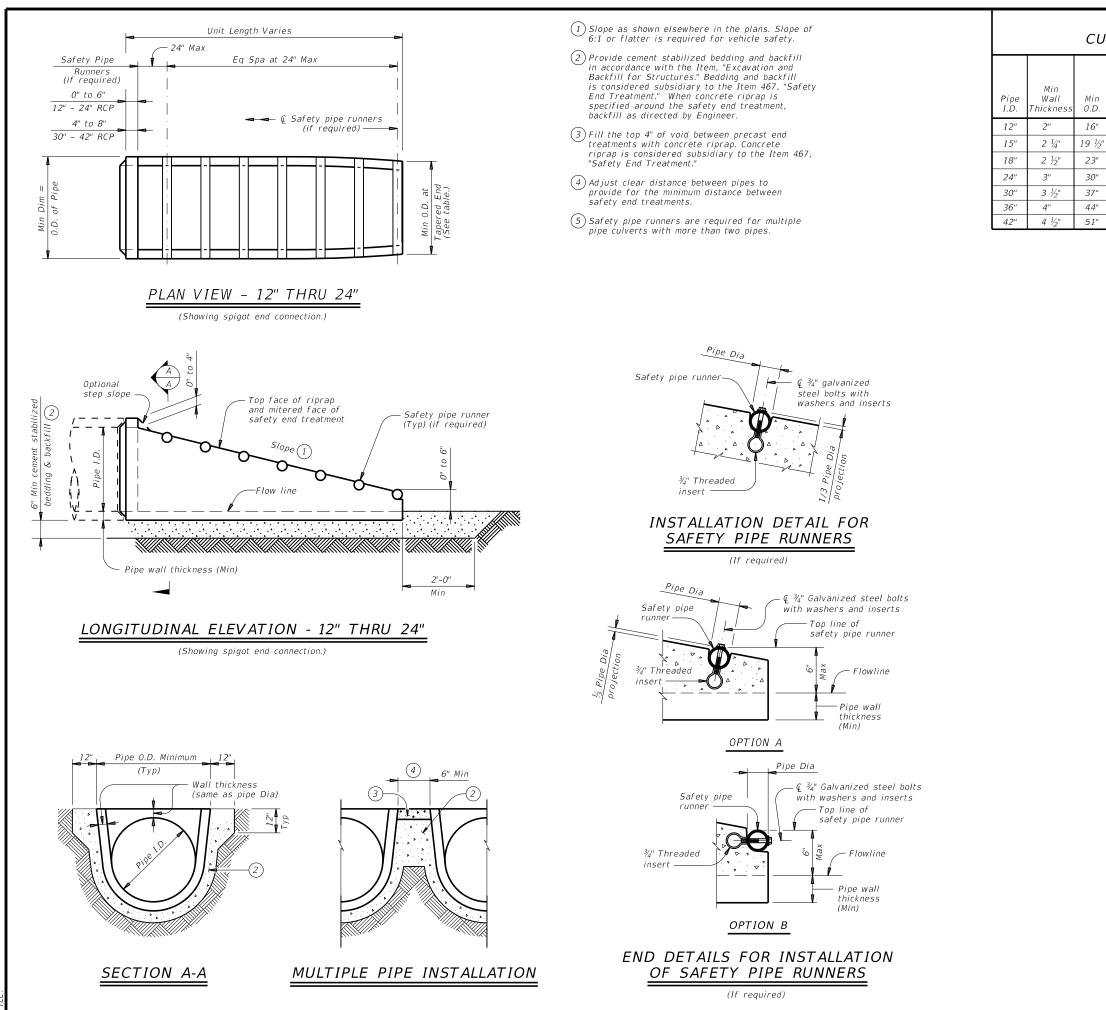
- installations where out of control vehicles are likely to traverse the openings approximately perpendicular to the pipe runners.
- Payment for riprap and toewall is included in the price bid for each safety end treatment.
- Construct concrete riprap and all necessary inverts in accordance with the requirements of Item 432, "Riprap."

Miter

€ Pipe runner

Bottom anchor pipe

Anchor toewall


 $\mathcal{Q} \xrightarrow{3}{4}$ " x 12" bolt with hex nut and washer (Tvp)

Pipe culvert

(CMP or RCP)

Pipe culvert I.D.

(nominal)

its DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act." No warranty of any kind is made by TxDOT for any purpose rxDOT assumes no responsibility for the conversion of this standard to other formats or for incorrect results or

REQUIREMENTS FOR CULVERT PIPES AND SAFETY PIPE RUNNERS

Min 0.D.	Min Reinf Requirements		Min		Runner ements	Required	Pipe Runi	ner Sizes
at Tapered End	(sq. in. per ft. of Pipe)	Max Slope	Length of Unit	Single Pipe	Multiple Pipe	Nominal Dia	0.D.	I.D.
16"	0.07 Circ.	6:1	4' - 0''	No	5	3" STD	3.500"	3.068"
19"	0.07 Circ.	6:1	5' - 8''	No	5	3" STD	3.500"	3.068"
21 ½"	0.07 Circ.	6:1	7' - 3''	No	5	3" STD	3.500"	3.068"
27"	0.07 Circ.	6:1	10' - 6''	No	5	3" STD	3.500"	3.068''
31"	0.18 Circ.	6:1	12' - 1''	No	Yes	4" STD	4.500"	4.026"
36"	0.19 Ellip.	6:1	15' - 4''	Yes	Yes	4" STD	4.500"	4.026"
41 ½"	0.23 Ellip.	6:1	18' - 7''	Yes	Yes	4" STD	4.500"	4.026"

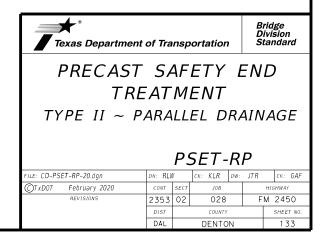
MATERIAL NOTES: Synthetic fibers listed on the "Fibers for Concrete" Material Producer List (MPL) may be used in lieu of steel reinforcing in riprap concrete unless noted otherwise.

Provide pipe runners meeting the requirements of ASTM A53 (Type E or S, Gr B), ASTM A500 Gr B, or API 5LX52.

Galvanize steel components except reinforcing steel after fabrication. Repair galvanizing damaged during transport or construction in accordance with the specifications.

GENERAL NOTES:

Precast safety end treatment for reinforced concrete pipe (RCP) may be used for TYPE II end treatment as specified in Item 467, "Safety End Treatment."


When precast safety end treatment is used as a Contractor's alternate to mitered RCP, riprap will not be required unless noted otherwise on the plans.


Manufacture precast concrete end sections in accordance with Item 464, "Reinforced Concrete Pipe" and in accordance with ASTM Specification C-76, Class III, Wall B for circular pipe. Provide precast concrete end sections with a spigot or bell end for

compatibility to upstream or downstream end conditions with sufficient annular space to allow for grout, mortar, cold applied asphalt joint compound or pre-formed plastic gasket material. Methods of lifting shall be provided by the manufacturer for ease of

loading, unloading and installation.

Pipe runners are designed for a traversing load of 10,000 Lbs at yield as recommended by Research Report 280-2F, "Safety Treatment of Roadside Parallel-Drainage Structures", Texas Transportation Institute, March 1981.

for kind ect anty of or for 01,0 Act." ther by the "Texas" the conversion rned for DISCLAIMER: he use of this standard is gover XDOT assumes no responsibility

SAFETY PIPE RUNNER DIMENSIONS

Max Safety	Require	d Pipe Runn	ner Size
Pipe Runner Length	Pipe Size	Pipe O.D.	Pipe I.D.
11' - 2''	3'' STD	3.500"	3.068''
15' - 6''	3 ½" STD	4.000"	3.548"
20' - 10''	4'' STD	4.500"	4.026"
35' - 4''	5" STD	5.563"	5.047"

(1) Dimension "D" is based on reinforced concrete pipe (RCP) meeting the requirements of ASTM C-76, Class III, (RCP Wall "B" thickness). Adjust "D" for any other wall thickness used. For thermoplastic pipe (TP) take into account the annular space requirements for

(2) Slope as shown elsewhere in plans. Slope of 3:1 or flatter is required for vehicle safety.

(3) Toewall to be used only when dimension is shown elsewhere in the plans.

(4) Fill the top 4" of void between precast end treatments with concrete riprap. Concrete riprap is considered subsidiary to the Item 467, "Safety End Treatment."

(5) Adjust clear distance between pipes to provide for the minimum distance between safety end

(7) Provide cement stabilized bedding and backfill in accordance with the Item 400, "Excavation and Backfill for Structures." Bedding and backfill is considered subsidiary to the Item 467, "Safety End Treatment." When concrete riprap is specified around the safety end treatment, backfill

 (\mathcal{B}) Thermoplastic pipe wall thickness may vary. Adjust accordingly. Thermoplastic pipe requires the safety end treatments to have a bell end for grouted connections.

GENERAL NOTES:

Precast safety end treatment for reinforced concrete pipe (RCP), and thermoplastic pipe (TP) may be used for TYPE II end treatment as specified in Item "Safety End Treatment."

When precast safety end treatment is used as a Contractor's alternate to mitered RCP, riprap will not be required unless noted otherwise on the plans.

Synthetic fibers listed on the "Fibers for Concrete" Material Producer List (MPL) may be used in lieu of steel reinforcing in riprap concrete unless noted otherwise.

Manufacture this product in accordance with Item 467. "Safety End Treatment" except as noted below :

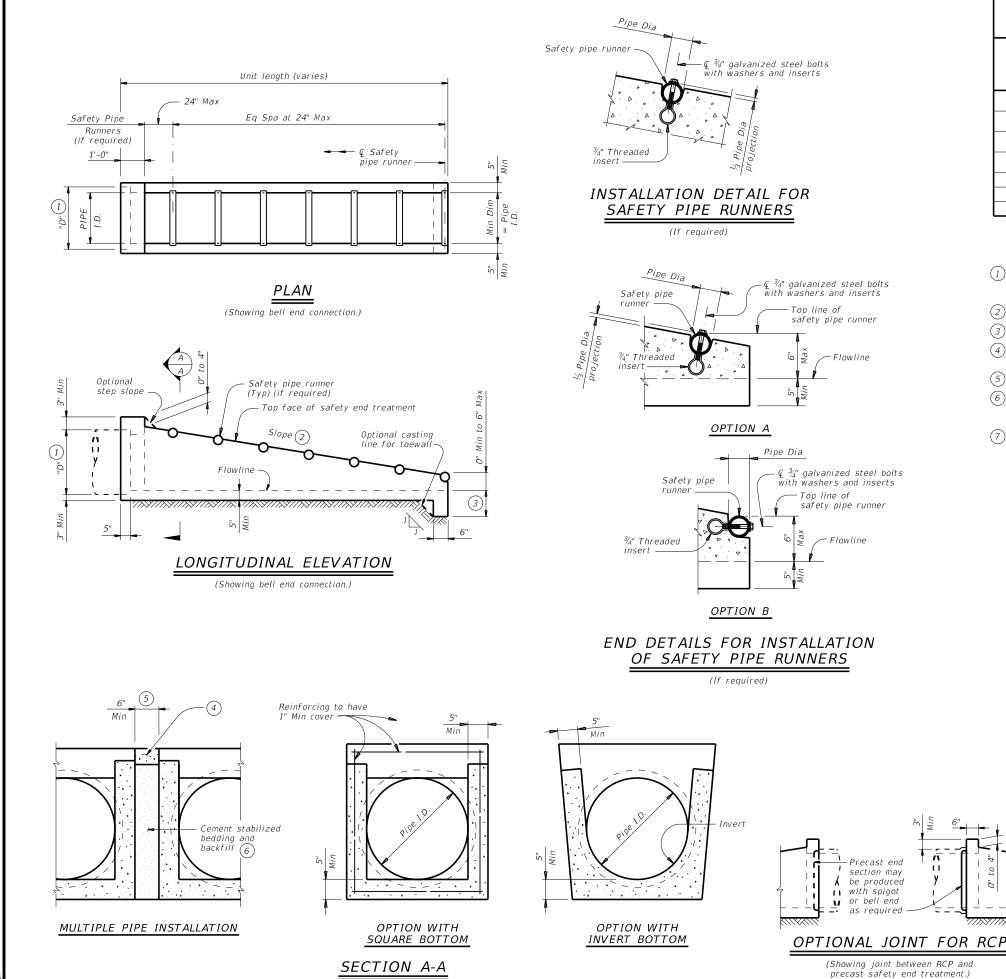
A. Provide minimum reinforcing of #4 at 6" (Grade 40) or #4 at 9" (Grade 60) each way or 6"x6" - D12 x D12

or 5"x5" - D10 x D10 welded wire reinforcement (WWR).

B. For precast (steel formed) sections, provide Class "C" concrete (f'c = 3,600 psi).

At the option and expense of the Contractor, the next larger size of safety end treatment may be furnished as long as the "D" dimension cast is that of the required size of pipe.

Pipe runners are designed for a traversing load of 1,800 Lbs at yield as recommended by Research Report 280-1, "Safety Treatment of Roadside Cross-Drainage Structures", Texas Transportation Institute, March 1981. Provide safety pipe runners, cross pipes, pipe support posts, and pipe


stubs meeting the requirements of ASTM A53 (Type E or S, Grade B), ASTM A500 (Grade B), or API 5LX52. Galvanize all steel components except reinforcing steel after fabrication.

Repair galvanizing damaged during transport or construction in accordance with the specifications.

Connect RCP using the Optional Joint for RCP detail shown or in accordance with Item 464 "Reinforced Concrete Pipe." Connect TP by grouting. See Pipe and Box Grouted Connections (PBGC) standard for grouted connections with TP and precast safety end treatment.

Texas Department	of Tra	nsp	ortation	D	ridge livision tandard
PRECAST TRE TYPE II ~ (AT	M	ENT		_
		PS	SET-S	SC	
FILE: CD-PSET-SC-21.dgn	DN: RLV	V	CK: KLR D	w: JTR	ск: GAF
CTxDOT February 2020	CONT	SECT	JOB		HIGHWAY
REVISIONS 12-21: Added 42" TP	2353	02	028	F	M 2450
	DIST		COUNTY		SHEET NO.
	DAL		DENTON		134

e whatsc its use. DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act." No warranty of any kind is made by TxDOT for any purpose rxDOT assumes no responsibility for the conversion of this standard to other formats or for incorrect results or

RCP TP Pipe Wall "B" I.D. Thicknes: 12" 2" 15'' 2 1/4" 2 1/2" 18'' 24'' 3'' 30" 3 ½" 36" 4''

4 1/3"

42"

5" Min

REQUIREMENTS FOR CULVERT PIPES AND SAFETY PIPE RUNNERS

P Wall			Min		unners uired		quired Pi unner Siz	
nickness 7	"D" 1	Slope	Min Length	Single Pipe	Multiple Pipe	Nominal Dia.	0.D.	I.D.
1.15"	17.00"	6:1	4' - 9''	No	Yes, for > 2 pipes	3" STD	3.500"	3.068''
1.30"	20.50"	6:1	6' - 5''	No	Yes, for > 2 pipes	3" STD	3.500"	3.068"
1.60"	24.00"	6:1	8' - 0''	No	Yes, for > 2 pipes	3" STD	3.500"	3.068"
1.95"	31.00"	6:1	11' - 3''	No	Yes, for > 2 pipes	3" STD	3.500"	3.068"
2.65"	38.50"	6:1	14' - 8''	No	Yes	4" STD	4.500"	4.026"
2.75"	45.50"	6:1	17' - 11''	Yes	Yes	4" STD	4.500"	4.026"
2.7"	52.50"	6:1	21' - 2"	Yes	Yes	4" STD	4.500"	4.026"

(1) Dimension "D" is based on reinforced concrete pipe (RCP) meeting the requirements of ASTM C-76, Class III, (RCP Wall "B" thickness). Adjust "D" for any other wall thickness used. For thermoplastic pipe (TP) take into account the annular space requirements for grouted connections.

(2) Slope as shown elsewhere in the plans. Slope of 6:1 or flatter is required for vehicle safety.

(3) Toewall to be used only when dimension is shown elsewhere in the plans.

(4) Fill the top 4" of void between precast end treatments with concrete riprap. Concrete riprap is considered subsidiary to the Item 467, "Safety End Treatment."

(5) Adjust clear distance between pipes to provide for the minimum distance between safety end treatments.

(6) Provide cement stabilized bedding and backfill in accordance with the Item 400, "Excavation and Backfill for Structures." Bedding and backfill is considered subsidiary to the Item 467, "Safety End Treatment." When concrete riprap is specified around the safety end treatment, backfill as directed by Engineer.

(7) Thermoplastic pipe wall thickness may vary. Adjust accordingly. Thermoplastic pipe requires the safety end treatments to have a bell end for grouted connections.

GENERAL NOTES:

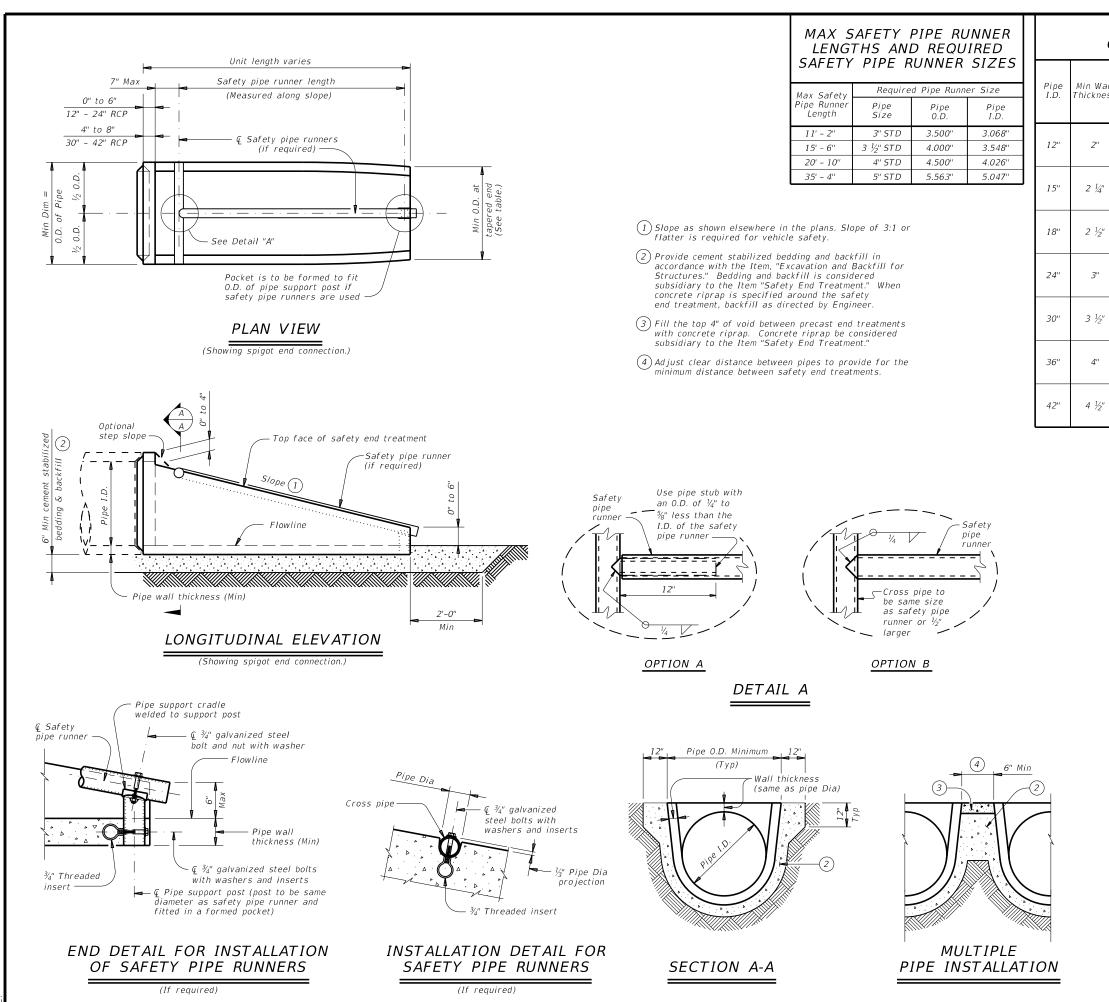
Precast safety end treatment for reinforced concrete pipe (RCP), and thermoplastic pipe (TP) may be used for TYPE II end treatment as specified in Item "Safety End Treatment."

When precast safety end treatment is used as a Contractor's alternate to mitered RCP, riprap will not be required unless noted otherwise on the plans

Synthetic fibers listed on the "Fibers for Concrete" Material Producer List (MPL) may be used in lieu of steel reinforcing in riprap concrete unless noted otherwise.

Manufacture this product in accordance with Item 467, "Safety End Treatment" except as noted below

- A. Provide minimum reinforcing of #4 at 6" (Grade 40) or #4 at 9" (Grade 60) each way or 6"x6" D12 x D12 or 5"x5" D10 x D10 welded wire reinforcement (WWR).
- B. For precast (steel formed) sections, provide Class "C" concrete (f'c = 3.600 psi).


At the option and expense of the Contractor the next larger size of safety end treatment may be furnished; as long as the "D" dimension

cast is that of the required size of pipe. Pipe runners are designed for a traversing load of 10,000 Lbs at yield as recommended by Research Report 280-2F, "Safety Treatment of Roadside Parallel-Drainage Structures", Texas Transportation Institute, March 1981. Provide pipe runners meeting the requirements of ASTM A53 (Type E or S, Grade B), ASTM A500 (Grade B), or API 5LX52.

Galvanize all steel components except reinforcing steel after fabrication. Repair galvanizing damaged during transport or construction in accordance with the specifications.

Connect RCP using the Optional Joint for RCP detail shown or in accordance with Item 464, "Reinforced Concrete Pipe." Connect TP by grouting. See Pipe and Box Grouted Connections (PBGC) standard for grouted connections with TP and precast safety end treatment.

Texas Department	t of Tra	nsp	oortatior	1	D	ridge livision tandard
	EAT	M	ENT	_		_
TYPE II ~ P	'ARA					IAGE
IYPE II ~ P	'ARA		el D SET-			IAGE
IYPE II ~ P	DN: RL	P:				CK: GAF
		P:	SET-	S	Р	
Fille: CD-PSET-SP-21.dgn	DN: RL	<i>P</i> :	SET -	S	P JTR	ск: GAF
FILE: CD-PSET-SP-21.dgn ©TxDOT February 2020 REVISIONS	DN: RL	Р М SECT	SET - ск: KLR јов	• S _{DW:}	P JTR	ck: GA F HIGHWAY

REQUIREMENTS FOR CULVERT PIPES AND SAFETY PIPE RUNNERS

-									
	Min 0.D.	Min O.D. at Tapered End	Min Reinf Requirements (sq. in. / ft. of pipe)	Slope	Minimum Length of Unit	Single Pipe		Multiple Pipe	
all ess						Skew	Pipe Runners Required	Skew	Pipe Runners Required
	16"	16"	0.07 Circ.	3:1	2' - 0''	≤ 45°	No	≤ 45°	No
				4:1	2' - 8''				
				6:1	4' - 0''				
		19"	0.07 Circ.	3:1	2' - 10''	≤ 45°	No	≤ 45°	No
	19 ½"			4:1	3' - 9''				
				6:1	5' - 8''				
,	23"	21 ½"	0.07 Circ.	3:1	3' - 8''	≤ 45°	No	≤ 45°	No
				4:1	4' - 10''				
				6:1	7' - 3''				
	30"	27"	0.07 Circ.	3:1	5' - 3''	<u>≤</u> 45°	No	≤ 30°	No
				4:1	7' - 0''			> 30°	Yes
				6:1	10' - 6''				103
,	37"	31"	0.18 Circ.	3:1	6' - 3''	≤ 15° > 15°	No	≤ 15°	No
				4:1	8' - 2''		Yes	> 15°	Yes
				6:1	12' - 1''	- 15	,	- 15	
		36"	0.19 Ellip.	3:1	7' - 10''	$= 0^{\circ}$ $> 0^{\circ}$	No		Yes
	44"			4:1	10' - 4''		Yes	$\geq 0^{\circ}$	
				6:1	15' - 4''				
,	51"	41 ½"	0.23 Ellip.	3:1	9' - 6''	$\geq 0^{\circ}$		$\geq 0^{\circ}$	Yes
				4:1	12' - 6''		Yes		
				6:1	18' - 7''				

MATERIAL NOTES:

Synthetic fibers listed on the "Fibers for Concrete" Material Producer List (MPL) may be used in lieu of steel reinforcing in riprap concrete unless noted otherwise.

Provide safety pipe runners, cross pipes, pipe support posts, and pipe stubs meeting the requirements of ASTM A53 (Type E or S, Gr B), ASTM A500 Gr B, or API 5LX52.

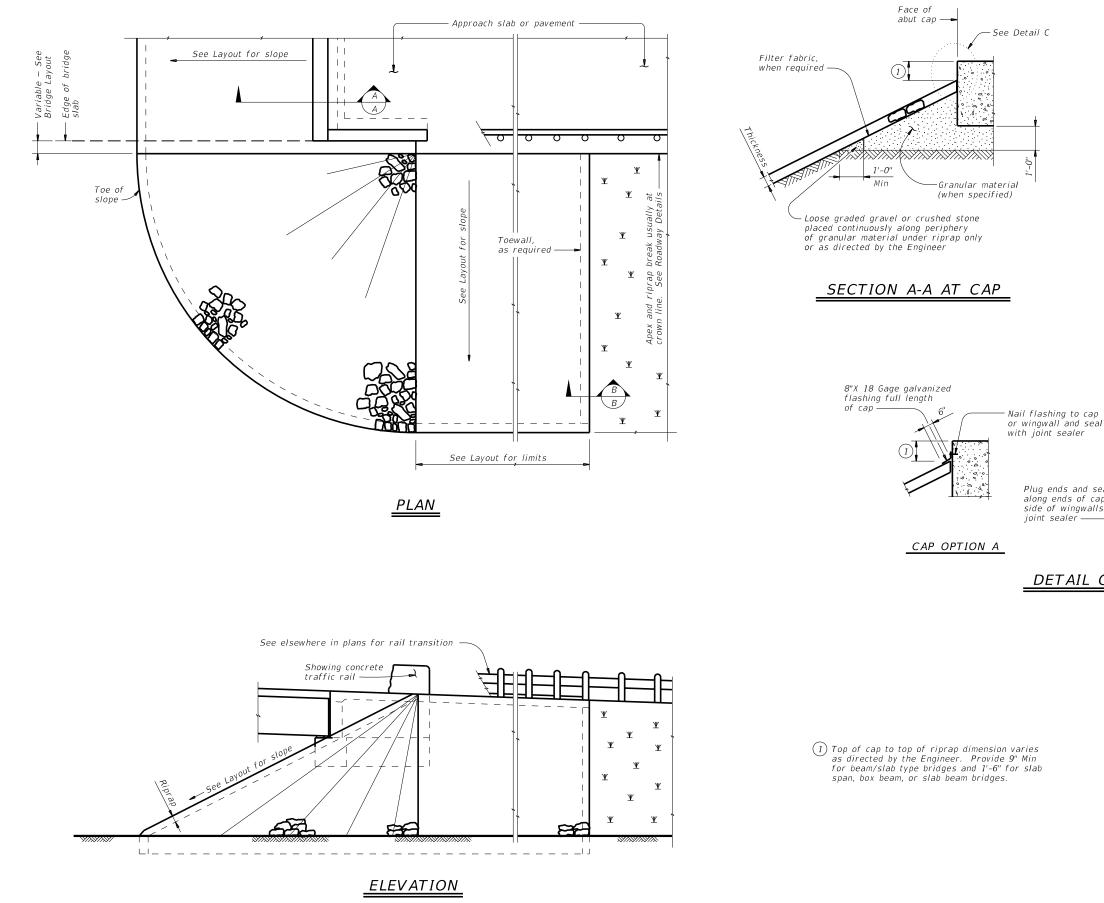
Galvanize all steel components except reinforcing steel after fabrication. Repair galvanizing damaged during transport or construction in accordance with the specifications.

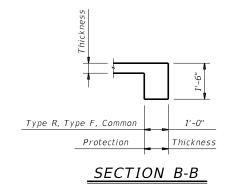
GENERAL NOTES:

Precast safety end treatment for reinforced concrete pipe (CRP) may be used for TYPE II end treatment as specified in Item 467, "Safety End Treatment."

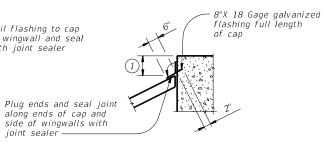
When precast safety end treatment is used as a Contractor's alternate to mitered RCP, riprap will not be required unless noted otherwise on the plans.

Manufacture precast concrete end sections in accordance with Item 464, "Reinforced Concrete Pipe" and in accordance with ASTM Specification C-76, Class III, Wall B for circular pipe.

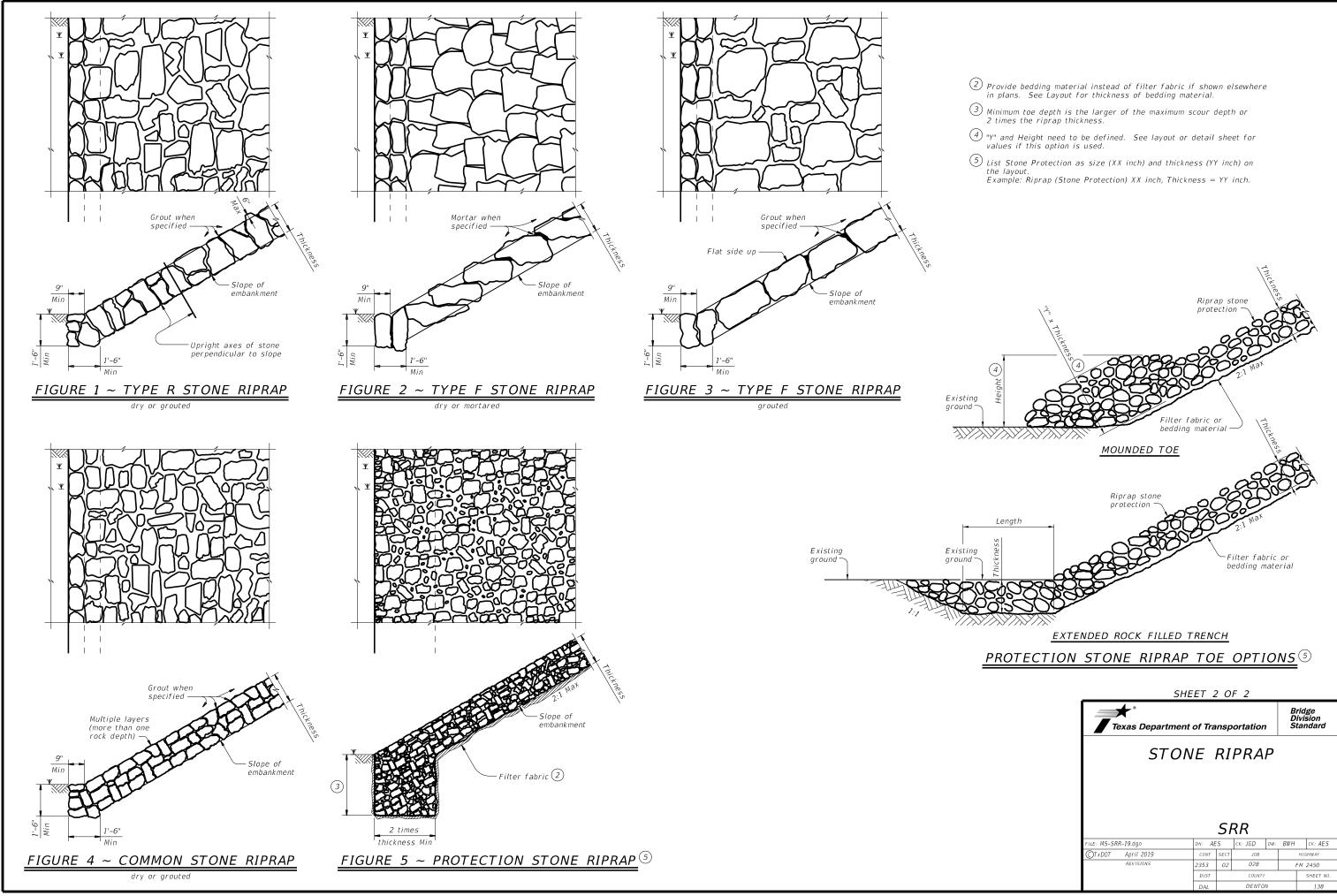

Provide precast concrete end sections with a spigot or bell end for compatibility to upstream or downstream end conditions with sufficient annular space to allow for grout, mortar, cold applied asphalt joint compound or pre-formed plastic gasket material.

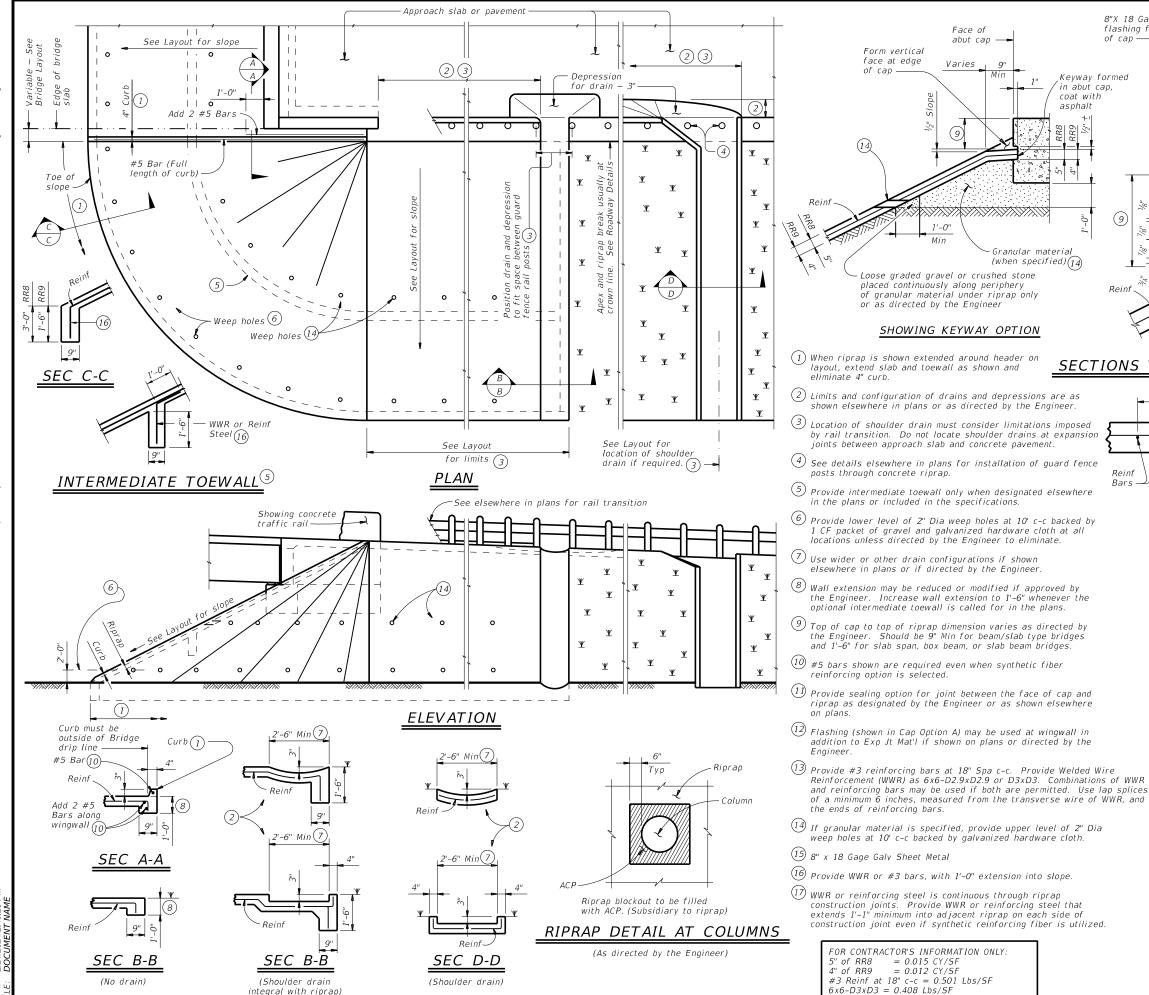

Methods of lifting shall be provided by the manufacturer for ease of

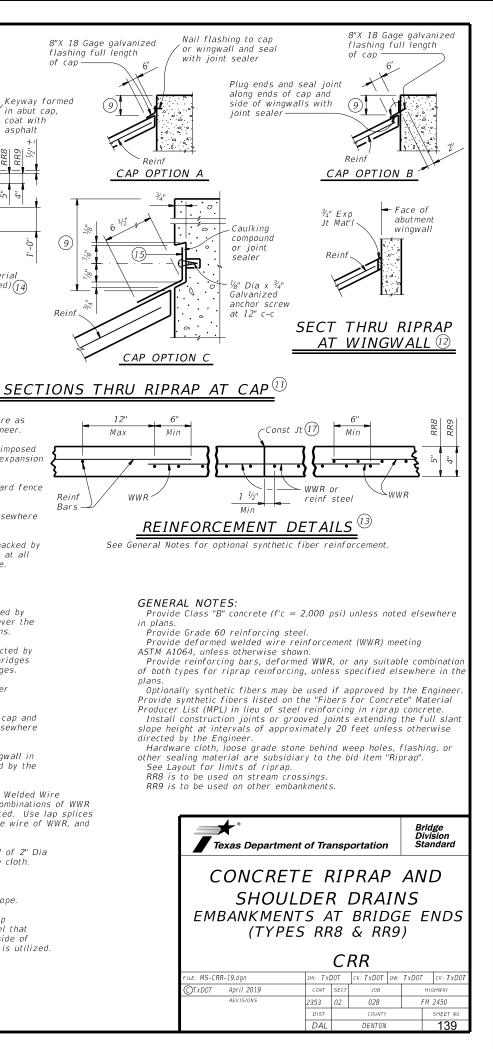
loading, unloading, and installation. Pipe runners are designed for a traversing load of 1,800 Lbs at yield as recommended by Research Report 280-1, "Safety Treatment of Roadside Cross-Drainage Structures", Texas Transportation Institute, March 1981.

