STATE OF TEXAS DEPARTMENT OF TRANSPORTATION ### MAINTENANCE PROJECT NO. 6 RMC 644742001 STATE TEXAS ODA ECTOR, ETC. SECT. HIGHWAY NO. 6447 42 001 IH 20,ETC # INDEX OF SHEETS | SHEET NO. | DESCRIPTION | |-----------|---------------------------------| | 1
2 | TITLE SHEET
LOCATION MAP | | 3A-3D | GENERAL NOTES | | 4 | ILLUMINATION SERVICES/CALLOUT | | 5 | SUMMARY OF WORK | | 6 | ESTIMATE & QUANTITY | | 7-18 | *BC (1)-21 THRU BC (12)-21 | | 19-30 | *ED(1)-14 THRU ED(12)-14 | | 31 - 33 | *RID(1)-20 THRU RID(3)-20 | | 34-37 | *RIP(1)-19 THRU RIP(4)-19 | | 38-42 | *TCP(1-1)-18 THRU TCP(1-5)-18 | | 43 | *TCP(5-1)-18 | | 44-48 | *TCP(6-1)-12 THRU TCP(6-5)-12 | | 49-50 | *WZ(BTS-1)-13 THRU WZ(BTS-2)-13 | AN ASTERISK (*) DENOTES TXDOT STANDARDS SHEET THE STANDARD SHEETS SPECIFICALLY IDENTIFIED ABOVE WITH AN (*) HAVE BEEN SELECTED BY ME OR UNDER MY RESPONSIBLE SUPERVISION AS BEING APPLICABLE TO THIS PROJECT. Jose A. Renteria, P.E. 12/28/2023 SPECIFICATIONS ADOPTED BY THE TEXAS DEPARTMENT OF TRANSPORTATION, NOVEMBER 1, 2014 AND SPECIFICATION ITEMS LISTED AND DATED AS FOLLOWS, SHALL GOVERN ON THIS PROJECT. # PLANS OF PROPOSED HIGHWAY ROUTINE MAINTENANCE CONTRACT # TYPE OF WORK: ROADWAY ILLUMINATION MAINTENANCE PROJECT NO. : RMC 644742001 HIGHWAY: IH 20, ETC. LIMITS OF WORK: VARIOUS LOCATIONS EXCEPTIONS: NONE EQUATIONS: NONE RR CROSSINGS: NONE N.T.S. SUBMITTED 12/28/2023 Jose A. Renteria, P.E. MAINTENANCE ENGINEER APPROVED FOR LETTING: DIRECTOR OF OPERATIONS (C) 2023 by Texas Department of Transportation all rights reserved # **GENERAL NOTES:** This project consists of luminaire services, call out maintenance, and repair of Odessa District's illumination system. Upgrade locations are shown in the plans. Call Out locations will be state owned highways throughout the Odessa District. Various bid items and their associated quantities have been provided within this contract in order to establish bid prices for the proposed work. Actual work performed as directed will be paid utilizing these prices with no further compensation made regardless of the final quantities. The Area Engineer (or Engineers) listed below will be responsible for oversight of this project once the project has been awarded: Frew Bogale, P.E., Odessa Area Engineer 3901 W. Highway 80 Odessa, Texas 79761 Phone (432) 498-4770 Fax (432) 498-4775 (Odessa Area Office) (Ector County) If the bidder has any questions concerning preparation and submission of the proposal forms, contact: Sergio Miranda, Contract Administrator 3901 E. Highway 80 Odessa, Texas 79761 Phone (432) 498-4609 Fax (432) 498-4680 (Odessa District Office)(Ector County) Designate in writing the "On The Job Superintendent" authorized to act on behalf of the Contractor. Perform contract work only when the "On The Job Superintendent" is on the job site. Each contract awarded by the Department stands on its own and as such, is separate from other contracts. A contractor awarded multiple contracts, must be capable and sufficiently staffed to concurrently process any or all contracts at the same time. Notify the responsible TxDOT office by telephone by 8:15 A.M. each morning that work is scheduled. Provide work location and time of arrival or reason for not working that day. Restore surrounding site features which are damaged during construction operations to a condition as good as or better than that which previously existed. This work is at the Contractor's expense. Minimize vehicles and equipment in construction areas to lessen the impact on existing vegetation. The intent of the plans is to prepare only that portion of the right-of-way necessary for construction. Excess damage to the vegetation in the right-of-way will be repaired at the Contractor's expense as directed. Provide materials from approved sources. # Item 4. Scope of Work If agreed upon in writing by both parties to the contract, the contract may be extended for an additional period of time not to exceed the original contract time period. The extended contract will be for the original bid quantities, terms, and conditions plus any applicable change orders. # Item 6. Control of Materials Furnish all materials on this Contract except for the following that the Department will provide: - Luminaire Fixtures (LED) - Luminaire Poles/Luminaire Arms - Anchor Bolts (installation of foundations) - Shorting Cap or Photocell - Transformer Base Covers - Hand Hole Covers Materials to be furnished by the Department can be picked up at the Traffic Signal Shop designated below. Contact the supervisor twenty-four hours in advance of picking up materials. Robert Alaniz, Signal Shop 3901 E. Highway 80 Odessa, Texas 79761 Phone: (432)498-4686 (Odessa Signal Shop) (C) 2023 | FED.RD.
DIV.NO. | MA I N | TENANCE PROJI | ECT NO. | SHEET NO. | | | | | | |--------------------|----------|-----------------|-------------|-----------|--|--|--|--|--| | 6 | R | MC 644742 | 001 | 3A | | | | | | | STATE | DISTRICT | COUNTY | | | | | | | | | TEXAS | ODA | | ECTOR, E | TC. | | | | | | | CONTROL | SECTION | JOB | HIGHWAY NO. | | | | | | | | 6447 | 42 | 001 IH 20, ETC. | | | | | | | | # Item 7. Legal Relations and Responsibilities Restrict storage of equipment and materials to approved areas. The Engineer will not approve storage in any TxDOT yard. Dispose of waste generated from servicing equipment on the project properly. Existing utilities (public, private and TxDOT) are present throughout the project. Investigate to determine the utility locations and use caution when excavating in those areas. If access to the project is required through a new or unapproved driveway (i.e. Material sources stockpile location, field office, etc.), obtain an approved "Permit to Construct Access Driveway Facilities on Highway Right of Way" (TxDOT Form 1058) before beginning any construction operations. # **Item 8. Prosecution and Progress** This project is a 365 calendar day project that has both known work locations and callout work as needed. An initial work order will be issued for the known work locations identified in the plans, and the Contractor will have a set number of working days to complete that work. The callout work orders will also include the number of working days allowed for the work to be completed on the work order. The Contractor will have twenty (20) working days to begin work once a work order is issued. If work has not begun after twenty (20) working days of the date the work order was issued liquidated damages will begin until work begins. Once work has started, prosecute the work continuously to completion of each work order. If the Contractor starts work on a work order and then leaves before the completion of the work order liquidated damages will be charged until the contractor returns to work. If work begins and it is determined that work will be delayed due to the materials not being available, the Engineer will suspend time until the materials become available. Once the materials become available the Contractor will be given twenty (20) working days to return to work. If the Contractor does not return to work after twenty (20) working days, then liquidated damages will begin until the Contractor returns to work. Maintain ingress and egress to side streets and private property at all times. # **Item 416. Drilled Shaft Foundations** For drilled shaft foundations, provide class "C" concrete with 6-1/2" slump for dry type placements in accordance with Table 2, Slump Requirements. # **Item 421. Hydraulic Cement Concrete** Do not wash out concrete trucks on public right of way. Furnish disposable 4" cylinder molds and caps that meet testing tolerances. The Engineer will provide strength testing equipment for acceptance testing. Furnish Type II or IP cement. All plants and trucks will be inspected and approved by the Engineer in lieu of the NRMCA or non-department engineer sealed certifications. The criteria and frequency of the Engineer approval of plants and trucks is the same used for NRMCA certification. # Item 500. Mobilization Call Out work on this contract will be issued by work order. The work order locations are subject to change depending on District needs. Each work order may include multiple locations within one of the 12 counties in the Odessa District. Mobilization (Callout) will be paid for per county. Example: Work Order #1 has one location in Reeves County and two locations in Ward County. A total of two Mobilization (Callouts) will be paid for under Work Order #1. A work order will include the location of each repair, the bid items for the repairs and the approximate quantity of work to be performed. (C) 2023 | FED.RD.