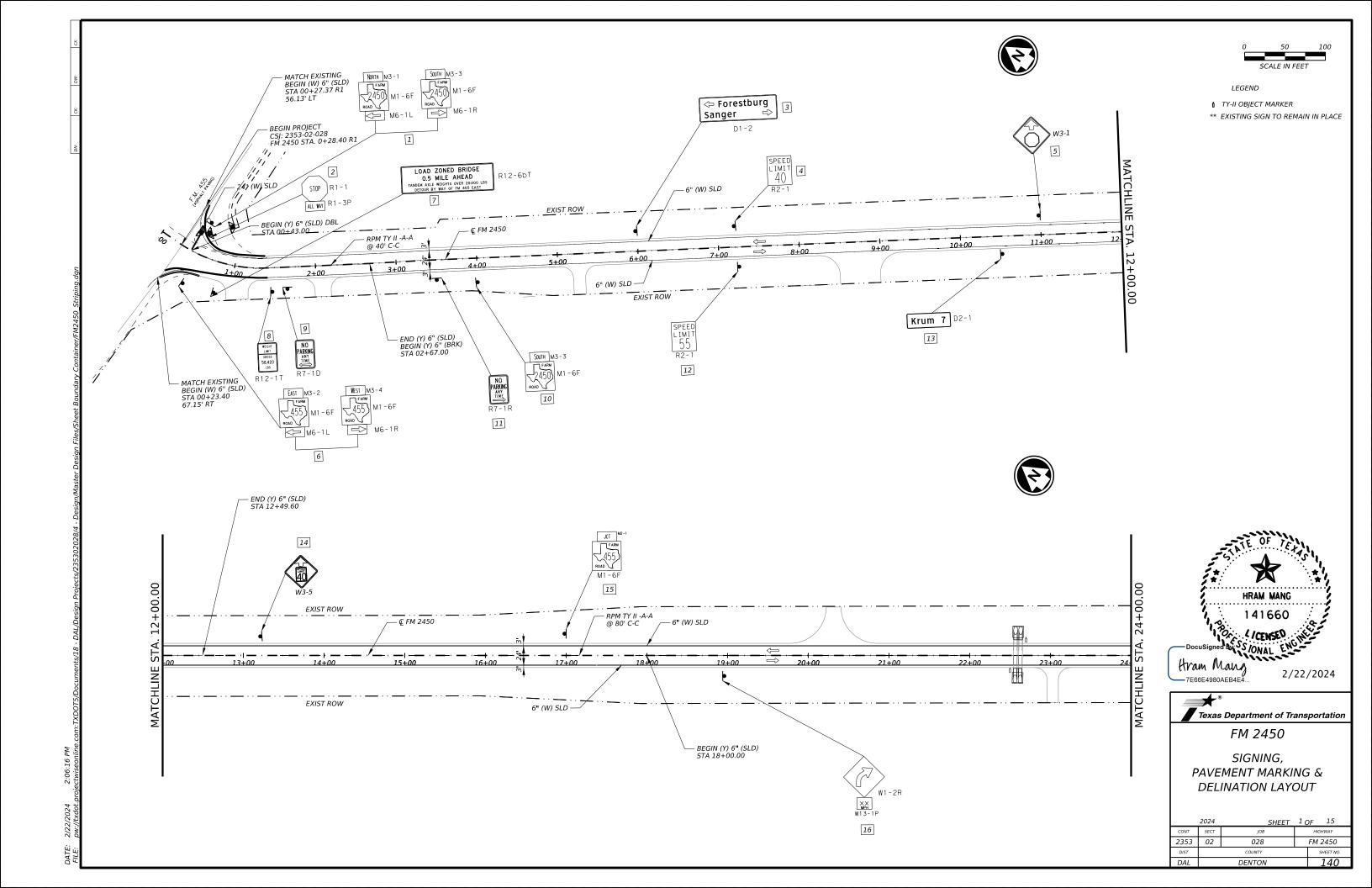

Texas Department	Bridge Division Standard								
PRECAST SAFETY END TREATMENT TYPE II ~ CROSS DRAINAGE									
PSET-RC									
FILE: CD-PSET-RC-20.dgn	DN: RL	N	CK: KLR	DW:	JTR	ск: GAF			
CTxDOT February 2020	CONT	SECT JOB				HIGHWAY			
REV1510N5	2353	02	028		FM 2450				
	DIST		COUNTY			SHEET NO.			
	DAL		DENTON			136			

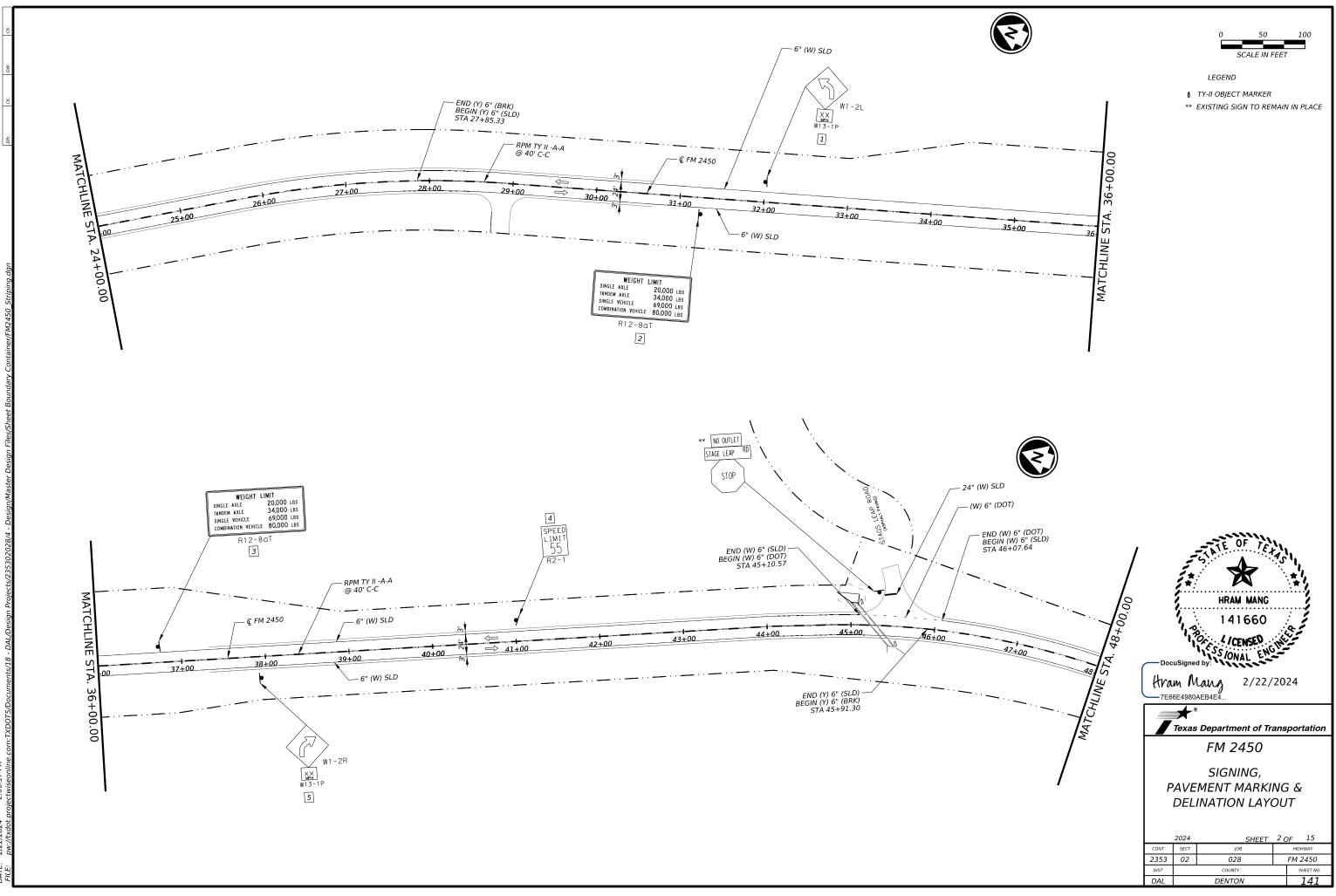
Provide toewall when shoulder drain is located adjacent to limits of stone riprap. Omit toewall when thickness of protection riprap is greater than 18".

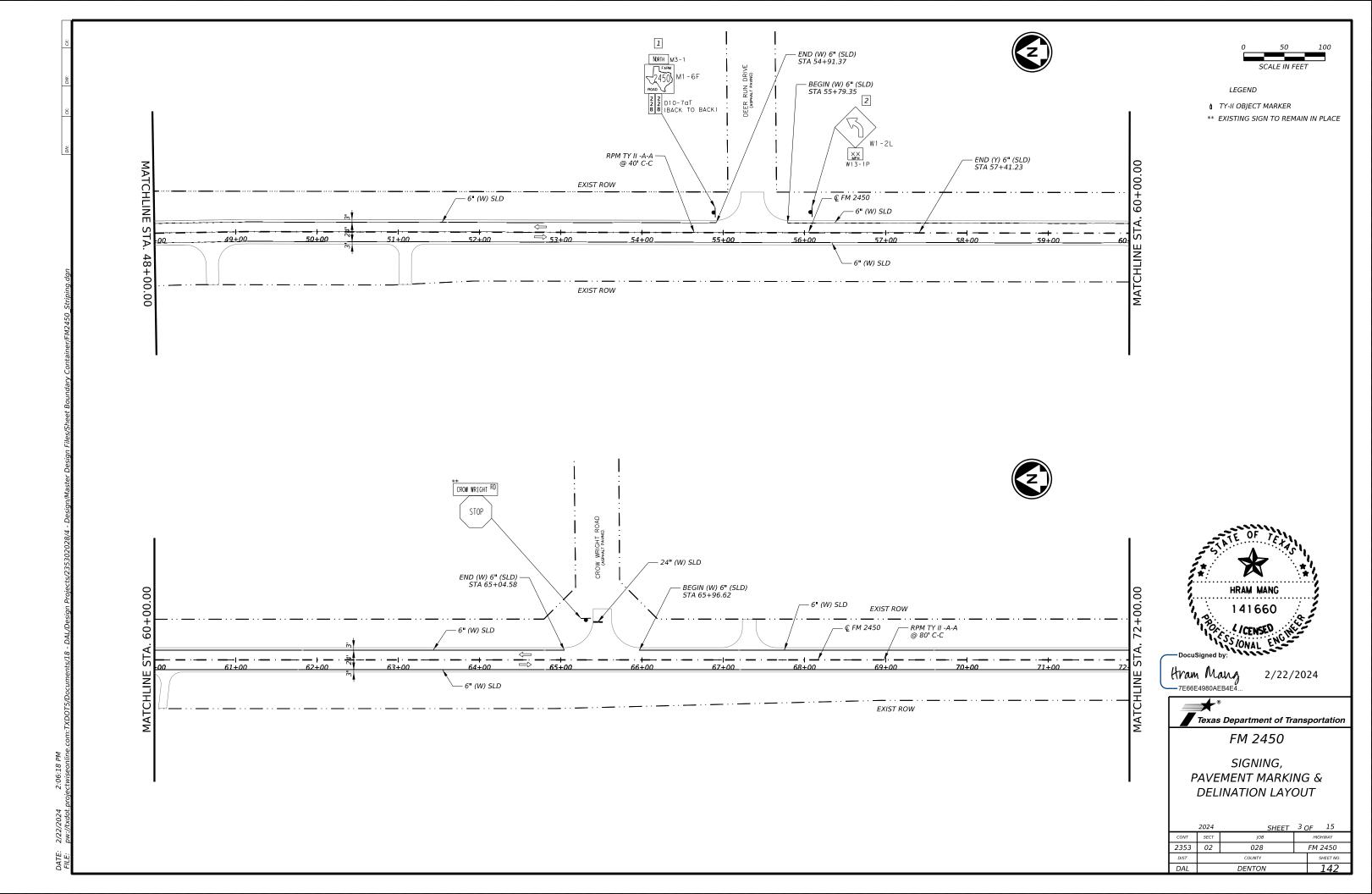


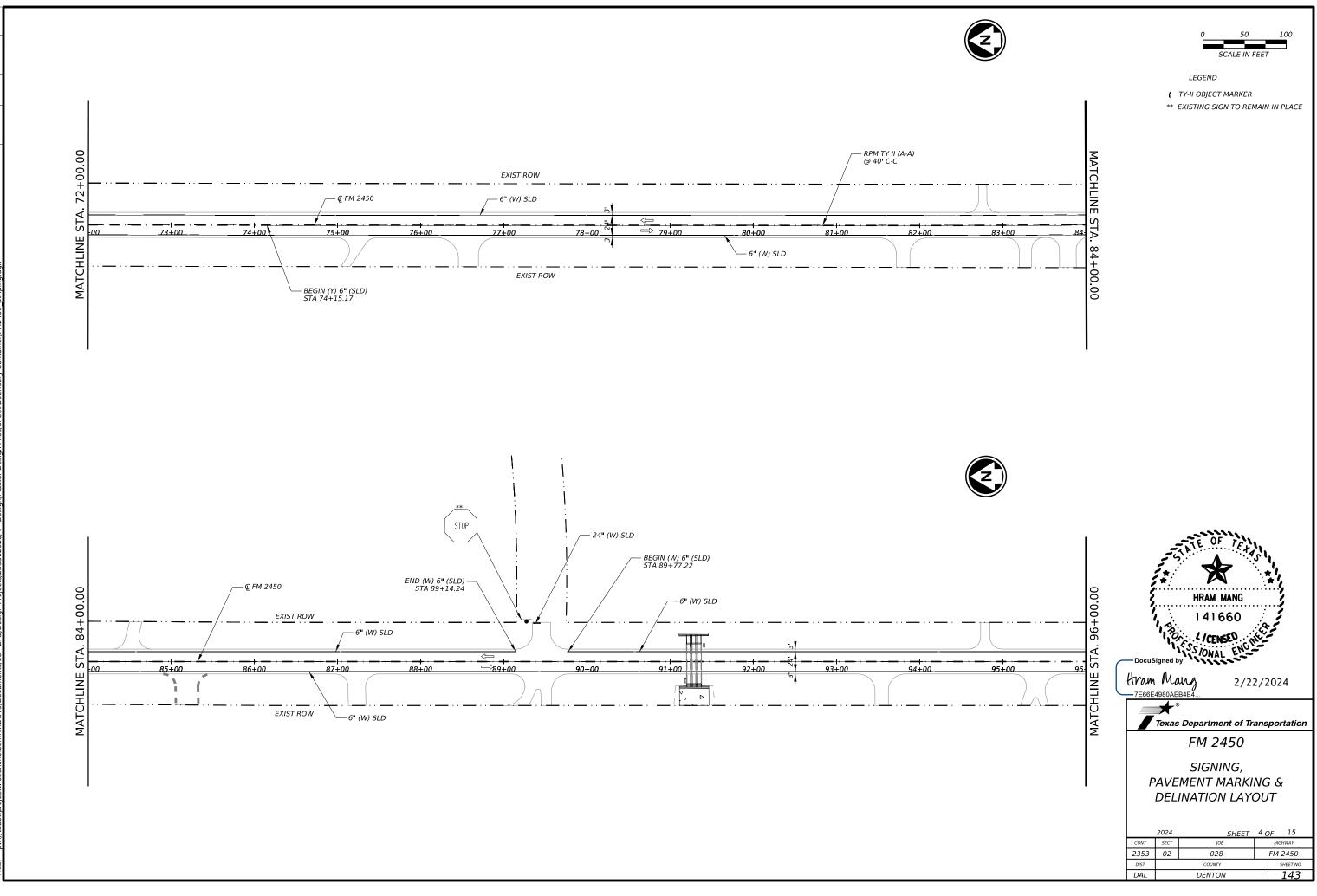

ioint sealer -

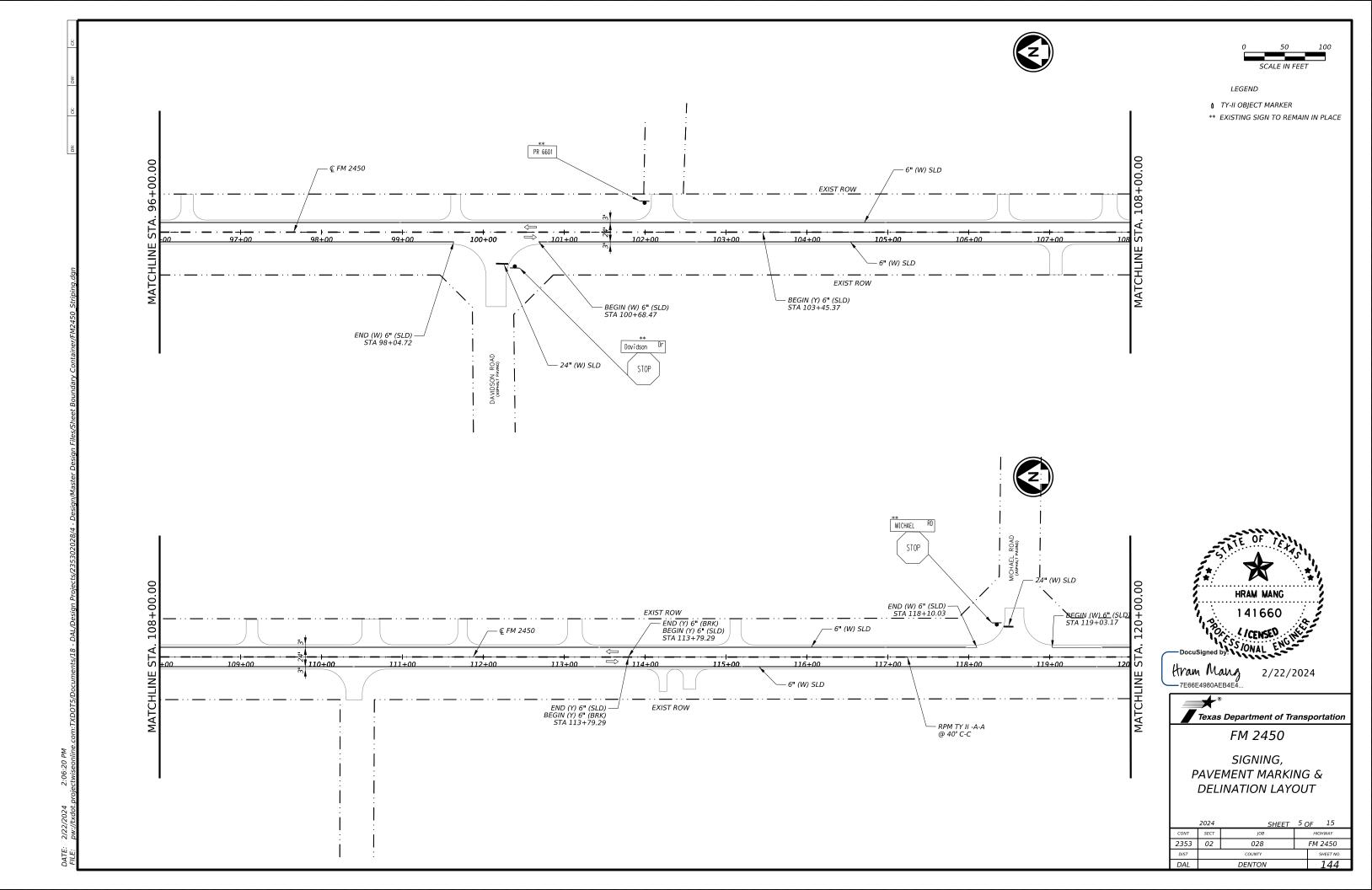

DETAIL C

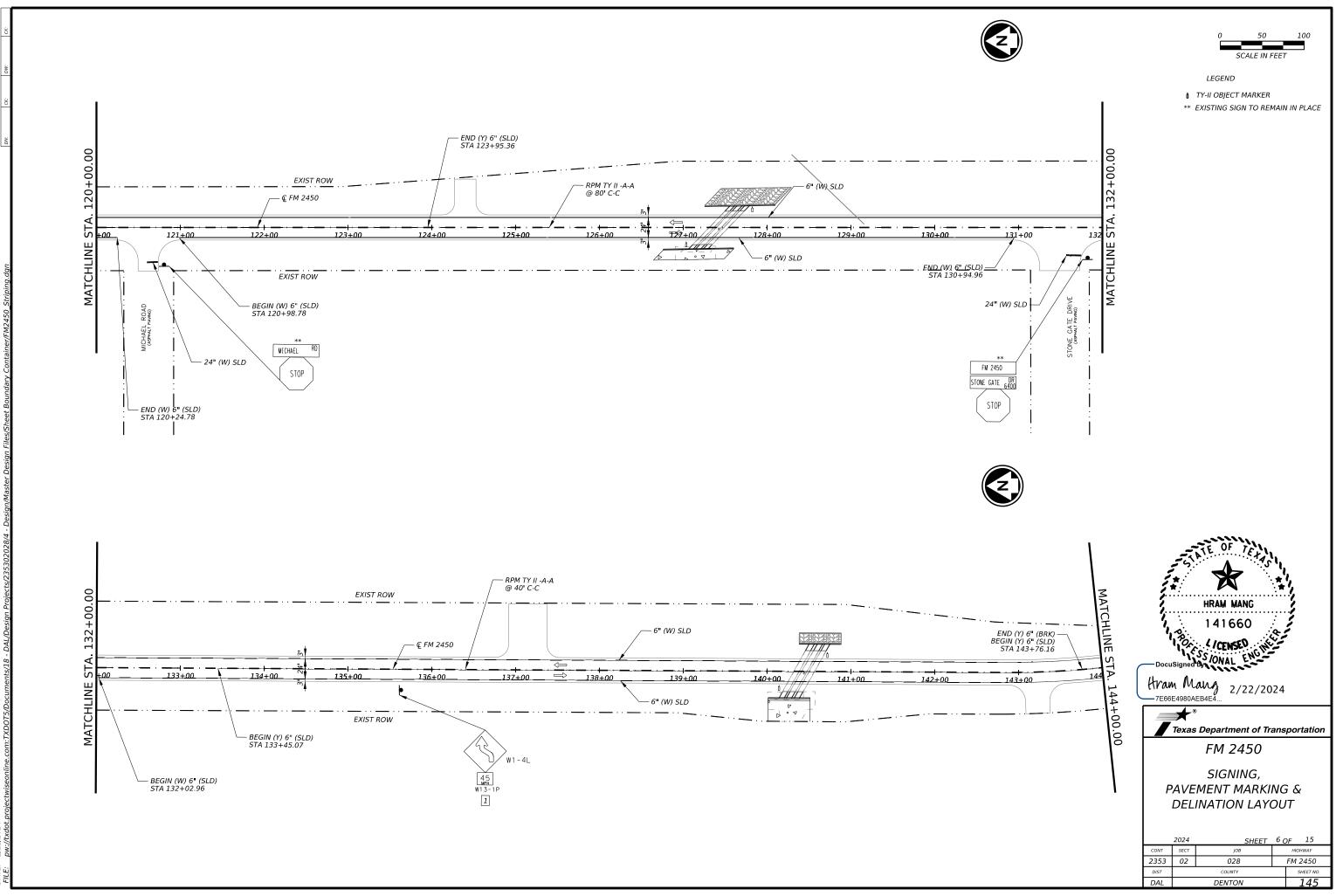

GENERAL NOTES: Refer to Item 432, "Riprap" for stone size and gradation, and construction details. See Layout for limits and thickness of riprap specified. See elsewhere in plans for locations and details of shoulder drains.

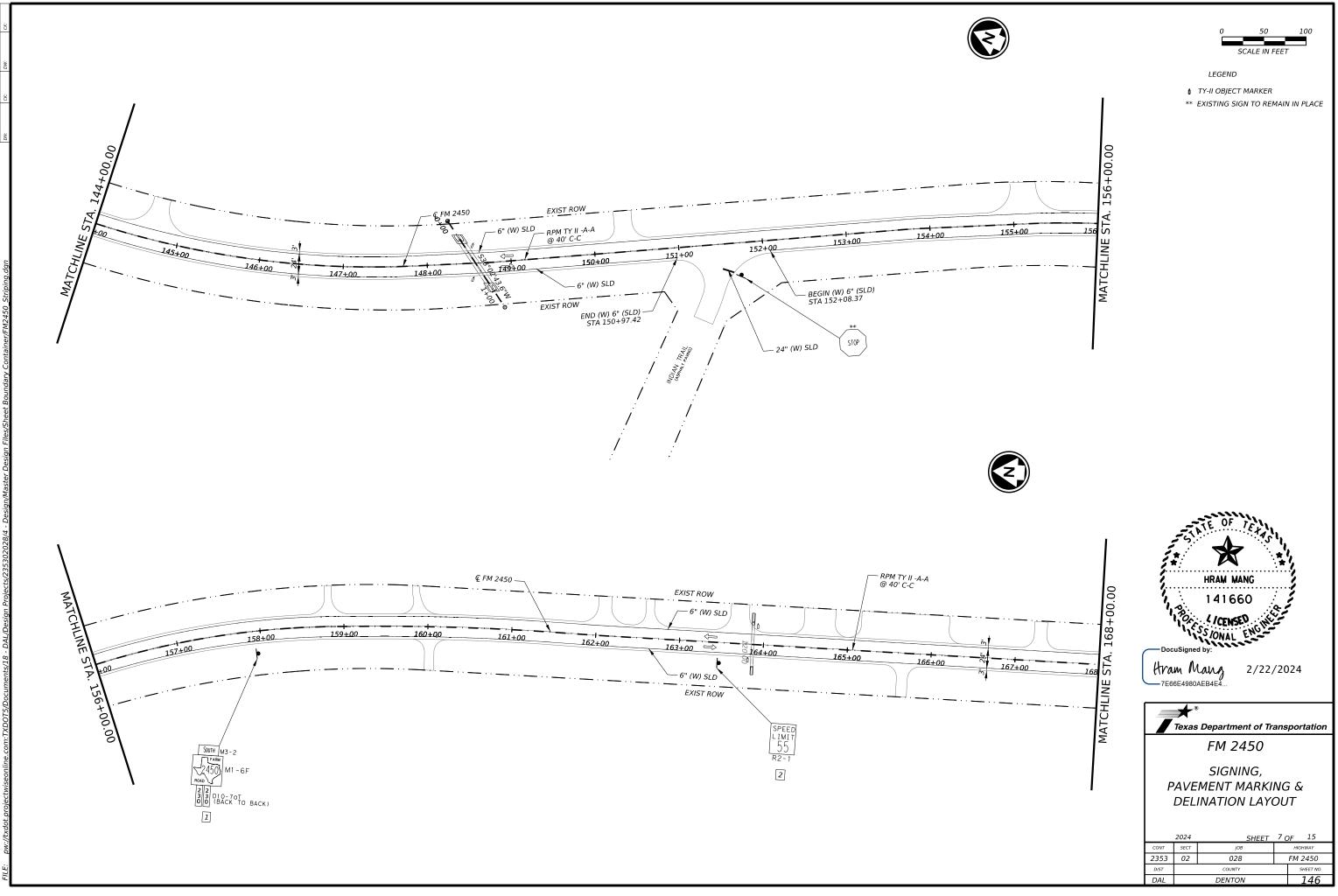

SHEET 1 OF 2								
Texas Department	,	Bridge Division Standard						
STON	Έ	RI	PRA	Ρ				
		c	חח					
SRR								
FILE: MS-SRR-19.dgn	DN: AB	5	ск: JGD	DW:	BWH	ςκ: AES		
CTxDOT April 2019	CONT	SECT	JOB		HIGHWAY			
REVISIONS	2353	02 028			FM 2450			
	DIST	DIST COUNTY				SHEET NO.		
	DAL	DENTON			137			

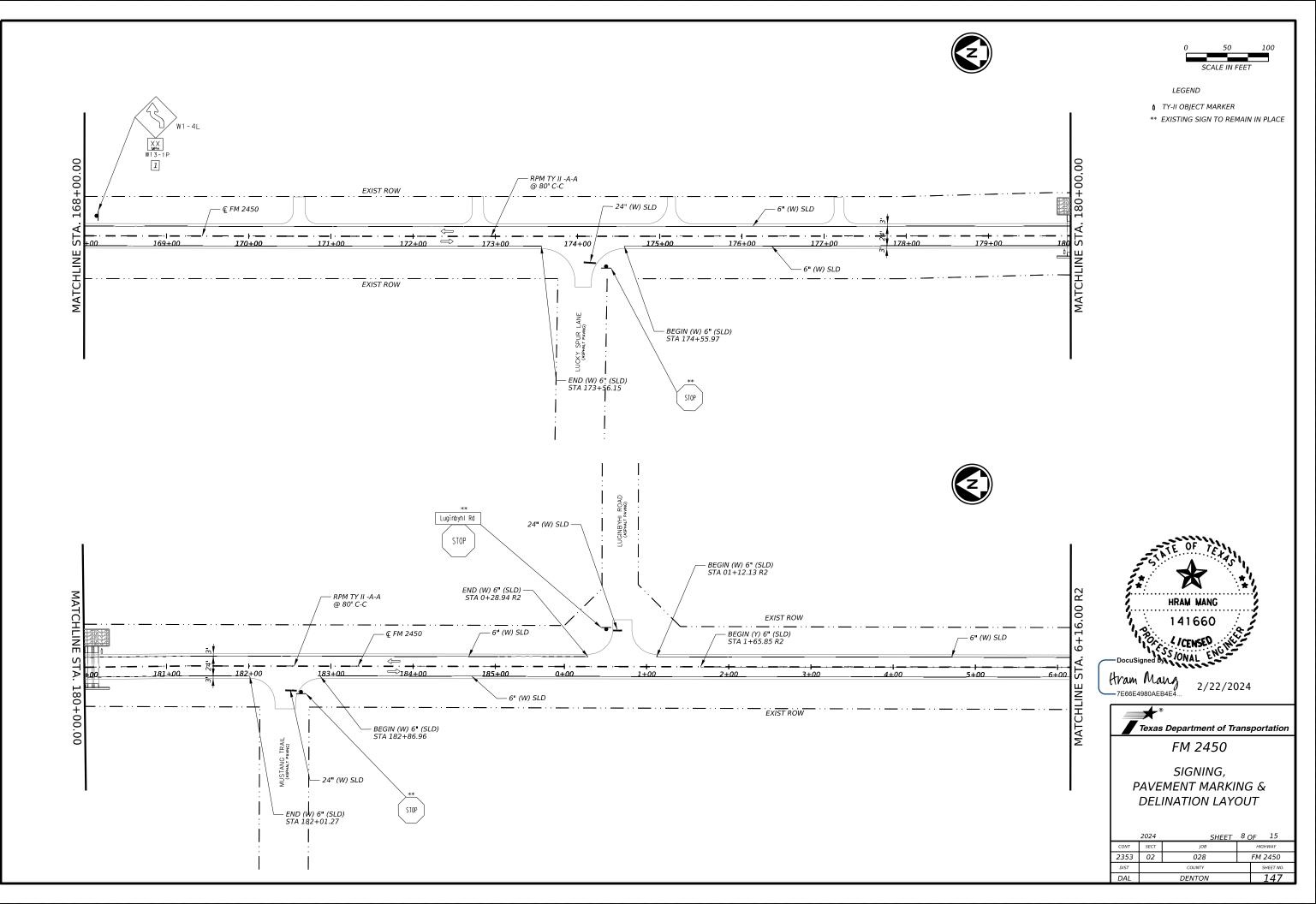


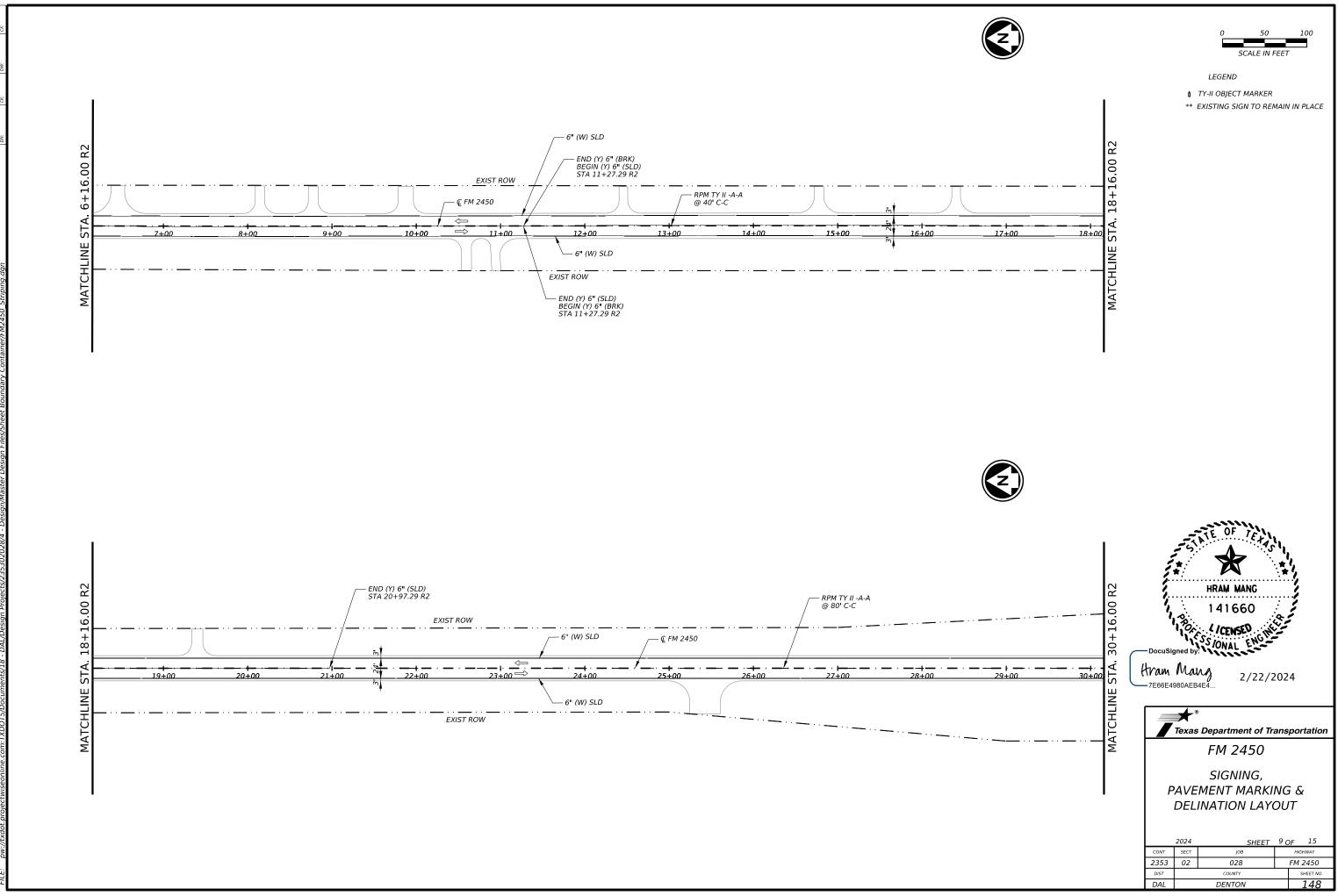


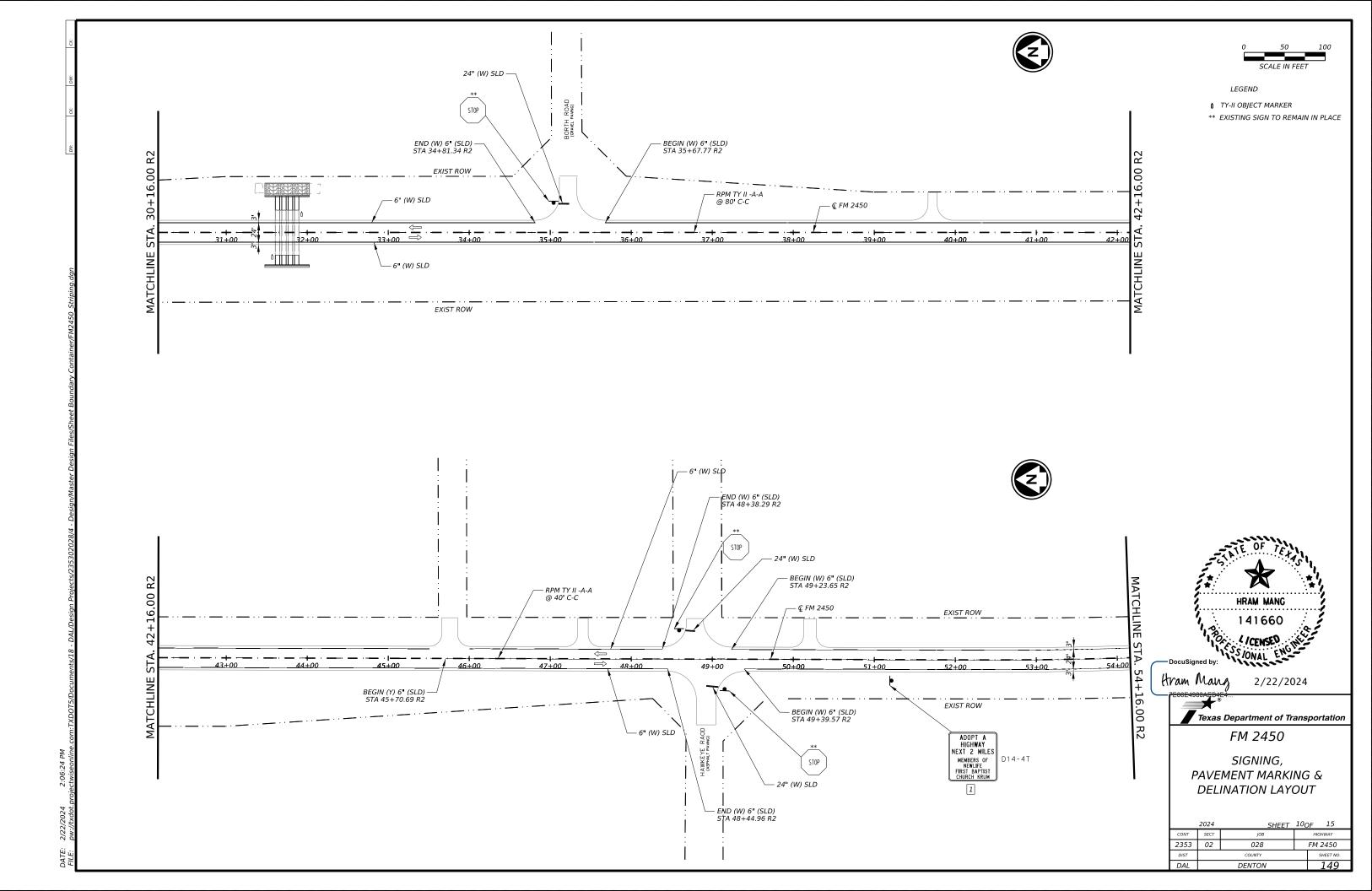


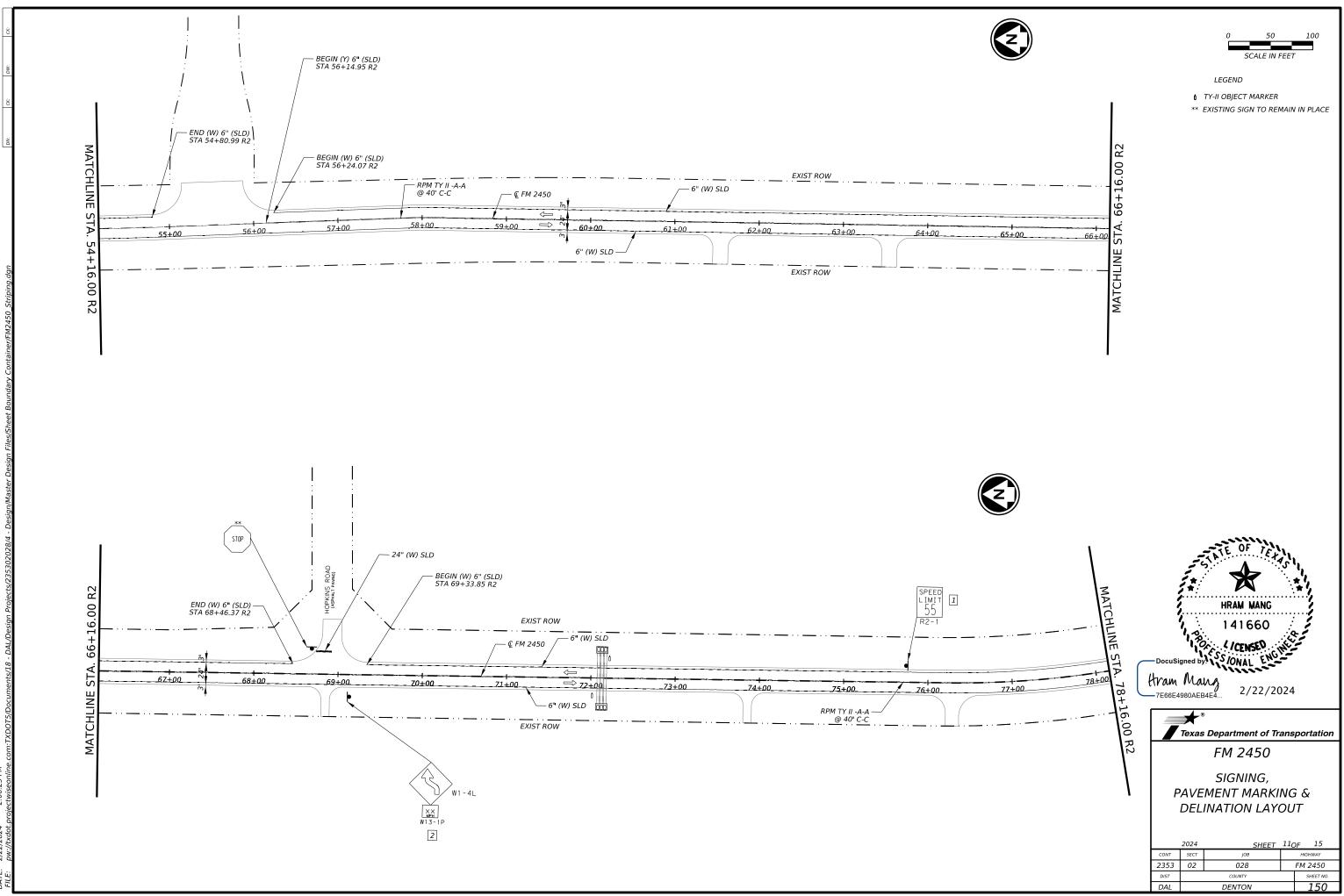

2:06:

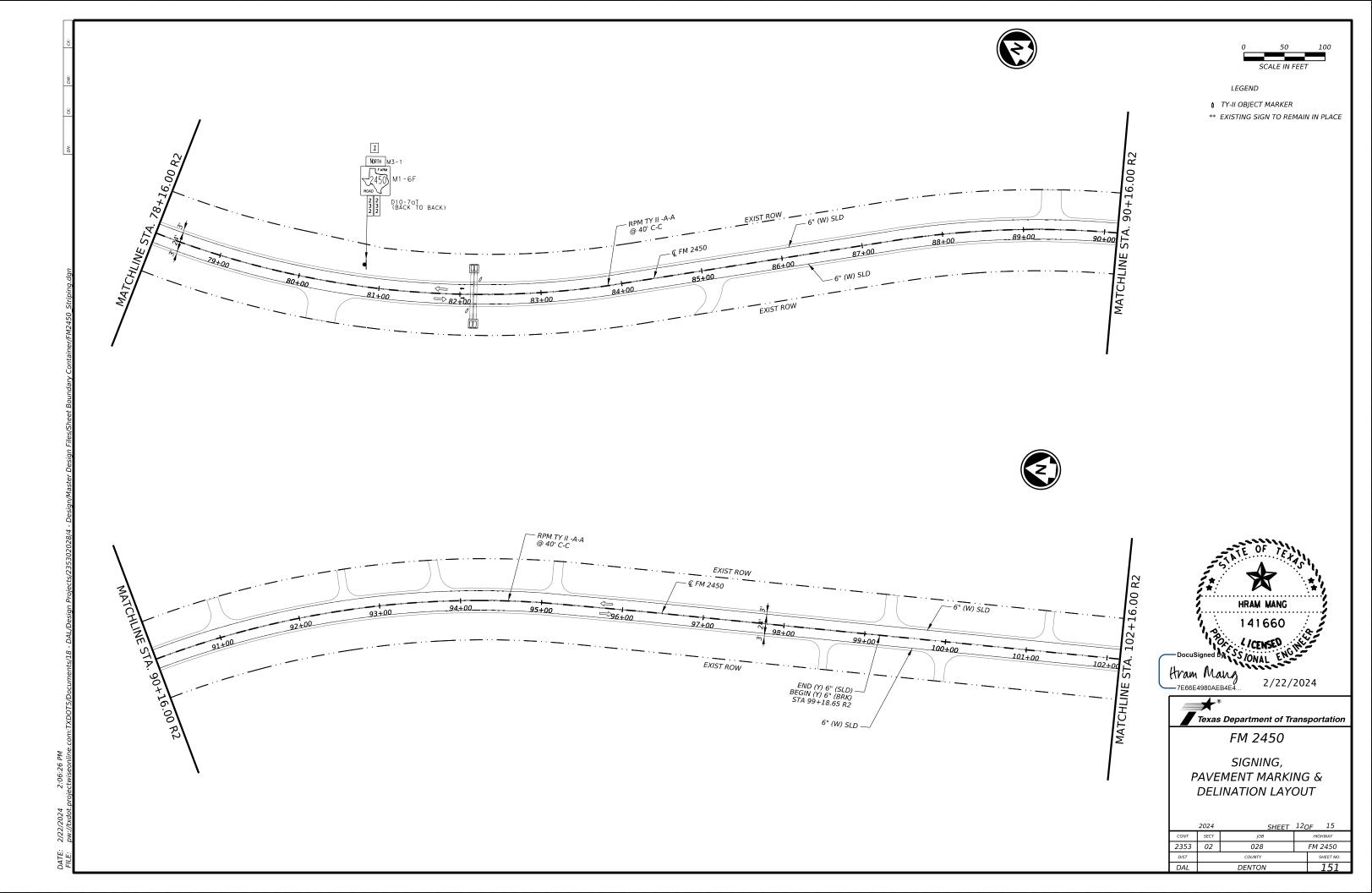


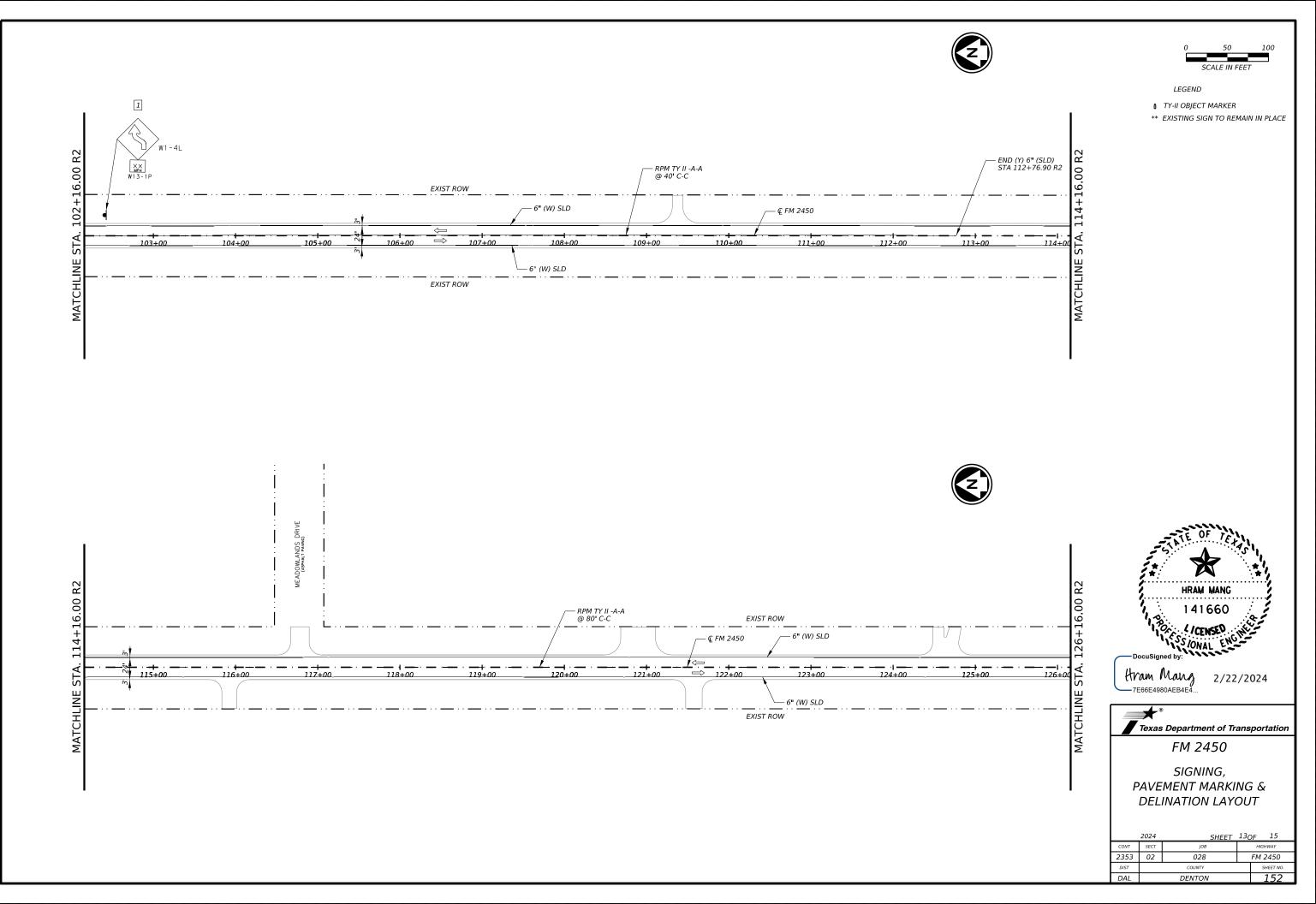

2:06: DATE

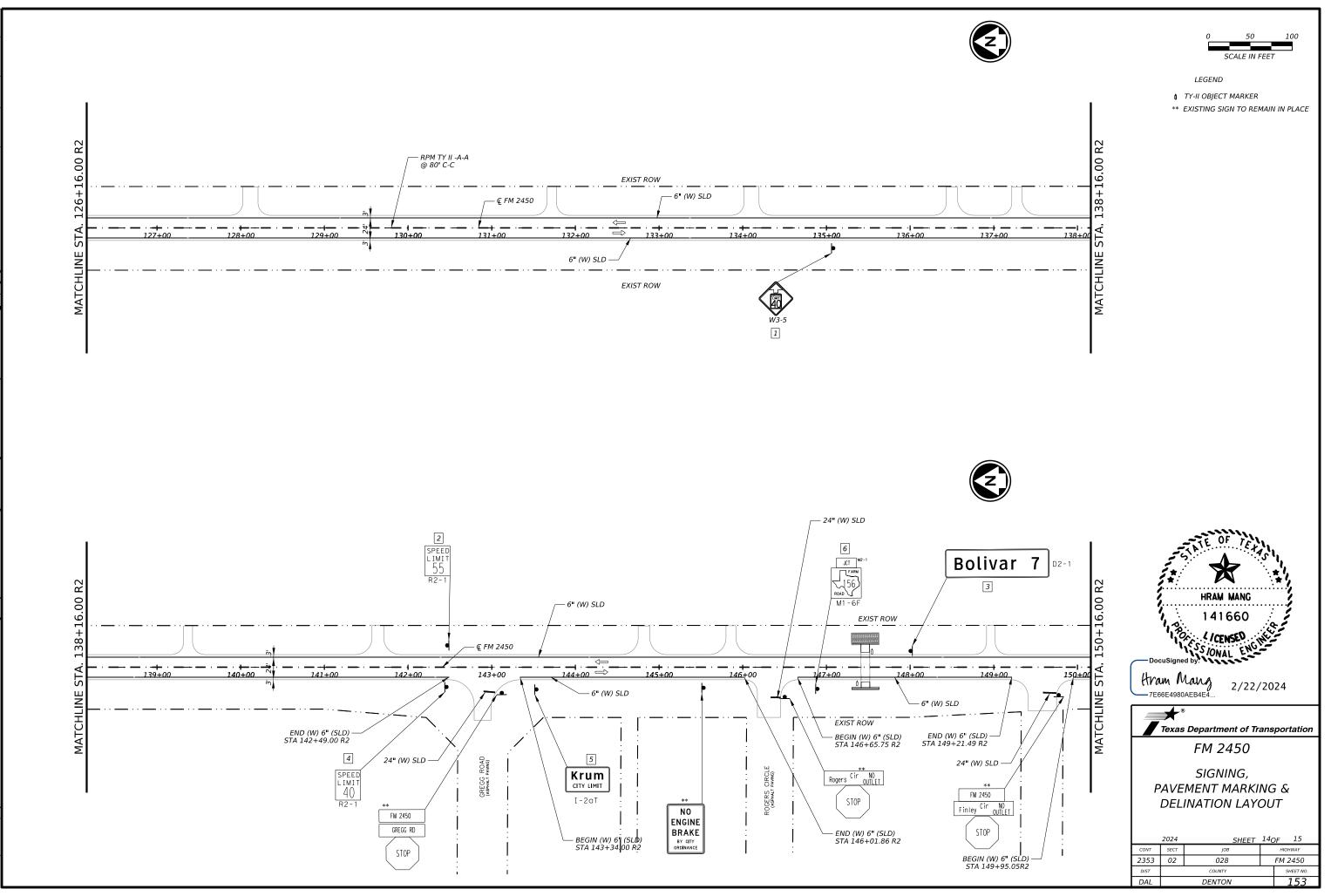


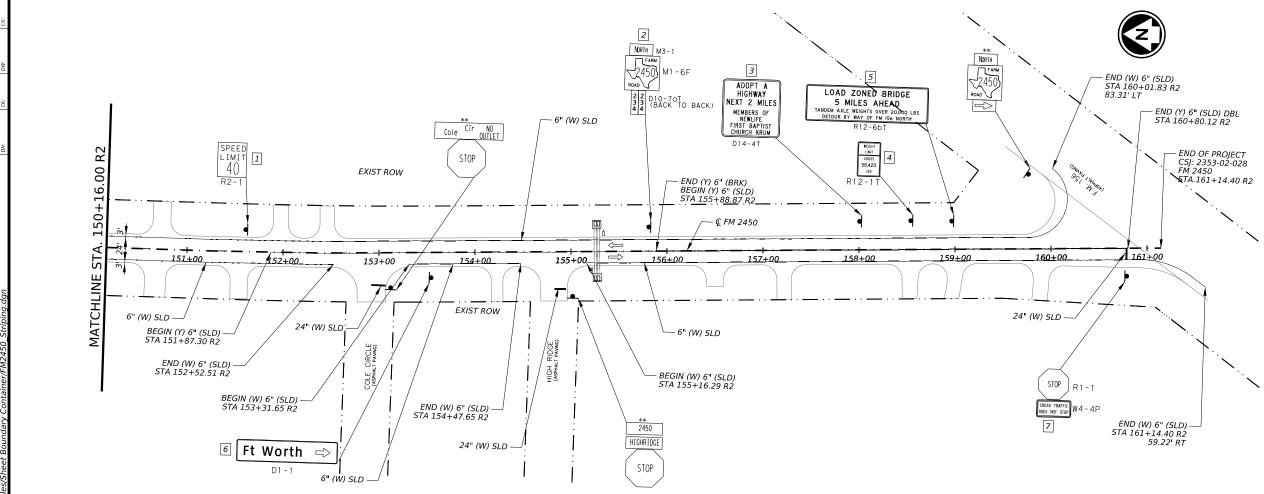





22 2:06:

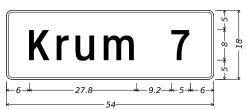






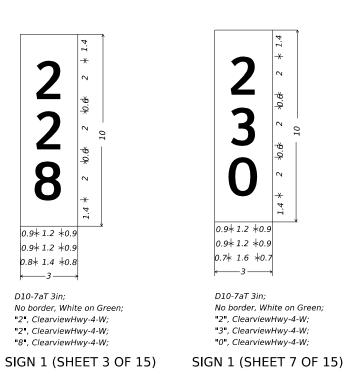
LEGEND

- 1 TY-II OBJECT MARKER
- ** EXISTING SIGN TO REMAIN IN PLACE



D1-2 8in LT-RT;

1.9" Radius, 0.8" Border, White on Green; Standard Arrow Custom 12.0" X 7.1" 180°; "Forestburg", ClearviewHwy-3-W;


1.9" Radius, 0.8" Border, White on Green; "Sanger", ClearviewHwy-3-W; Standard Arrow Custom 12.0" X 7.1" 0°;

SIGN 3 (SHEET 1 OF 15)

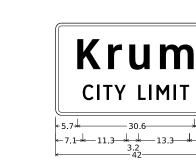
D2-1 8in; 1.5" Radius, 0.5" Border, White on Green; "Krum", ClearviewHwy-3-W; "7", ClearviewHwy-3-W;

SIGN 13 (SHEET 1 OF 15)

D10-7aT 3in; No border, White on Green; "2", ClearviewHwy-4-W; "3", ClearviewHwy-4-W; "2", ClearviewHwy-4-W;

SIGN 1 (SHEET 12 OF 15)

D10-7aT 3in; No border, White on Green; "2", ClearviewHwy-4-W; "3", ClearviewHwy-4-W; "4", ClearviewHwy-4-W;


SIGN 2 (SHEET 15 OF 15)

ç

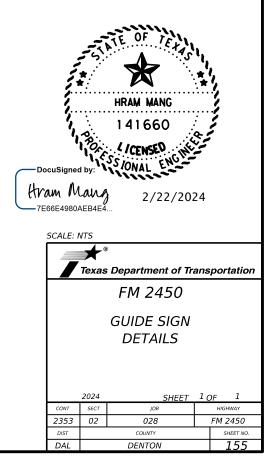
0.9 + 1.2 + 0.9


0.9 + 1.2 + 0.9

0.9 + 1.2 + 0.9

I-2a⊤ 8in; 1.5" Radius, 0.8" Border, White on Green; "Krum", ClearviewHwy-5-W-R; "CITY LIMIT", ClearviewHwy-3-W;

SIGN 5 (SHEET 14 OF 15)



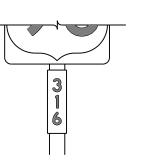
Ft Worth -6----8.8----6.3----<u>+</u>11.5<u>+</u>12<u>+</u>6− D1-1 8in RT, 1.5" Radius, 0.5" Border, White on Green;

"Ft Worth", ClearviewHwy-3-W; Standard Arrow Custom 12.0" X 7.1" 0°; SIGN 6 (SHEET 15 OF 15)

ALL DIMENSIONS SHOWN ARE ON INCHES.

REQUIREMENTS FOR INDEPENDENT MOUNTED ROUTE SIGNS

SHEETING REQUIREMENTS							
USAGE	COLOR	SIGN FACE MATERIAL					
BACKGROUND	WHITE	TYPE A SHEETING					
BACKGROUND	ALL OTHERS	TYPE B OR C SHEETING					
LEGEND & BORDERS	WHITE	TYPE A SHEETING					
LEGEND & BORDERS	BLACK	ACRYLIC NON-REFLECTIVE FILM					
LEGEND & BORDERS	ALL OTHERS	TYPE B or C SHEETING					



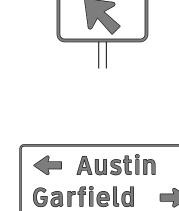
TYPICAL EXAMPLES

REQUIREMENTS FOR BLUE, BROWN & GREEN D AND I SERIES GUIDE SIGNS

SHEETING REQUIREMENTS						
USAGE	COLOR	SIGN FACE MATERIAL				
BACKGROUND	ALL	TYPE B OR C SHEETING				
LEGEND & BORDERS	WHITE	TYPE D SHEETING				
LEGEND, SYMBOLS & BORDERS	ALL OTHERS	TYPE B OR C SHEETING				

SCENIC

ARFA



TYPICAL EXAMPLES

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any Kind is made by TXDDI for any purpose wharsoever. TXDDI assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting fram its use.

GENERAL NOTES

plans.

or F).

1. Signs to be furnished shall be as detailed elsewhere in the plans and/or as shown on sign tabulation sheet. Standard sign designs and arrow dimensions can be found in the "Standard Highway Sign Designs for Texas" (SHSD).

2. White legend shall use the Clearview Alphabet. The following Clearview fonts shall be used to replace the existing white Federal Highway Administration (FHWA) Standard Highway Alphabets, when not specified in the SHSD, or in the

В	CV-1W
С	CV-2W
D	CV-3W
E	CV-4W
Emod	CV-5WR
F	CV-6W

3. Route sign legend (ie. IH, US, SH and FM shields) shall use the Federal Highway Administration (FHWA) Standard Highway Alphabets B, C, D, E, Emod

4. Lateral spacing between letters and numerals shall conform with the SHSD, and any approved changes thereto. Lateral spacing of legend shall provide a balanced appearance when spacing is not shown.

5. Independent mounted route sign with white or colored legend and borders shall be applied by screening process with transparent color ink, transparent colored overlay film to white background sheeting or cut-out white sheeting to colored background sheeting, or combination thereof. White legend, symbols and borders on all other signs shall be cut-out white sheeting applied to colored background sheeting.

6. Information regarding borders and radii for signs is found in the "Standard Highway Sign Designs for Texas". Dimensions shown and described for borders and corner radii on parent sign are nominal. Borders may vary in width as much as 1/2 inch. Corner radii above 3 inches may vary in width as much as 1 inch. Borders and corner radii within a parent sign must be of matching widths. The sign area outside the corner radius should be trimmed or rounded.

7. Sign substrate shall be any material that meets the Departmental Material Specification requirements of DMS-7110 or approved alternative.

8. Mounting details of roadside signs are shown in the "SMD series" Standard Plan Sheets.

DEPARTMENTAL MATERIAL SPECIFICATIONS				
ALUMINUM SIGN BLANKS D	MS-7110			
SIGN FACE MATERIALS D	MS-8300			

ALUMINUM SIGN BLANKS THICKNESS					
Square Feet Minimum Thicknes					
Less than 7.5	0.080				
7.5 to 15	0.100				
Greater than 15	0.125				

The Standard Highway Sign Designs for Texas (SHSD) can be found at the following website.

http://www.txdot.gov/

Traffic Operations Division Standard								
TYPICAL SIGN REQUIREMENTS								
Т	R(3)	-13						
TS	R(3)	-13	TxDOT	ск: Тхрот				
		-		ck: TxDOT				
FILE: tsr3-13.dgn © TxDOT October 2003 REVISIONS	DN: TXDOT	ск: TxDOT dw:		IGHWAY				
FILE: tsr3-13.dgn ©TxDOT October 2003	DN: TXDOT CONT SECT	CK: TXDOT DW: JOB	н	IGHWAY				

R	EGULATOR	NOT ENTER AND		REGULATO	WHITE BACKGROUND RY SIGNS LD, DO NOT ENTER AND Y SIGNS)
\sim	OP	YIELD			
				TYPICAL	EXAMPLES
	SPECIFIC SI	IGNS ONLY		SHEETING R	EQUIREMENTS
	SHEETING RE	QUIREMENTS	USAGE	COLOR	SIGN FACE MATERIAL
USAGE	COLOR	SIGN FACE MATERIAL	BACKGROUND	WHITE	TYPE A SHEETING
BACKGROUND	RED	TYPE B OR C SHEETING TYPE B OR C SHEETING	BACKGROUND LEGEND, BORDERS	ALL OTHERS	TYPE B OR C SHEETING
LEGEND & BORDEF	WHITE RS WHITE	TYPE B OR C SHEETING	AND SYMBOLS	BLACK	ACRYLIC NON-REFLECTIVE FILM
LEGEND	RED	TYPE B OR C SHEETING	LEGEND, BORDERS AND SYMBOLS	ALL OTHER	TYPE B OR C SHEETING
REQUIRE	MENTS FO	R WARNING SIGNS	REQUIRE	MENTS FO	R SCHOOL SIGNS
	TYPICAL EXA	MPLES		SCHOOL SPEED LIMIT 20 WHEN FLASHING	L EXAMPLES
	SHEETING REQU	JIREMENTS		SHEETING RE	QUIREMENTS
USAGE	COLOR	SIGN FACE MATERIAL	USAGE	COLOR	SIGN FACE MATERIAL
BACKGROUND	FLOURESCENT YELLOW	TYPE B _{FL} OR C _{FL} SHEETING	BACKGROUND	WHITE	TYPE A SHEETING
EGEND & BORDERS	BLACK	ACRYLIC NON-REFLECTIVE FILM	BACKGROUND	FLOURESCENT YELLOW GREEN	TYPE B _{FL} OR C _{FL} SHEETING
SELES & BOILDERS			LEGEND, BORDERS		
GEND & SYMBOLS	ALL OTHER	TYPE B OR C SHEETING	AND SYMBOLS	BLACK	ACRYLIC NON-REFLECTIVE FILM

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TXDDI for any purpose whatsoever. TXDDI assumes no responsibility for the conversion of this standard to other formats or for incortect results or damages resulting from its use.

> DATE: FILE:

NOTES

o be furnished shall be as detailed elsewhere in the plans and/or as n sign tabulation sheet. Standard sign designs and arrow dimensions found in the "Standard Highway Sign Designs for Texas" (SHSD).

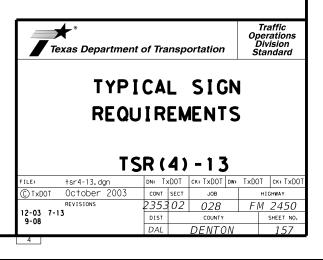
gend shall use the Federal Highway Administration (FHWA) d Highway Alphabets (B, C, D, E, Emod or F).

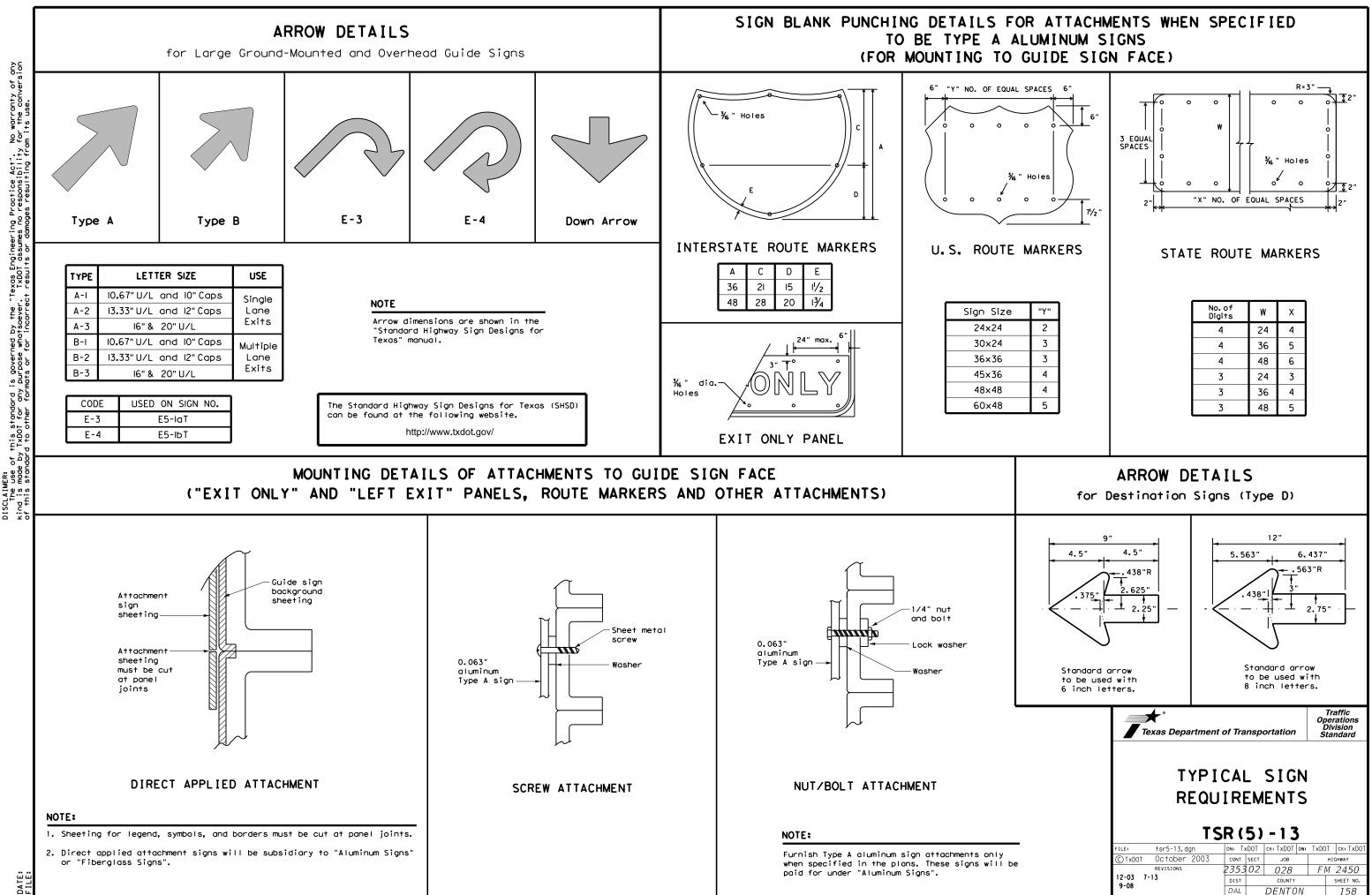
spacing between letters and numerals shall conform with the SHSD, approved changes thereto. Lateral spacing of legend shall provide ced appearance when spacing is not shown.

egend and borders shall be applied by screening process or cut-out non-reflective black film to background sheeting, or combination

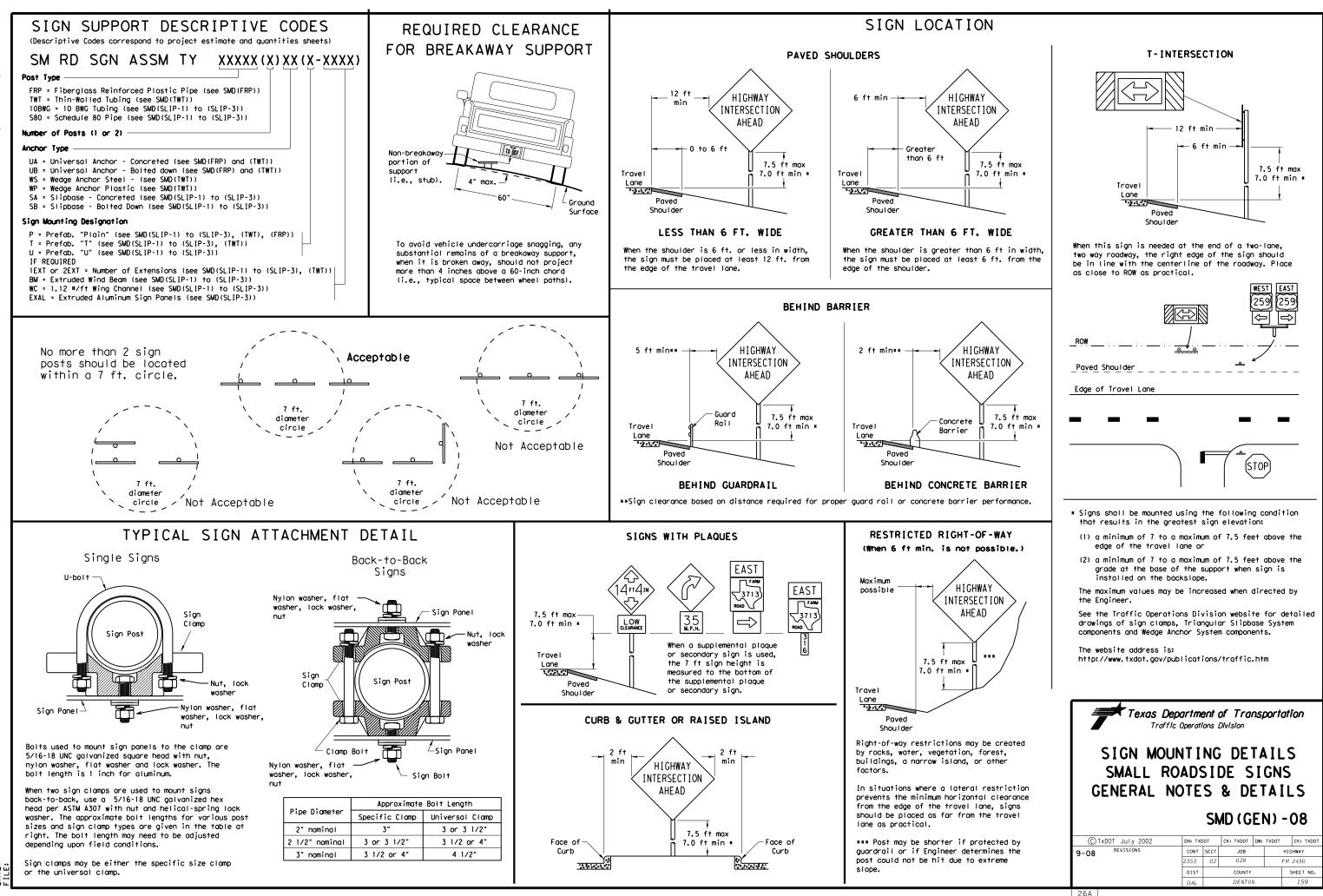
egend and borders shall be applied by screening process with transparent ink, transparent colored overlay film to white background sheeting or white sheeting to colored background sheeting, or combination thereof.

legend shall be applied by screening process with transparent colored ansparent colored overlay film or colored sheeting to background g, or combination thereof.

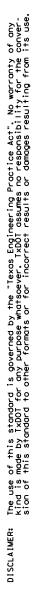

bstrate shall be any material that meets the Departmental Material cation requirements of DMS-7110 or approved alternative.

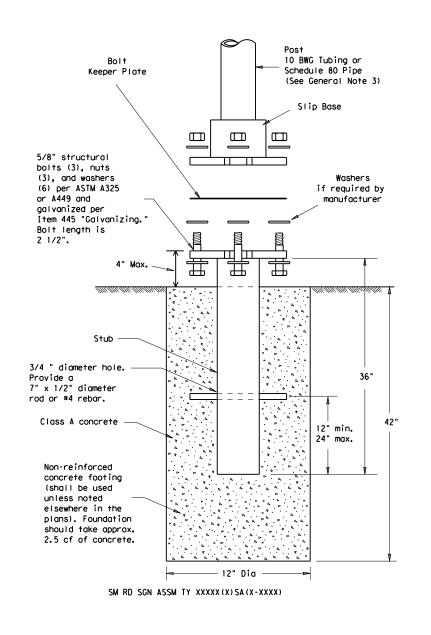

details for roadside mounted signs are shown in the "SMD series" Plan Sheets.

ALUMINUM SIGN BLANKS THICKNESS					
Square Feet	Minimum Thickness				
Less than 7.5	0.080				
7.5 to 15	0.100				
Greater than 15	0.125				

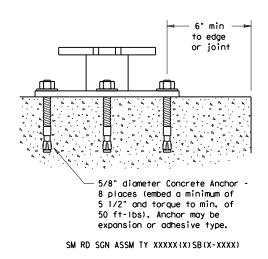

DEPARTMENTAL MATERIAL SPEC	IFICATIONS
ALUMINUM SIGN BLANKS	DMS-7110
SIGN FACE MATERIALS	DMS-8300

The Standard Highway Sign Designs for Texas (SHSD) can be found at the following website. http://www.txdot.gov/

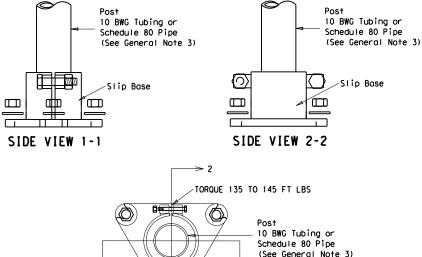




AIMER: The use of this standard is governed by the "Texas Engineering Practice Act". The mode by TXDOT for any purpose whatsoever. TXDOT assumes no responsibility is standard to other formats or for incorrect results or damages resulting fro



TRIANGULAR SLIPBASE INSTALLATION GENERAL REQUIREMENTS


CONCRETE ANCHOR

Concrete anchor consists of 5/8" diameter stud bolt with UNC series bolt threads on the upper end. Heavy hex nut per ASTM A563, and hardened washer per ASTM F436. The stud bolt shall have a minimum yield and ultimate tensile strength of 50 and 75 KSI, respectively. Nuts, bolts and washers shall be galvanized per Item 445, "Galvanizing." Adhesive type anchors shall have stud bolts installed with Type III epoxy per DMS-6100, "Epoxies and Adhesives." Adhesive anchors may be loaded after adequate epoxy cure time per the manufacturer's recommendations. Top of bolt shall extend at least flush with top of the nut when installed. The anchor, when installed in 4000 psi normalweight concrete with a 5 1/2" minimum embedment, shall have a minimum allowable tension and shear of 3900 and 3100 psi, respectively.

NOTE

The devices shall be installed per manufacturers' recommendations. Installation procedures shall be provided to the Engineer by Contractor.

TOP VIEW

DETAIL A

Slip Base

Galvanization per ASTM A123

ASSEMBLY PROCEDURE

GENERAL NOTES:

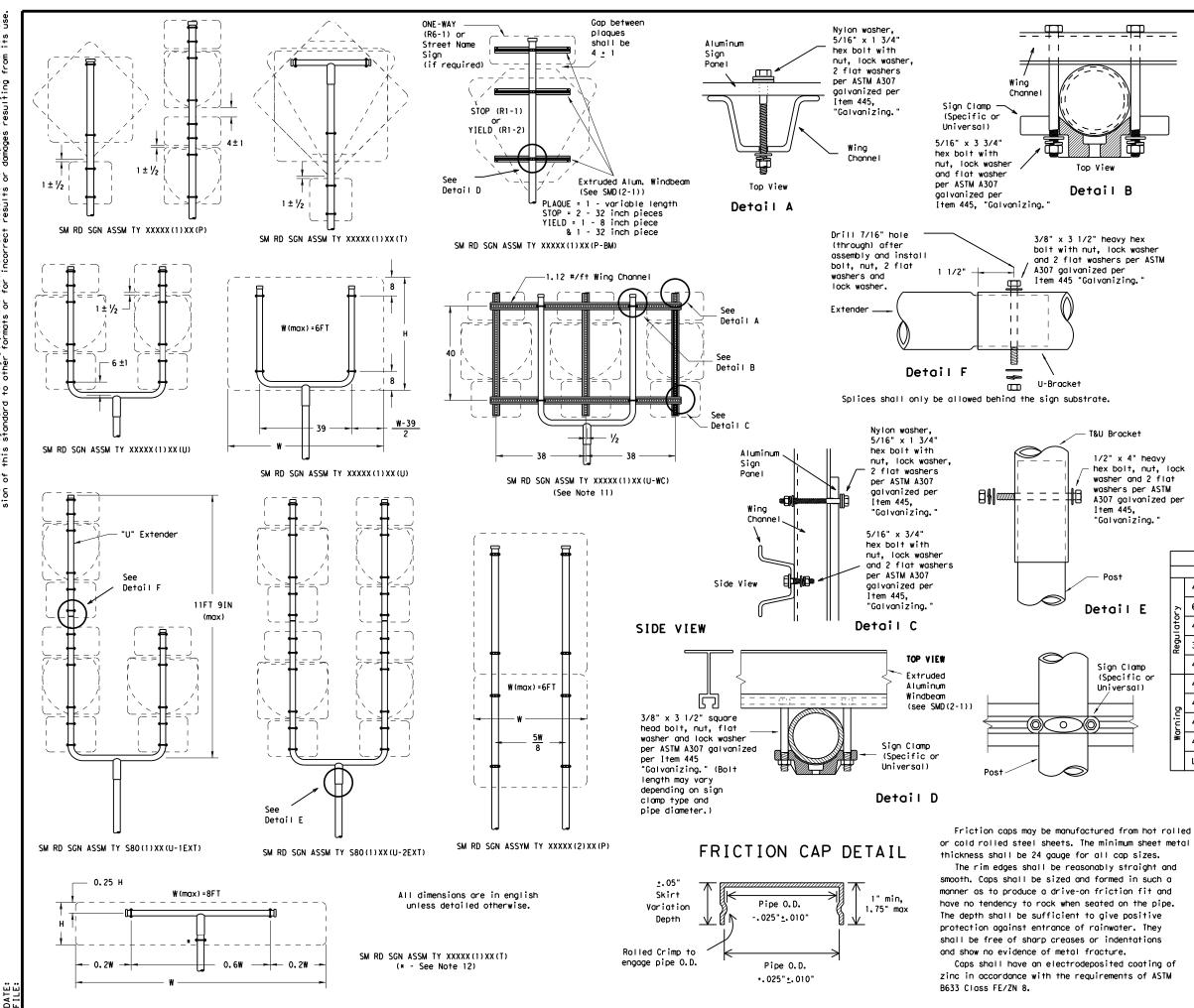
Foundation

- direction.