DIV.NO. | MAINTENANCE PROJECT NO. SHEET | | | | | | | | | |--------------------|-------------------------------|-----------------|-------------|-----|--|--|--|--|--| | 6 | R | MC 644742 | 3B | | | | | | | | STATE | DISTRICT | COUNTY | | | | | | | | | TEXAS | ODA | | ECTOR, E | TC. | | | | | | | CONTROL | SECTION | JOB | HIGHWAY NO. | | | | | | | | 6447 | 42 | 001 IH 20, ETC. | | | | | | | | # Item 502. Barricades, Signs, and Traffic Handling For this project, payment for this Item will not be paid for directly but will be considered subsidiary to the various items, according to Item 502, Section 4.1.6. Furnish, place, and maintain all traffic control devices in accordance with the "Texas Manual on Uniform Traffic Control Devices" and traffic control standard sheets as specified herein, or as directed. All work zone or construction signs shall be factory made and in satisfactory condition. Erect signs in locations not obstructing the traveling public's view of the normal roadway signing or necessary sight distance at intersections and curves. Stop equipment for traffic when crossing any traffic lanes. Furnish flaggers to warn equipment operators of approaching traffic, unless otherwise directed. Relocate or remove temporary signs as necessary. Remove or cover construction signs not in use. Do not lay down signs. Use an
advanced warning flashing arrow panel for the closing of traffic lanes. Provide one standby unit in good working condition at the job site ready for immediate use. Additional devices may be needed to supplement these requirements. # Item 6000. Illumination Maintenance Maintain, install, or replace the various appurtenances related to existing illumination systems. Item 6000-6016 of the replacement of up to 3 ft. of conductor, regardless of the number of conductors in the conduit. Only one splice will be considered for payment per conduit. Item 6000-6026 to be complete assembly removal. This will include the base, pole, luminaire arms, luminaire (fixture), and required wiring. Item 6000-6041 to be removal of existing HPS fixtures and replace with department provided LED fixtures. Item 6000-6048 Maintain underpass fixtures including the replacement of lamps, fuses, fuse holder, starting aid, photocells, ballasts, and other work required to keep lights operational. Relevel the fixture. Clean the reflector and inside and outside of lens with an approved cleaning solution. Measured by each underpass fixture maintained. Item 6000-6052 to be each electrical service replaced. Replace electrical services in accordance with Item 628, "Electrical Services." Replace Service Pole. Replace service poles by removing the existing service pole, installing the new pole and related electrical service equipment, installing conduit including the elbow below ground for underground service feed or the weatherhead for overhead service feed, and connecting and installing electrical service. Install in accordance with Item 628, "Electrical Services." Item 6000-6063 to replace damaged or missing covers on existing illumination poles. Item 6000-6082 to replace fuses for pole mounted, underpass, sign, and wall pack fixtures, and fused disconnects. (C) 2023 3C MAINTENANCE PROJECT NO. SHEET NO. 6 RMC 644742001 STATE DISTRICT COUNTY ODA ECTOR, ETC. **TEXAS** CONTROL SECTION HIGHWAY NO. 6447 42 001 IH 20, ETC. # Item 6185. Truck Mounted Attenuator (TMA) Work site is defined as the locations presented on the callout work request as well as upgrade locations. The total number of truck mounted attenuators (TMA) required when utilizing the traffic control standards are shown in the tables below. | TCP 1 Series | Scenario | Required TMA | |--------------|----------|--------------| | (1-1)-18 | | 1 | | (1-2)-18 | | 1 | | (1-3)-18 | A | 1 | | | В | 2 | | (1-4)-18 | | 1 | | (1-5)-18 | | 1 | | TCP 5 Series | Scenario | Required TMA | |--------------|----------|--------------| | (5-1)-18 | A | 1 | | TCP 6 Series | Scenario | Required TMA | |--------------|----------|--------------| | (6-1)-12 | A | 1 | | (6-2)-12 | All | 1 | | (6-3)-12 | All | 1 | | (6-4)-12 | A | 1 | | (6-5)-12 | A | 1 | Shadow vehicles equipped for truck mounted attenuators (TMA) for stationary operations will be paid for by the DAY and must be available for use at any time as determined by the Engineer. When TMAs are specified by the DAY, the unit of measure is for each day required by the contract. Therefore, 2 total shadow vehicles with TMAs will be required for this type of work. The Contractor will be responsible for determining if one or more of these operations will be ongoing at the same time to determine the total number of TMAs needed for the project for those times per plan requirements. Additional TMAs used that are not specified in the plans in which the Contractor expects compensation will require prior approval from the Engineer. Additional TMAs approved by the Engineer will be paid for under Item 6185-6002 TMA (Stationary) by the day. ******************* Contractor questions on this project are to be addressed to the following individual(s): Sergio Miranda Hope Sandoval Hope Sandoval Hope Sandoval Contractor questions will be accepted through email, phone, and in person by the above individuals. All contractor questions will be reviewed by the Engineer. Once a response is developed, it will be posted to TxDOT's Public FTP at the following Address: HTTPS://FTP.DOT.STATE.TX.US/PUB/TXDOT-INFO/PRE-LETTING RESPONSES/ All questions submitted that generate a response will be posted through this site. The site is organized by District, Project Type (Construction or Maintenance), Letting Date, CCSJ/Project Name. GENERAL NOTES SHEET 4 OF 4 Texas Department of Transportation (C) 2023 | FED.RD.
DIV.NO. | MA I N | SHEET NO. | | | | | | | | |--------------------|----------|-----------------|----------|-----|--|--|--|--|--| | 6 | R | MC 644742 | 3D | | | | | | | | STATE | DISTRICT | COUNTY | | | | | | | | | TEXAS | ODA | | ECTOR, E | TC. | | | | | | | CONTROL | SECTION | JOB HIGHWAY NO. | | | | | | | | | 6447 | 42 | 001 IH 20, ETC. | | | | | | | | | | ILLUMINATION SERVICES | | | | | | | | | | | | |----------|-----------------------|---------|--------|-----------------|-------------------------------------|----------------------|---|---------------|---|--|----------------------------------|--| | | | | | | | | | | 0416 6029 | 6000 6026 | 6000 6052 | | | LOCATION | ASSET ID | COUNTY | HWY | FEATURE CROSSED | LATITUDE &
LONGITUDE | DESCRIPTION | ТҮРЕ | SECTION | DRILL
SHAFT
(RDWY ILL
POLE)(30 IN) | REPLACE
ROADWAY
ILLUM
ASSEMBLY
(LED) | REPLACE
ELECTRICAL
SERVICE | | | | | | | | | | | | LF | EA | EA | | | 1 | L15001 | PECOS | IH10 | US 190 | LAT: 30.858256
LONG: -102.074536 | SINGLE HEAD, POLE #6 | LUM POLE FOUNDATION | IRAAN | 8 | 1 | | | | 2 | L03003 | PECOS | IH 10 | US 285 | LAT: 30.901922
LONG: -102.911186 | SINGLE HEAD, POLE #4 | LUM POLE FOUNDATION | FORT STOCKTON | 8 | 1 | | | | 3 | L09006 | WARD | IH 20 | BI 20 | LAT: 31.472906
LONG: -103.337083 | DOUBLE HEAD, POLE #4 | LUM POLE FOUNDATION | PECOS | 8 | 1 | | | | 4 | L06015 | MIDLAND | SH 191 | SH 349 | LAT: 31.967075
LONG: -102.253717 | SINGLE HEAD, POLE #6 | LUM POLE FOUNDATION | MIDLAND | 8 | 1 | | | | 5 | C06022 | MIDLAND | SH 191 | LP 250 W | LAT: 31.995175
LONG: -102.16915 | SERVICE POLE | LUM POLE FOUNDATION/POLE
REPLACEMENT | MIDLAND | | | 1 | | | 6 | L08034 | ECTOR | LP 338 | 87TH ST | LAT: 31.942417
LONG: -102.370147 | SERVICE POLE | LUM POLE FOUNDATION/POLE
REPLACEMENT | ODESSA | | | 1 | | | 7 | L08009 | ECTOR | IH 20 | LP 338 E | LAT: 31.866661
LONG: -102.302161 | SERVICE POLE | LUM POLE FOUNDATION/POLE
REPLACEMENT | ODESSA | | | 1 | | | 8 | L08025 | ECTOR | SH 191 | LP 338 E | LAT: 31.896394
LONG: -102.317633 | SERVICE POLE | LUM POLE FOUNDATION/POLE
REPLACEMENT | ODESSA | | | 1 | | | | ı | | | 1 | ТОТА | L | | 1 | 32 | 4 | 4 | | | | ILLUMINATION CALLOUT | | | | | | | | | | | | | | | | | |----------|----------------------|-------------|--|--------------------------------|--------------------------------------|-----------|---------------------------------------|--|---------------------------------|--|--|----------------------------------|-----------|-------------------------|----------------------------|-----------------|-----------------------------| | | | | 0416 6029 | 0618 6023 | 0618 6024 | 0620 6009 | 0620 6010 | 0624 6002 | 6000 6016 | 6000 6026 | 6000 6041 | 6000 6048 | 6000 6052 | 6000 6058 | 6000 6063 | 6000 6082 | 6000 6106 | | LOCATION | COUNTY | DESCRIPTION | DRILL SHAFT
(RDWY ILL
POLE)(30 IN) | CONDT
(PVC) (SCH
40)(2") | CONDT (PVC)
(SCH
40)(2")(BORE) | (NO. 6) | ELEC
CONDR
(NO. 6)
INSULATED | GROUND
BOX TY A
(122311)
W/ APRON | INSTALL
ELECTRICAL
SPLICE | REPLACE
ROADWAY
ILLUM
ASSEMBLY
(LED) | REPLACE
LUMINAIRE
FIXTURE
(LED) | MAINTAIN
UNDERPASS
FIXTURE | | REMOVE
GROUND
BOX | REPLACE HAND
HELD COVER | REPLACE
FUSE | TROUBLESHOOT
FOR REPAIRS | | | | | LF | LF | LF | LF | LF | EA HR | | CALLOUT | VARIOUS | SERVICES | 25 | 1500 | 1000 | 5000 | 10000 | 25 | 25 | 50 | 10 | 50 | 10 | 25 | 25 | 25 | 150 | NOTE: LOCATIONS TO BE DETERMINED BY THE ENGINEER © 2023 | <u> </u> | | | | | | | | | | | |--------------------|-----------------------------------|-----------------|----------|-----|--|--|--|--|--|--| | FED.RD.