Support

- straight.
- clearances based on sign types.

ADDED DETAIL A FO 10-2010


1. Slip base shall be permanently marked to indicate manufacturer. Method, design, and location of marking are subject to approval of the TxDOT Traffic Standards Engineer. Material used as post with this system shall conform to the following specifications: 10 BWG Tubing (2.875" outside diameter) 0.134" nominal wall thickness Seamless or electric-resistance welded steel tubing or pipe Steel shall be HSLAS Gr 55 per ASTM A1011 or ASTM A1008 Other steels may be used if they meet the following: 55,000 PSI minimum yield strength 70,000 PSI minimum tensile strength 20% minimum elongation in 2" Wall thickness (uncoated) shall be within the range of 0.122" to 0.138" Outside diameter (uncoated) shall be within the range of 2.867" to 2.883" Galvanization per ASTM A123 or ASTM A653 G210. For precoated steel tubing (ASTM A653), recoat tube outside diameter weld seam by metallizing with zinc wire per ASTM B833. Schedule 80 Pipe (2.875" outside diameter) 0.276" nominal wall thickness Steel tubing per ASTM A500 Gr C Other seamless or electric-resistance welded steel tubing or pipe with equivalent outside diameter and wall thickness may be used if they meet the following: 46,000 PSI minimum yield strength 62,000 PSI minimum tensile strength 21% minimum elongation in 2" Wall thickness (uncoated) shall be within the range of 0.248" to 0.304" Outside diameter (uncoated) shall be within the range of 2.855" to 2.895" 3. See the Traffic Operations Division website for detailed drawings of sign clamps and Texas Universal Triangular Slipbase System components. The website address is: http://www.txdot.gov/publications/traffic.htm 4. Sign supports shall not be spliced except where shown. Sign support posts shall not be spliced.

1. Prepare 12-inch diameter by 42-inch deep hole. If solid rock is encountered, the depth of the foundation may be reduced such that it is embedded a minimum of 18 inches into the solid rock. 2. The Engineer may permit batches of concrete less than 2 cubic yards to be mixed with a portable, motor-driven concrete mixer. For small placements less than 0.5 cubic yards, hand mixing in a suitable container may be allowed by Engineer. Concrete shall be Class A. 3. Push the pipe end of the slip base stub into the center of the concrete. Rotate the stub back and forth while pushing it down into the concrete to assure good contact between the concrete and stub. Continue to work the stub into the concrete until it is between 2 to 4 inches above the ground. 4. Plumb the stub. Allow a minimum of 4 days to set, unless otherwise directed by the Engineer. 5. The triangular slipbase system is multidirectional and is designed to release when struck from any

1. Cut support so that the bottom of the sign will be 7 to 7.5 feet above the edge of the travelway (i.e., edge of the closest lane) when slip plate is below the edge of pavement or 7 to 7.5 feet above slip plate when the slip plate is above the edge of the travelway. The cut shall be plumb and

2. Attach sign to support using connections shown. When multiple signs are installed on the same support, ensure the minimum clearance between each sign is maintained. See SMD(SLIP-2) for

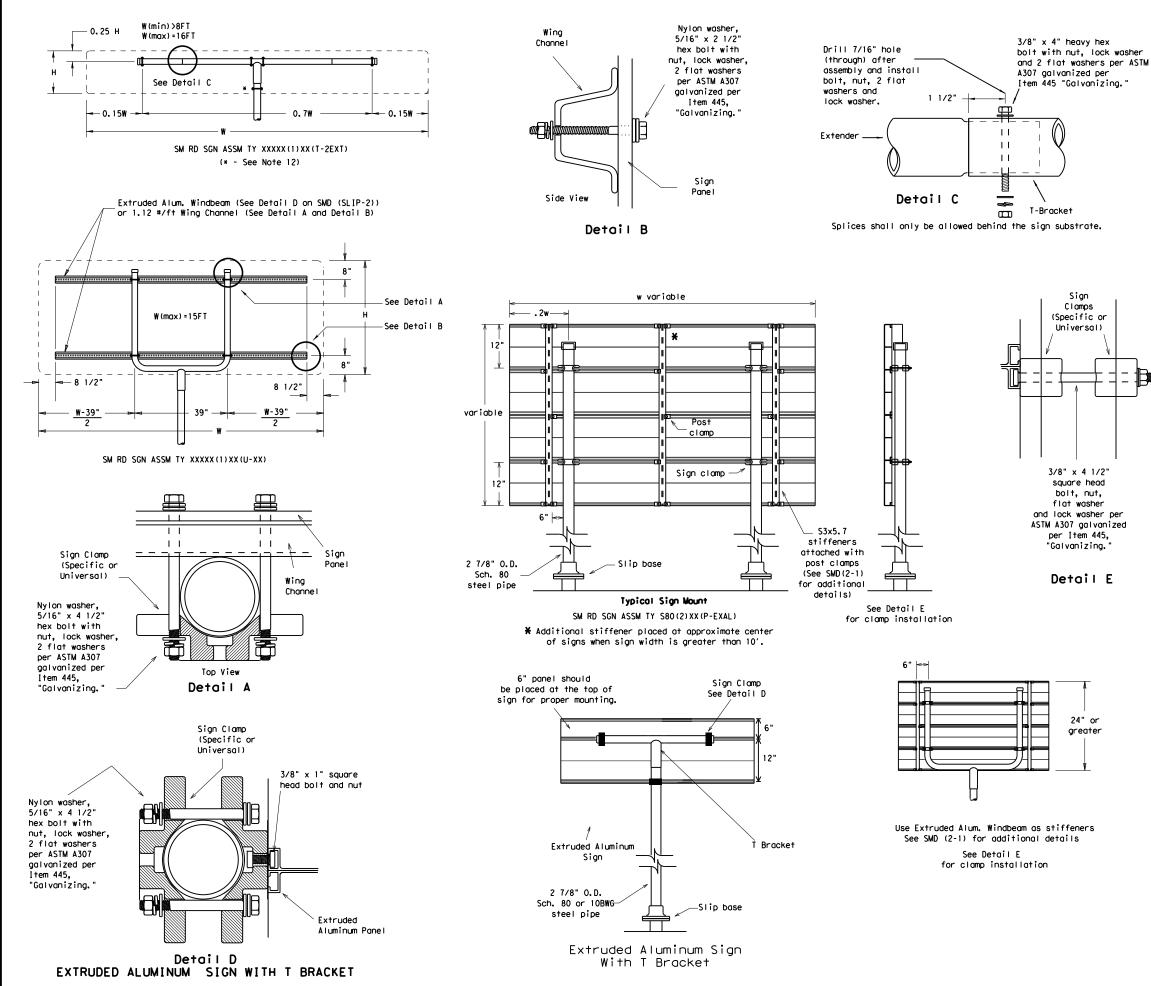
		a rtme 5 Distric			nsport	ation	1
OR CLAMP BASE	SIGN MOUNTING DETAILS SMALL ROADSIDE SIGNS TRIANGULAR SLIPBASE SYSTEM SMD(SLIP-1)-08(DAL)						
	© TxDOT July 2002	DN: TXDO	т	CK: TXDOT	DW: TXDOT	CK:	TXDOT
	9-08 REVISIONS	CONT	SECT	JOB		HIGHWAY	(
	12-10 (DISTRICT)	2353	02	028		FM 2450)
	ADDED CLAMP BASE DETAIL FOR SLIP	DIST		COUNTY		SHEE	T NO.
	BASE INSTALLATION	DAL		DENTON		1	50
	26B						

GENERAL NOTES:

1.

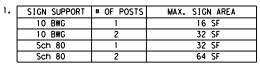
SIGN SUPPORT	# OF POSTS	MAX. SIGN AREA
10 BWG	1	16 SF
10 BWG	2	32 SF
Sch 80	1	32 SF
Sch 80	2	64 SF

2. The Engineer may require that a Schedule 80 post be used in place of a 10 BWG where a sign height is abnormally high due to a fill slope.


- 3. Sign supports shall not be spliced except where shown. Sign support posts shall not be spliced.
- Aluminum sign blanks shall conform to Departmental Material Specifications DMS-7110 and shall have the following minimum thicknesses: 0.080 for signs less than 7.5 sq. ft., 0.100 for signs 7.5 to 15 sq. ft., and 0.125 for signs greater than 15 sq. ft.
- 5. Signs that require specific supports due to reasons in addition to windloading are indicated on the "REQUIRED SUPPORT" table on this sheet.
- 6. For horizontal rectangular signs fabricated from flat aluminum, T-brackets are used for signs 24 inches or less in height. U-brackets are used for signs of greater height. 7. When two triangular slipbase supports are used to
- support a single sign, they shall not be "rigidly" connected to each other except through the sign panel. This will allow each support to act independently
- when impacted by an errant vehicle. 8. Wing channel shall meet ASTM A 1011 SS Gr 50 and be galvanized per ASTM A 123.
- Excess pipe, wing channel, or windbeam shall be cut off so that it does not extend beyond the sign panel (i.e., excess support shall not be visible when the sign is viewed from the front.) Repair galvanized coating at cut support ends per Item 445, "Galvanizing."
- 10. Additional route markers may be added vertically, provided the total sign area does not exceed the maximum allowable amount per Note 1.
- 11. Additional sign clamp required on the "T-bracket" post for 24 inch height signs. Place the clamp 3 inches above bottom of sign when possible.
- 12. Post open ends shall be fitted with Friction Caps. 13. Sign blanks shall be the sizes and shapes shown on the plans.

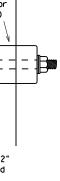
		REQUIRED SUPPORT	
		SIGN DESCRIPTION	SUPPORT
		48-inch STOP sign (R1-1)	TY 10BWG(1)XX(T) TY 10BWG(1)XX(P-BM)
	2	60-inch YIELD sign (R1-2)	TY 10BWG(1)XX(T) TY 10BWG(1)XX(P-BM)
	latory	48x16-inch ONE-WAY sign (R6-1)	TY 10BWG(1)XX(T) TY 10BWG(1)XX(P-BM)
	Regul	36x48, 48x36, and 48x48-inch signs	TY 10BWG(1)XX(T)
1		48x60-inch signs	TY \$80(1)XX(T)
or		48x48-inch signs (diamond or square)	TY 10BWG(1)XX(T)
	p	48x60-inch signs	TY \$80(1)XX(T)
	Warning	48-inch Advance School X-ing sign (S1-1)	TY 10BWG(1)XX(T)
	Ň	48-inch School X-ing sign (S2-1)	TY 10BWG(1)XX(T)
		Large Arrow sign (W1-6 & W1-7)	TY 10BWG(1)XX(T)

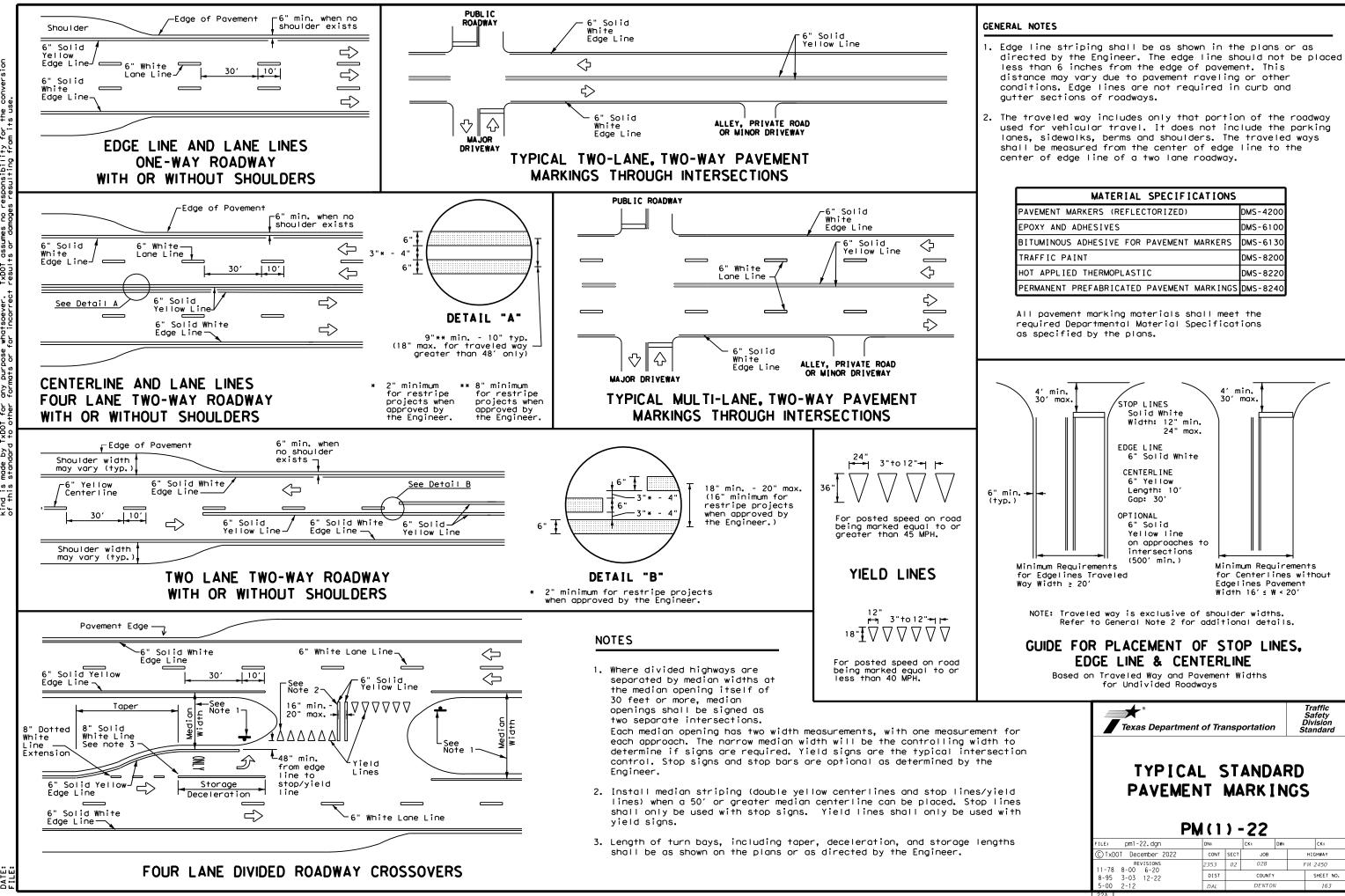
Texas Department of Transportation Traffic Operations Division


SIGN MOUNTING DETAILS SMALL ROADSIDE SIGNS TRIANGULAR SLIPBASE SYSTEM SMD(SLIP-2)-08

© TxDOT Ju∣y 2002	DN: TX	от	CK: TXDOT	DW:	TXDOT	CK: TXDOT
9-08 REVISIONS	CONT	SECT	JOB		ні	GHWAY
	2353	02	028		FM	2450
	DIST		COUNTY			SHEET NO.
	DAL		DENTON			161

GENERAL NOTES:

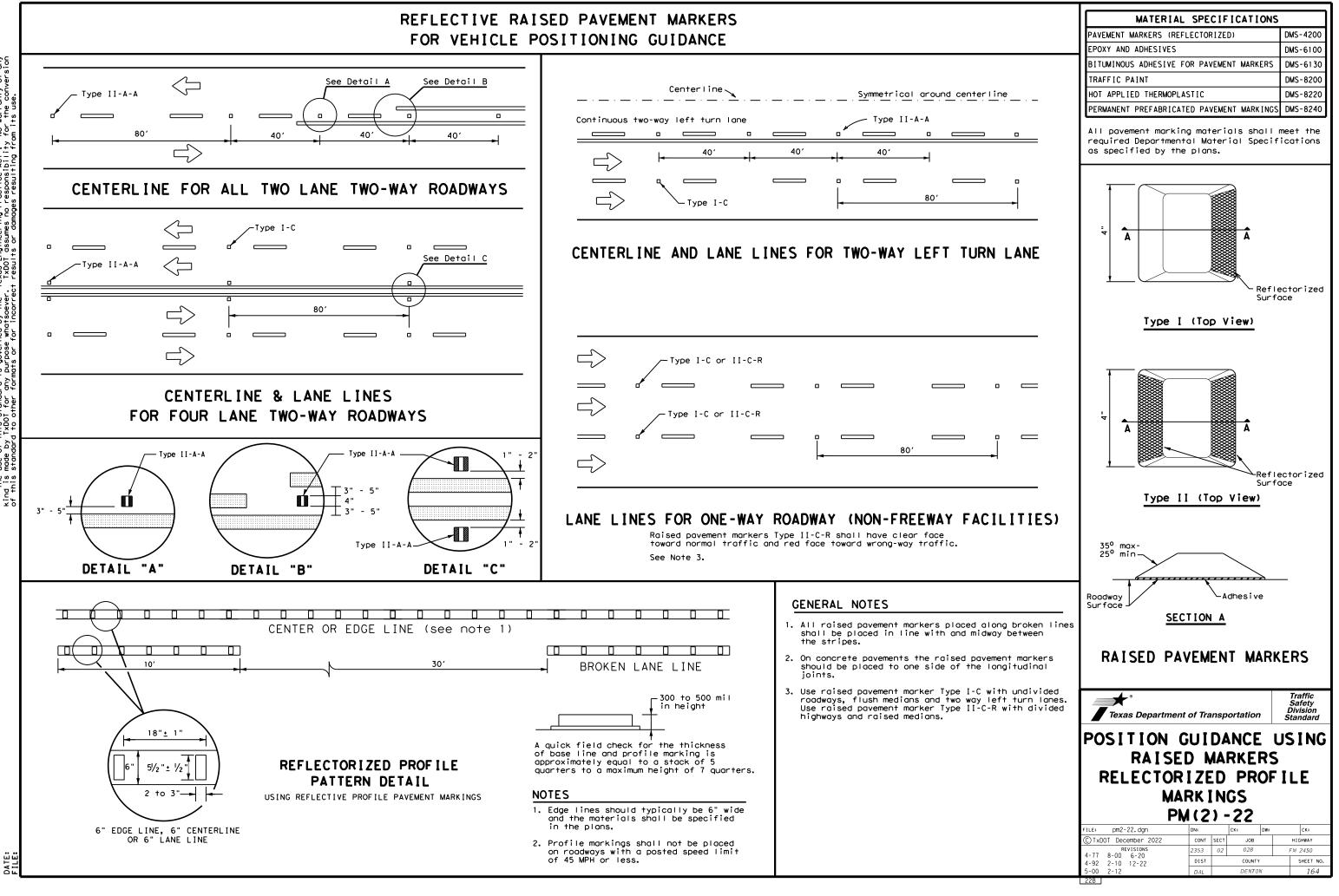

Ì	ng.	

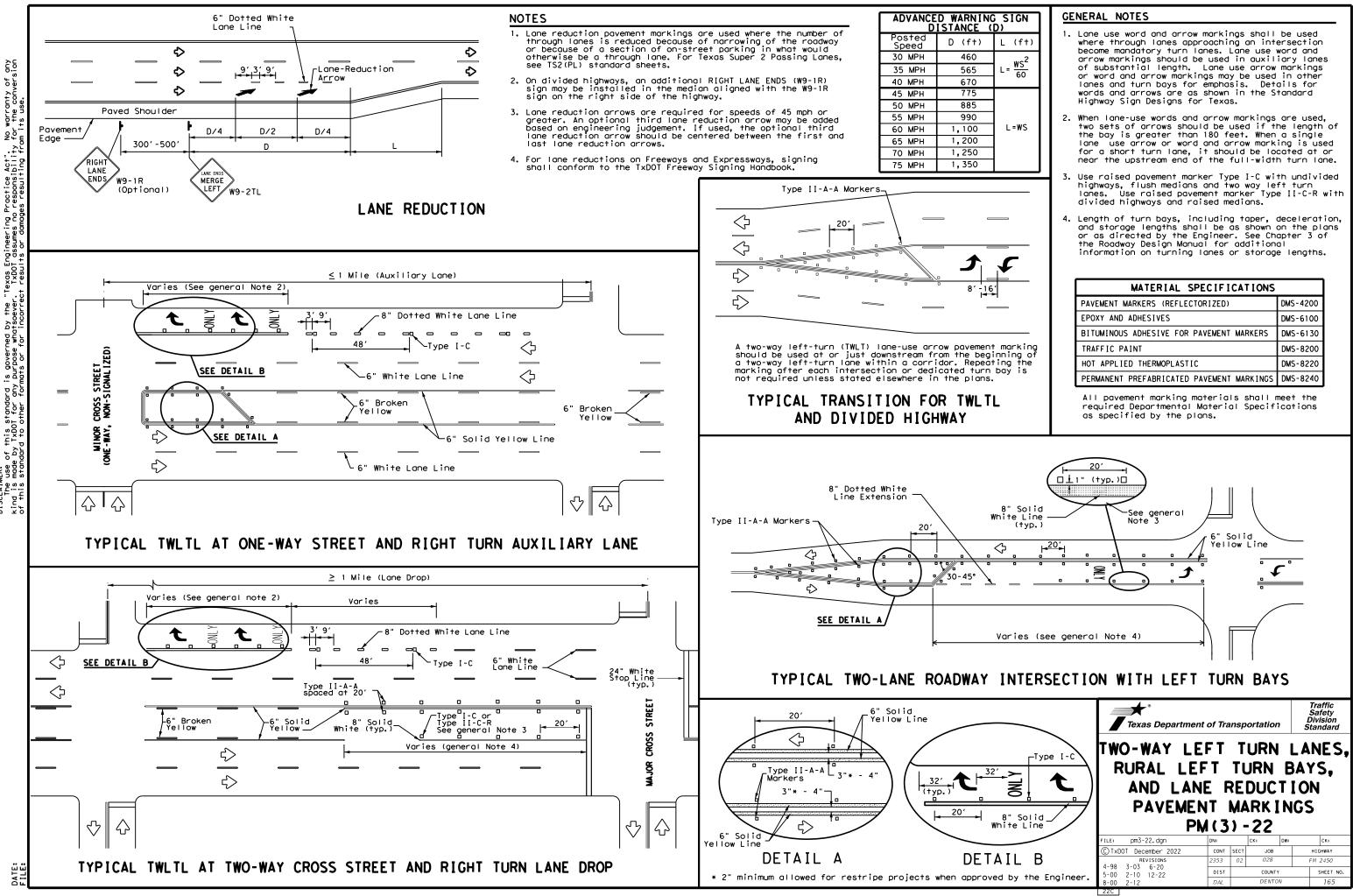


- The Engineer may require that a Schedule 80 post be used in place of a 10 BWG where a sign height is abnormally high due to a fill slope.
- 3. Sign supports shall not be spliced except where shown. Sign support posts shall not be spliced.
- Aluminum sign blanks shall conform to Departmental Material Specifications DMS-7110 and shall have the following minimum thicknesses: 0.080 for signs less than 7.5 sq. ft., 0.100 for signs 7.5 to 15 sq. ft., and 0.125 for signs greater than 15 sq. ft.
- 5. Signs that require specific supports due to reasons in addition to windloading are indicated on the "REQUIRED SUPPORT" table on this sheet.
- 6. For horizontal rectangular signs fabricated from flat aluminum, T-brackets are used for signs 24 inches or less in height. U-brackets are used for signs of greater height. 7. When two triangular slipbase supports are used to
- support a single sign, they shall not be "rigidly" connected to each other except through the sign panel. This will allow each support to act independently when impacted by an errant vehicle.
- Wing channel shall meet ASTM A 1011 SS Gr 50 and be galvanized per ASTM A 123.
- Excess pipe, wing channel, or windbeam shall be cut off so that it does not extend beyond the sign panel (i.e., excess support shall not be visible when the sign is viewed from the front.) Repair galvanized coating at cut support ends per Item 445, "Galvanizing."
- 10.Sign blanks shall be the sizes and shapes shown on the plans.
- 11. Additional sign clamp required on the "T-bracket" post for 24 inch high signs. Place the clamp 3 inches above bottom of sign when possible.
- 12. Post open ends shall be fitted with Friction Caps.

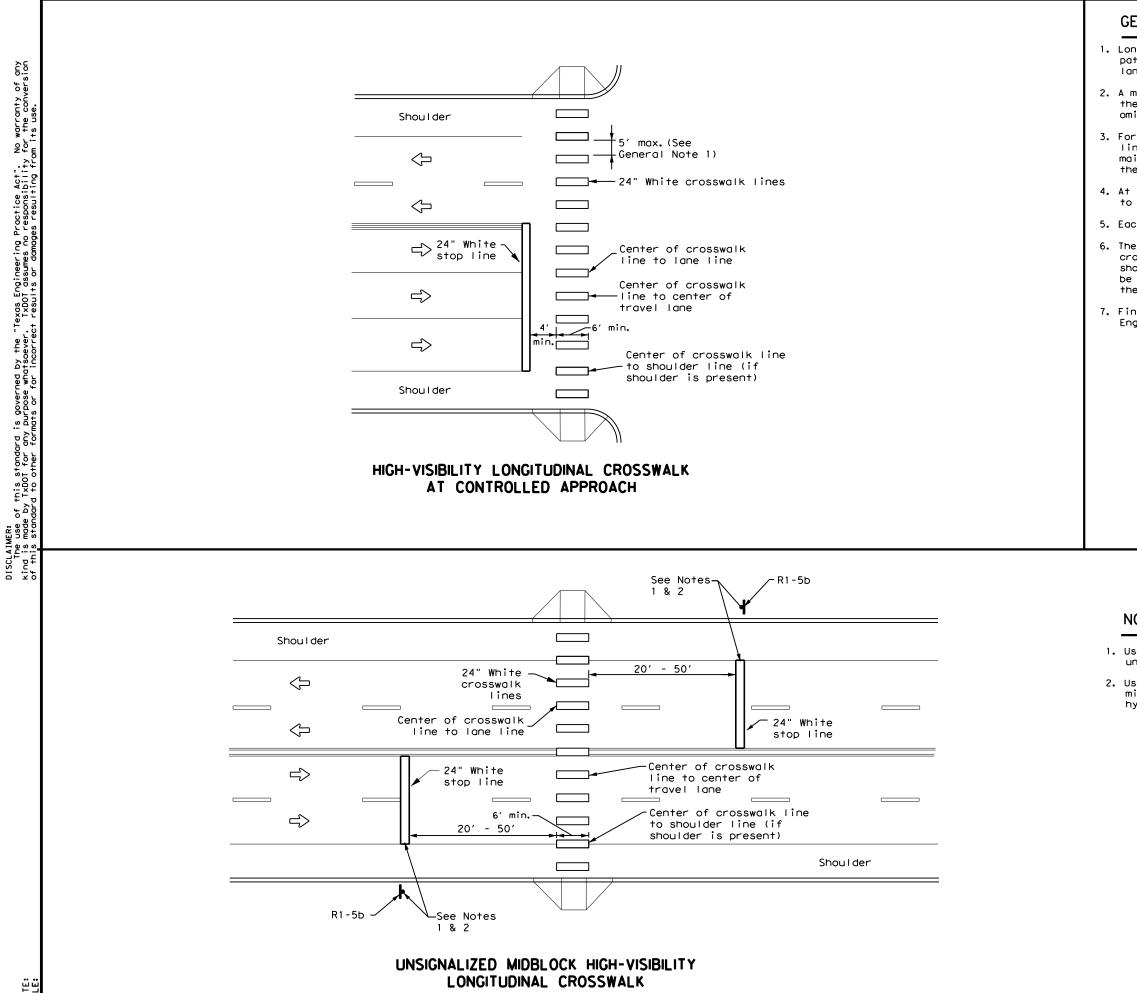
	REQUIRED SUPPORT				
	SIGN DESCRIPTION	SUPPORT			
	48-inch STOP sign (R1-1)	TY 10BWG(1)XX(T) TY 10BWG(1)XX(P-BM)			
2	60-inch YIELD sign (R1-2)	TY 10BWG(1)XX(T) TY 10BWG(1)XX(P-BM)			
Regulatory	48x16-inch ONE-WAY sign (R6-1)	TY 10BWG(1)XX(T) TY 10BWG(1)XX(P-BM)			
Regu	36x48, 48x36, and 48x48-inch signs	TY 10BWG(1)XX(T)			
	48x60-inch signs	TY \$80(1)XX(T)			
	48x48-inch signs (diamond or square)	TY 10BWG(1)XX(T)			
þ	48x60-inch signs	TY \$80(1)XX(T)			
Warning	48-inch Advance School X-ing sign (S1-1)	TY 10BWG(1)XX(T)			
Wo	48-inch School X-ing sign (S2-1)	TY 10BWG(1)XX(T)			
	Large Arrow sign (W1-6 & W1-7)	TY 10BWG(1)XX(T)			

Texas Dep Traffic				nsp	oorta	tion
SIGN MOUN SMALL RO TRIANGULAR	ADS SL I	SII Pl	DES	I	GNS SYS	S STEM
© TxDOT July 2002	DN: TXC	от	CK: TXDOT	DW:	TXDOT	CK: TXDOT
9-08 REVISIONS	CONT	SECT	JOB		н	IGHWAY
3 00	2353	02	028		FM	2450
	DIST		COUNTY			SHEET NO.
	DAL		DENTC	N		162
26D						




DATE:

MATERIAL SPECIFICATIONS					
PAVEMENT MARKERS (REFLECTORIZED)	DMS-4200				
EPOXY AND ADHESIVES	DMS-6100				
BITUMINOUS ADHESIVE FOR PAVEMENT MARKERS	DMS-6130				
TRAFFIC PAINT	DMS-8200				
HOT APPLIED THERMOPLASTIC	DMS-8220				
PERMANENT PREFABRICATED PAVEMENT MARKINGS	DMS-8240				


FOR VEHICLE POSITIONING GUIDANCE

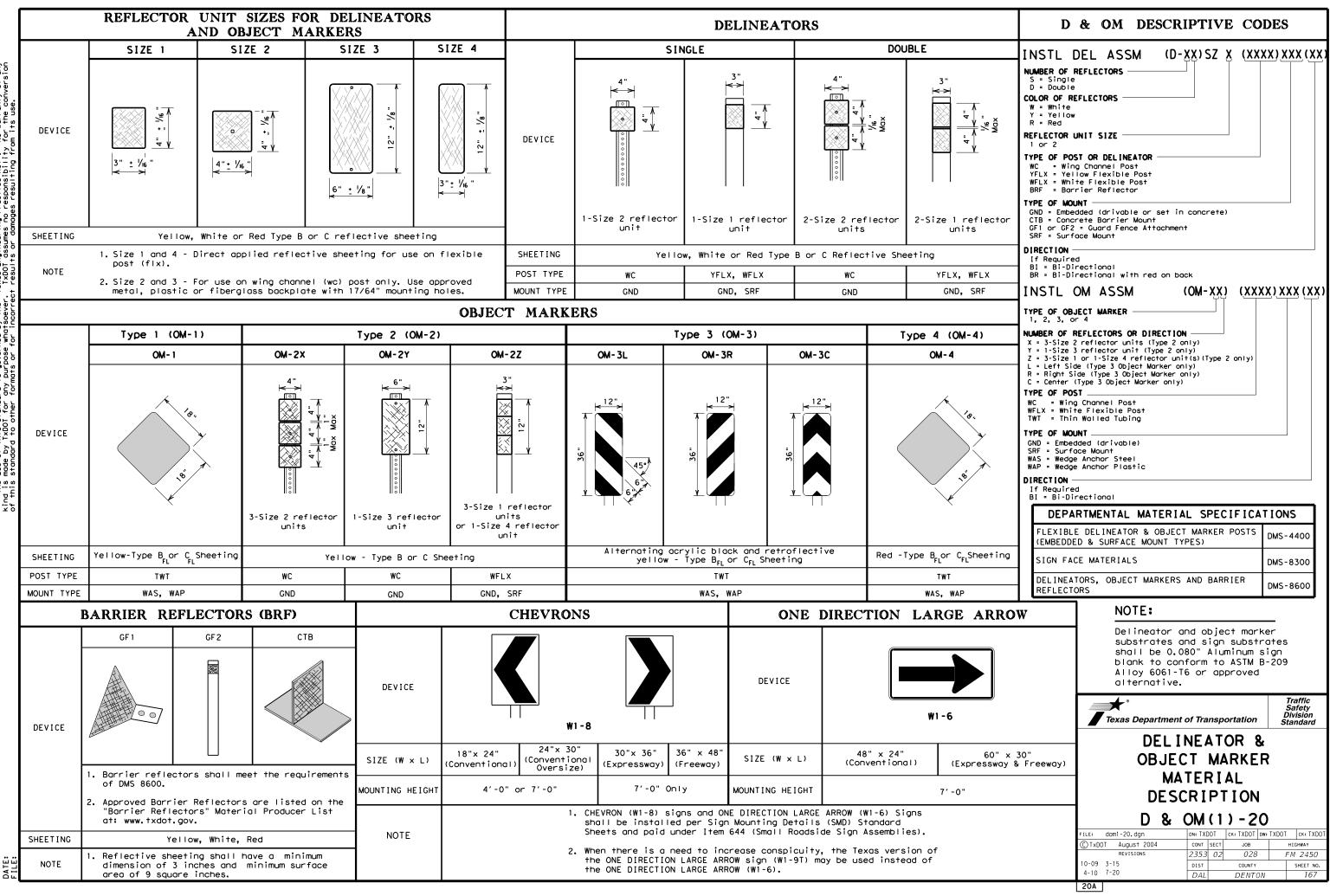
No warranty of any for the conversion om its used is governed by the "Texas Engineering Practice Act". Durpose whatsoever. TxDD1 assumes no responsibility mats or for incorrect results or damages resulting fro of this standard by TxDOT for any DISCLAIMER: The use kind is mode

warranty the conv S p Practice Act". responsibility ē č Texas Engineer TxDOT assume: SCLAIMER: The use of this standard is governed by the nd is made by IXDOT for any purpose whatsoever the standard to other formats or for incorre

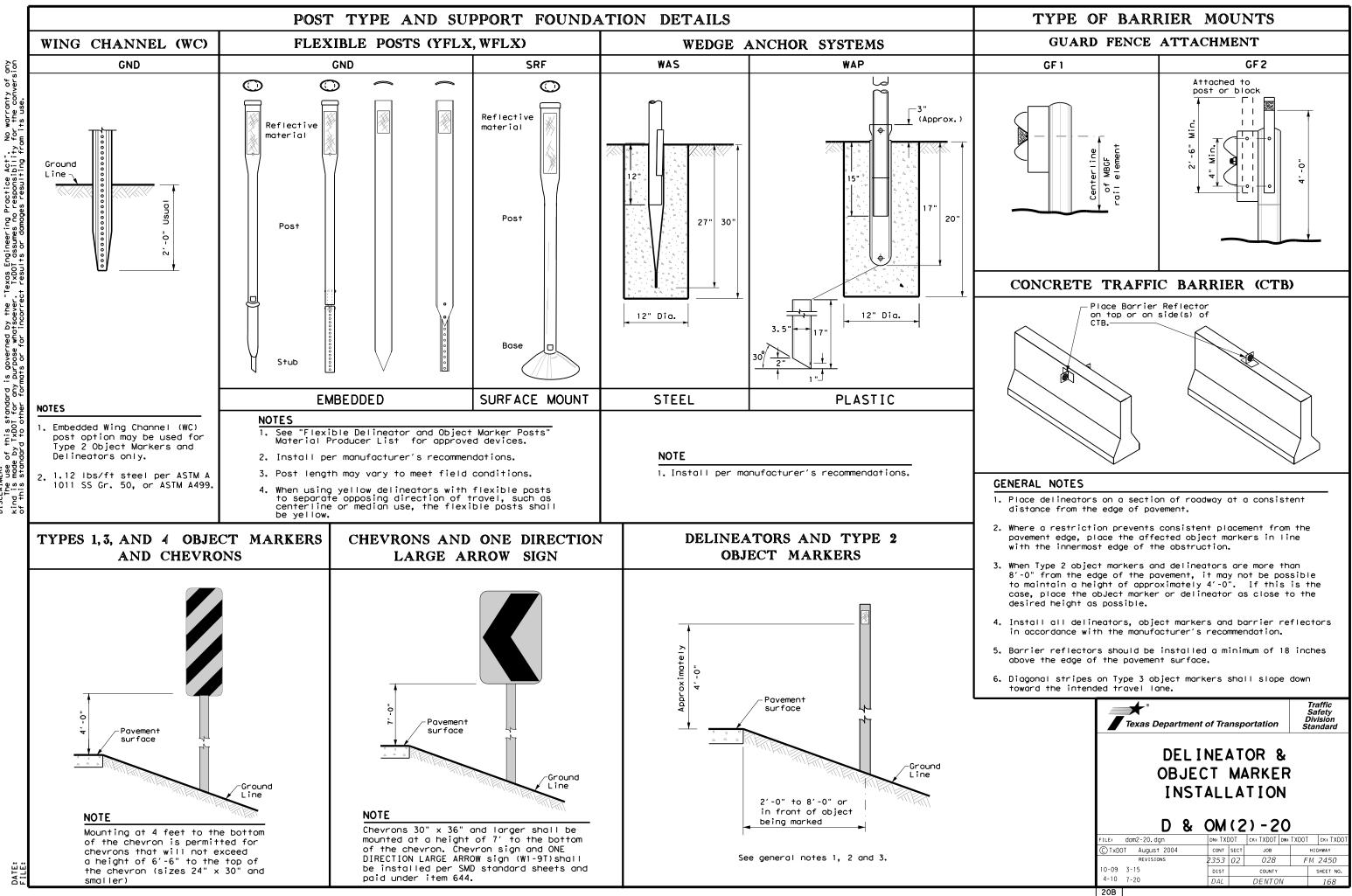
DATE:

GENERAL NOTES

- 1. Longitudinal crosswalk lines should not be placed in the wheel path of vehicles. Center the crosswalk lines on travel lanes. lane lines, and shoulder lines (if present).
- 2. A minimum 6" clear distance shall be provided to the curb face. If the last crosswalk line falls into this distance it must be omitted.
- 3. For divided roadways, adjustments in spacing of the crosswalk lines should be made in the median so that the crosswalk lines are maintained in their proper location across the travel portion of the roadway.
- 4. At skewed crosswalks, the crosswalk lines are to remain parallel to the lane lines.
- 5. Each crosswalk shall be a minimum of 6' wide.
- 6. The High-Visibility Longitudinal Crosswalk is the preferred crosswalk pattern on State Highways. Other crosswalk patterns as shown in the "Texas Manual on Uniform Traffic Control Devices" may be used. All crosswalk designs and dimension shall comply with the "Texas Manual on Uniform Traffic Control Devices,"
- 7. Final placement of Stop Bar and Crosswalk shall be approved by the Engineer in the field.


5-4200 5-6100
5-6100
S-6130
S-8200
5-8220
5-8240

All pavement marking materials shall meet the required Departmental Material Specifications as specified by the plans.


NOTES:

- 1. Use stop bars with Stop Here For Pedestrians (R1-5b) signs at unsignalized midblock cross walks.
- 2. Use stop bars with STOP HERE ON RED (R10-6 or R10-6a) signs at mid block crosswalks controlled by traffic signals or pedestrian hybrid beacons.