DIV.NO. | MAINTENANCE PROJECT NO. SHEET NO. | | | | | | | | | | | 6 | R | RMC 644742001 4 | | | | | | | | | | STATE | DISTRICT | COUNTY | | | | | | | | | | TEXAS | ODA | | ECTOR, E | TC. | | | | | | | | CONTROL | SECTION | JOB HIGHWAY NO. | | | | | | | | | | 6447 | 42 | 001 IH 20, ETC. | | | | | | | | | | | ILLUMINATION SUMMARY | | | | | | | | | | | | | | | | | | |-------------------|----------------------|-------------|--|--------------------------------|--------------------------------------|----------------------------------|---------------------------------------|--|---------------------------------|--|-----------|----------------------------------|-----------|-------------------------|----------------------------|-----------------|-----------------------------|---------------------| | | | | 0416 6029 | 0618 6023 | 0618 6024 | 0620 6009 | 0620 6010 | 0624 6002 | 6000 6016 | 6000 6026 | 6000 6041 | 6000 6048 | 6000 6052 | 6000 6058 | 6000 6063 | 6000 6082 | 6000 6106 | 6185 6002 | | LOCATION | COUNTY | DESCRIPTION | DRILL SHAFT
(RDWY ILL
POLE)(30 IN) | CONDT
(PVC) (SCH
40)(2") | CONDT (PVC)
(SCH
40)(2")(BORE) | ELEC
CONDR
(NO. 6)
BARE | ELEC
CONDR
(NO. 6)
INSULATED | GROUND
BOX TY A
(122311)
W/ APRON | INSTALL
ELECTRICAL
SPLICE | REPLACE
ROADWAY
ILLUM
ASSEMBLY
(LED) | | MAINTAIN
UNDERPASS
FIXTURE | | REMOVE
GROUND
BOX | REPLACE HAND
HELD COVER |
REPLACE
FUSE | TROUBLESHOOT
FOR REPAIRS | TMA
(STATIONARY) | | | | | LF | LF | LF | LF | LF | EA HR | DAY | | LOCATION 1 THRU 8 | VARIOUS | SERVICES | 32 | | | | | | | 4 | | | 4 | | | | | 40 | | CALLOUT | VARIOUS | CALLOUT | 25 | 1500 | 1000 | 5000 | 10000 | 25 | 25 | 50 | 10 | 50 | 10 | 25 | 25 | 25 | 150 | 100 | | | TOTAL | | 57 | 1500 | 1000 | 5000 | 10000 | 25 | 25 | 54 | 10 | 50 | 14 | 25 | 25 | 25 | 150 | 140 | © 2023 | FED.RD.
DIV.NO. | MAINTENANCE PROJECT NO. SHEET NO. | | | | | | | | | |--------------------|-----------------------------------|-----------------|-------------|-----|--|--|--|--|--| | 6 | RMC 644742001 5 | | | | | | | | | | STATE | DISTRICT | COUNTY | | | | | | | | | TEXAS | ODA | | ECTOR, E | TC. | | | | | | | CONTROL | SECTION | JOB | HIGHWAY NO. | | | | | | | | 6447 | 42 | 001 IH 20, ETC. | | | | | | | | # **Estimate & Quantity Sheet** **CONTROLLING PROJECT ID** 6447-42-001 DISTRICT Odessa HIGHWAY IH0020 **COUNTY** Ector | | | CONTROL SECTION | N JOB | 6447-42 | 2-001 | | | |-----|-----------|--------------------------------------|--------|------------|-------|------------|----------------| | | | PROJ | ECT ID | A00199092 | | 1 | | | | | CC | DUNTY | Ecto | or | TOTAL EST. | TOTAL
FINAL | | | | HIG | HWAY | ІН00 | 20 | | | | ALT | BID CODE | DESCRIPTION | UNIT | EST. | FINAL | | | | | 416-6029 | DRILL SHAFT (RDWY ILL POLE) (30 IN) | LF | 57.000 | | 57.000 | | | | 500-6001 | MOBILIZATION | LS | 1.000 | | 1.000 | | | | 500-6033 | MOBILIZATION (CALLOUT) | EA | 12.000 | | 12.000 | | | | 618-6023 | CONDT (PVC) (SCH 40) (2") | LF | 1,500.000 | | 1,500.000 | | | | 618-6024 | CONDT (PVC) (SCH 40) (2") (BORE) | LF | 1,000.000 | | 1,000.000 | | | | 620-6009 | ELEC CONDR (NO.6) BARE | LF | 5,000.000 | | 5,000.000 | | | | 620-6010 | ELEC CONDR (NO.6) INSULATED | LF | 10,000.000 | | 10,000.000 | | | | 624-6002 | GROUND BOX TY A (122311)W/APRON | EA | 25.000 | | 25.000 | | | | 6000-6016 | INSTALL ELECTRICAL SPLICE | EA | 25.000 | | 25.000 | | | | 6000-6026 | REPLACE ROADWAY ILLUM ASSEMBLY (LED) | EA | 54.000 | | 54.000 | | | | 6000-6048 | MAINTAIN UNDERPASS FIXTURE | EA | 50.000 | | 50.000 | | | | 6000-6052 | REPLACE ELECTRICAL SERVICE | EA | 14.000 | | 14.000 | | | | 6000-6058 | REMOVE GROUND BOX | EA | 25.000 | | 25.000 | | | | 6000-6063 | REPLACE HAND HOLE COVER | EA | 25.000 | | 25.000 | | | | 6000-6082 | REPLACE FUSE | EA | 25.000 | | 25.000 | | | | 6000-6106 | TROUBLESHOOT FOR REPAIRS | HR | 150.000 | | 150.000 | | | | 6185-6002 | TMA (STATIONARY) | DAY | 140.000 | | 140.000 | | # **ESTIMATE & QUANTITY SHEET** © 2023 | $\overline{\mathcal{C}}$ | | | | | | | | | |--------------------------|----------|-----------------|------------------------------|-----|--|--|--|--| | FED.RD.
DIV.NO. | MAIN | TENANCE PROJ | ENANCE PROJECT NO. SHEET NO. | | | | | | | 6 | R | MC 644742 | MC 644742001 6 | | | | | | | STATE | DISTRICT | COUNTY | | | | | | | | TEXAS | ODA | | ECTOR, E | TC. | | | | | | CONTROL | SECTION | JOB HIGHWAY NO. | | | | | | | | 6447 | 42 | 001 IH 20, ETC. | | | | | | | # BARRICADE AND CONSTRUCTION (BC) STANDARD SHEETS GENERAL NOTES: - 1. The Barricade and Construction Standard Sheets (BC sheets) are intended to show typical examples for placement of temporary traffic control devices, construction pavement markings, and typical work zone signs. The information contained in these sheets meet or exceed the requirements shown in the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD). - 2. The development and design of the Traffic Control Plan (TCP) is the responsibility of the Engineer. - 3. The Contractor may propose changes to the TCP that are signed and sealed by a licensed professional engineer for approval. The Engineer may develop, sign and seal Contractor proposed changes. - 4. The Contractor is responsible for installing and maintaining the traffic control devices as shown in the plans. The Contractor may not move or change the approximate location of any device without the approval of the Engineer. - 5. Geometric design of lane shifts and detours should, when possible, meet the applicable design criteria contained in manuals such as the American Association of State Highway and Transportation Officials (AASHTO), "A Policy on Geometric Design of Highways and Streets," the TxDOT "Roadway Design Manual" or engineering judgment. - 6. When projects abut, the Engineer(s) may omit the END ROAD WORK, TRAFFIC FINES DOUBLE, and other advance warning signs if the signing would be redundant and the work areas appear continuous to the motorists. If the adjacent project is completed first, the Contractor shall erect the necessary warning signs as shown on these sheets, the TCP sheets or as directed by the Engineer. The BEGIN ROAD WORK NEXT X MILES sign shall be revised to show appropriate work zone distance. - 7. The Engineer may require duplicate warning signs on the median side of divided highways where median width will permit and traffic volumes justify the signing. - 8. All signs shall be constructed in accordance with the details found in the "Standard Highway Sign Designs for Texas," latest edition. Sign details not shown in this manual shall be shown in the plans or the Engineer shall provide a detail to the Contractor before the sign is manufactured. - 9. The temporary traffic control devices shown in the illustrations of the BC sheets are examples. As necessary, the Engineer will determine the most appropriate traffic control devices to be used. - 10. Where highway construction or maintenance work is being undertaken, other than mobile operations as defined by the Texas Manual on Uniform Traffic Control Devices, CSJ limit signs are required. CSJ limit signs are shown on BC(2). The OBEY WARNING SIGNS STATE LAW sign, STAY ALERT TALK OR TEXT LATER and the WORK ZONE TRAFFIC FINES DOUBLE sign with plaque shall be erected in advance of the CSJ limits. The BEGIN ROAD WORK NEXT X MILES, CONTRACTOR and END ROAD WORK signs shall be erected at or near the CSJ limits. For mobile operations, CSJ limit signs are not required. - 11. Traffic control devices should be in place only while work is actually in progress or a definite need exists. - 12. The Engineer has the final decision on the location of all traffic control devices. - 13. Inactive equipment and work vehicles, including workers' private vehicles must be parked away from travel lanes. They should be as close to the right-of-way line as possible, or located behind a barrier or guardrail, or as approved by the Engineer. # WORKER SAFETY NOTES: - 1. Workers on foot who are exposed to traffic or to construction equipment within the right-of-way shall wear high-visibility safety apparel meeting the requirements of ISEA "American National Standard for High-Visibility Apparel," or equivalent revisions, and labeled as ANSI 107-2004 standard performance for Class 2 or 3 risk exposure. Class 3 garments should be considered for high traffic volume work areas or night time work. - 2. Except in emergency situations, flagger stations shall be illuminated when flagging is used at night. # COMPLIANT WORKZONE TRAFFIC CONTROL DEVICES - Only pre-qualified products shall be used. The "Compliant Work Zone Traffic Control Devices List" (CWZTCD) describes pre-qualified products and their sources. - 2. Work zone traffic control devices shall be compliant with the Manual for Assessing safety Hardware (MASH). # THE DOCUMENTS BELOW CAN BE FOUND ON-LINE AT http://www.txdot.gov COMPLIANT WORK ZONE TRAFFIC CONTROL DEVICES LIST (CWZTCD) DEPARTMENTAL MATERIAL SPECIFICATIONS (DMS) MATERIAL PRODUCER LIST (MPL) ROADWAY DESIGN MANUAL - SEE "MANUALS (ONLINE MANUALS)" STANDARD HIGHWAY SIGN DESIGNS FOR TEXAS (SHSD) TEXAS MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (TMUTCD) TRAFFIC ENGINEERING STANDARD SHEETS SHEET 1 OF 12 Safety Division Standard BARRICADE AND CONSTRUCTION GENERAL NOTES AND REQUIREMENTS BC(1)-21 | | | | • | | | | | | |---------|-------------------|-------|-------------|-----------|-----|------|----------|---------| | FILE: | bc-21.dgn | DN: T | KDOT | ck: TxDOT | DW: | TxDO | Т ск | : T×DOT | | C TxDOT | November 2002 | CONT | SECT | JOB | | | H I GHW/ | ΔY | | 4-03 | REVISIONS
7-13 | 6447 | 42 | 001 | | I | н 20, | ETC | | 9-07 | 8-14 | DIST | | COUNTY | | | SHE | ET NO. | | 5-10 | 5-21 | ODA | | ECTOR, E | TC. | | | 7 | ## May be mounted on back of "ROAD WORK AHEAD" (CW20-1D) sign with approval of Engineer. (See note 2 below) - The typical minimum signing on a crossroad approach should be a "ROAD WORK AHEAD" (CW20-1D)sign and a (G20-2) "END ROAD WORK" sign, unless noted otherwise in plans. - 2. The Engineer may use the reduced size 36" x 36" ROAD WORK AHEAD (CW20-1D) sign mounted back to back with the reduced size 36" x 18" "END ROAD WORK" (G20-2) sign on low volume crossroads (see Note 4 under "Typical Construction Warning Sign Size and Spacing"). See the "Standard Highway Sign Designs for Texas" manual for sign details. The Engineer may omit the advance warning signs on low volume crossroads. The Engineer will determine whether a road is low volume as per TMUTCD Part 5. This information shall be shown in the plans. - Based on existing field conditions, the Engineer/Inspector may require additional signs such as FLAGGER AHEAD, LOOSE GRAVEL, or other appropriate signs. When additional signs are required, these signs will be considered part of the minimum requirements. The Engineer/Inspector will determine the proper location and spacing of any sign not shown on the BC sheets, Traffic Control Plan sheets or the Work Zone Standard Sheets. - 4. The "ROAD WORK NEXT X MILES" (G20-1aT) sign shall be required at high volume crossroads to advise motorists of the length of construction in either direction from the intersection. The Engineer will determine whether a roadway is considered high volume. - 5. Additional traffic control devices may be shown elsewhere in the plans for higher volume crossroads. SAMPLE LAYOUT OF SIGNING FOR WORK
BEGINNING DOWNSTREAM OF THE CSJ LIMITS 6. When work occurs in the intersection area, appropriate traffic control devices, as shown elsewhere in the plans or as determined by the Engineer/Inspector, shall be in place. ### BEGIN T-INTERSECTION WORK ZONE ★ ★ G20-9TP ★ ★ R20-5T FINES DOUBL X R20-50TP MORKERS ARE PRESENT ROAD WORK ⟨⇒ NEXT X MILES X X G20-2bT WORK ZONE G20-1bTI \Diamond INTERSECTED 1000'-1500' - Hwy 1 Block - City 1000'-1500' - Hwy 1 Block - City ROADWAY \Rightarrow ROAD WORK G20-16TR NEXT X MILES => 801 WORK ZONE G20-2bT * * Limit min BEGIN G20-5T WORK * * G20-9TP ZONE TRAFFI G20-6T * * R20-5T FINES DOUBLE ★ ★ R20-5aTP ##EN ##EN ##EN ##ER ROAD WORK G20-2 # CSJ LIMITS AT T-INTERSECTION BEGIN - 1. The Engineer will determine the types and location of any additional traffic control devices, such as a flagger and accompanying signs, or other signs, that should be used when work is being performed at or near an intersection. - 2. If construction closes the road at a T-intersection, the Contractor shall place the "CONTRACTOR NAME"(G20-6T) sign behind the Type 3 Barricades for the road closure (see BC(10) also). The "ROAD WORK NEXT X MILES" left arrow(G20-1bTL) and "ROAD WORK NEXT X MILES" right arrow (G20-1bTR)" signs shall be replaced by the detour signing called for in the plans. SAMPLE LAYOUT OF SIGNING FOR WORK BEGINNING AT THE CSJ LIMITS # TYPICAL CONSTRUCTION WARNING SIGN SIZE AND SPACING 1,5,6 # SIZE ### Sign onventional Expressway/ Number Freeway or Series CW20' CW21 48" x 48' CW22 48" x 48" CW23 CW25 CW1, CW2, CW7, CW8, 36" x 36" 48" x 48' CW9, CW11 CW14 CW3, CW4, CW5, CW6, 48" x 48" 48" × 48" CW8-3, CW10, CW12 # SPACING | Posted
Speed | Sign∆
Spacing
"X" | |-----------------|-------------------------| | MPH | Feet
(Apprx.) | | 30 | 120 | | 35 | 160 | | 40 | 240 | | 45 | 320 | | 50 | 400 | | 55 | 500 ² | | 60 | 600² | | 65 | 700 ² | | 70 | 800 ² | | 75 | 900 ² | | 80 | 1000 ² | | * | * 3 | - * For typical sign spacings on divided highways, expressways and freeways, see Part 6 of the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD) typical application diagrams or TCP Standard Sheets. - \triangle Minimum distance from work area to first Advance Warning sign nearest the work area and/or distance between each additional sign. # GENERAL NOTES - 1. Special or larger size signs may be used as necessary. - 2. Distance between signs should be increased as required to have 1500 feet advance warning. - 3. Distance between signs should be increased as required to have 1/2 mile or more advance warning. - 4. 36" x 36" "ROAD WORK AHEAD" (CW20-1D) signs may be used on low volume crossroads at the discretion of the Engineer as per TMUTCD Part 5. See Note 2 under "Typical Location of Crossroad Signs". - 5. Only diamond shaped warning sign sizes are indicated. - 6. See sign size listing in "TMUTCD", Sign Appendix or the "Standard Highway Sign Designs for Texas" manual for complete list of available sign design ### WORK AREAS IN MULTIPLE LOCATIONS WITHIN CSJ LIMITS X X G20-9TP SPEED STAY ALERT R4-1 PASS appropriate ROAD LIMIT OBEY TRAFFIC ★ ★ R20-5T WORK FINES WARNING * * G20-5 ROAD WORK CW1-4L AHEAD DOUBLE SIGNS CW20-1D ¥ × R20-5aTP ME PRESENT ROAD STATE LAW TALK OR TEXT LATER CW13-1P R2-1* > ROAD ★ ★ G20-6T WORK CW20-1D WORK G20-10T * * R20-3T X X AHEAD CONTRACTOR lхх AHEAD Type 3 Barricade or MPH CW13-1P CW20-1D channelizing devices \Diamond \Diamond \Diamond \Diamond \Rightarrow \Leftrightarrow Beginning of NO-PASSING \Rightarrow \Rightarrow SPEED END G20-2bT X X R2-1 LIMIT line should $\otimes \times \times$ FND coordinate ROAD WORK When extended distances occur between minimal work spaces, the Engineer/Inspector should ensure additional with sign "ROAD WORK AHEAD"(CW20-1D)signs are placed in advance of these work areas to remind drivers they are still G20-2 * * location **NOTES** within the project limits. See the applicable TCP sheets for exact location and spacing of signs and The Contractor shall determine the appropriate distance to be placed on the G20-1 series signs and "BEGIN ROAD WORK NEXT X MILES" (G20-5T) sign for each specific project. This distance shall replace the "X" and shall be rounded to the nearest whole mile with the approval of the Engineer. - The "BEGIN WORK ZONE" (G20-9TP) and "END WORK ZONE" (G20-2b1 shall be used as shown on the sample layout when advance signs are required outside the CSJ Limits. They inform the motorist of entering or leaving a part of the work zone lying outside the CSJ Limits where traffic fines may double if workers are present. - ** CSJ limit signing is required for highway construction and maintenance work, with the exception of mobile operations. - Area for placement of "ROAD WORK AHEAD" (CW20-1D) sign and other signs or devices as called for on the Traffic - Contractor will install a regulatory speed limit sign at the end of the work zone. | LEGEND | | | | | | | | |--------|---|--|--|--|--|--|--| | I | Type 3 Barricade | | | | | | | | 000 | Channelizing Devices | | | | | | | | 4 | Sign | | | | | | | | Х | See Typical Construction Warning Sign Size and Spacing chart or the TMUTCD for sign spacing requirements. | | | | | | | # SHEET 2 OF 12 Traffic Safety # BARRICADE AND CONSTRUCTION PROJECT LIMIT BC(2)-21 | | | • | • | _ | | | | |----------|---------------|-------|---|-----------|-----|-------|-----------| | ILE: | bc-21.dgn | DN: T | <dot< td=""><td>ck: TxDOT</td><td>DW:</td><td>TxDOT</td><td>CK: TXDOT</td></dot<> | ck: TxDOT | DW: | TxDOT | CK: TXDOT | | C) TxDOT | November 2002 | CONT | SECT | JOB | | 1 | H]GHWAY | | | REVISIONS | 6447 | 42 | 001 | | IΗ | 20, ETC | | 9-07 | 8-14 | DIST | | COUNTY | | | SHEET NO. | | 7-13 | 5-21 | ODA | | ECTOR, E | TC. | | 8 | | ROAD CLOSED R11-2 CW1-6 Type 3 Barricade or channelizing devices | CW1-4L CW13-1P X X X A A A A A A A | ROAD ** ** G20-5T BEGIN ROAD WORK WORK X MILE X ** G20-6T CONTRACTOR X MALE CONTRACTOR CONTRACTOR MAD CONTRACTOR | X X X | TALK OR TEXT LATER G20-10T X X 4 | OBEY WARNING SIGNS STATE LAW R20-3T X X | |--|---|---|--|----------------------------------|---| | WORK SPACE & | Channelizing
Devices | END
ROAD WORK
G20-2 × × | CSJ Limit SPEED R2-1 LIMIT W | END G20 | -2bī * * | # TYPICAL APPLICATION OF WORK ZONE SPEED LIMIT SIGNS Work zone speed limits shall be regulatory, established in accordance with the "Procedures for Establishing Speed Zones," and approved by the Texas Transportation Commission, or by City Ordinance when within Incorporated City Limits. # GUIDANCE FOR USE: # LONG/INTERMEDIATE TERM WORK ZONE SPEED LIMITS This type of work zone speed limit should be included on the design of the traffic control plans when restricted geometrics with a lower design speed are present in the work zone and modification of the geometrics to a higher design speed is not feasible. Long/Intermediate Term Work Zone Speed Limit signs, when approved as described above, should be posted and visible to the motorist when work activity is present. Work activity may also be defined as a change in the roadway that requires a reduced speed for motorists to safely negotiate the work area, including: - a) rough road or damaged pavement surface - b) substantial alteration of roadway geometrics (diversions) - c) construction detours - d) grade - e) width - f) other conditions readily apparent to the driver As long as any of these conditions exist, the work zone speed limit signs should remain in place. # SHORT TERM WORK ZONE SPEED LIMITS This type of work zone speed limit may be included on the design