Texas Departme	ent of Tra	nsportat	ion	Traffic Safety Division Standard	
CROSSWALK PAVEMENT MARKINGS PM(4)-22A					
		-		S	
		-		Ск:	
PI	M(4)) - 22	'A		
FILE: pm4-220.dgn © TxDOT December 2022 REVISIONS	M (4)) - 22 ск: sect J	PA	CK:	
FILE: pm4-22a.dgn ©TxDOT December 2022	DN: CONT) - 22 ск: secт J 02 0.	р ж: ов	CK: HIGHWAY	

No warranty of any for the conversion on its wee Texas Engineering Practice Act". TxDDT assumes no responsibility + results or domages resulting fro SCLAIMER: The use of this standard is governed by the and is made by IXDOI for any purpose whatsoever this standard to other formats or for incorre

Texas Engineering Practice Act". TxDOT assumes no responsibility this standard TxDOT for any t to other for ić R: Use Mo DISCLA kind th

MINIMUM WARNING DEVICES AT CURVES WITH ADVISORY SPEEDS

	WITH	ADVISORY	SPEEDS
Amount by which Advisory Speed		Curve Advi	sory Speed
is less than Posted Speed	(30 1	Turn IPH or Less)	Curve (35 MPH or more)
5 MPH & 10 MPH	• RPMs	(PH or less)	(35 MPH or more) • RPMs
15 MPH & 20 MPH		One Direction row sign	 RPMs and Chevrons; or RPMs and One Direction Large Arrow sign where geometric conditions or roadside obstacles prevent the installation of chevrons.
25 MPH & more	 RPMs and Large Are geometric roadside 	Chevrons; or One Direction row sign where c conditions or obstacles preven allation of	• RPMs and Chevrons
SUGGES'		ACING FOR RIZONTAL	DELINEATORS CURVES
A	NOTE ONE DIREC should be perpendic center lin approach	Extension of t centerline of tangent sectio approach lane CTION LARGE ARROW e located at appro cular to the exten he of the tangent lane.	(W1-6) sign (W1-6) sign(W1-6) sign(W1-6) sign(W1-6)
		PACING FO	R CHEVRONS CURVES
	ature	A A A	Point of tangent
FI	NOTE	B	

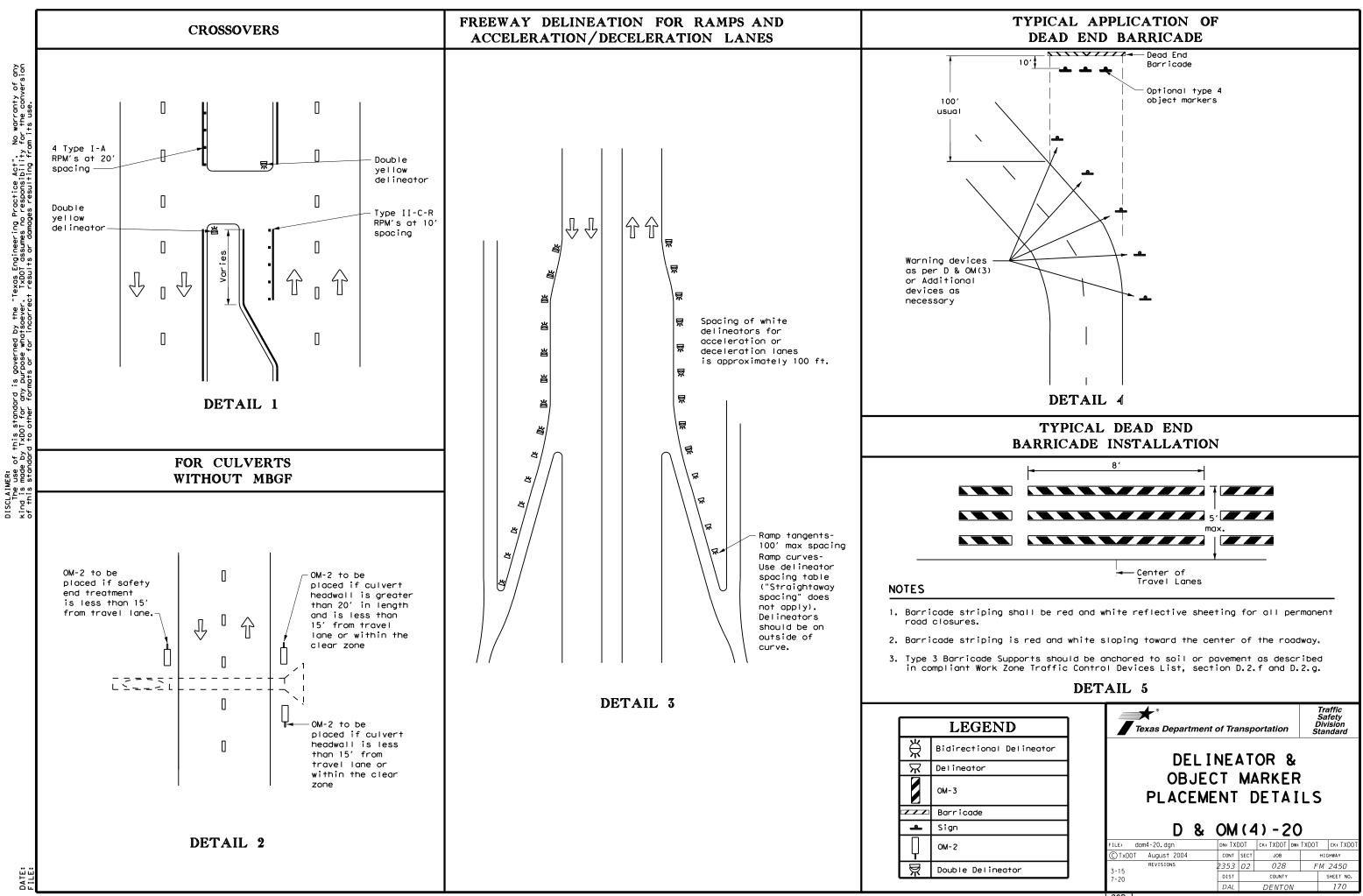
DELINEATOR SPA	AND CHEV ACING	VRON	
WHEN DEGREE OF CU		IS KNOWN	Frw
	FEET		Frw
gree of Radius Spaci	ng Spacing	Chevron Spacina	
urve of in		in	
Curve Curv	ve Straightawa	^{ly} Curve	Frw
A	2A	В	
1 5730 225	5 450		Acc
2 2865 160			Lan
3 1910 130		200	
4 1433 110		160	Tru
5 1146 100 6 955 90		160	41
7 819 85		160	Bri
8 716 75		160	con
9 637 75		120	Bea
10 573 70		120	
11 521 65	5 130	120	Cond
12 478 60	0 120	120	ors
13 441 60	0 120	120	
14 409 55	5 110	80	Cab
15 382 55	5 110	80	1
16 358 55	5 110	80	
19 302 50	0 100	80	Gua
23 249 40	0 80	80	Неа
29 198 35	5 70	40	
38151305710120rvedelineatorappracingshouldincludacedat2A.Thissp	0 40 roach and depar de 3 delineator bacing should t	40 40 rture rs be	Bri Rai
38151305710120rvedelineatorappracingshouldinclude	0 40 roach and depar de 3 delineator bacing should t reparation or v	40 40 rture rs be	Rai Red
38 151 30 57 101 20 rve delineator appr acing should includ aced at 2A. This sp add during design	0 40 roach and depar de 3 delineator bacing should t reparation or v	40 40 rture rs be	Rai Red Bri
38 151 30 57 101 20 rve delineator appr acing should includ aced at 2A. This sp add during design	0 40 roach and depar de 3 delineator bacing should t reparation or v	40 40 rture rs be	Rai Red Bri Cul
38 151 30 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 50 101 50 50 101 50 50 101 50 60 101 50 60 101 50 60 100 60 60 100 60 60 100 60 60 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 </th <th>0 40 roach and depar de 3 delineator bacing should t reparation or v is known.</th> <th>40 40 rture rs be when</th> <th>Rai Red Bri Cul Cro Pav (la</th>	0 40 roach and depar de 3 delineator bacing should t reparation or v is known.	40 40 rture rs be when	Rai Red Bri Cul Cro Pav (la
38 151 30 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 50 101 50 50 101 50 50 101 50 60 101 50 60 101 50 60 100 60 60 100 60 60 100 60 60 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 70 70 100 </td <td>0 40 roach and depar de 3 delineator bacing should t reparation or v is known.</td> <td>40 40 rture s be when</td> <td></td>	0 40 roach and depar de 3 delineator bacing should t reparation or v is known.	40 40 rture s be when	
38 151 30 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 50 101 50 61 101 50 64 101 101 64 during design pr 64 64 during design pr 64 64 degree of curve i 64 DELINEATOR HEN DEGREE OF CURVE	0 40 roach and depar de 3 delineator bacing should t reparation or v is known. AND CHE ACING E OR RADIUS IS	40 40 rture rs be when VRON NOT KNOWN Chevron	Rai Red Bri Cul Cro Pav (la
38 151 30 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 50 101 50 50 101 52 60 101 53 60 101 54 during design pr 55 60 curve i 60 degree of curve i DELINEATOR SP HEN DEGREE OF CURVE dvisory Spacing	0 40 roach and depar de 3 delineator bacing should b reparation or v is known. AND CHE ACING E OR RADIUS IS Spacing	40 40 rture rs be when VRON NOT KNOWN Chevron Spacing	Rai Red Bri Cul Cro Pav (la
38 151 30 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 50 101 50 101 101 50 102 101 50 103 102 50 103 102 50 103 103 50 103 103 50 103 103 50 103 103 50 103 103 50 103 103 50 103 103 50 103 103 50 103 103 50 103 103 50 103 103 50 103 103 50 103 103	0 40 roach and depar de 3 delineator bacing should t reparation or v is known. AND CHE ACING E OR RADIUS IS	40 40 rture rs be when VRON NOT KNOWN Chevron	Rai Red Bri Cul Cro Pav (la
38 151 30 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 56 delineator approximation 50 6 during design provession 100 6 degree of curve in 100 HEN DEGREE OF CURVE Speed 100 GVISORY Spacing 100 Speed in 100 (MPH) Curve Speed A A	0 40 roach and depar de 3 delineator pacing should b reparation or v is known. AND CHE ACING E OR RADIUS IS Spacing in Straightaway 2xA	40 40 rture rs be when VRON NOT KNOWN Chevron Spacing in Curve B	Rai Red Bri Cul Cro Pav (la
38 151 30 57 101 20 57 101 20 57 101 20 rve delineator approximation of the second of 2A. This speed during design present of curve is degree of curve is degree of curve is degree of curve is degree of curve is speed in curve speed speed in curve speed	0 40 roach and depar de 3 delineator pacing should b reparation or v is known. AND CHE ACING E OR RADIUS IS Spacing in Straightaway 2xA 260	40 40 rture rs be when VRON NOT KNOWN Chevron Spacing in Curve B 200	Rai Red Bri Cul Cro Pav (la
38 151 30 57 101 20 57 101 20 57 101 20 The delineator appropriation of the second of 2A. This speed during design present of curve in the second of	0 40 roach and depar de 3 delineator pacing should b reparation or v is known. AND CHE ACING E OR RADIUS IS Spacing in Straightaway 2×A 260 220	40 40 rture rs be when VRON NOT KNOWN Chevron Spacing in Curve B 200 160	Rai Red Bri Cul Cro Pav (la
38 151 30 57 101 20 57 101 20 57 101 20 rve delineator appropriation of the second of 2A. This speed during design present of curve is a degree of curve is a degre	0 40 roach and depar de 3 delineator pacing should b reparation or v is known. AND CHE ACING E OR RADIUS IS Spacing in Straightaway 2×A 260 220 200	40 40 rture rs be when VRON NOT KNOWN Chevron Spacing in Curve B 200 160 160	Rai Red Bri Cul Cro Pav (la
38 151 30 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 56 10 55 60 110 55 50 85 5	0 40 roach and depar de 3 delineator pacing should b reparation or v is known. AND CHE ACING E OR RADIUS IS Spacing in Straightaway 2×A 260 220 200 170	40 40 rture rs be when VRON NOT KNOWN Chevron Spacing in Curve B 200 160 160 160	Rai Red Bri Cul Cro Pav (la
38 151 30 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 56 175 50 65 130 60 60 110 55 50 85 45	0 40 roach and depar de 3 delineator pacing should b reparation or v is known. AND CHE ACING E OR RADIUS IS Spacing in Straightaway 2×A 260 220 200 170 150	40 40 rture rs be when VRON NOT KNOWN Chevron Spacing in Curve B 200 160 160 160 160 120	Rai Red Bri Cul Cro Pav (la
38 151 30 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 56 101 includ 50 85 45 40 70 70	0 40 roach and depar de 3 delineator pacing should b reparation or v is known. E OR RADIUS IS Spacing in Straightaway 2×A 260 220 200 170 150 140	40 40 rture rs be when VRON NOT KNOWN Chevron Spacing in Curve B 200 160 160 160 160 120 120	Rai Red Bri Cul Cro Pav
38 151 30 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 50 65 130 60 110 55 50 85 45 40 70 35	0 40 roach and depar de 3 delineator pacing should b reparation or v is known. E OR RADIUS IS Spacing in Straightaway 2×A 260 220 200 170 150 140 120	40 40 rture rs be when VRON NOT KNOWN Chevron Spacing in Curve B 200 160 160 160 160 160 120 120 120	Rai Red Bri Cul Cro Pav (la
38 151 30 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 50 40 10 50 85 45 40 70 35 30 55 10	0 40 roach and depar de 3 delineator pacing should b reparation or v is known. E OR RADIUS IS Spacing in Straightaway 2×A 260 220 200 170 150 140 120 110	40 40 rture rs be when VRON NOT KNOWN Chevron Spacing in Curve B 200 160 160 160 160 160 120 120 120 80	Rai Red Bri Cul Cro Pav (la
38 151 30 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 57 101 20 50 65 130 60 110 55 50 85 45 40 70 35	0 40 roach and depar de 3 delineator pacing should b reparation or v is known. E OR RADIUS IS Spacing in Straightaway 2×A 260 220 200 170 150 140 120	40 40 rture rs be when VRON NOT KNOWN Chevron Spacing in Curve B 200 160 160 160 160 160 120 120 120	Rai Red Bri Cul Cro Pav (la

delineator spacing may be determined based on the Advisory Speed of the curve. Use the delineator curve spacing for each Advisory Speed (MPH).

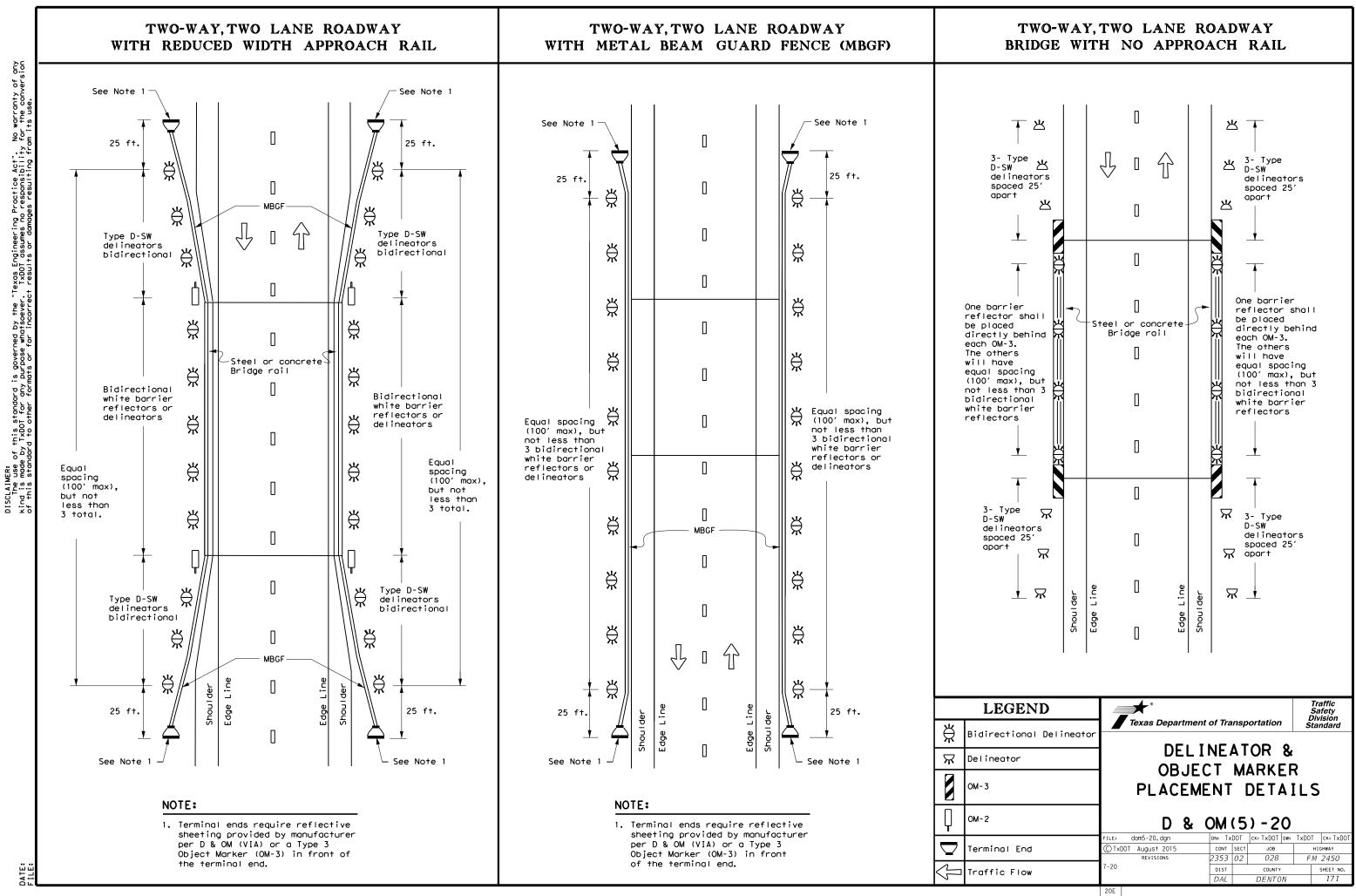
DELINEATOR AN	D OBJECT MARKER APPLI	CATION AND SPACING
CONDITION	REQUIRED TREATMENT	MINIMUM SPACING
Frwy./Exp. Tangent	RPMs	See PM-series and FPM-series standard sheets
Frwy./Exp. Curve	Single delineators on right side	See delineator spacing table
Frwy/Exp.Ramp	Single delineators on at least one side of ramp (should be on outside of curves) (see Detail 3 on D&OM(4))	100 feet on ramp tangents Use delineator spacing table for ramp curves ("straightway spacing" does not apply to ramp curves)
Acceleration/Deceleration Lane	Double delineators (see Detail 3 on D&OM(4))	100 feet (See Detail 3 on D & OM (4))
Truck Escape Ramp	Single red delineators on both sides	50 feet
Bridge Rail (steel or concrete)and Metal Beam Guard Fence	Bi-Directional Delineators when undivided with one lane each direction Single Delineators when multiple lanes each direction	Equal spacing (100'max) but not less than 3 delineators
Concrete Traffic Barrier (CTB) or Steel Traffic Barrier	Barrier reflectors matching the color of the edge line	Equal spacing 100′ max
Cable Barrier	Reflectors matching the color of the edge line	Every 5th cable barrier post (up to 100'max)
Guard Rail Terminus/Impact Head	Divided highway - Object marker on approach end Undivided 2-lane highways - Object marker on approach and departure end	Requires reflective sheeting provided by manufacturer per D & OM (VIA) or a Type 3 Object Marker (OM-3) in front of the terminal end See D & OM (5) and D & OM (6)
Bridges with no Approach Rail	Type 3 Object Marker (OM-3) at end of rail and 3 single delineators approaching rail	See D & OM(5)
Reduced Width Approaches to Bridge Rail	Type 2 and Type 3 Object Markers (OM-3) and 3 single delineators approaching bridge	Requires reflective sheeting provided by manufacturer per D & OM (VIA) or a Type 3 Object Marker (OM-3) in front of the terminal end
		See D & OM (5)
Culverts without MBGF	Type 2 Object Markers	See Detail 2 on D & OM(4)
Crossovers	Double yellow delineators and RPMs	See Detail 1 on D & OM (4)
Pavement Narrowing (lane merge) on Freeways/Expressway	Single delineators adjacent to affected lane for full length of transition	100 feet
NOTES		

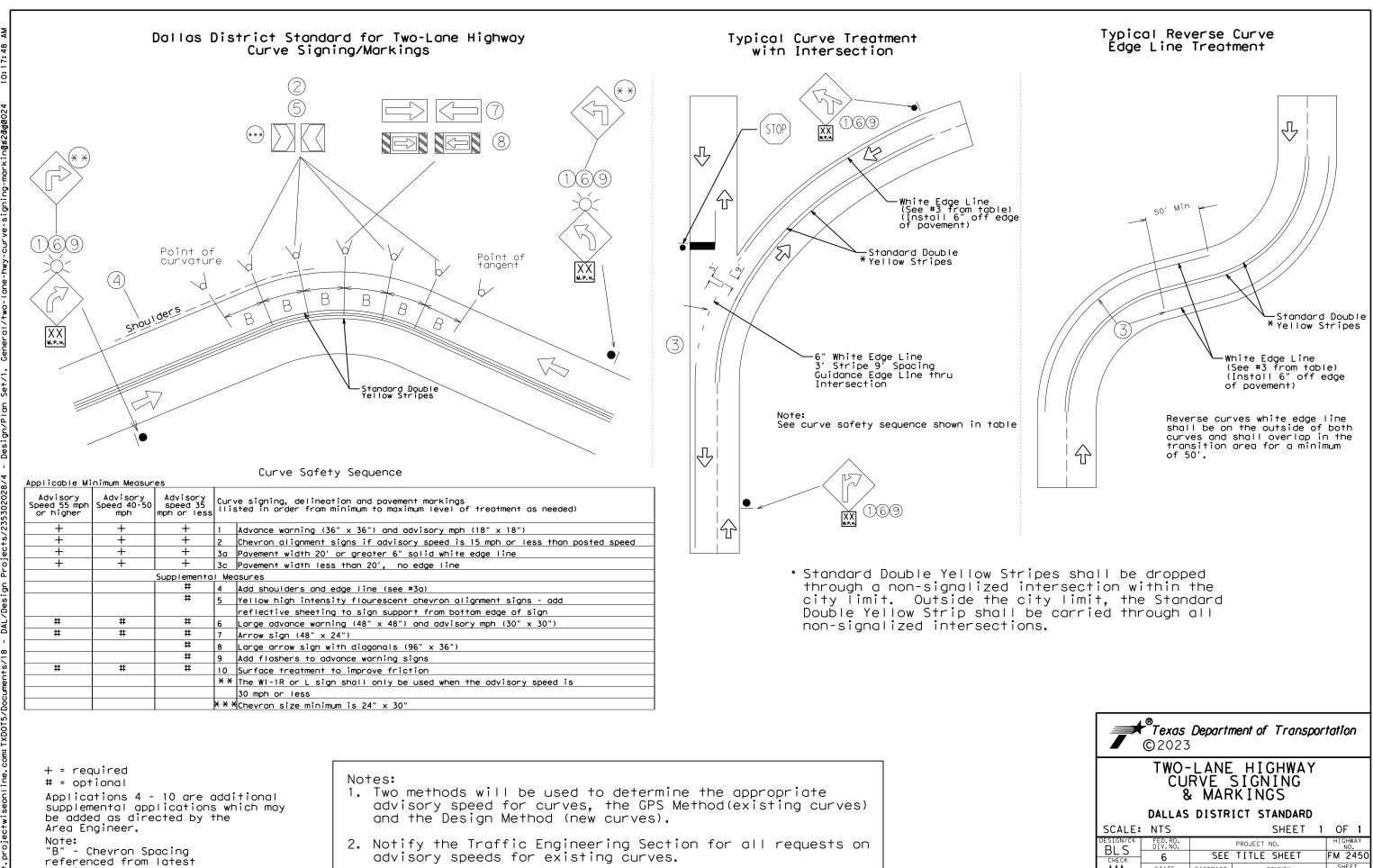
NOTES

- or barrier reflectors are placed.
- 3. Single red delineators may be mounted on the back side of delineator posts for wrong way driver applications


	LEGEND				
Ж	Bi-directio Delineator				
\mathbf{X}	Delineator				
-	Sign				

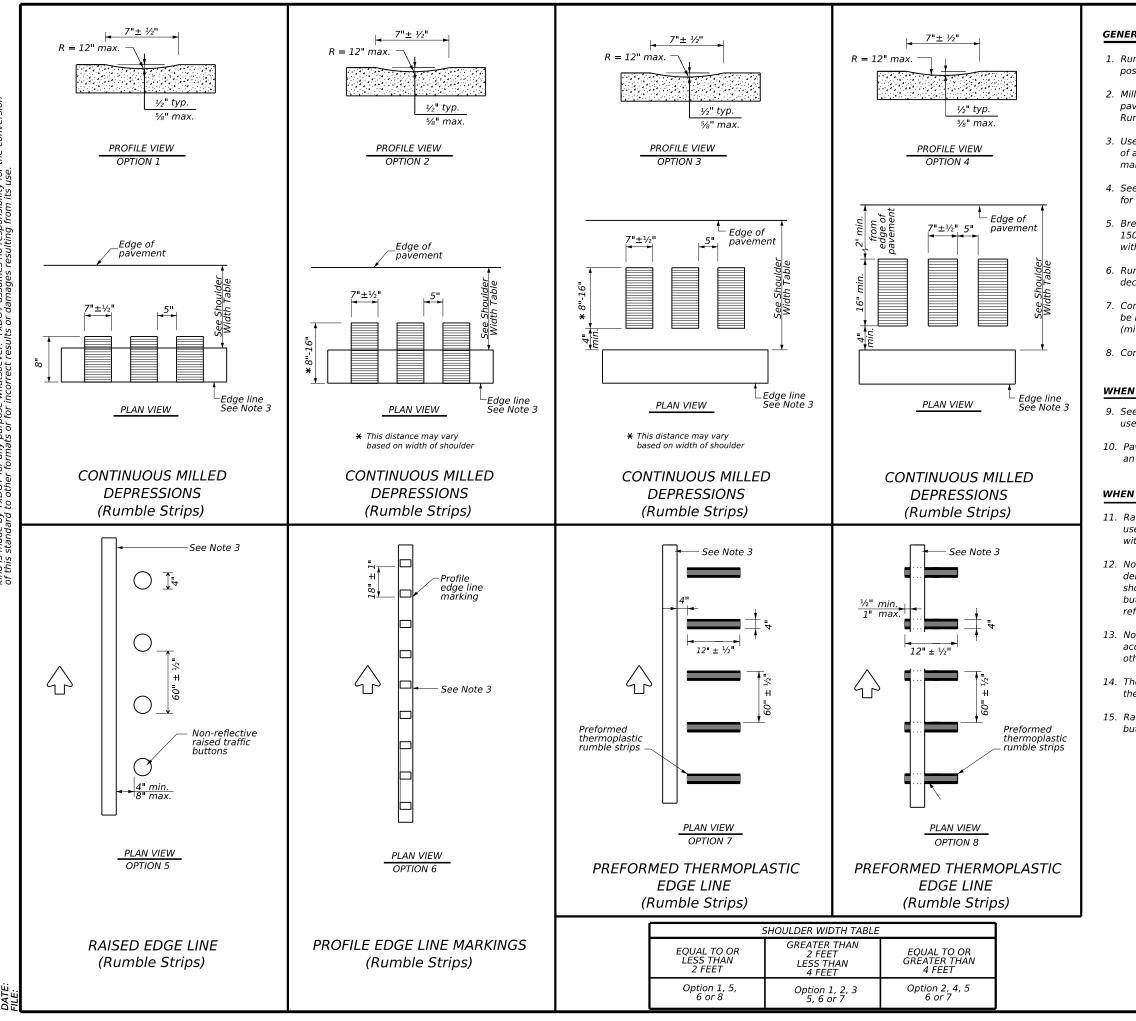
DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TxDDT for any purpose whistoever. TxDDT assumes no responsibility for the conversion


1. Unless indicated otherwise, the delineator or barrier reflector color shall conform to the color of the pavement edge line on the side of the road where the delineators


2. Barrier reflectors may be used to replace required delineators.

	Texas Departmen	nt of Transp	ortation	Traffic Safety Division Standard
onal				
	PLACEM		JEIAI	LS
	D &	OM (3) - 20)
	FILE: dom3-20.dgn	dn: TXDOT	CK: TXDOT DW:	TXDOT CK: TXDOT
	C TxDOT August 2004	CONT SECT	JOB	HIGHWAY
	REVISIONS	2353 02	028	FM 2450
	3-15 8-15	DIST	COUNTY	SHEET NO.
	8-15 7-20	DAL	DENTON	169
	200			

²⁰D



version of the D&OM(3)

standard

SCALE:	NTS		SHEET	1	OF 1		
DESIGN/CK	FED.RD. DIV.NO.			HIGHWAY NO.			
CHECK	6	SEE	TITLE SHEET		FM 2450		
MA	STATE	DISTRICT	COUNTY		SHEET NO.		
снеск ВА	TEXAS	DALLAS	DENTON				
DA CHECK	CONTROL	SECTION	JOB		172		
BB	2353	02	028		1		

this standard is governed by the "Texas Engineering Practice Act". No warranty of any by TXDOT for any purpose whatsoever. TXDOT assumes no responsibility for the conversion rd to other formats or for incorrect results or damages resulting from its use. DISCLAIMER: The use of t kind is made b of this standar

GENERAL NOTES

1. Rumble strips and profile markings shall not be placed on roadways with a posted speed limit of 45 MPH or less.

2. Milled rumble strips are preferred when adequate pavement depth is available. If pavement thickness is less than 2 inches, milled rumble strips shall not be used. Rumble strips shall not be milled or depressed into bridge decks.

3. Use Standard Sheet PM(2) and FPM(1) for positioning, dimensioning, and spacing of all reflective raised pavement markers, pavement markings, and profile markings

4. See the Shoulder Width Table below for determining what options may be used for edge line rumble strips.

5. Breaks in edge line rumble strips shall occur at least 50 feet and no more than 150 feet in advance of bridges, railroad crossings, intersections, or driveways with high usage of large trucks when installed on conventional highways.

6. Rumble strips shall not be placed across exit or entrance ramps, acceleration or deceleration lanes, crossovers, gore areas, or intersections with other roadways.

7. Consideration should be given to noise levels when edgeline rumble strips are to be installed near residential areas, schools, churches, etc. A 3/8 inch deep (minimum) milled rumble strip may be considered in these areas.

8. Consideration shall be given to bicyclists. See RS(6).

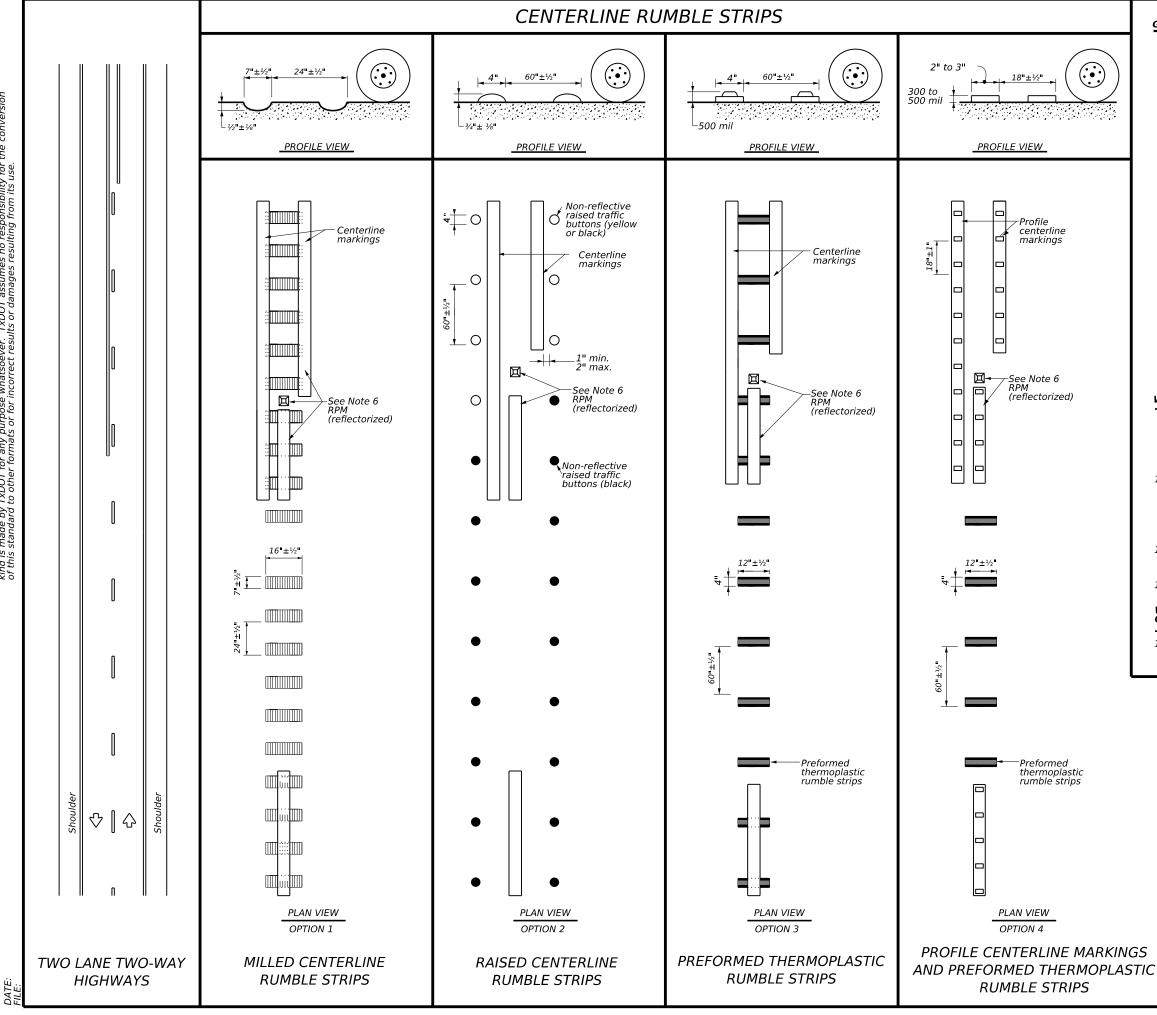
WHEN INSTALLING MILLED DEPRESSION EDGE LINE RUMBLE STRIPS:

9. See dimensions for milled rumble strips. Other shapes and dimensions may be used if approved by the Traffic Safety Division.

10. Pavement markings can be applied over milled shoulder rumble strips to create an edge line rumble strip.

WHEN INSTALLING RAISED OR PROFILE EDGE LINE RUMBLE STRIPS:

11. Raised rumble strips consisting of non-reflective raised traffic buttons may be used. Non-reflective raised traffic buttons can be affixed to asphalt or concrete with bitumen or adhesives, as per the manufacturer's recommendations.


12. Non-reflective traffic buttons shall be placed adjacent to the pavement marking delineating the edge line when used as a rumble strip. The color of the button should match the color of the adjacent edge line marking (white or yellow). The buttons will be paid for under Item 672, "Raised Pavement Markers." Nonreflective traffic buttons must meet the requirements of DMS-4300.

13. Non-reflective traffic buttons shall not be placed across exit or entrance ramps, acceleration and deceleration lanes, crossovers, gore areas or intersections with other roadways.

14. The minimum distance between the edge line and the buttons should be used if the shoulder is less than 8 feet in width.

15. Raised profile thermoplastic markings used as edge lines may substitute for buttons.

Texas Departmen	Traffic Safety Division Standard									
EDGE LINE	RU	M	BLE S	TF	RIPS					
ON UNDIVIDED										
OR										
TWO LANE HIGHWAYS										
RS(2)-23										
FILE: rs(2)-23.dgn	DN: T	<d0t< th=""><th>CK: TXDOT DW:</th><th>TxD0</th><th>T ск:TxD0T</th></d0t<>	CK: TXDOT DW:	TxD0	T ск:TxD0T					
©TxDOT January 2023	CONT	SECT	JOB		HIGHWAY					
REVISIONS	2353	53 02 028		FM 2450						
10-13 1-23	DIST	DIST COUNTY		SHEET NO.						
	DAL		DENTON		173					
91										

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any thin dis made by TXDOT for any purpose whatsoever. TXDOT assumes no responsibility for the conver of this standard to other formats or fore incorrect results or damages resulting from its use.

GENERAL NOTES

- 1. This standard sheet provides guidelines for installing centerline rumble strips on two-lane highways with or without shoulders.
- 2. Centerline and edge line rumble strips or profile markings shall not be placed on roadways with a posted speed limit of 45 MPH or less.
- 3. Milled rumble strips are preferred when adequate pavement depth is available. If pavement thickness is less than 2 inches, milled rumble strips shall not be used. Rumble strips shall not be milled or depressed into bridge decks.
- 4. See dimensions for milled rumble strips. Other shapes and dimensions may be used if approved by the Traffic Safety Division.
- 5. Breaks in milled centerline rumble strips shall occur at least 50 feet and no more than 150 feet in advance of bridges, railroad crossings, intersections or driveways with high usage of large trucks.
- 6. Use standard sheet PM(2) for positioning, dimensioning, and spacing of all reflective raised pavement markers, pavement markings and profile markings.
- 7. Consideration should be given to noise levels when centerline rumble strips are to be installed near residential areas, schools, churches, etc. A 3/8 inch deep (minimum) milled rumble strip may be considered in these areas.
- 8. Pavement markings must be applied over milled centerline rumble strips.

WHEN INSTALLING CENTERLINE RUMBLE STRIPS:

- 9. Raised rumble strips consisting of non-reflective raised traffic buttons may be used. Non-reflective raised traffic buttons can be affixed to asphalt or concrete with bitumen or adhesives, as per manufacturer's recommendations.
- 10. When using non-reflective raised traffic buttons as a centerline rumble strip, the button shall be placed adjacent to the pavement marking delineating the centerline. The buttons will be paid for under Item 672, "Raised Pavement Markers." Non-reflective traffic buttons must meet the requirements of DMS-4300.
- 11. The color of the button should be yellow for a continuous no passing roadway. Black buttons should be used in areas where passing is allowed.
- 12. Consideration shall be given to bicyclists. See RS(6).