of the traffic control plans when workers or equipment are not behind concrete barrier, when work activity is within 10 feet of the traveled way or actually in the traveled way. Short Term Work Zone Speed Limit signs should be posted and visible to the motorists only when work activity is present. When work activity is not present, signs shall be removed or covered. (See Removing or Covering on BC(4)). # GENERAL NOTES - Regulatory work zone speed limits should be used only for sections of construction projects where speed control is of major importance. - Regulatory work zone speed limit signs shall be placed on supports at a 7 foot minimum mounting height. - 3. Speed zone signs are illustrated for one direction of travel and are normally posted for each direction of travel. - 4. Frequency of work zone speed limit signs should be: 40 mph and greater 0.2 to 2 miles 35 mph and less 0.2 to 2 miles - 5. Regulatory speed limit signs shall have black legend and border on a white reflective background (See "Reflective Sheeting" on BC(4)). - Fabrication, erection and maintenance of the "ADVANCE SPEED LIMIT" (CW3-5) sign, "WORK ZONE" (G20-5aP) plaque and the "SPEED LIMIT" (R2-1) signs shall not be paid for directly, but shall be considered subsidiary to Item 502. - 7. Turning signs from view, laying signs over or down will not be allowed, unless as otherwise noted under "REMOVING OR COVERING" on BC(4). - Techniques that may help reduce traffic speeds include but are not limited to: A. Law enforcement. - B. Flagger stationed next to sign. - C. Portable changeable message sign (PCMS). - D. Low-power (drone) radar transmitter. - E. Speed monitor trailers or signs. - Speeds shown on details above are for illustration only. Work Zone Speed Limits should only be posted as approved for each project. - 10. For more specific guidance concerning the type of work, work zone conditions and factors impacting allowable regulatory construction speed zone reduction see TxDOT form #1204 in the TxDOT e-form system. SHEET 3 OF 12 Traffic Safety Division Standard # BARRICADE AND CONSTRUCTION WORK ZONE SPEED LIMIT BC(3)-21 | E: | bc-21.dgn | DN: Tx[| TOC | ck: TxDOT | DW: | TxDOT | ck: TxDOT | ı | | |--------------|---------------|---------|-------------|-----------|-----|------------|-----------|---|--| | TxDOT | November 2002 | CONT | SECT | JOB | | Н | GHWAY | | | | | REVISIONS | 6447 | 42 | 001 | | IH 20, ETC | | | | | 9-07
7-13 | 8-14
5-21 | DIST | DIST COUNTY | | | | SHEET NO. | | | | 1-13 | J-21 | ODA | | ECTOR, E | TC. | | 9 | ı | | shou I der ### TYPICAL MINIMUM CLEARANCES FOR LONG TERM AND INTERMEDIATE TERM SIGNS 12' min. ROAD ROAD ROAD ROAD WORK minimum WORK WORK WORK from AHEAD AHEAD ahead curb AHEAD min. XX MPH 7.0' min. 7.0' min. 9.0' max. 6' or 7.0' min. 9.0' max. 6.0' min. greater 9.0' max. AMMINIMA Poved Paved * When placing skid supports on unlevel ground, the leg post lengths must be adjusted so the sign appears straight and plumb. Objects shall NOT be placed under skids as a means of leveling. * X When plaques are placed on dual-leg supports, they should be attached to the upright nearest the travel lane. Supplemental plaques (advisory or distance) should not cover the surface of the parent sign. shoul de Splicing embedded perforated square metal tubing in order to extend post height will only be allowed when the splice is made using four bolts, two above and two below the spice point. Splice must be located entirely behind the sign substrate, not near the base of the support. Splice insert lengths should be at least 5 times nominal post size, centered on the splice and of at least the same gauge material. SIDE ELEVATION Wood Nails shall NOT be allowed. Each sign shall be attached directly to the sign support. Multiple signs shall not be joined or spliced by any means. Wood supports shall not be extended or repaired by splicing or other means. Attachment to wooden supports will be by bolts and nuts or screws. Use TxDOT's or manufacturer's recommended procedures for attaching sign substrates to other types of sign supports # STOP/SLOW PADDLES - 1. STOP/SLOW paddles are the primary method to control traffic by flaggers. The STOP/SLOW paddle size should be 24" x 24". STOP/SLOW paddles shall be retroreflectorized when used at night. - 3. STOP/SLOW paddles may be attached to a staff with a minimum length of 6' to the bottom of the sign. - 4. Any lights incorporated into the STOP or SLOW paddle faces shall only be as specifically described in Section 6E.03 Hand Signaling Devices in the TMUTCD. | SHEETING RE | QUIREMENT | TS (WHEN USED AT NIGHT) | |-----------------|-----------|--| | USAGE | COLOR | SIGN FACE MATERIAL | | BACKGROUND | RED | TYPE B OR C SHEETING | | BACKGROUND | ORANGE | TYPE B _{FL} OR C _{FL} SHEETING | | LEGEND & BORDER | WHITE | TYPE B OR C SHEETING | | LEGEND & BORDER | BLACK | ACRYLIC NON-REFLECTIVE FILM | # CONTRACTOR REQUIREMENTS FOR MAINTAINING PERMANENT SIGNS WITHIN THE PROJECT LIMITS - Permanent signs are used to give notice of traffic laws or regulations, call attention to conditions that are potentially hazardous to traffic operations, show route designations, destinations, directions, distances, services, points of interest, and other geographical, recreational, specific service (LOGO), or cultural information. Drivers proceeding through a work zone need the same, if not better route guidance as normally installed on a roadway without construction. - When permanent regulatory or warning signs conflict with work zone conditions, remove or cover the permanent signs until the permanent sign message matches the roadway condition. For details for covering large guide signs see the TS-CD standard. - When existing permanent signs are moved and relocated due to construction purposes, they shall be visible to motorists at all times. - If existing signs are to be relocated on their original supports, they shall be installed on crashworthy bases as shown on the SMD Standard sheets. The signs shall meet the required mounting heights shown on the BC Sheets or the SMD Standards. This work should be paid for under the appropriate pay item for relocating existing signs. - If permanent signs are to be removed and relocated using temporary supports, the Contractor shall use crashworthy supports as shown on the BC standard sheets, TLRS standard sheets or the CWZICD list. The signs shall meet the required mounting heights shown on the BC, or the SMD standard sheets during construction. This work should be paid for under the appropriate pay item for relocating existing signs. - Any sign or traffic control device that is struck or damaged by the Contractor or his/her construction equipment shall be replaced as soon as possible by the Contractor to ensure proper guidance for the motorists. This will be subsidiary to Item 502. ### GENERAL NOTES FOR WORK ZONE SIGNS - Contractor shall install and maintain signs in a straight and plumb condition and/or as directed by the Engineer. - Wooden sign posts shall be painted white. - Barricades shall NOT be used as sign supports - All signs shall be installed in accordance with the plans or as directed by the Engineer. Signs shall be used to regulate, warn, and guide the traveling public safely through the work zone. - The Contractor may furnish either the sign design shown in the plans or in the "Standard Highway Sign Designs for Texas" (SHSD). The Engineer/Inspector may require the Contractor to furnish other work zone signs that are shown in the TMUTCD but may have been omitted from the plans. Any variation in the plans shall be documented by written agreement between the Engineer and the Contractor's Responsible Person. All changes must be documented in writing before being implemented. This can include documenting the changes in the Inspector's TxDOT diary and having both the Inspector and Contractor initial and date the agreed upon changes. - The Contractor shall furnish sign supports listed in the "Compliant Work Zone Traffic Control Device List" (CWZTCD) for small roadside signs. Supports for temporary large roadside signs shall meet the requirements detailed on the Temporary Large Roadside Signs (TLRS) standard sheets. The Contractor shall install the sign support in accordance with the manufacturer's recommendations. If there is a question regarding installation procedures, the Contractor shall furnish the Engineer a copy of the manufacturer's installation recommendations so the Engineer can verify the correct procedures are being followed. - The Contractor is responsible for installing signs on approved supports and replacing signs with damaged or cracked substrates and/or damaged or marred reflective sheeting as directed by the Engineer/Inspector. - Identification markings may be shown only on the back of the sign substrate. The maximum height of letters and/or company logos used for identification shall be 1 inch. - The Contractor shall replace damaged wood posts. New or damaged wood sign posts shall not be spliced. # <u>DURATION OF WORK (as defined by the "Texas Manual on Uniform Traffic Control Devices" Part 6)</u> - The types of sign supports, sign mounting height, the size of signs, and the type of sign substrates can vary based on the type of work being performed. The Engineer is responsible for selecting the appropriate size sign for the type of work being performed. The Contractor is responsible for ensuring the sign support, sign mounting height and substrate meets manufacturer's recommendations in regard to crashworthiness and duration of work requirements. - a. Long-term stationary work that occupies a location more than 3 days. - Intermediate-term stationary work that occupies a location more than one daylight period up to 3 days, or nighttime work lasting more than one hour. - Short-term stationary daytime work that occupies a location for more than 1 hour in a single daylight period. - Short,
duration work that occupies a location up to 1 hour. - Mobile work that moves continuously or intermittently (stopping for up to approximately 15 minutes.) ### SIGN MOUNTING HEIGHT - The bottom of Long-term/Intermediate-term signs shall be at least 7 feet, but not more than 9 feet, above the paved surface, except as shown for supplemental plagues mounted below other signs. - The bottom of Short-term/Short Duration signs shall be a minimum of 1 foot above the pavement surface but no more than 2 feet above - the ground. Long-term/Intermediate-term Signs may be used in lieu of Short-term/Short Duration signing. - Short-term/Short Duration signs shall be used only during daylight and shall be removed at the end of the workday or raised to appropriate Long-term/Intermediate sign height. - Regulatory signs shall be mounted at least 7 feet, but not more than 9 feet, above the paved surface regardless of work duration. ## SIZE OF SIGNS The Contractor shall furnish the sign sizes shown on BC (2) unless otherwise shown in the plans or as directed by the Engineer. ### SIGN SUBSTRATES - The Contractor shall ensure the sign substrate is installed in accordance with the manufacturer's recommendations for the type of sign support that is being used. The CWZTCD lists each substrate that can be used on the different types and models of sign supports. - "Mesh" type materials are NOT an approved sign substrate, regardless of the tightness of the weave. - All wooden individual sign panels fabricated from 2 or more pieces shall have one or more plywood cleat, 1/2" thick by 6" wide, fastened to the back of the sign and extending fully across the sign. The cleat shall be attached to the back of the sign using wood screws that do not penetrate the face of the sign panel. The screws shall be placed on both sides of the splice and spaced at 6" centers. The Engineer may approve other methods of splicing the sign face. # REFLECTIVE SHEETING - 1. All signs shall be retroreflective and constructed of sheeting meeting the color and retro-reflectivity requirements of DMS-8300 - for rigid signs or DMS-8310 for roll-up signs. The web address for DMS specifications is shown on BC(1). - White sheeting, meeting the requirements of DMS-8300 Type A, shall be used for signs with a white background. - 3. Orange sheeting, meeting the requirements of DMS-8300 Type B_{FL} or Type C_{FL} , shall be used for rigid signs with orange backgrounds. # SIGN LETTERS 1. All sign letters and numbers shall be clear, and open rounded type uppercase alphabet letters as approved by the Federal Highway Administration (FHWA) and as published in the "Standard Highway Sign Design for Texas" manual. Signs, letters and numbers shall be of first class workmanship in accordance with Department Standards and Specifications. # REMOVING OR COVERING - When sign messages may be confusing or do not apply, the signs shall be removed or completely covered. - Long-term stationary or intermediate stationary signs installed on square metal tubing may be turned away from traffic 90 degrees when the sign message is not applicable. This technique may not be used for signs installed in the median of divided highways or near any intersections where the sign may be seen from approaching traffic. - Signs installed on wooden skids shall not be turned at 90 degree angles to the roadway. These signs should be removed or completely covered when not required. - When signs are covered, the material used shall be opaque, such as heavy mil black plastic, or other materials which will cover the entire sign face and maintain their opaque properties under automobile headlights at night, without damaging the sign sheeting. Burlap shall NOT be used to cover signs. - Duct tape or other adhesive material shall NOT be affixed to a sign face. - Signs and anchor stubs shall be removed and holes backfilled upon completion of work. # SIGN SUPPORT WEIGHTS - 1. Where sign supports require the use of weights to keep from turning over, the use of sandbags with dry, cohesionless sand should be used. The sandbags will be tied shut to keep the sand from spilling and to maintain a - constant weight. - Rock, concrete, iron, steel or other solid objects shall not be permitted for use as sign support weights. Sandbags should weigh a minimum of 35 lbs and a maximum of 50 lbs. - Sandbags shall be made of a durable material that tears upon vehicular impact. Rubber (such as tire inner tubes) shall NOT be used. Rubber ballasts designed for channelizing devices should not be used for - ballast on portable sign supports. Sign supports designed and manufactured with rubber bases may be used when shown on the CWZTCD list. Sandbags shall only be placed along or laid over the base supports of the - traffic control device and shall not be suspended above ground level or hung with rope, wire, chains or other fasteners. Sandbags shall be placed along the length of the skids to weigh down the sign support. - Sandbags shall NOT be placed under the skid and shall not be used to level sign supports placed on slopes. # FLAGS ON SIGNS 1. Flags may be used to draw attention to warning signs. When used, the flag shall be 16 inches square or larger and shall be orange or fluorescent red-orange in color. Flags shall not be allowed to cover any portion of the sign face. SHEET 4 OF 12 Traffic Safety # BARRICADE AND CONSTRUCTION TEMPORARY SIGN NOTES BC(4)-21 | FILE: | bc-21.dgn | DN: T | ×DOT | ck: TxDOT | D₩≎ | TxD0 | T | ck: TxDOT | |-----------|---------------|-------|------|-----------|-----|------|-----------|-----------| | C TxD0T | November 2002 | CONT | SECT | JOB | | | ніс | GHWAY | | REVISIONS | | 6447 | 42 | 12 001 I | | I+ | H 20, ETC | | | 9-07 | • • • | | | COUNTY | | | : | SHEET NO. | | 7-13 | 5-21 | ODA | | ECTOR, E | TC. | | | 10 | * LONG/INTERMEDIATE TERM STATIONARY - PORTABLE SKID MOUNTED SIGN SUPPORTS -2" x 2" 12 ga. upright 2" SINGLE LEG BASE Post Post Post max. desirable 34" min. in Optional strong soils, reinforcing 48" 55" min. in minimum sleeve -34" min, in weak soils. (1/2" larger strong soils than sian 55" min, in post) x 18' weak soils. Anchor Stub Anchor Stub (1/4" larger (1/4" larger than sign than sign post) post) -OPTION 2 OPTION 1 OPTION 3 (Anchor Stub) (Direct Embedment) (Anchor Stub and Reinforcing Sleeve)) PERFORATED SQUARE METAL TUBING # See the CWZTCD for embedment. WING CHANNEL Lop-splice/base bolted anchor # GROUND MOUNTED SIGN SUPPORTS Refer to the CWZTCD and the manufacturer's installation procedure for each type sign support. The maximum sign square footage shall adhere to the manufacturer's recommendation. Two post installations can be used for larger signs. # WEDGE ANCHORS Both steel and plastic Wedge Anchor Systems as shown on the SMD Standard Sheets may be used as temporary sign supports for signs up to 10 square feet of sign face. They may be set in concrete or in sturdy soils if approved by the Engineer. (See web address for "Traffic Engineering Standard Sheets" on BC(1)). # OTHER DESIGNS MORE DETAILS OF APPROVED LONG/INTERMEDIATE AND SHORT TERM SUPPORTS CAN BE FOUND ON THE CWZTCD LIST. SEE BC(1) FOR WEBSITE LOCATION. # GENERAL NOTES - Nails may be used in the assembly of wooden sign supports, but 3/8" bolts with nuts or 3/8" x 3 1/2" lag screws must be used on every joint for final connection. - . No more than 2 sign posts shall be placed within a 7 ft. circle, except for specific materials noted on the CWZTCD List. - When project is completed, all sign supports and foundations shall be removed from the project site. This will be considered subsidiary to Item 502. - See BC(4) for definition of "Work Duration." - * Wood sign posts MUST be one piece. Splicing will NOT be allowed. Posts shall be painted white. - ☐ See the CWZTCD for the type of sign substrate that can be used for each approved sign support. # SHEET 5 OF 12 Traffic Safety Division Standard # BARRICADE AND CONSTRUCTION TYPICAL SIGN SUPPORT # BC(5)-21 | FILE: bc-21.dgn | DN: T | KDOT | ck: TxDOT | DW: | TxD0 | CK: TxDOT | |-----------------------|-------|-------------|-----------|-----|------|-----------| | © TxDOT November 2002 | CONT | SECT | JOB | | | H]GHWAY | | REVISIONS | 6447 | 42 | 001 | | ĮΗ | 20, ETC | | 9-07 8-14 | DIST | | COUNTY | | | SHEET NO. | | 7-13 5-21 | ODA | | ECTOR, E | TC. | | 11 | # SKID MOUNTED PERFORATED SQUARE STEEL TUBING SIGN SUPPORTS * LONG/INTERMEDIATE TERM STATIONARY - PORTABLE SKID MOUNTED SIGN SUPPORTS 32' Welds to start on opposite sides going in opposite directions. Minimum weld, do not back fill puddle. weld starts here WHEN NOT IN USE, REMOVE THE PCMS FROM THE RIGHT-OF-WAY OR PLACE THE PCMS BEHIND BARRIER OR GUARDRAIL WITH SIGN PANEL TURNED PARALLEL TO TRAFFIC # PORTABLE CHANGEABLE MESSAGE SIGNS - 1. The Engineer/Inspector shall approve all messages used on portable changeable message signs (PCMS). - 2. Messages on PCMS should contain no more than 8 words (about four to eight characters per word), not including simple words such as "TO," "FOR." "AT." etc. - 3. Messages should consist of a single phase, or two phases that alternate. Three-phase messages are not allowed. Each phase of the message should convey a single thought, and must be understood by - 4. Use the word "EXIT" to refer to an exit ramp on a freeway; i.e., "EXIT CLOSED," Do not use the term "RAMP," - 5. Always use the route or interstate designation (IH, US, SH, FM) along with the number when referring to a roadway. - When in use, the bottom of a stationary PCMS message panel should be a minimum 7 feet above the roadway, where possible. - 7. The message term "WEEKEND" should be used only if the work is to start on Saturday morning and end by Sunday evening at midnight. Actual days and hours of work should be displayed on the PCMS if work is to begin on Friday evening and/or continue into Monday morning. - 8. The Engineer/Inspector may select one of two options which are available for displaying a two-phase message on a PCMS.