WHEN INSTALLING EDGE LINE RUMBLE STRIPS WITH OR WITHOUT CENTERLINE RUMBLE STRIPS ON UNDIVIDED HIGHWAYS:

13. See standard sheet RS(2).

Texas Departmen	Traffic Safety Division Standard									
CEN	ITE	R <i>L</i>	.INE							
RUME	BLE	S	TRIPS	5						
ON TWO LANE										
TWO-WAY HIGHWAYS										
				473	2					
RS(4)-23										
FILE: rs(4)-23.dgn	DN: TX	(DOT	CK: TXDOT DW:	TxD0T	ск:ТхD0Т					
© TxDOT January 2023	CONT	SECT	JOB	Н	IGHWAY					
REVISIONS	2353	02	028	FM	2450					
10-13 1-23	DIST	COUNTY			SHEET NO.					
	DAL	DENTON			174					

I. STORMWATER POLLUTION PREVE	ENTION PLAN-CLEAN WA	ATER ACT SECTION 402	III. CULTURAL RESOURCES		VI. HAZARDOUS MATERIALS OR CONTAMIN	IATION ISSUES
TPDES TXR 150000; Stormwater Dis				ons in the event historical issues or	General (applies to all projects):	
required for projects with 1 or disturbed soil must protect for ltem 506.	more acres disturbed so	il. Projects with any	archeological artifacts are found du archeological artifacts (bones, burr work in the immediate area and conto		hazardous materials by conducting safety me	ne Act) for personnel who will be working with etings prior to beginning construction and a the workplace. Ensure that all workers are
List adjacent MS 4 Operator(s) t	-		IX No Action Required	Required Action		appropriate for any hazardous materials used.
They need to be notified prior 1 (Note: Leave blank only if no ac					Obtain and keep on-site Safety Data Sheets	
1. DENTON COUNTY PHASE II MS4 -	-		Action Number:			are not limited to the following categories: chemical additives, fuels and concrete curing
			1. 2.		compounds or additives. Provide protected s products which may be hazardous. Maintain p	
No Action Required 🔀 Requ	guired Action					response materials, as indicated in the SDS.
Action Number:	quired Action		IV. VEGETATION RESOURCES		In the event of a spill, take actions to minima accordance with safe work practices, and	•
1. Prevent stormwater pollution	by controlling erosion of	and sedimentation in	Preserve native vegetation to the	extent practical.		sible for the proper containment and cleanup
accordance with TPDES Permit 2. Comply with the SW3P and revi		strol pollution or		tion Specification Requirements Specs 162, in order to comply with requirements for	of all product spills.	
required by the Engineer.	-			caping and tree/brush removal commitments.	Contact the Engineer if any of the followi	
 Post Construction Site Notice the site, accessible to the p 			X No Action Required	Required Action	 Dead or distressed vegetation (not i Trash piles, drums, canisters, barre 	
4. When Contractor project speci	ific locations (PSL's) in	ncrease disturbed soil	Action Number:		 Undesirable smells or odors Evidence of leaching or seepage of s 	ubstances
area to 5 acres or more, subm	MIT NUL TO ICEQ and the E	Engineer.	1.		Does the project involve any bridge class	
II. WORK IN OR NEAR STREAMS,		TLANDS CLEAN WATER			replacement(s) (bridge class structures no	
ACT SECTIONS 401 AND 404	4		V. FEDERAL LISTED, PROPOSED THRI CRITICAL HABITAT, STATE LISTI		Yes 🕅 No	
			AND MIGRATORY BIRDS TREATY AG		If "No", then no further action is requir If "Yes", then TxDOT is responsible for co	
USACE Permit required for fill water bodies, rivers, creeks, s			No Action Required	X Required Action	Are the results of the asbestos inspection	
allowed in any sream channel be	below the ordinary High W	• •	Action Number:		Yes X No	
approved temporary stream cros	-		1. The following species could occur			icensed asbestos consultant to assist with
The Contractor must adhere to a the following permit(s):	all of the terms and con	ditions associated with	chorus frog, Woodhouse's toad, Ameri Arethaea ambulator, muskrat, eastern		the notification, develop abatement/mitiga	tion procedures, and perform management
No Permit Required			swamp rabbit, western hog-nosed skur	k, eastern box turtle, slender glass	activities as necessary. The notification 15 working days prior to scheduled demolit	
X Nationwide Permit 14 - PCN r	not Required (less than i	1/10th acre waters or		snake, timber (canebrake) rattlesnake, special note on the EPIC sheet and the	If "No", then TxDOT is still required to	
wetlands affected)			BMPs listed below to protect these s	species.	scheduled demolition.	UTTY Dana ta working duys prifer to dily
🗌 Nationwide Permit 14 - PCN F	Required (1/10 to <1/2 or	cre, 1/3 in tidal waters)		wing BMPs from Beneficial Management		ble for providing the date(s) for abatement
— Individual 404 Permit Requir	red		Practices: Avoiding, Minimizing, and Projects on State Natural Resources	Mitigating Impacts of Transportation	activities and/or demolition with careful asbestos consultant in order to minimize c	-
🗌 Other Nationwide Permit Requ	uired: NWP# 3(a)		https://ftp.txdot.gov/pub/txdot-info			ardous materials or contamination discovered
Required Actions: List Waters o			a) Section 1.2 Vegetation BMP		on site. Hazardous Materials or Contamina	
and check Best Management Pract and post-project TSS,	tices planned to control	erosion, sedimentation	b) Section 1.4 Water Quality BMP		X No Action Required	Required Action
Action Number:			 c) Section 2.4.4 Insect Pollinator E d) Section 2.6.1 Aquatic Amphibian c 		Action Number:	
		1.4-	(barrier fencing not required)		1.	
Non-reportable crossing	ngs authorized under NWP i	143	e) Section 2.6.2 Terrestrial Amphibi	ап апа кертне ВМР		
1. Culvert- STA 91+36 tributory	y to Clear Creek Stream)	Impocts	<u>Special Notes:</u> 1. Avoid harming all wildlife species i	f encountered and allow them to safely	2.	
2. Culvert- STA 140+25 tributo	ary to Morres Branch Stre	eam Impacts	leave the project site. Due diligence s	hould be used to avoid killing or		
3. Culvert- STA 180+00 tributo	ory to Morres Brooch Sta	eam Impacts	harming any wildlife species in the imp	lementation of transportation projects. erved, cease work in the immediate area,	VII. OTHER ENVIRONMENTAL ISSUES	
	-		do not disturb species or habitat and c	ontact the Engineer immediately. The	(includes regional issues such as Edw	ords Aquifer District, etc.)
The elevation of the ordinary hi to be performed in the waters of		· •	work may not remove active nests from b nesting season of the birds associated	5	X No Action Required	Required Action
permit can be found on the Bridg			are discovered, cease work in the immed			<u> </u>
Best Management Practices f	for applicable 401 Ge	neral Conditions:	Engineer immediately.	t it is unlowful to kill	Action Number:	
(Note: If CORP Permit not re	· · · · · · · · · · · · · · · · · · ·		3. The Migratory Bird Act of 1918 states the capture, collect, possess, buy, sell, trade		1.	
			young, feather or egg in part or in whole, a accordance within the Act's policies and rea	vithout a federal permit issued in		
Erosion Sedi	limentation	Post-Construction TSS	remove all old migratory bird nests from an	structure or trees where work would be		
X Temporary Vegetation X S	Silt Fence	Vegetative Filter Strips	done from October 1 to February 15. In addit to prevent migratory birds from building neg	•		
—		Retention/Irrigation Systems	In the event that migratory birds are encour	ntered on-site during project construction,		© 2024 Texas Department of Transportation
		Extended Detention Basin	efforts to avoid adverse impacts on protecte would be observed.	ed birds, active nests, eggs and/or young		Dallas District
	-	Constructed Wetlands			GENERAL NOTE:	ENVIRONMENTAL PERMITS,
—	-	Wet Basin	BVP: Best Management Practice		Any change orders and/or deviations from	ISSUES AND COMMITMENTS
Diversion Dike B	Brush Berms	Erosion Control Compost	CGP: Construction General Permit S	PCC: Spill Prevention Control and Countermeasure W3P: Storm Water Pollution Prevention Plan	the final design must be reported to the	(EPIC)
Erosion Control Compost	Erosion Control Compost	Mulch Filter Berm and Socks		SL: Project Specific Location	Engineer prior to commencement of construction activities, as additional	FED. RD. DIV. NO. FEDERAL AID PROJECT NO. HIGHWAY NO.
		Compost Filter Berm and Socks		CEQ: Texas Commission on Environmental Quality PDES: Texas Pollutant Discharge Elimination System	environmental clearance may be required.	6 SEE TITLE SHEET FM2450
Compost Filter Berm and Socks C	Compost Filter Berm and Socks	X Vegetation Lined Ditches	MS4: Municipal Separate Starnwater Sewer System 1			STATE DISTRICT COUNTY
		Sand Filter Systems	NOT: Notice of Termination 1	SACE: Threatened and Endangered Species SACE: U.S. Army Corp of Engineers		TEXAS DALLAS DENTON SHEET NO.
🗆 s	Sediment Basins	🗌 Grassy Swales	NMPR Notice of Intent	ISACE: U.S. Army Corp of Engineers ISFWS: U.S. Fish and Wildlife Service	LAST REVISION: 1/15/1	2757 00 000 175

	FED.RD. DIV.NO.	FE	HIGHWAY NO.	
	6	SE	FM2450	
	STATE	DISTRICT	1	
	TEXAS	DALLAS	DENTON	SHEET
	CONTROL	SECTION	JOB	NO.
5	2353	02	028	175

STORMWATER POLLUTION PREVENTION PLAN (SWP3):

This SWP3 has been developed in accordance with the TPDES Construction General Permit TXR150000 (CGP). The Texas Department of Transportation (TxDOT) ensures that project specifications include adequate best management practices (BMPs) for this project.

For all projects with soil disturbing activity and for projects that have Environmental, Permits, Issues, and Commitments (EPICs) dependent on stormwater controls and water quality measures TxDOT will maintain a SWP3 with all pertinent records, correspondence, environmental documents, etc. at the project field office, Area Office, or electronically.

This SWP3 is consistent with requirements specified in applicable stormwater plans and the projects environmental permits, issues, and commitments (EPICs). A copy of the CGP is included in Attachment 2.12 of the SWP3 binder.

1.0 SITE/PROJECT DESCRIPTION

1.1 PROJECT CONTROL SECTION JOB (CSJ): 2353-02-028 (FM 2450)

1.2 PROJECT LIMITS:

From: FM 455

To: FM 156

1.3 PROJECT COORDINATES:

- -97.24544 BEGIN: (Lat) 33.35835 .(Lona)
- END: (Lat) **33.265696** ,(Long) **-97.235689**
- 1.4 TOTAL PROJECT AREA (Acres): 65

1.5 TOTAL AREA TO BE DISTURBED (Acres): 55.73

1.6 NATURE OF CONSTRUCTION ACTIVITY:

SAFETY TREAT FIXED OBJECTS.	
•	

- PROFILE EDGELINE MARKINGS, PROVIDE ADDITIONAL PAVED SURFACE WIDTH,
- PROFILE CENTERLINE MARKINGS

1.7 MAJOR SOIL TYPES:

Soil Type	Description	widen
CLAY	LIGHT BROWN CLAY SAND W/ROCK	Remov □ Remov
CLAY	MEDIUM STIFF, DARK BROWN W/ CRUSH STONE	⊠ Install p ⊠ Install c □ Install r
		D Place fl
		Rework
		Blade v
		│ □ Revege
		erosio
		Other:
		□ Other:
		Other:

1.8 PROJECT SPECIFIC LOCATIONS (PSLs):

PSLs must be depicted on the Environmental Layout Sheets in Attachment 1.2 of this SWP3. PSLs may be identified during preconstruction meetings or during the construction process. Please choose from the options below:

- Second PSLs determined during preconstruction meeting
- PSLs determined during construction
- No PSLs planned for construction

Туре	Sheet #s
All off-ROW PSLs required by th	e Contractor are the Contractor's
responsibility. The Contractor sh	
by local, state, federal laws for o	
shall provide diagrams, areas of	disturbance, acreage, and

1.9 CONSTRUCTION ACTIVITIES:

Other:

BMPs for all off-ROW PSLs within one mile of the project.

Use the following list as a starting point when developing the
Construction Activity Schedule and Ceasing Record in
Attachment 2.5.)
Mobilization
Install sediment and erosion controls
Blade existing topsoil into windrows, prep ROW, clear and groups a
Remove existing pavement
Grading operations, excavation, and embankment
Excavate and prepare subgrade for proposed pavement widening
Remove existing culverts, safety end treatments (SETs)
Remove existing metal beam guard fence (MBGF), bridge rai
Install proposed pavement per plans
Install culverts, culvert extensions, SETs
Install mow strip, MBGF, bridge rail
Place flex base
Rework slopes, grade ditches
Blade windrowed material back across slopes
Revegetation of unpaved areas
Achieve site stabilization and remove sediment and erosion control measures
Other:

1.10 POTENTIAL POLLUTANTS AND SOURCES:

- Sediment laden stormwater from stormwater conveyance over disturbed area
- I Fuels, oils, and lubricants from construction vehicles, equipment, and storage
- Solvents, paints, adhesives, etc. from various construction activities
- I Transported soils from offsite vehicle tracking
- S Construction debris and waste from various construction activities
- S Contaminated water from excavation or dewatering pump-out water
- Sanitary waste from onsite restroom facilities
- ☑ Trash from various construction activities/receptacles
- □ Long-term stockpiles of material and waste

⊠ Other:	CONCRETE WASHOUT
🛛 Other:	
🗆 Other:	

1.11 RECEIVING WATERS:

Receiving waters must be depicted on the Environmental Lavout Sheets in Attachment 1.2 of this SWP3. Include Segment # for receiving waters. 1.61

	Tributaries	Classified Waterbody
)		
	* Add (*) for impaired waterbodies	
	1.12 ROLES AND RESPONSIE	BILITIES: TxDOT
	X Development of plans and spe	
	X Submit Notice of Intent (NOI) to	o TCEQ (≥5 acres)
	X Post Construction Site Notice	
	X Submit NOI/CSN to local MS4	
	X Perform SWP3 inspections	
	🕱 Maintain SWP3 records and up	odate to reflect daily operations
	X Complete and submit Notice of	f Termination to TCEQ
	X Maintain SWP3 records for 3 y □ Other:	ears
	☐ Other:	

Other:

1.13 ROLES AND RESPONSIBILITIES: CONTRACTOR X Day To Day Operational Control X Submit Notice of Intent (NOI) to TCEQ (≥5 acres) X Post Construction Site Notice X Submit NOI/CSN to local MS4 X Maintain schedule of major construction activities X Install, maintain and modify BMPs X Complete and submit Notice of Termination to TCEQ X Maintain SWP3 records for 3 years Other: _____ Other: Other: 1.14 LOCAL MUNICIPAL SEPARATE STORM SEWER SYSTEM (MS4) OPERATOR COORDINATION: MS4 Entity HRAM MANC 141660 (/CENSE SSIONAL ENG DocuSigned by: Hran Mana 2/22/2024 7E66E4980AEB4E **STORMWATER POLLUTION PREVENTION PLAN (SWP3)** [®] July 2023 Sheet 1 of 2 Texas Department of Transportation D. RD. V. NO. PROJECT NO. SHEET NO. (SEE TITLE SHEET) 176 6 STATE DIST. STATE COUNTY DENTON FEXAS DAL CONT. SECT. JOB HIGHWAY NO. 028 2353 02 FM 2450

STORMWATER POLLUTION PREVENTION PLAN (SWP3):

2.0 BEST MANAGEMENT PRACTICES (BMPs) AND CONTROLS, INSPECTION, AND MAINTENANCE

The Contractor shall be the responsible party for implementing the BMPs described herein and for complying with the SWP3 for control of erosion and sedimentation during day-to-day operations. The Contractor shall implement changes to this SWP3 approved by TxDOT within the times specified in this SWP3 or the CGP.

2.1 EROSION CONTROL AND SOIL STABILIZATION BMPs:

T/P

- □ ⊠ Protection of Existing Vegetation
- Vegetated Buffer Zones
- □ □ Soil Retention Blankets
- Geotextiles
- □ □ Mulching/ Hydromulching
- Soil Surface Treatments
- ☑ □ Temporary Seeding
- □ ⊠ Permanent Planting, Sodding or Seeding
- **Biodegradable Erosion Control Logs**
- Rock Filter Dams/ Rock Check Dams \boxtimes
- 🛛 🗆 Vertical Tracking
- Interceptor Swale
- 🗆 🛛 Riprap
- □ □ Diversion Dike
- Temporary Pipe Slope Drain
- Embankment for Erosion Control
- □ □ Paved Flumes
- □ □ Other:
- Other: ______
- □ □ Other:

2.2 SEDIMENT CONTROL BMPs:

T/P

- **Biodegradable Erosion Control Logs**
- ☑ □ Dewatering Controls
- □ □ Inlet Protection
- ⊠ □ Rock Filter Dams/ Rock Check Dams
- □ □ Sandbag Berms
- ⊠ □ Sediment Control Fence
- ⊠ □ Stabilized Construction Exit
- Floating Turbidity Barrier
- □ □ Vegetated Buffer Zones
- □ □ Vegetated Filter Strips
- □ □ Other:_____
- Other: ______
- □ □ Other:_____
- Other:

Refer to the Environmental Layout Sheets/ SWP3 Layout Sheets located in Attachment 1.2 of this SWP3

Sediment control BMPs requiring design capacity calculations (See SWP3 Attachment 1.3.):

T/P

- Sediment Trap
 - Calculated volume runoff from 2-year, 24-hour storm for each acre of disturbed area
 - □ 3,600 cubic feet of storage per acre drained
- □ □ Sedimentation Basin
 - □ Not required (<10 acres disturbed)
 - Required (>10 acres) and implemented.
 - □ Calculated volume runoff from 2-year, 24-hour storm for each acre of disturbed area
 - □ 3,600 cubic feet of storage per acre drained
 - \boxtimes Required (>10 acres), but not feasible due to:
 - ⊠ Available area/Site geometry
 - □ Site slope/Drainage patterns
 - □ Site soils/Geotechnical factors
 - Public safety
 - ☑ Other: _ Alternate BMPs are provided in SW3p for equivalent sedimentation control

2.3 PERMANENT CONTROLS:

(Coordinate post-construction BMPs with appropriate TxDOT maintenance sections.)

BMPs To Be Left In Place Post Construction:

Тура	Stationing		
Туре	From	То	
No Permanent Controls are planned			
Refer to the Environmental Layo ocated in Attachment 1.2 of this		3 Layout Sheets	

2.4 OFFSITE VEHICLE TRACKING CONTROLS:

- ☑ Excess dirt/mud on road removed daily
- Haul roads dampened for dust control
- ☑ Loaded haul trucks to be covered with tarpaulin
- ⊠ Stabilized construction exit
- Daily street sweeping
- Other: Dampen Distrubed Soil as needed for dust control

Other:

□ Other:_____

Other:

2.5 POLLUTION PREVENTION MEASURES:

- Chemical Management
- ☑ Concrete and Materials Waste Management
- Debris and Trash Management
- ⋈ Dust Control
- Sanitary Facilities

Maintain Paved Surface free of ⊠ Other: Project sedimentation and debris

Other:

Other:

2.6 VEGETATED BUFFER ZONES:

ural vegetated buffers shall be maintained as feasible to ect adjacent surface waters. If vegetated natural buffer es are not feasible due to site geometry, the appropriate itional sediment control measures have been incorporated this SWP3.

Other:_____

	Turne	Stationing			
	Туре	From	То		
s					
Defer	to the Environmental Le	vout Chaota/ CM/D2 L	avaut Shaata		
	to the Environmental La d in Attachment 1.2 of th		ayour Sneets		

2.7 ALLOWABLE NON-STORMWATER DISCHARGES:

- X Fire hydrant flushings
- X Irrigation drainage
- X Pavement washwater (where spills or leaks have not occurred, and detergents are not used)
- X Potable water sources
- X Springs
- X Uncontaminated groundwater
- X Water used to wash vehicles or control dust
- X Other allowable non-stormwater discharges as allowed by TPDES GP TXR150000.

2.8 DEWATERING:

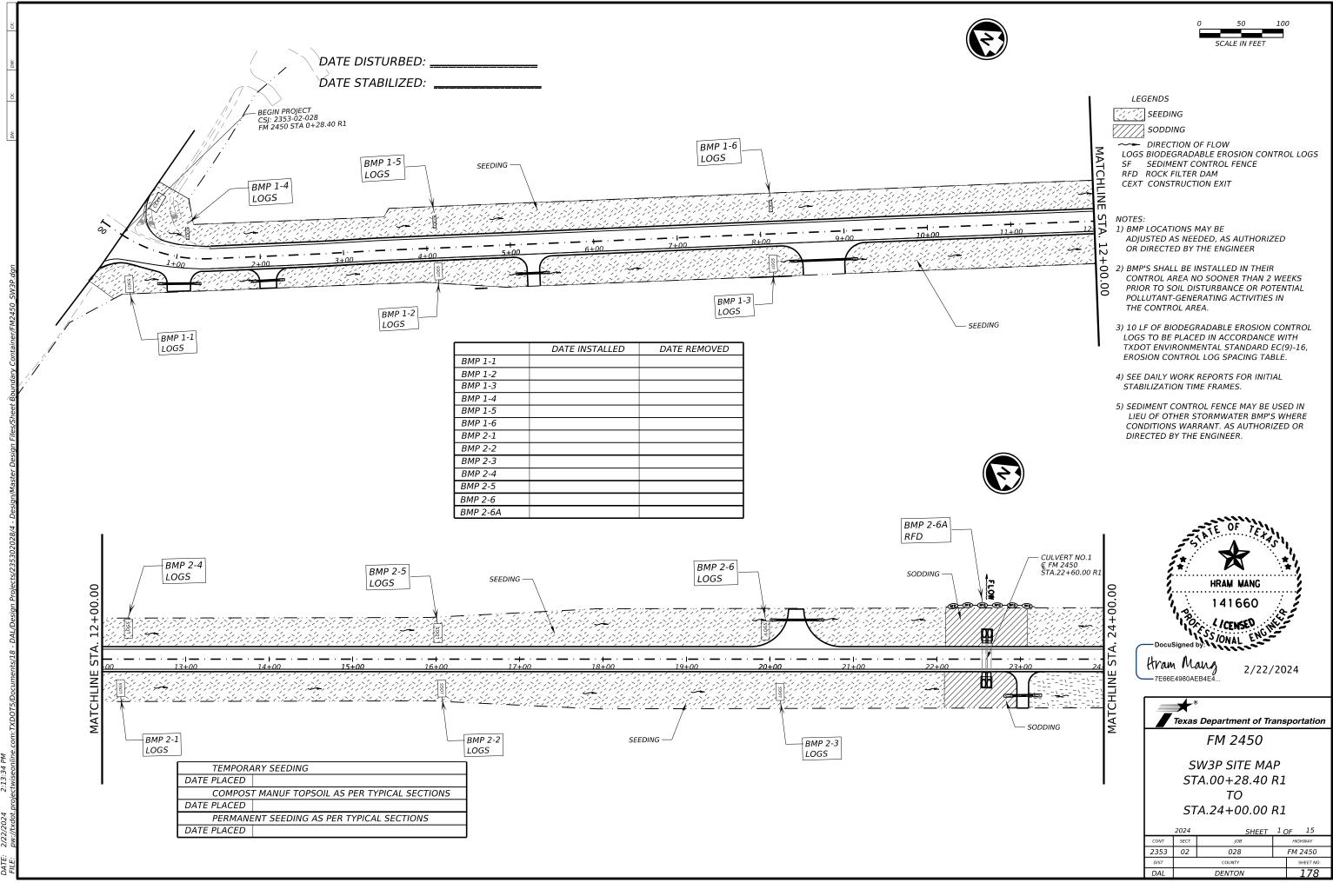
Dewatering discharges of accumulated stormwater, groundwater, and surface water including discharges from dewatering of trenches, excavations, foundations, vaults, and other points of accumulation are prohibited unless managed by appropriate controls to prevent and minimize the offsite discharge of sediment and other pollutants.

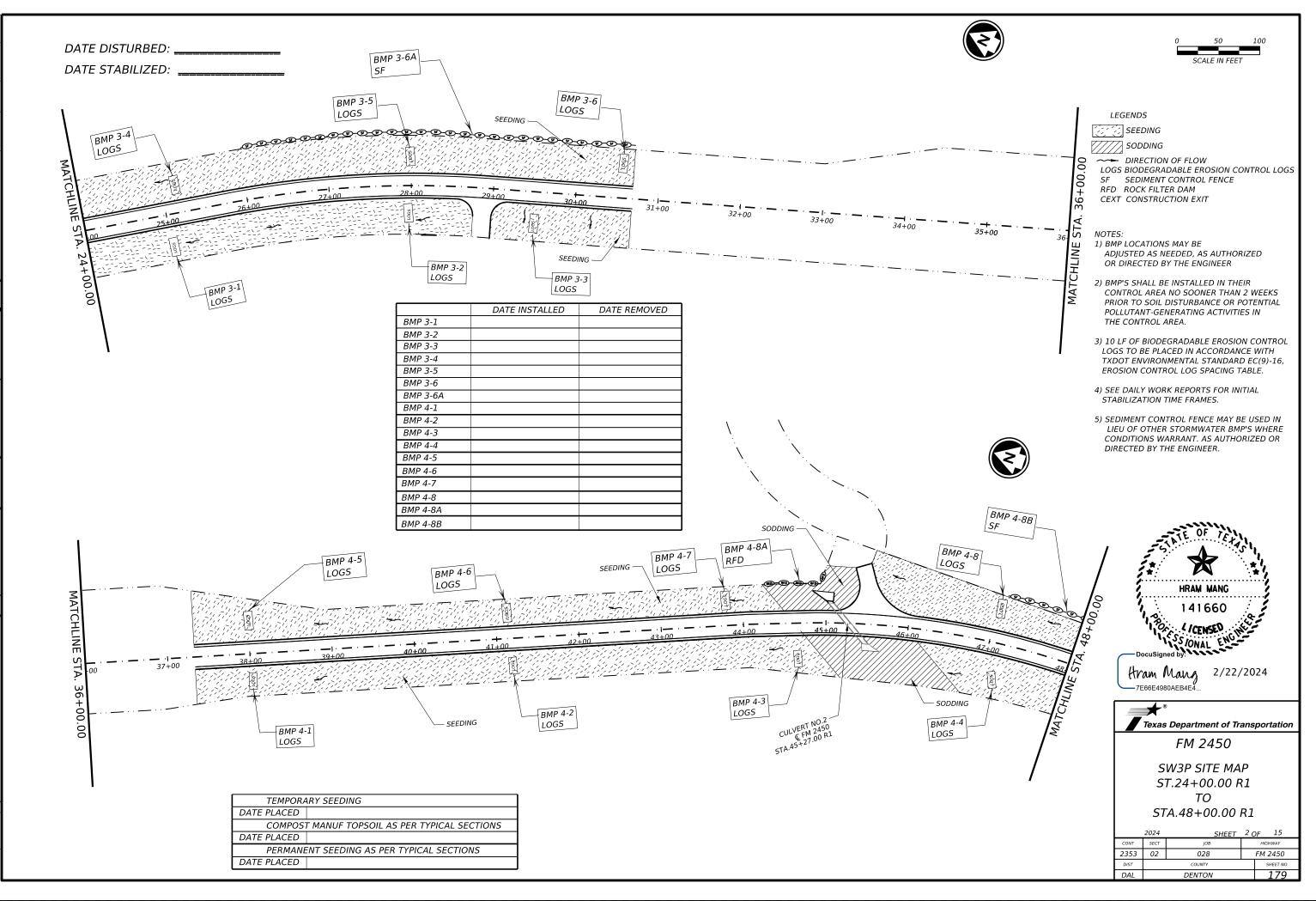
2.9 INSPECTIONS:

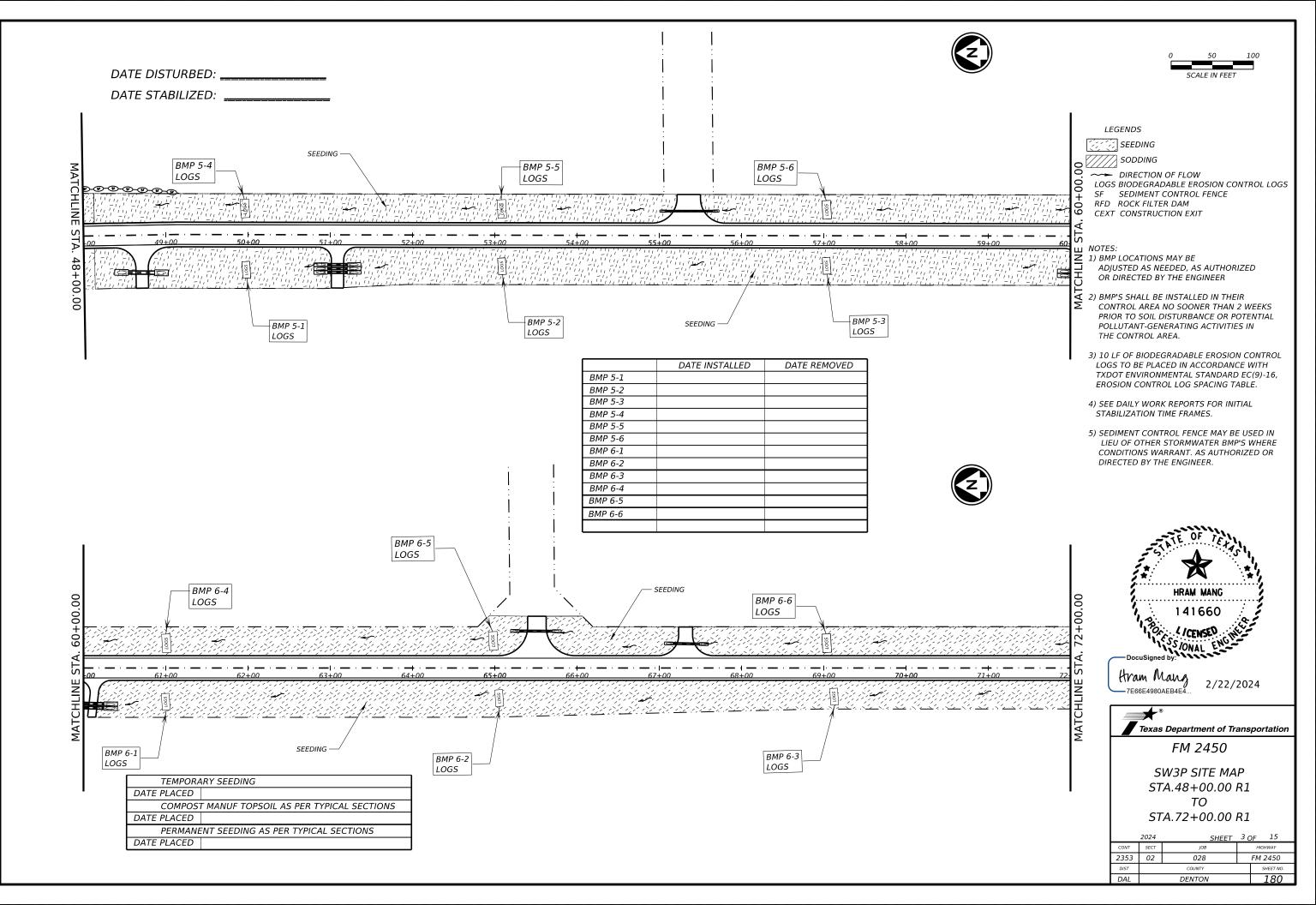
All disturbed areas and erosion and sediment control devices shall be inspected at least once every seven (7) days. Inspections shall be performed by TxDOT as indicated on the Field Inspection and Maintenance Report Form 2118 and retained in Attachment 2.5 of this SWP3.

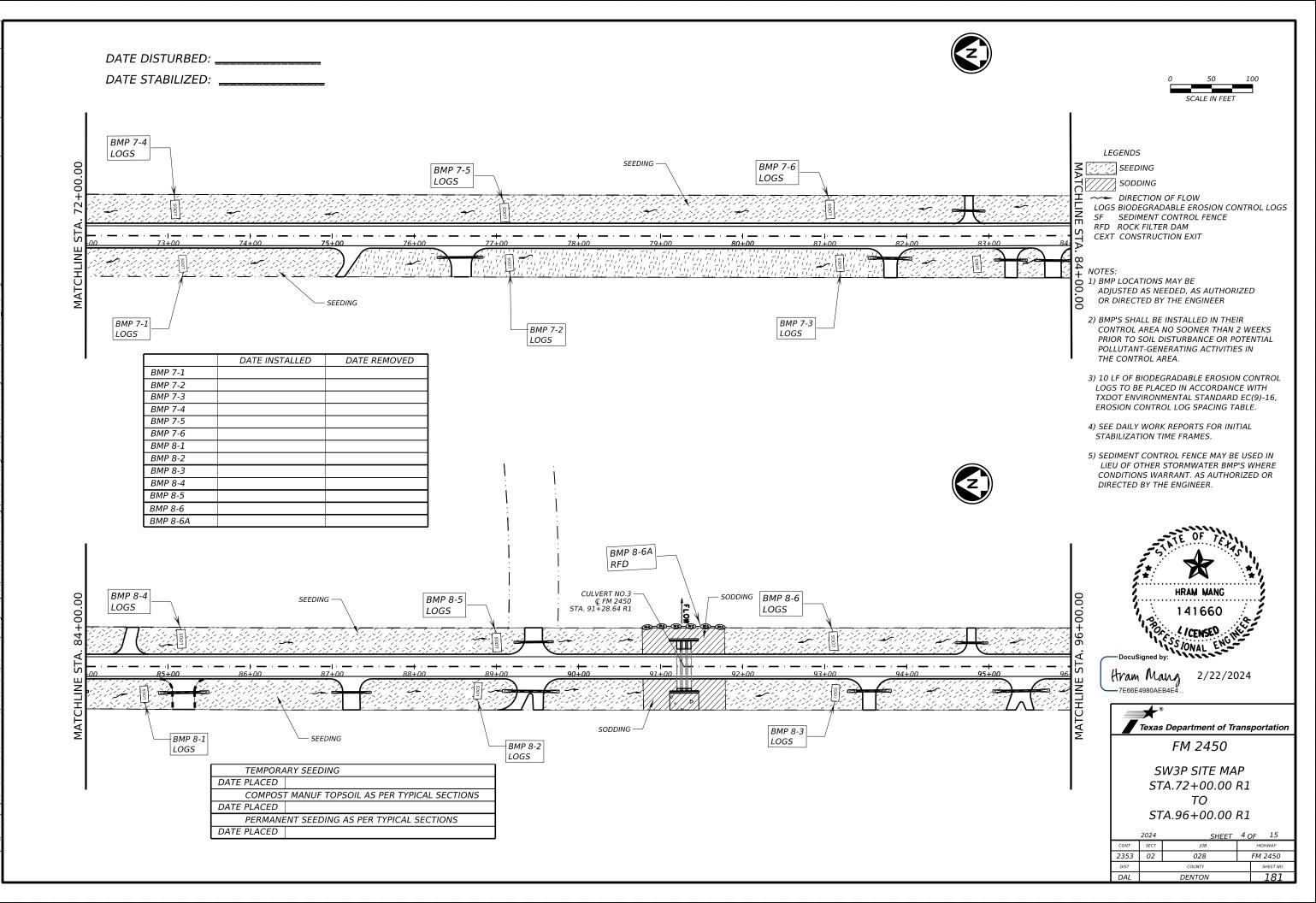
When dewatering activities are present, a daily inspection will be conducted once per day during those activities and documented in accordance with CGP and TxDOT requirements.

2.10 MAINTENANCE: Control measures shall be properly installed according to specifications. If it is determined that a BMP or control measure is not operating effectively, maintenance must be accomplished as soon as possible and before the next anticipated rain event, but in no case later than 7 calendar days after being able to access the site. Maintenance shall be performed by the Contractor as indicated on the Field Inspection and Maintenance Report Form 2118 and retained in Attachment 2.5 of this SWP3.