Each phase may be displayed for either four seconds each or for three seconds each. - 9. Do not "flash" messages or words included in a message. The message should be steady burn or continuous while displayed. - 10. Do not present redundant information on a two-phase message; i.e., keeping two lines of the message the same and changing the third line. - 11. Do not use the word "Danger" in message. - 12. Do not display the message "LANES SHIFT LEFT" or "LANES SHIFT RIGHT" on a PCMS. Drivers do not understand the message. - 13. Do not display messages that scroll horizontally or vertically across the face of the sign. - 14. The following table lists abbreviated words and two-word phrases that are acceptable for use on a PCMS. Both words in a phrase must be displayed together. Words or phrases not on this list should not be abbreviated, unless shown in the TMUTCD. - 15. PCMS character height should be at least 18 inches for trailer mounted units. They should be visible from at least 1/2 (.5) mile and the text should be legible from at least 600 feet at night and 800 feet in daylight. Truck mounted units must have a character height of 10 inches and must be legible from at least 400 feet. - 16. Each line of text should be centered on the message board rather than left or right justified. - 17. If disabled, the PCMS should default to an illegible display that will not alarm motorists and will only be used to alert workers that the PCMS has malfunctioned. A pattern such as a series of horizontal solid bars is appropriate. | WORD OR PHRASE | ABBREVIATION | WORD OR PHRASE | ABBREVIATION | |-----------------------|--------------|----------------|--------------| | | | | | | Access Road | ACCS RD | Major | MAJ | | Alternate | ALT | Miles | MI | | Avenue | AVE | Miles Per Hour | MPH | | Best Route | BEST RTE | Minor | MNR | | Boulevard | BLVD | Monday | MON | | Bridge | BRDG | Normal | NORM | | Cannot | CANT | North | N | | Center | CTR | Northbound | (route) N | | Construction
Ahead | CONST AHD | Parking | PKING | | CROSSING | XING | Road | RD | | Detour Route | DETOUR RTE | Right Lane | RT LN | | Do Not | DONT | Saturday | SAT | | East | F | Service Road | SERV RD | | Eastbound | (route) E | Shoulder | SHLDR | | | EMER | Slippery | SLIP | | Emergency | | South | S | | Emergency Vehicle | | Southbound | (route) S | | Entrance, Enter | ENT | Speed | SPD | | Express Lane | EXP LN | Street | ST | | Expressway | EXPWY | Sunday | SUN | | XXXX Feet | XXXX FT | Telephone | PHONE | | Fog Ahead | FOG AHD | Temporary | TEMP | | Freeway | FRWY, FWY | Thursday | THURS | | Freeway Blocked | FWY BLKD | To Downtown | TO DWNTN | | Friday | FRI | Traffic | TRAF | | Hazardous Driving | | Travelers | TRVLRS | | Hazardous Material | | Tuesday | TUES | | High-Occupancy | HOV | Time Minutes | TIME MIN | | Vehicle | HWY | Upper Level | UPR LEVEL | | Highway | | Vehicles (s) | VEH, VEHS | | Hour(s) | HR, HRS | Warning | WARN | | Information | INFO | Wednesday | WED | | I† Is | ITS | Weight Limit | WILIMIT | | Junction | JCT | West | W | | Left | LFT | Westbound | (route) W | | Left Lane | LFT LN | Wet Pavement | WET PVMT | | Lane Closed | LN CLOSED | Will Not | WONT | | Lower Level | LWR LEVEL | L WILLINGT | MONT | | Maintenance | MAINT | | | designation # IH-number, US-number, SH-number, FM-number # RECOMMENDED PHASES AND FORMATS FOR PCMS MESSAGES DURING ROADWORK ACTIVITIES (The Engineer may approve other messages not specifically covered here.) # Phase 1: Condition Lists | Road/Lane/Ramp | Closure List | Other Conc | lition List | |-----------------------------|--------------------------------|--------------------------------|-------------------------------| | FREEWAY
CLOSED
X MILE | FRONTAGE
ROAD
CLOSED | ROADWORK
XXX FT | ROAD
REPAIRS
XXXX FT | | ROAD
CLOSED
AT SH XXX | SHOULDER
CLOSED
XXX FT | FLAGGER
XXXX FT | LANE
NARROWS
XXXX FT | | ROAD
CLSD AT
FM XXXX | RIGHT LN
CLOSED
XXX FT | RIGHT LN
NARROWS
XXXX FT | TWO-WAY
TRAFFIC
XX MILE | | RIGHT X
LANES
CLOSED | RIGHT X
LANES
OPEN | MERGING
TRAFFIC
XXXX FT | CONST
TRAFFIC
XXX FT | | CENTER
LANE
CLOSED | DAYTIME
LANE
CLOSURES | LOOSE
GRAVEL
XXXX FT | UNEVEN
LANES
XXXX FT | | NIGHT
LANE
CLOSURES | I-XX SOUTH
EXIT
CLOSED | DETOUR
X MILE | ROUGH
ROAD
XXXX FT | | VARIOUS
LANES
CLOSED | EXIT XXX
CLOSED
X MILE | ROADWORK
PAST
SH XXXX | ROADWORK
NEXT
FRI-SUN | | EXIT
CLOSED | RIGHT LN
TO BE
CLOSED | BUMP
XXXX FT | US XXX
EXIT
X MILES | | MALL
DRIVEWAY
CLOSED | X LANES
CLOSED
TUE - FRI | TRAFFIC
SIGNAL
XXXX FT | LANES
SHIFT | * LANES SHIFT in Phase 1 must be used with STAY IN LANE in Phase # Phase 2: Possible Component Lists | А | | e/E
Lis | ffect on Trave
st | еI | Location
List | | Warning
List | | * * Advance
Notice List | |----|----------------------------|----------------|----------------------------|----|--------------------------------|---------|-----------------------------|----------|-----------------------------| | | MERGE
RIGHT | | FORM
X LINES
RIGHT | | AT
FM XXXX | | SPEED
LIMIT
XX MPH | | TUE-FRI
XX AM-
X PM | | | DETOUR
NEXT
X EXITS | | USE
XXXXX
RD EXIT | | BEFORE
RAILROAD
CROSSING | | MAXIMUM
SPEED
XX MPH | | APR XX-
XX
X PM-X AM | | | USE
EXIT XXX | | USE EXIT
I-XX
NORTH | | NEXT
X
MILES | | MINIMUM
SPEED
XX MPH | | BEGINS
MONDAY | | | STAY ON
US XXX
SOUTH | | USE
I-XX E
TO I-XX N | | PAST
US XXX
EXIT | | ADVISORY
SPEED
XX MPH | | BEGINS
MAY XX | | | TRUCKS
USE
US XXX N | | WATCH
FOR
TRUCKS | | XXXXXXX
TO
XXXXXXX | | RIGHT
LANE
EXIT | | MAY X-X
XX PM -
XX AM | | | WATCH
FOR
TRUCKS | | EXPECT
DELAYS | | US XXX
TO
FM XXXX | | USE
CAUTION | | NEXT
FRI-SUN | | | EXPECT
DELAYS | | PREPARE
TO
STOP | | | | DRIVE
SAFELY | | XX AM
TO
XX PM | | | REDUCE
SPEED
XXX FT | | END
SHOULDER
USE | | | | DRIVE
WITH
CARE | | NEXT
TUE
AUG XX | | | USE
OTHER
ROUTES | | WATCH
FOR
WORKERS | | | | | | TONIGHT
XX PM-
XX AM | | 2. | STAY
IN
LANE |
 * | | | * | * See A | pplication Guide | elines N | lote 6. | # APPLICATION GUIDELINES - 1. Only 1 or 2 phases are to be used on a PCMS. - 2. The 1st phase (or both) should be selected from the "Road/Lane/Ramp Closure List" and the "Other Condition List". - 3. A 2nd phase can be selected from the "Action to Take/Effect on Travel, Location, General Warning, or Advance Notice Phase Lists". - 4. A Location Phase is necessary only if a distance or location is not included in the first phase selected. - 5. If two PCMS are used in sequence, they must be separated by a minimum of 1000 ft. Each PCMS shall be limited to two phases, and should be understandable by themselves. - 6. For advance notice, when the current date is within seven days of the actual work date, calendar days should be replaced with days of the week. Advance notification should typically be for no more than one week prior to the work. # WORDING ALTERNATIVES - 1. The words RIGHT, LEFT and ALL can be interchanged as appropriate. - 2. Roadway designations IH, US, SH, FM and LP can be interchanged as appropriate. - 3. EAST, WEST, NORTH and SOUTH (or abbreviations E, W, N and S) can be interchanged as appropriate. - 4. Highway names and numbers replaced as appropriate. - 5. ROAD, HIGHWAY and FREEWAY can be interchanged as needed. - 6. AHEAD may be used instead of distances if necessary. - 7. FI and MI. MILE and MILES interchanged as appropriate. - 8. AT. BEFORE and PAST interchanged as needed. - 9. Distances or AHEAD can be eliminated from the message if a location phase is used. PCMS SIGNS WITHIN THE R.O.W. SHALL BE BEHIND GUARDRAIL OR CONCRETE BARRIER OR SHALL HAVE A MINIMUM OF FOUR (4) PLASTIC DRUMS PLACED PERPENDICULAR TO TRAFFIC ON THE UPSTREAM SIDE OF THE PCMS, WHEN EXPOSED TO ONE DIRECTION OF TRAFFIC. WHEN EXPOSED TO TWO WAY TRAFFIC. THE FOUR DRUMS SHOULD BE PLACED WITH ONE DRUM AT EACH OF THE FOUR CORNERS OF THE UNIT. # FULL MATRIX PCMS SIGNS XXXXXXX BLVD CLOSED - 1. When Full Matrix PCMS signs are used, the character height and legibility/visibility requirements shall be maintained as listed in Note 15 under "PORTABLE CHANGEABLE MESSAGE SIGNS" above. - 2. When symbol signs, such as the "Flagger Symbol" (CW20-7) are represented graphically on the Full Matrix PCMS sign and, with the approval of the Engineer, it shall maintain the legibility/visibility requirement listed above - 3. When symbol signs are represented graphically on the Full Matrix PCMS, they shall only supplement the use of the static sign represented, and shall not substitute for, or replace that sign. - 4. A full matrix PCMS may be used to simulate a flashing arrow board provided it meets the visibility, flash rate and dimming requirements on BC(7), for the same size arrow. SHEET 6 OF 12 BARRICADE AND CONSTRUCTION Traffic Safety MESSAGE SIGN (PCMS) BC (6) -21 PORTABLE CHANGEABLE | | | | | _ | | | | | |---------|---------------|-----------|------|-----------|-----|---------|-----------|--| | FILE: | bc-21.dgn | DN: T | ĸDOT | ck: TxDOT | D₩≎ | TxDOT | ck: TxDOT | | | C TxD0T | November 2002 | CONT SECT | | JOB | | H]GHWAY | | | | | REVISIONS | | 42 | 001 | | IΗ | H 20, ETC | | | 9-07 | 8-14 | DIST | | COUNTY | | | SHEET NO. | | | 7-13 | 5-21 | ODA | | ECTOR, E | TC. | | 12 | | # CONCRETE TRAFFIC BARRIER (CTB) - 3. Where traffic is on one side of the CTB, two (2) Barrier Reflectors shall be mounted in approximately the midsection of each section of CTB. An alternate mounting location is uniformly spaced at one end of each CTB. This will allow for attachment of a barrier grapple without damaging the reflector. The Barrier Reflector mounted on the side of the CTB shall be located directly below