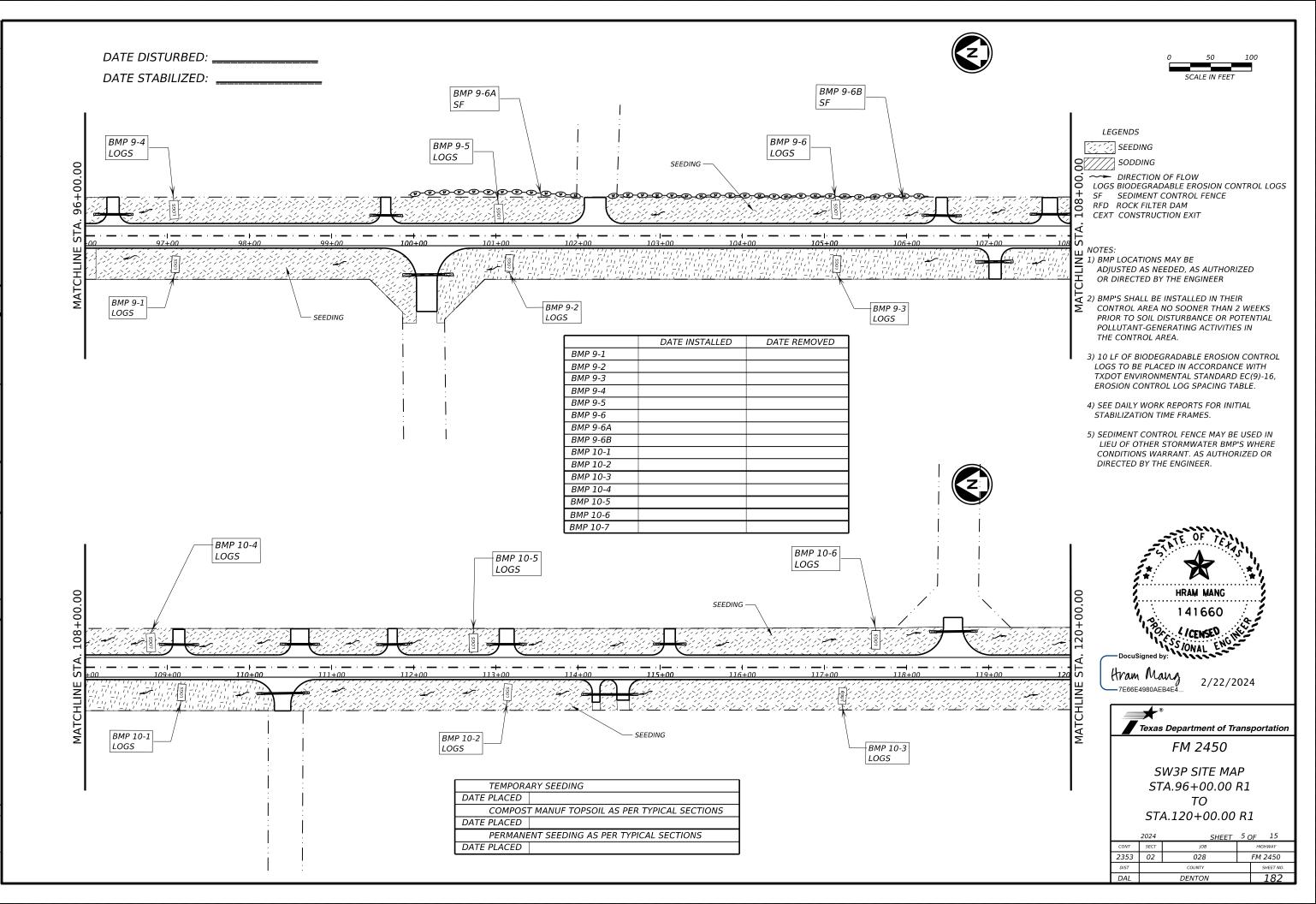


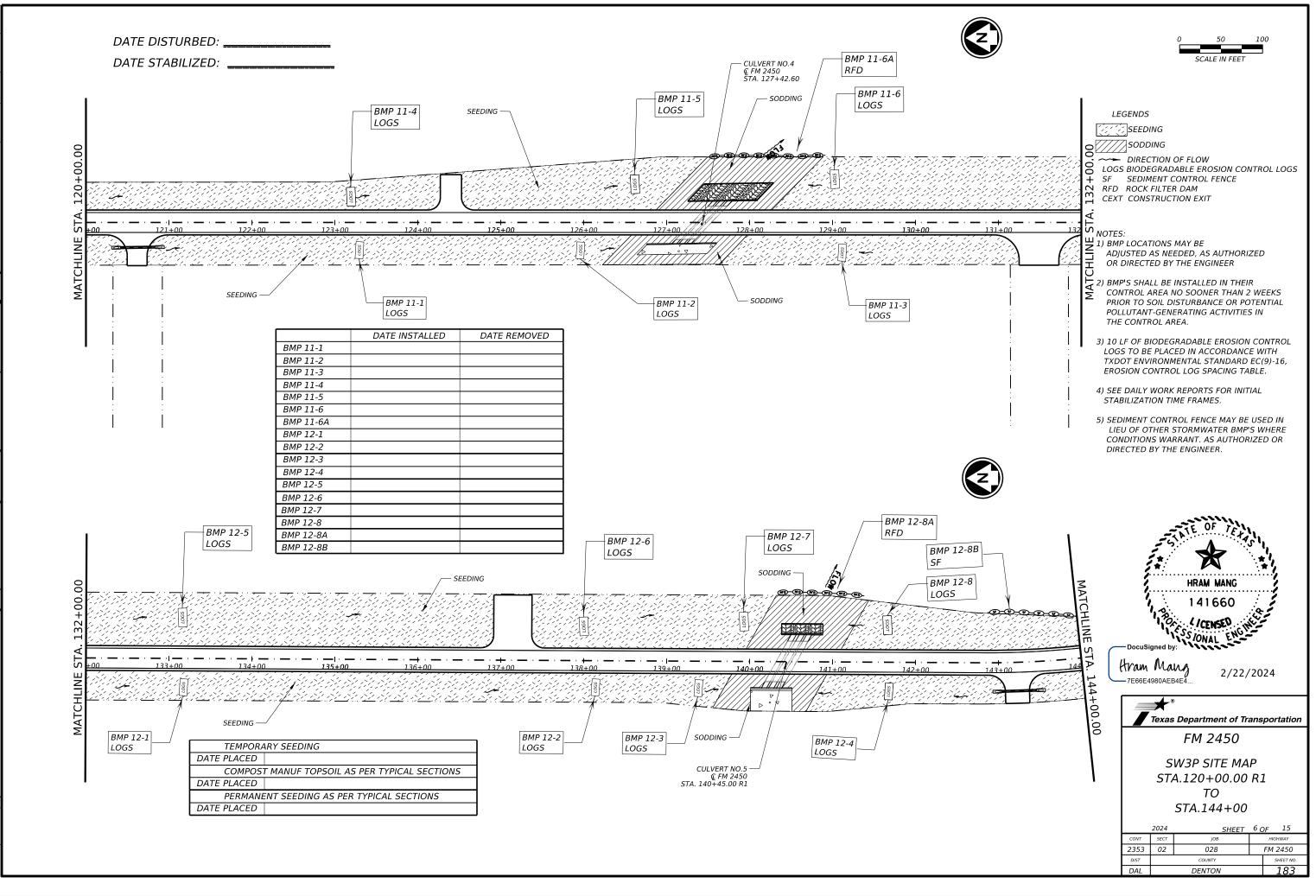

STORMWATER POLLUTION PREVENTION PLAN (SWP3)

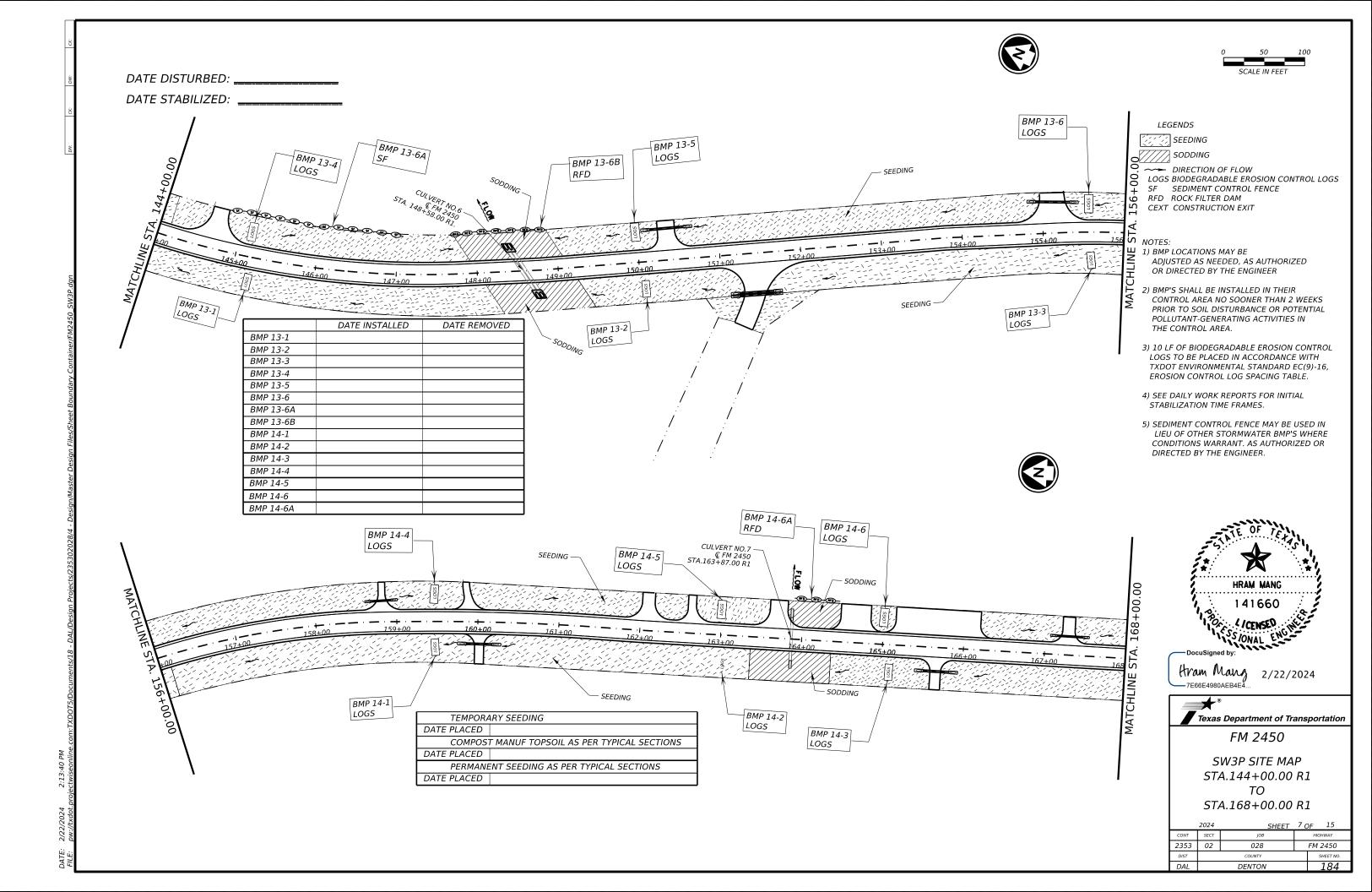

²⁰²³ July 2023 Sheet 2 of 2

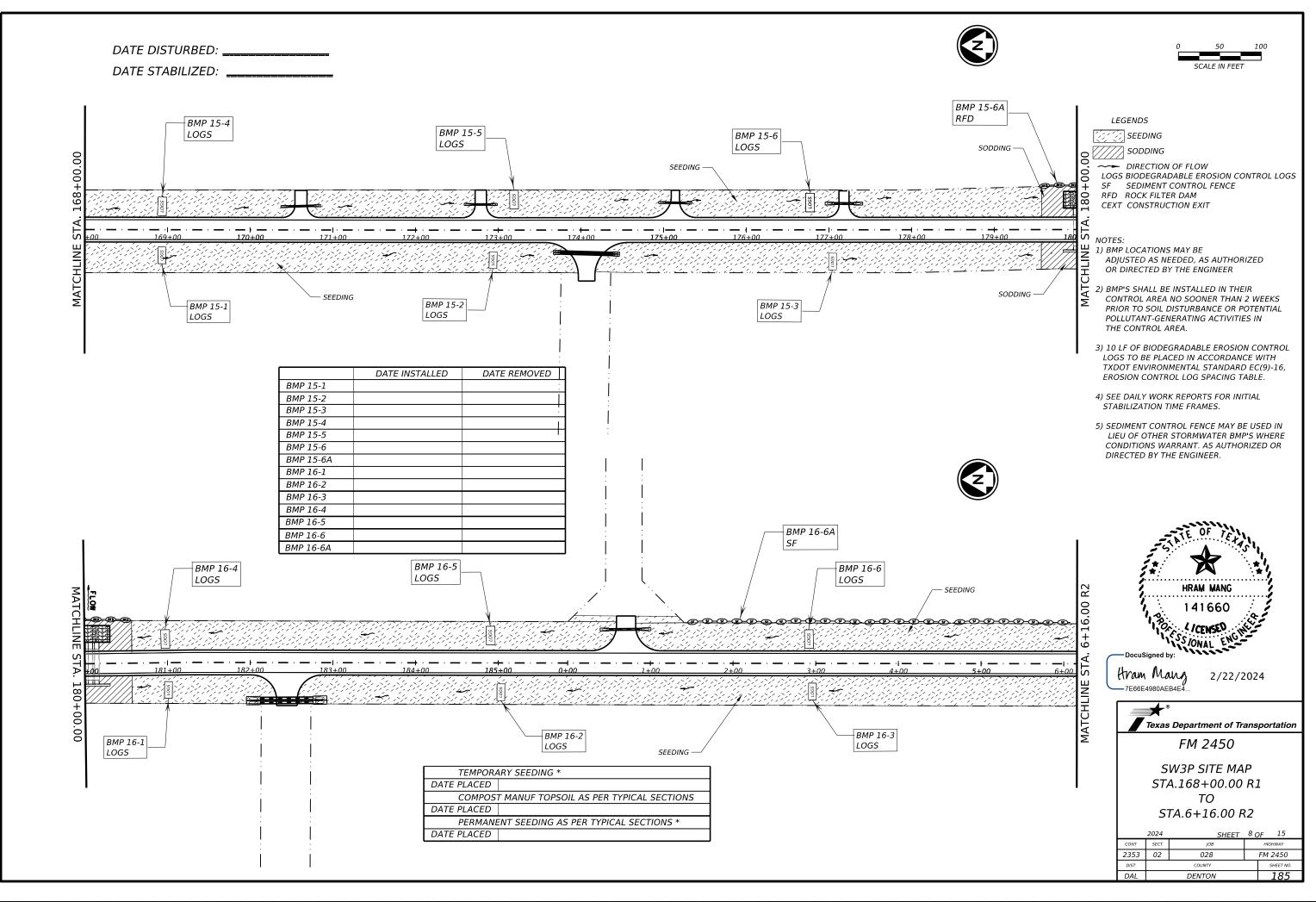

Texas Department of Transportation

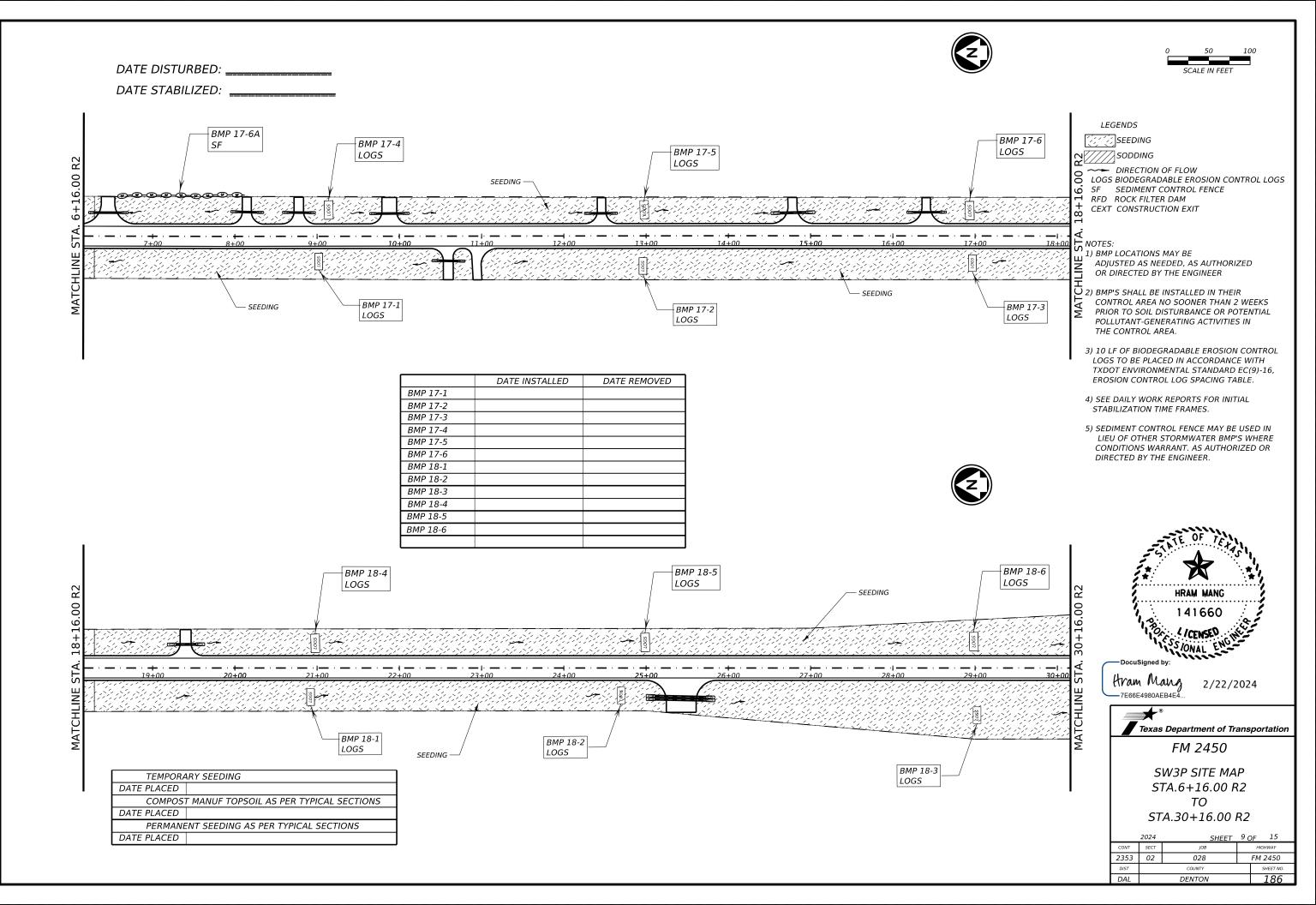
1.						
	FED. RD. DIV. NO.		PROJECT NO.			
	6		(SEE TITLE SHEET) 177			
	STATE		STATE DIST.	COUNTY		
	TEXAS	AS DAL DENTON				
	CONT.		SECT.	JOB	HIGHWAY NO.	
	2353		02	028	FM 245	0

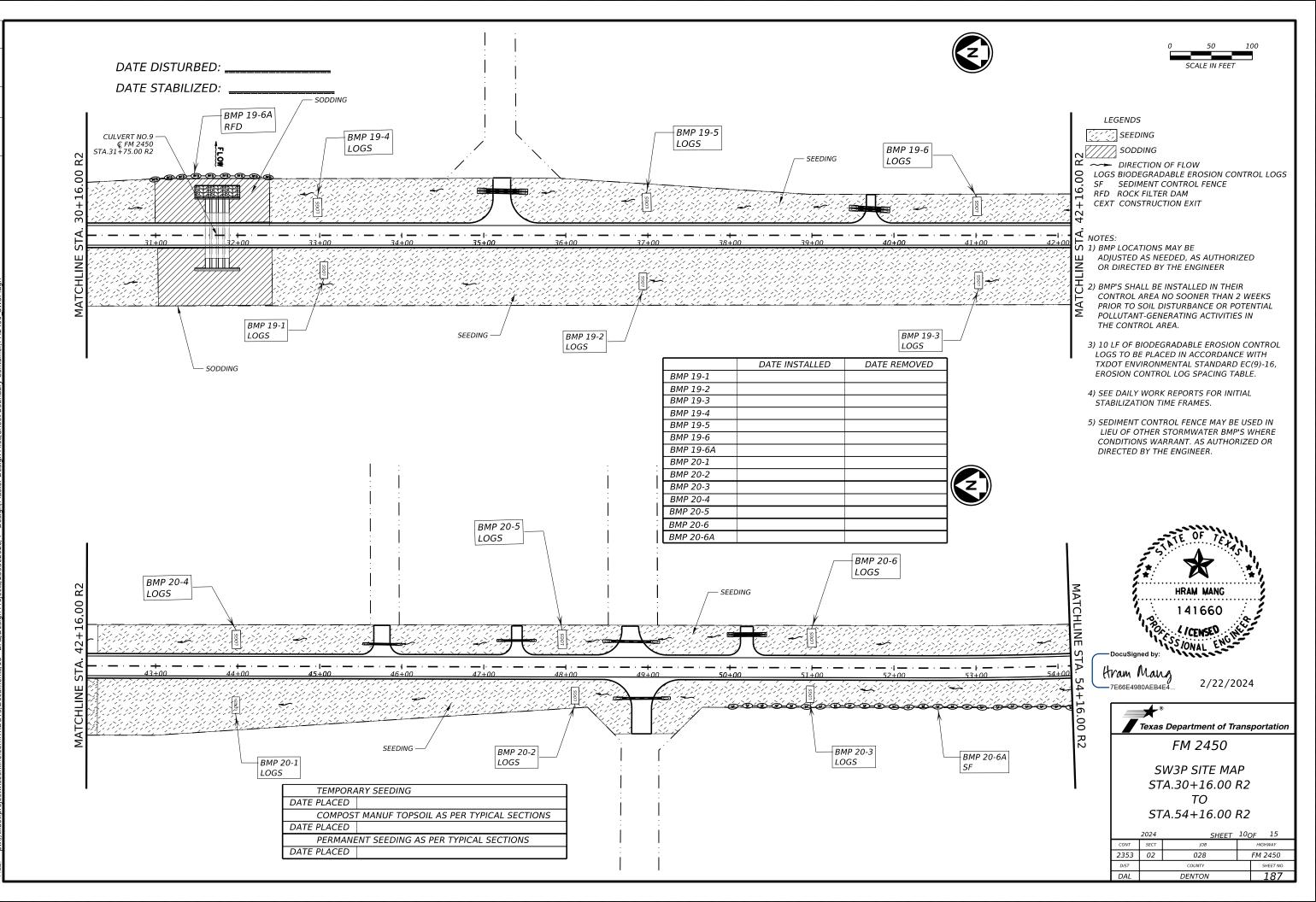


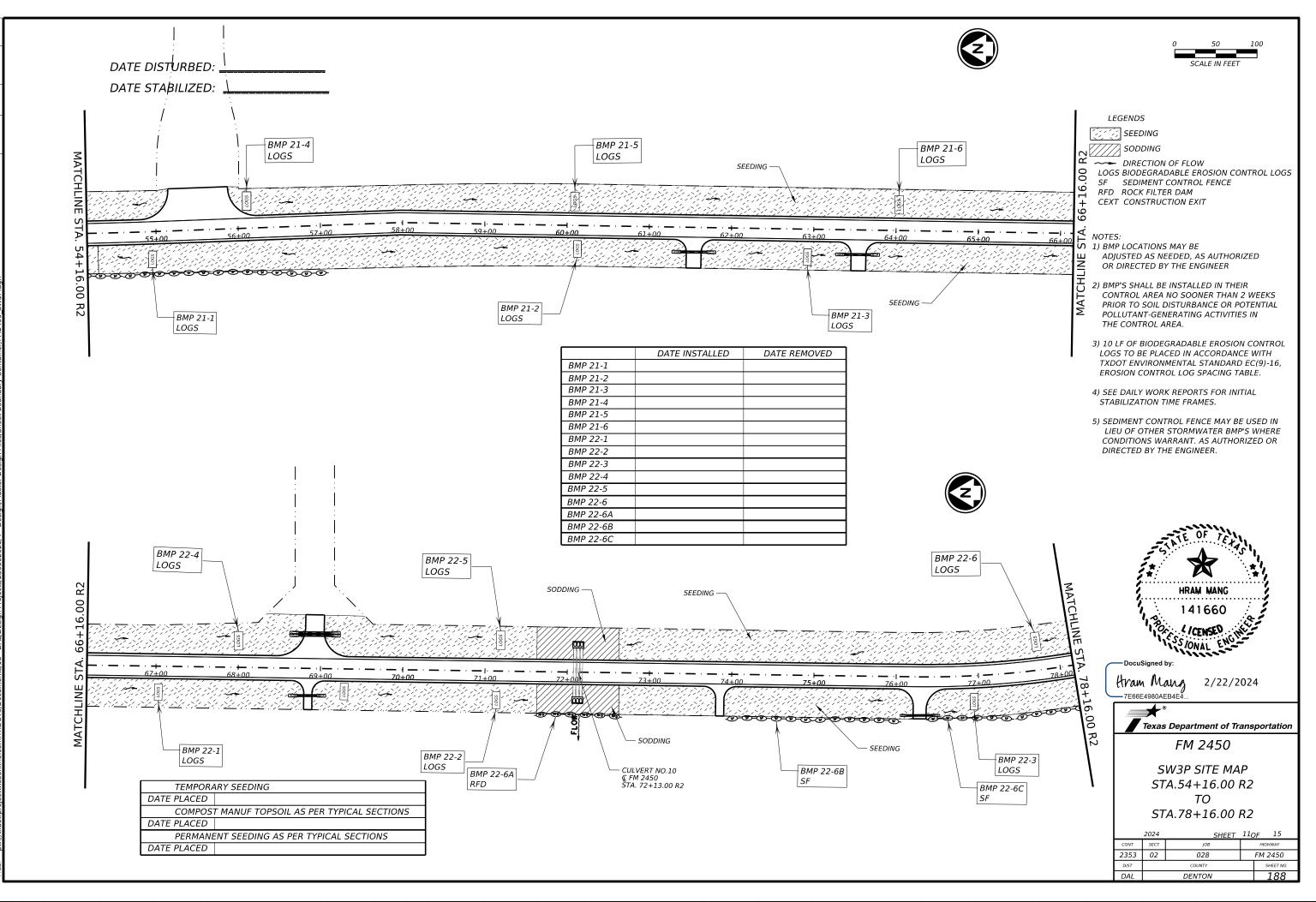


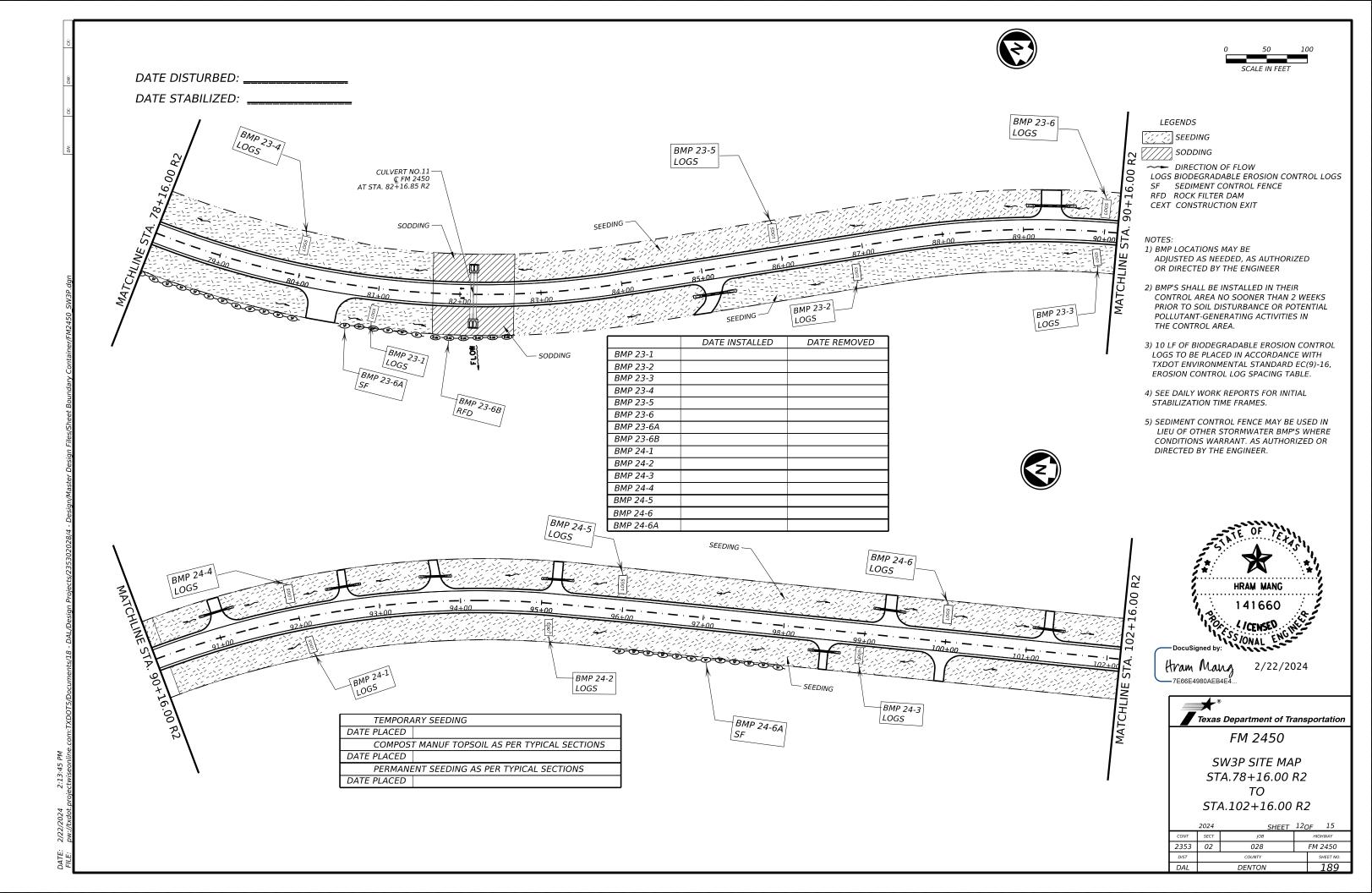


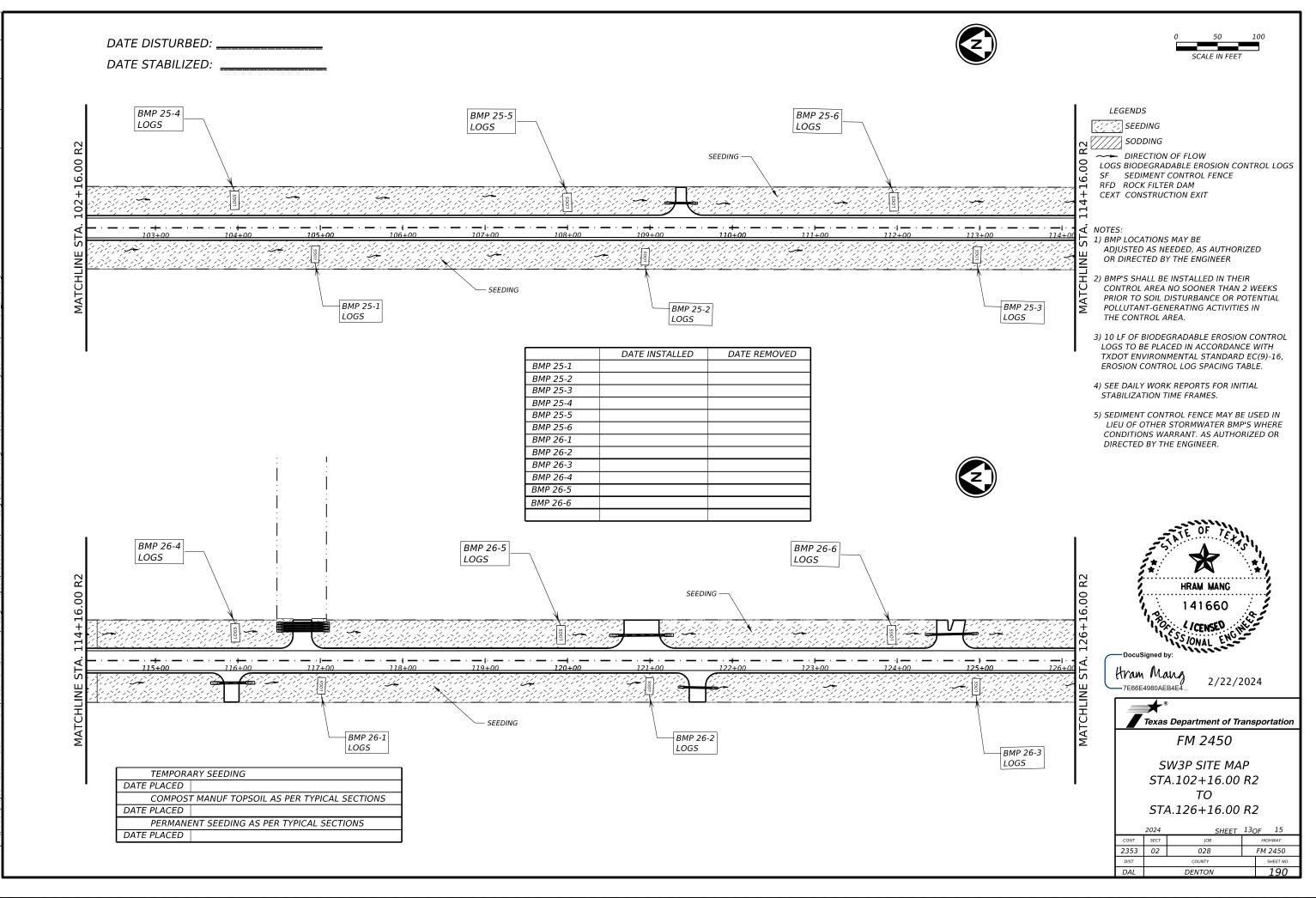



2:13:.

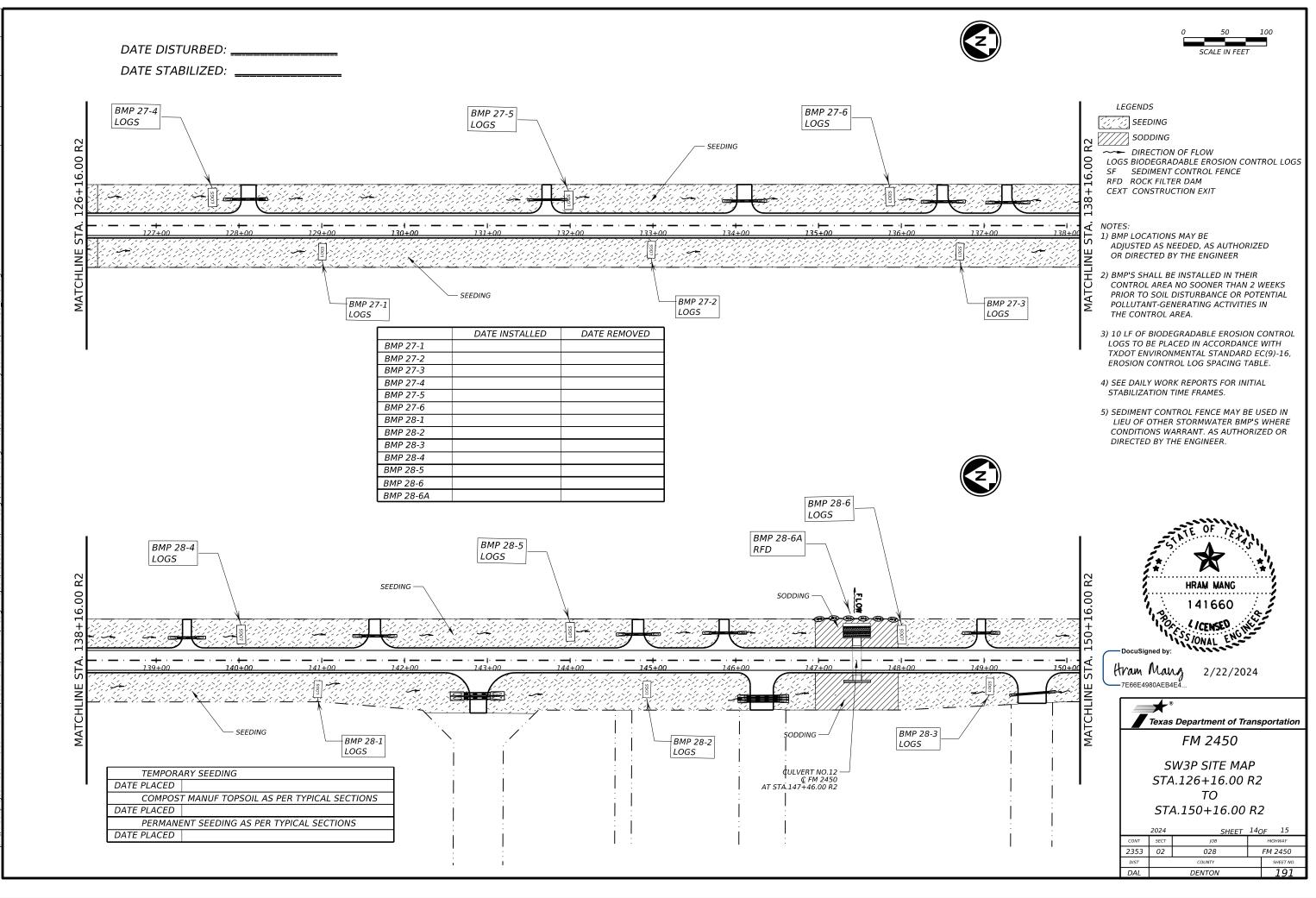


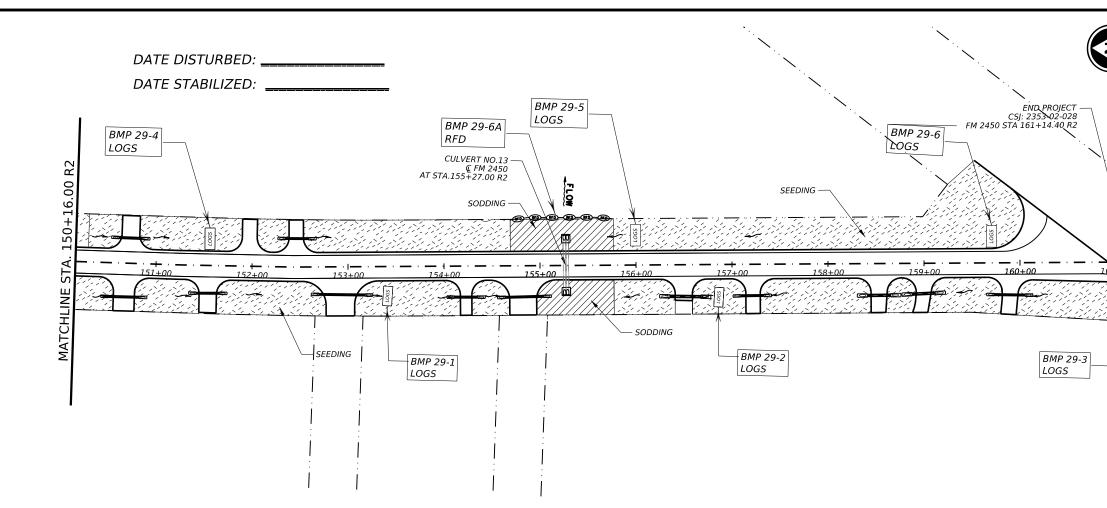




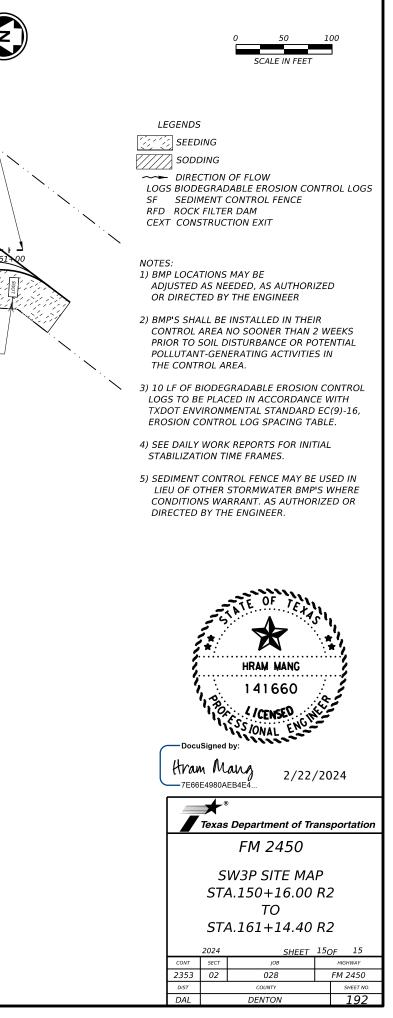


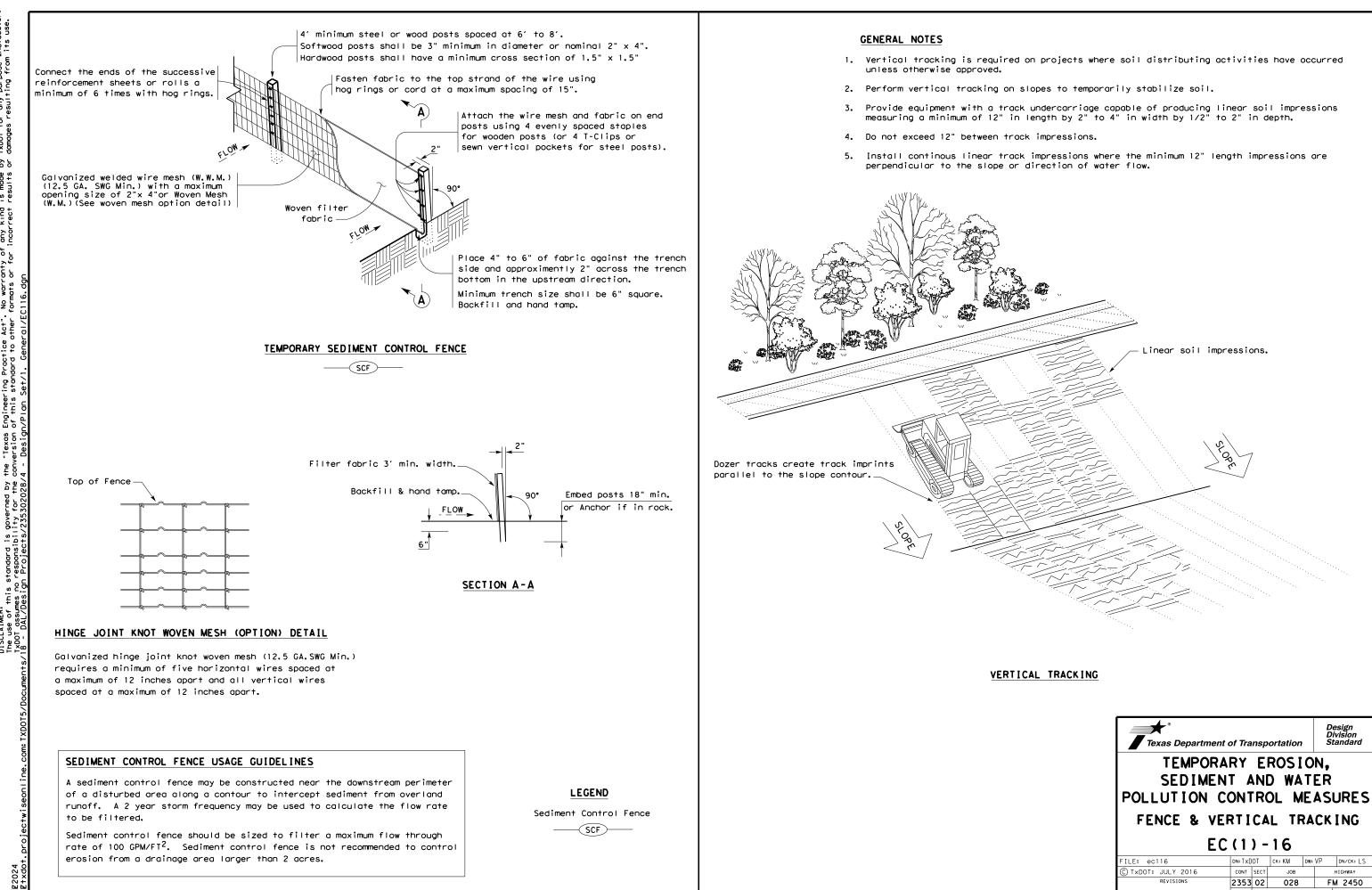
2:13:





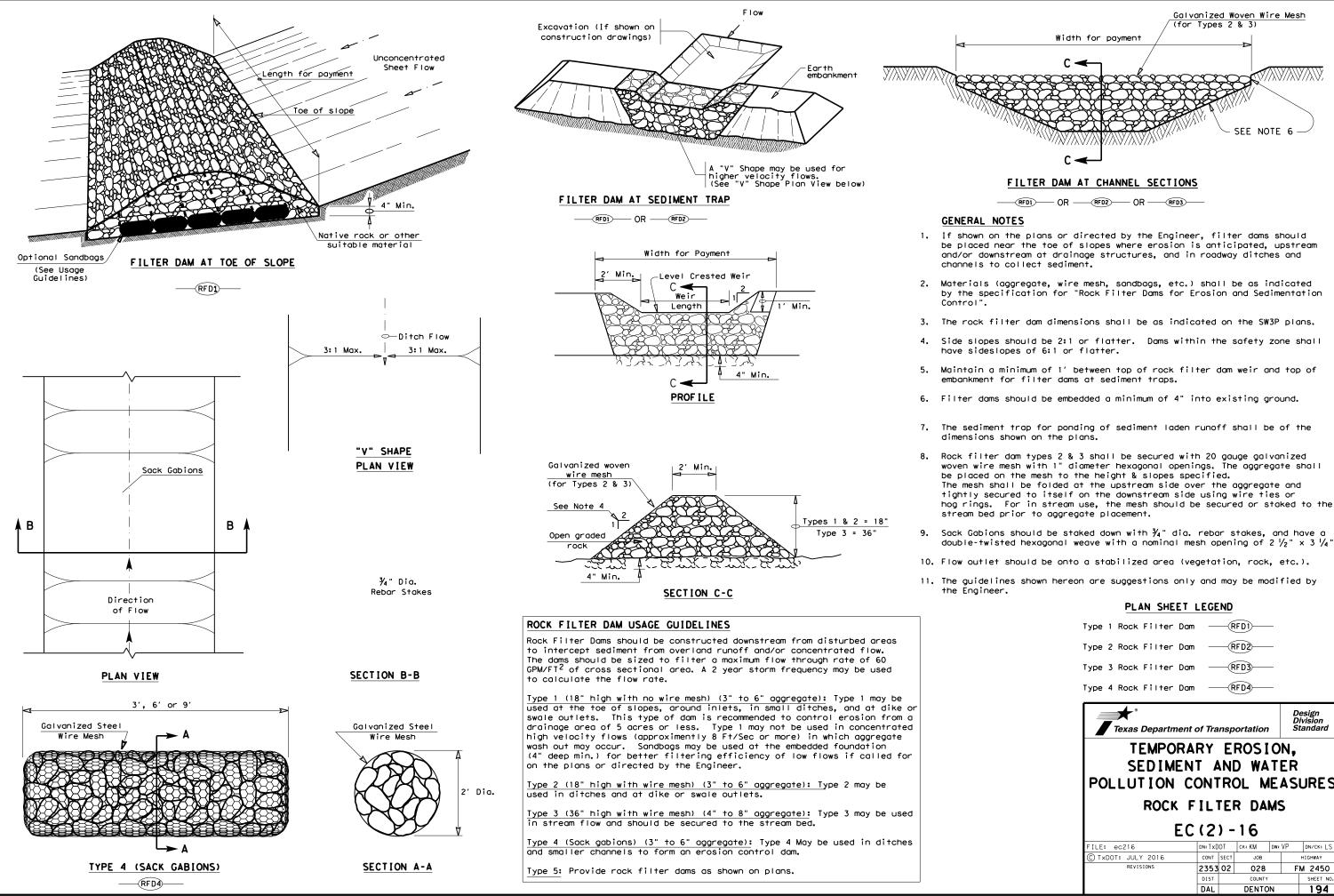
2:13:

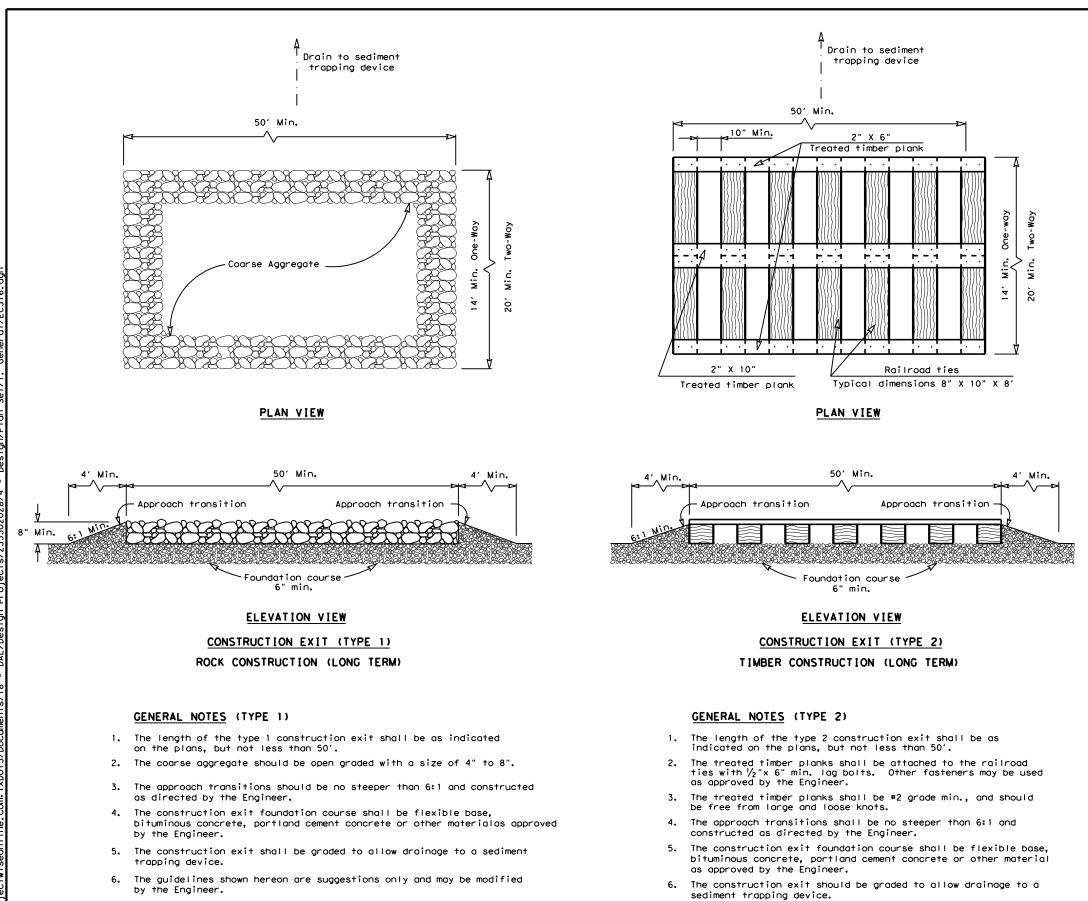




	DATE INSTALLED	DATE REMOVED
BMP 29-1		
BMP 29-2		
BMP 29-3		
BMP 29-4		
BMP 29-5		
BMP 29-6		
BMP 29-6A		

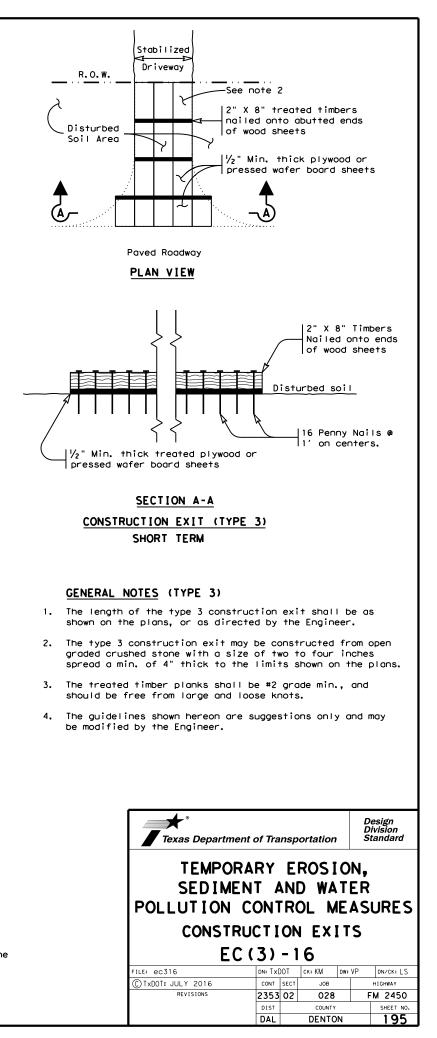
TEMPORARY SEEDING					
DATE PLACED					
COMPOST MANUF TOPSOIL AS PER TYPICAL SECTIONS					
DATE PLACED					
PERMANENT SEEDING AS PER TYPICAL SECTIONS					
DATE PLACED					

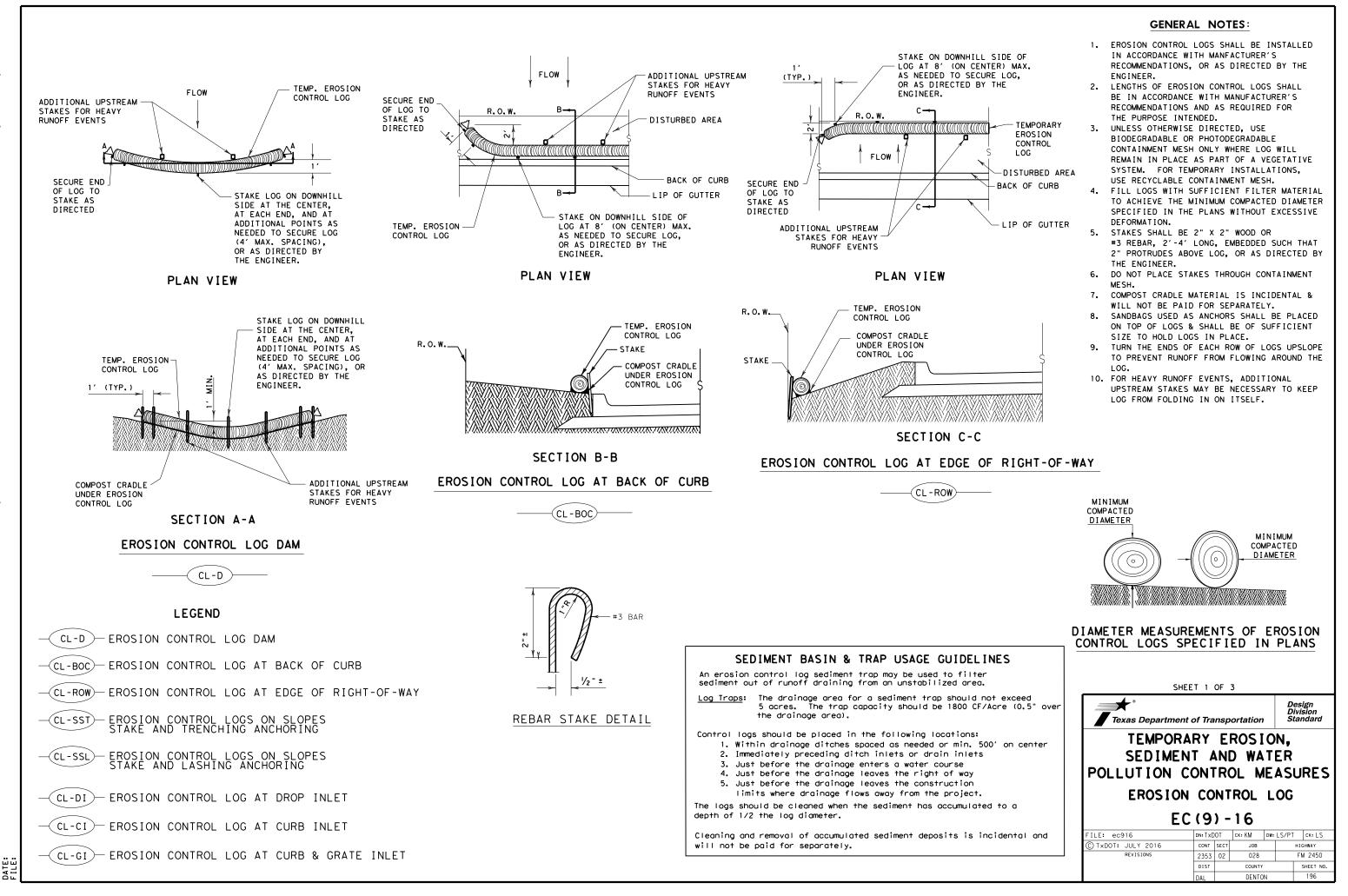

48 2:13: DATE

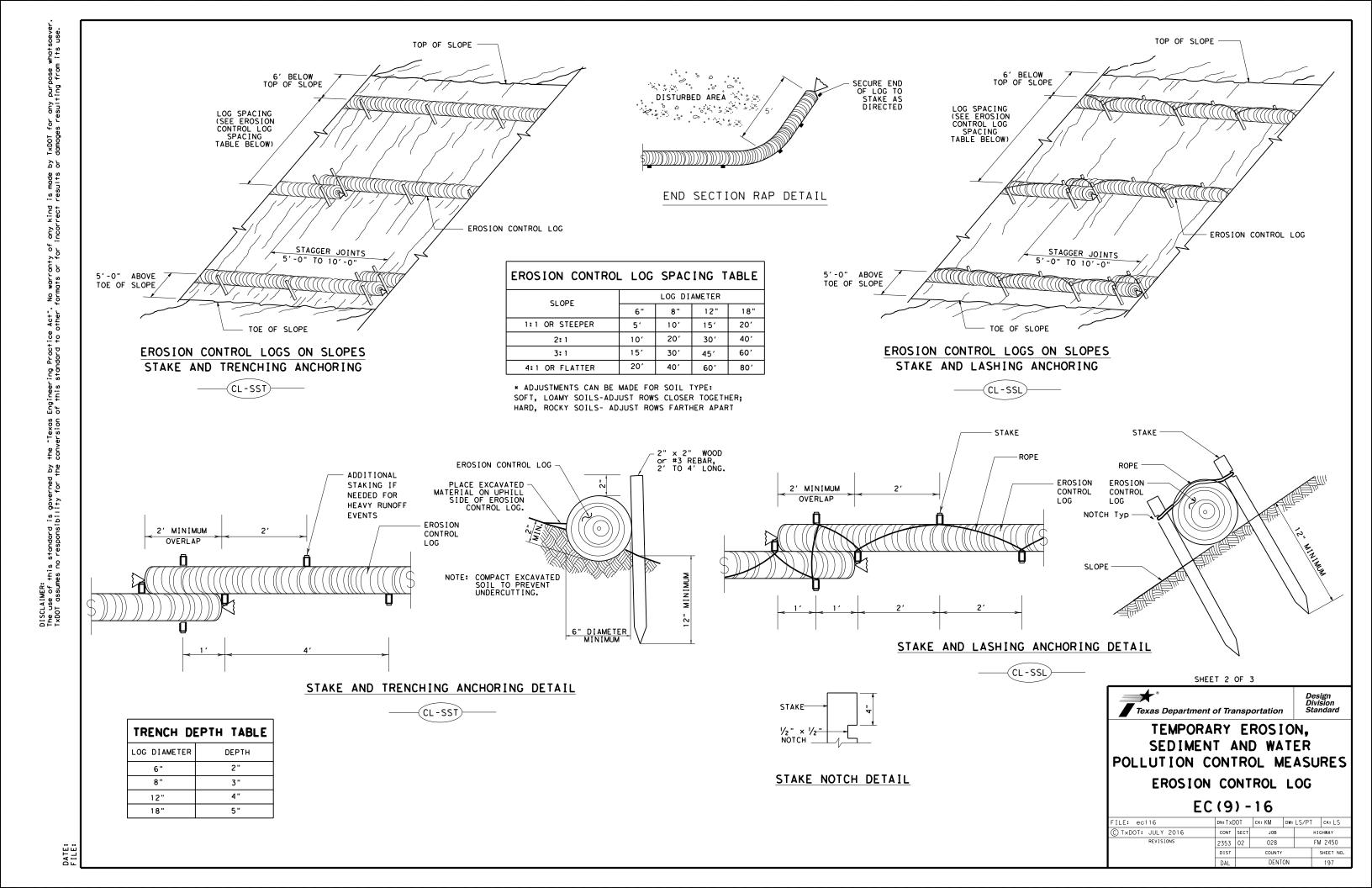


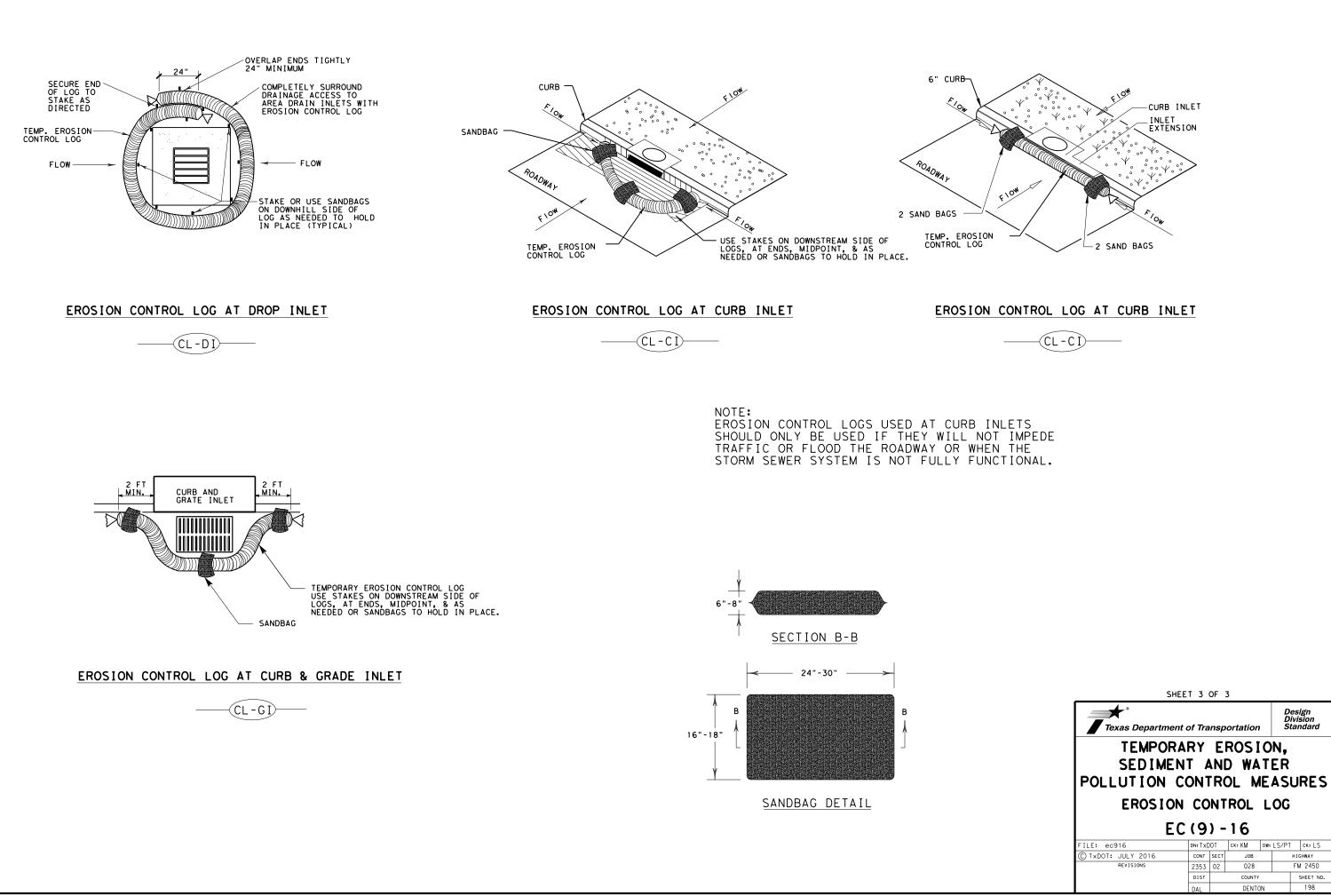
Texas Department of Transportation						
TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES						
FENCE & VERTICAL TRACKING						
EC	(1) -	16			
				1	VD	
FILE: ec116	DN: T x D	OT	ск: КМ	DW:	٧P	DN/CK: LS
FILE: ec116 © TxDOT: JULY 2016	DN: T X [] CONT	OT sect	ск: КМ ЈОВ	DW:	VP	DN/CK: LS HIGHWAY
	-	SECT		DW:		
© TxDOT: JULY 2016	CONT	SECT	JOB	DW:		HIGHWAY

		_					
Type 1 Rock Filter Do		-(F	RFD1	_			
Type 2 Rock Filter Do	m	-(F	RFD2	_			
Type 3 Rock Filter Dam							
Type 4 Rock Filter Do	m	-(F	RFD4				
Texas Departmen	nt of Tra	nsn	outotion		Di	esign ivision andard	
· ·		•					
TEMPOR SEDIMEN POLLUTION (ROCK	ARY NT A CONT FIL1	E NI R(ROSI DWA OLM RDA	0 T E	EŘ ASI		
TEMPOR SEDIMEN POLLUTION (ROCK	ARY NT A CONT	E NI R(ROSI DWA OLM RDA	0 T E	EŘ ASI		
TEMPOR SEDIMEN POLLUTION (ROCK E(ARY NT A CONT FIL1	E NI R(FEI) -	ROSI DWA OLM RDA	0 T E	EŘ ASI S		
TEMPOR SEDIMEN POLLUTION (ROCK E(FILE: ec216 © TXDOT: JULY 2016	ARY NT A CON1 FIL 1 C (2	E NI R(FEI) -	ROSI DWA DLM RDA	O T E M	EŘ ASI S	URES	
TEMPOR SEDIMEN POLLUTION (ROCK E(ARY NT A CONT FILT C(2	E NI R(FEI) -	ROSI DWA DLM RDA 16	O T E M	EŘ ASI S	URE S	
TEMPOR SEDIMEN POLLUTION (ROCK E(FILE: ec216 © TXDOT: JULY 2016	ARY NT A CON1 FIL 1 C (2	E NI R(FEI) -	ROS I D WA OL M R DA 16		EŘ ASI S	DN/CK: LS HIGHWAY	

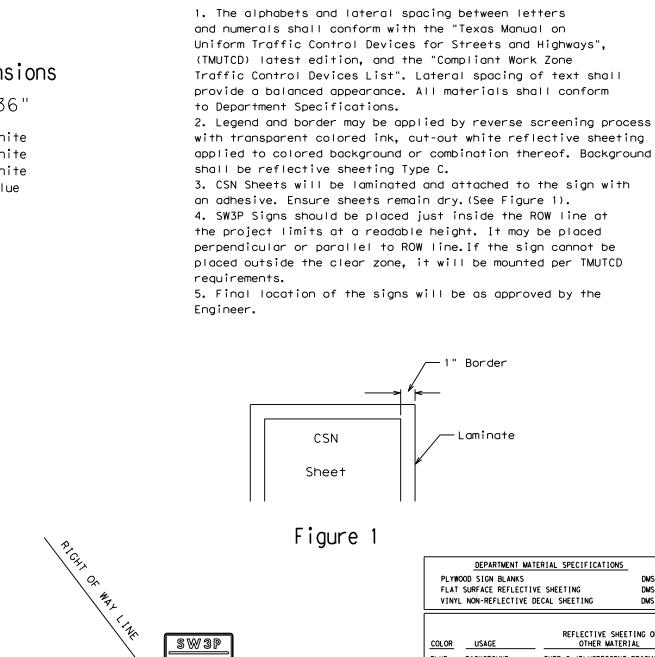


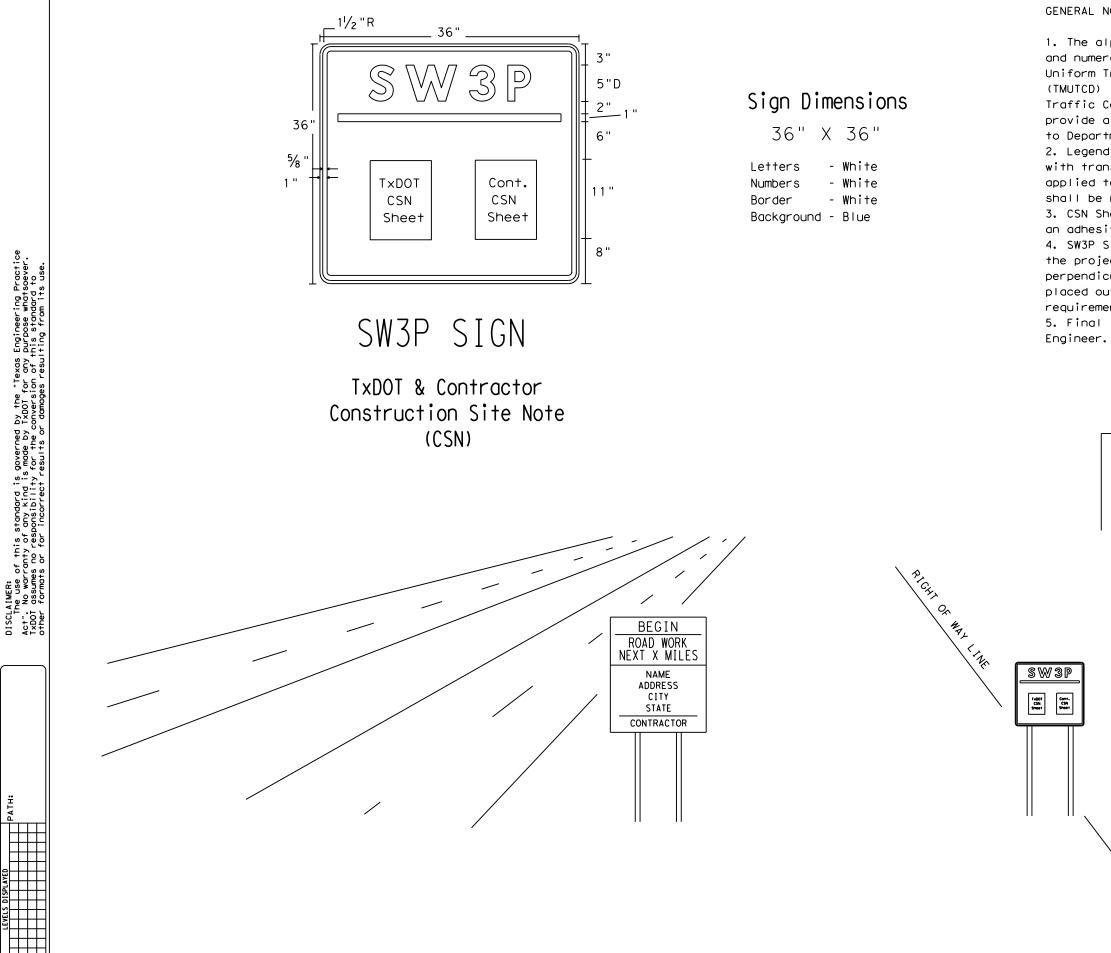

7. Construct exits with a width of at least 14 ft. for one-way and 20 ft. for two-way traffic for the full width of the exit, or as directed by the engineer.


be modified by the Engineer.
8. Construct exits with a width of at least 14 ft. for one-way and 20 ft. for two-way traffic for the full width of the exit, or as directed by the engineer.


The guidelines shown hereon are suggestions only and may

7.





GENERAL NOTES:

Ë

with transparent colored ink, cut-out white reflective sheeting applied to colored background or combination thereof. Background

	DEPARTMENT MATE	RIAL SPECIFICATION	<u>s</u>		
PLYWOOD SIGN BLANKS DWS-7100					
FLAT SURFACE REFLECTIVE SHEETING DMS-8300					
VINYL NON-REFLECTIVE DECAL SHEETING DMS-8320					
<u>COLOR</u> BLUE WHITE	USAGE BACKGROUND LEGEND & BORDERS	REFLECTIVE SH OTHER MATE TYPE C (FLUORESCE) VINYL NON-REFLECT	T PRISMATIC)		

DALLAS DISTRICT STANDARD						
SW3P	SI(GN SH	EET	-		
FILE	DN: TxDOT	CK:	DW:		CK:	
* 1664						
©TxD0T 2016	DISTRICT	PR	OJECT NO			SHEET
	DISTRICT 18		OJECT NO	EET		SHEET 199
	18			_	JOB	

SURFACE PREPARATION ITEM 160* TOPSOIL SY / ITEM 161* COMPOST MANUF. TOPSOIL (BOS) (4") SY

SURFACE PREPARATION

Prepare planting area surface BEFORE placing Topsoil, Compost, Fertilizer, Seed and/or Sod. Once project area has been completed to final lines, grade and compaction, remove objectionable materials from planting area surface and cultivate existing surface to a depth of 4 inches, unless otherwise specified or directed.

Refer to Items 160 and 161 of TxDOT 2014 Standard Specifications* for specifications, dimensions, volumes, and measurements that have been modified or not shown in plans. Materials and construction shall meet all specifications.

TOPSOIL_NOTES:

USER

- When Topsoil is specified under Item 160, use suitable material salvaged from the project ROW in accordance with Item 160 specifications, and/or secure additional good material from approved sources. Topsoil shall include only the top 6 inches of its native surface, and be easily cultivated, fertile, erosion-resistant 1.When 2. Topsoil
- and free of objectionable materials.
- a. Topsoil obtained from sites outside of the ROW must come from approved sources and have a pH between 5.5 and 8.5 su.
 4. Place Topsoil on pre-cultivated surface, spread to a uniform loose cover at thickness specified, and shape per plans. Water and roll the finished surface with a light roller or other suitable equipment per Item 160.3; do not over-compact.

COMPOST NOTES:

 When Compost Manufactured Topsoil (4") is specified under Item 161, use compost meeting all requirements of Item 161.2 and Table 1. Provide quality control (QC) documentation and obtain Engineer approval prior to compost delivery.
 Contractor shall provide tickets/invoices that document material type, quantity and placement for all compost delivered.
 Additional topsoil may be required to be imported to achieve the compost/topsoil mix ratio. Topsoil must meet Item 160 specifications.

APPLICATION OF COMPOST MANUFACTURED TOPSOIL (4")

AFTER Surface Preparation, uniformly spread a 1-inch layer of compost on-grade with 3 inches topsoil over pre-cultivated planting area. (25% compost and 75% topsoil = 1" compost and 3" topsoil.)

Then mix compost and topsoil together by cultivating the compost into the topsoil (by till or disk) to a 4-inch (4") depth Roll the finished surface with a light corrugated drum; do not over-compact.

FERTILIZER ITEM 166* FERTILIZER AC

ANALYSIS FOR FERTILIZER APPLICATION RATE SOTE

Unless otherwise stated in the plans. Contractor shall perform at least one soil analysis on each project before fertilization, and submit results to Engineer with recommended fertilizer rates based on soil analysis. Engineer may direct sample location(s). Soil analysis may be waived if both compost and sod are used on entire project

FERTILIZER NOTES:

- FERTILIZER NOTES:
 1. Refer to Item 166 of TxDOT 2014 Standard Specifications* for specifications, dimensions, volumes, and measurements that have been modified or not shown in plans. Materials and construction shall meet all specifications.
 2. Apply fertilizer BEFORE seeding, or AFTER placing sod.
 3. Use fertilizer containing nitrogen (N), phosphoric acid (P) and potash (K) nutrients, unless otherwise specified. At least 50% of the Nitrogen component shall be a slow-release sulfur-coated urea as described in Item 166.3. Do not apply more than 60 lbs Nitrogen per acre without Engineer concurrence.
 4. Deliver fertilizer in bags, clearly labeled to show contents, unless otherwise specified or approved prior to delivery. When non-bagged, loose fertilizer is approved, provide documentation for each load of material delivered, to validate authenticity of the material.
 5. Apply fertilizer uniformly, as a dry, granular material, essentially dust-free, and do not mix with water for application as a slurry.
 6. When both temporary and permanent seeding are specified for the same area, apply half of the required fertilizer before

- 6. When both temporary and permanent seeding are specified for the same area, apply half of the required fertilizer before the temporary seeding operation and the other half before the permanent seeding operation.

SEEDING FOR EROSION CONTROL ITEM 164* DRILL SEEDING AC

SODDING FOR EROSION CONTROL ITEM 162* BLOCK SOD (BERMUDA) SY

	ΛR	ROLI	SOD	COMMON NA
DLOCK	ON	NULL	300	Common Bermud

SODDING NOTES:

- Place fertilizer promptly AFTER sodding operation is complete in each area.
 Water sod immediately following placement, and continue Vegetative Watering per Item 168.

VEGETATIVE WATERING FOR ESTABLISHING SEED AND SOD ITEM 168* VEGETATIVE WATERING MG

WATERING SCHEDULE SEASON (Usual Months) RATE SPRING & FALL Ve 7.000 aallons/acre (March, April, May, October) per working day SLIMMER 12,000 gallons/acre (June, July, August, September) per working day WINTER 1,000 gallons/acre (November through February) per working day

Notes: Rate and frequency may be adjusted, with the approval of For informational purposes only: 1,000 gallons equals 1

VEGETATIVE WATERING NOTES:

- 4. For sod, water immediately.
 5. All water distribution equipment shall be furnished and operated to provide water at a uniform and controllable rate.

RECOMMENDED Planting season	PERMANENT RURAL SEED MIX ITEM 164 - DRILL SEEDING (PERM) (RURAL)(CLAY)	PERMANENT URBAN SEED MIX ITEM 164 - DRILL SEEDING (PERM) (URBAN)(CLAY)	TEMPORARY DRILL SEED MIX ITEM 164 - DRILL SEEDING (TEMP) (WARM OR COOL)
WARM SEASON Mar.15th, April, May, June, July, August, Sept. 15th	Pure Live Seed Rate**Green Sprangletop (Van Horn)- 1.0 lbs/ACSideoats Grama (Haskell)- 1.0 lbs/ACTexas Grama (Atascosa)- 1.0 lbs/ACHairy Grama (Chaparral)- 0.4 lbs/ACShortspike Windmillgrass (Welder)- 0.2 lbs/ACLittle Bluestem (OK Select)- 0.8 lbs/ACPurple Prairie Clover (Cuero)- 0.6 lbs/ACEngelmann Daisy (Eldorado)- 0.75lbs/ACIllinois Bundleflower- 1.3 lbs/ACAwnless Bushsunflower (Plateau)- 0.2 lbs/AC	Green Sprangletop (Leptochloa dubia) Sideoats Grama (El Reno)(Bouteloua curtipendula) Buffalograss (Texoka)(Buchloe dactyloides) Bermudagrass (Cynodon dactylon) - 2.4 lbs/AC	Foxtail Millet (Setaria italica) <u>Pure Live Seed Rate</u> ** - 34 Ibs/AC
COOL SEASON Sept 16th, Oct, Nov, Dec, Jan, Feb, Mar 14th			Pure Live Seed Rate**Tall Fescue (Festuca arundinaceae)- 4.5 lbs/ACWestern Wheatgrass (Agropyron smithii)- 5.6 lbs/ACRed Winter Wheat (Triticum aestivum)- 34 lbs/ACCereal Rye- 34 lbs/AC
 volumes, and measurements that hat Conduct seeding upon completion or without compensation for addition Place seed AFTER preparing planti ltem 160 and Compost Manufactured specifications and this sheet, to When temporary grasses are well- e grasses: moving for this purpose 	ng area surface. Refer to Surface Preparation detail this sheet, as we I Topsoil Item 161 when specified. Apply fertilizer per Item 166 BEFORE help drill the fertilizer into the soil. stablished and more than 2 inches tall, mow planting area before seedin will be subsidiary. When vegetation is not already well-established, a	 ns, dimensions, pecifications. equirements), II as Topsoil seeding, per ng permanent ultivate Use the following formula to calculate PLS in bulk Ensure that the specified amount of pure live seed ROADSIDE MOWING ITEM 730* PROJECT MOWING NOTES: During project construction, once seed is estab promote permanent grasses by mowing any remainini 2. Also now established turf and ROW argases in de 	MAINTENANCE AC
 planting area to a depth as descr 5. Seed material must be appropriate rates designated in Tables 1-4 of 6. All seed shall meet labeling, del labeled, unopened bags or contain 7. Uniformly plant seed over the des described in Item 164.3.4. 8. Hydroseeding may be allowed, when 	ibed in Item 164.3, before temporary seeding and before permanent seed to the location, soil type and season. Use the seed mix species and pu the TxDOT 2014 Standard Specifications* for Item 164, unless otherwise ivery, analysis, and testing requirements described in Item 164.2.1. De ers to Engineer prior to planting. ignated planting area, along the contour of slopes, and drill seed to a	 ing. ure live seed e specified. a depth as project limits as specified or directed by Engi a. Remove litter and debris prior to mowing. Remove litter and debris prior to mowing. Do not mow on wet ground when soil rutting can 5. Hand-trim around obstructions and stormwater co 6. Maintain paved surfaces free of tracked soils a SEQUENCE OF WORK: • CULTIVATE SURFACE SOIL. 	neer. occur. ntrol devices as needed. nd clipped vegetation. VEGETATION ESTABLISHMENT SHEE (DALLAS DISTRICT) TEMPLATE REVISION DATE: 02/21/19
 "A GUIDANCE TO ROADSIDE VEG 	R CONSTRUCTION AND MAINTENANCE OF HIGHWAYS, STREETS, AND BF ETATION ESTABLISHMENT" 2004 415 REVEGETATION DURING CONSTRUCTION	PREPARE / PLACE TOPSOIL, OR PREPARE / PLACE COMPOST MANUFACTURED T	OPSOIL. CPB DIV. NO. PROJECT NO. GRAPHICS 8 (See Title Sheet) FM

• CONDUCT ROADSIDE MOWING, AS DIRECTED.

NAME	BOTANICAL NAME
uda Grass	Cynodon dactylon

SODDING NOTES:
1. Refer to Item 162 of TxDOT 2014 Standard Specifications* for specifications, dimensions, volumes, and measurements that have been modified or not shown in plans. Materials and construction shall meet all specifications.
2. Place sod between the average date of the last freeze in the Spring and 6 weeks before the average date of the first freeze in the Fall, per the Texas Almanac for the project area.
3. Place sod only AFTER soil surface preparation is complete as detailed in this sheet. Dry soil may require pre-watering.
4. Place all sod (blocks or rolls) within 24 hours of delivery to the site, and keep moist from the time it is dug up until it is planted. Sod with dried roots will not be accepted.
5. Place sod with joints alternating on each row to prevent all joints from lining up, and place blocks firmly against adjacent blocks. Roll, tamp and trim sod per Item 162.3.

TIME SCHEDULE	TOTAL WATER ESTIMATE				
egetative watering for seed shall begin on he day after rainfall described below and ontinue for 60 consecutive working days;	420,000 gallons/acre (60 working days)				
egetative watering for sod shall begin on he day the sod is placed and continue for minimum of 15 consecutive working days.	720,000 gallons/acre (60 working days)				
/egetative watering for seed and/or sod shall begin on the day after placement for 15 consecutive working days	15,000 gallons/acre (15 working days)				
the Engineer, to meet site conditions (especially with sod). MG					

VEGETATIVE WATERING NOTES:
1. Refer to Item 168 of TxDOT 2014 Standard Specifications* for specifications, dimensions, volumes, and measurements that have been modified or not shown in plans. Materials and construction shall meet all specifications.
2. Use clean water free of industrial waste and other substances harmful to vegetation growth, per Item 168.2.
3. Use Vegetative Watering to keep the seed bed moist during germination; not to provide initial watering. After drill seeding, postpone watering operations until site receives at least 1/2-inch of natural rainfall in a single day. Delay watering operations for warm season grasses until soil temperature exceeds 70 degrees F.

5. All water distribution equipment shall be furnished and operated to provide water at a uniform and controllable rate. Use a metering device on all watering equipment.
6. Evenly distribute water over entire area designated for seeding and/or sodding, using even spray patterns that do not disturb seed bed and/or dislodge seed from seed bed.
7. Do not water between the hours of 12:00 p.m. and 6:00 p.m. when daytime temperatures exceed 95 degrees F.
8. After initial establishment period, continue intermittent watering of newly established seed or sod at a rate of approximately 1-inch water/week, during summer months until end of contract.
9. If 1/4-inch or more of rainfall occurs on site on any given working day, no vegetative watering will be needed on that working day. (Note: 1/4-inch rain equals 7,000 gallons of water per acre.)
10. Should the Contractor fail to apply the specified amount of water within the time allowed, any seed or sod in poor condition shall be replaced, fertilized, and watered at Contractor's expense.

2353

02

028