the reflector mounted on top of the barrier, as shown in the detail above. - 4. Where CTB separates two-way traffic, three barrier reflectors shall be mounted on each section of CTB. The reflector unit on top shall have two yellow reflective faces (Bi-Directional) while the reflectors on each side of the barrier shall have one yellow reflective face, as shown in the detail above. - 5. When CTB separates traffic traveling in the same direction, no barrier reflectors will be required on top of the CTB. - 6. Barrier Reflector units shall be yellow or white in color to match the edgeline being supplemented. - 7. Maximum spacing of Barrier Reflectors is forty (40) feet. - 8. Pavement markers or temporary flexible-reflective roadway marker tabs shall NOT be used as CTB delineation. - 9. Attachment of Barrier Reflectors to CTB shall be per manufacturer's - 10.Missing or damaged Barrier Reflectors shall be replaced as directed by the Engineer. - 11. Single slope barriers shall be delineated as shown on the above detail. Max. spacing of barrier reflectors is 20 feet. Attach the delineators as per manufacturer's recommendations. # LOW PROFILE CONCRETE BARRIER (LPCB) # DELINEATION OF END TREATMENTS # END TREATMENTS FOR CTB'S USED IN WORK ZONES End treatments used on CTB's in work zones shall meet the apppropriate crashworthy standards as defined in the Manual for Assessing Safety Hardware (MASH), Refer to the CWZTCD List for approved end treatments and manufacturers. # BARRIER REFLECTORS FOR CONCRETE TRAFFIC BARRIER AND ATTENUATORS Type C Warning Light or approved substitute mounted on a drum adjacent to the travel way. Warning reflector may be round or square. Must have a yellow reflective surface area of at least 30 square inches # WARNING LIGHTS - 1. Warning lights shall meet the requirements of the TMUTCD. - 2. Warning lights shall NOT be installed on barricades. - 3. Type A-Low Intensity Flashing Warning Lights are commonly used with drums. They are intended to warn of or mark a potentially hazardous area. Their use shall be as indicated on this sheet and/or other sheets of the plans by the designation "FL". The Type A Warning Lights shall not be used with signs manufactured with Type B_{FL} or C_{FL} Sheeting meeting the requirements of Departmental Material Specification DMS-8300. - 4. Type-C and Type D 360 degree Steady Burn Lights are intended to be used in a series for delineation to supplement other traffic control devices. Their use shall be as indicated on this sheet and/or other sheets of the plans by the designation "SB". - 5. The Engineer/Inspector or the plans shall specify the location and type of warning lights to be installed on the traffic control devices. - 6. When required by the Engineer, the Contractor shall furnish a copy of the worning lights certification. The warning light manufacturer will certify the warning lights meet the requirements of the latest ITE Purchase Specifications for Flashing and Steady-Burn Warning Lights. - 7. When used to delineate curves, Type-C and Type D Steady Burn Lights should only be placed on the outside of the curve, not the inside. - 8. The location of warning lights and warning reflectors on drums shall be as shown elsewhere in the plans. # WARNING LIGHTS MOUNTED ON PLASTIC DRUMS - 1. Type A flashing warning lights are intended to warn drivers that they are approaching or are in a potentially hazardous area. - 2. Type A random flashing warning lights are not intended for delineation and shall not be used in a series. - 3. A series of sequential flashing warning lights placed on channelizing devices to form a merging taper may be used for delineation. If used, the successive flashing of the sequential warning lights should occur from the beginning of the taper to the end of the merging taper in order to identify the desired vehicle path. The rate of flashing for each light shall be 65 flashes per minute, plus or minus 10 flashes. - 4. Type C and D steady-burn warning lights are intended to be used in a series to delineate the edge of the travel lane on detours, on lane changes, on lane closures, and on other similar conditions. - 5. Type A, Type C and Type D warning lights shall be installed at locations as detailed on other sheets in the plans. - 6. Warning lights shall not be installed on a drum that has a sign, chevron or vertical panel. - 7. The maximum spacing for warning lights on drums should be identical to the channelizing device spacing. # WARNING REFLECTORS MOUNTED ON PLASTIC DRUMS AS A SUBSTITUTE FOR TYPE C (STEADY BURN) WARNING LIGHTS - 1. A warning reflector or approved substitute may be mounted on a plastic drum as a substitute for a Type C, steady burn warning light at the discretion of the Contractor unless otherwise noted in the plans. - 2. The warning reflector shall be yellow in color and shall be manufactured using a sign substrate approved for use with plastic drums listed - 3. The warning reflector shall have a minimum retroreflective surface area (one-side) of 30 square inches. - 4. Round reflectors shall be fully reflectorized, including the area where attached to the drum. - 5. Square substrates must have a minimum of 30 square inches of reflectorized sheeting. They do not have to be reflectorized where it attaches to the drum. - 6. The side of the warning reflector facing approaching traffic shall have sheeting meeting the color and retroreflectivity requirements for DMS 8300-Type B or Type C. - 7. When used near two-way traffic, both sides of the warning reflector shall be reflectorized. - 8. The warning reflector should be mounted on the side of the handle nearest approaching traffic. - 9. The maximum spacing for warning reflectors should be identical to the channelizing device spacing requirements. Arrow Boards may be located behind channelizing devices in place for a shoulder taper or merging taper, otherwise they shall be delineated with four (4) channelizing devices placed perpendicular to traffic on the upstream side of traffic. - 1. The Flashing Arrow Board should be used for all lane closures on multi-lane roadways, or slow moving maintenance or construction activities on the travel lanes. 2. Flashing Arrow Boards should not be used on two-lane, two-way roadways, detours, diversions - or work on shoulders unless the "CAUTION" display (see detail below) is used. - The Engineer/Inspector shall choose all appropriate signs, barricades and/or other traffic control devices that should be used in conjunction with the Flashing Arrow Board. - 4. The Flashing Arrow Board should be able to display the following symbols: - 5. The "CAUTION" display consists of four corner lamps flashing simultaneously, or the Alternating Diamond Caution mode as shown. - The straight line caution display is NOT ALLOWED. - The Flashing Arrow Board shall be capable of minimum 50 percent dimming from rated lamp voltage. The flashing rate of the lamps shall not be less than 25 nor more than 40 flashes per minute. - Minimum lamp "on time" shall be approximately 50 percent for the flashing arrow and equal intervals of 25 percent for each sequential phase of the flashing chevron. - 9. The sequential arrow display is NOT ALLOWED. 10. The flashing arrow display is the TxDOT standard; however, the sequential chevron display may be used during daylight operations. - The Flashing Arrow Board shall be mounted on a vehicle, trailer or other suitable support. A Flashing Arrow Board SHALL NOT BE USED to laterally shift traffic. A full matrix PCMS may be used to simulate a Flashing Arrow Board provided it meets visibility, - flash rate and dimming requirements on this sheet for the same size arrow. - 14. Minimum mounting height of trailer mounted Arrow Boards should be 7 feet from roadway to bottom of panel. | | REQUIREMENTS | | | | | | | | | | |------|-----------------|----------------------------------|-----------------------------------|--|--|--|--|--|--|--| | TYPE | MINIMUM
SIZE | MINIMUM NUMBER
OF PANEL LAMPS | MINIMUM
VISIBILITY
DISTANCE | | | | | | | | | В | 30 × 60 | 13 | 3/4 mile | | | | | | | | | С | 48 × 96 | 15 | 1 mile | | | | | | | | ATTENTION Flashing Arrow Boards shall be equipped with automatic dimmina devices. WHEN NOT IN USE, REMOVE THE ARROW BOARD FROM THE RIGHT-OF-WAY OR PLACE THE ARROW BOARD BEHIND CONCRETE TRAFFIC BARRIER OR GUARDRAIL. # FLASHING ARROW BOARDS SHEET 7 OF 12 # TRUCK-MOUNTED ATTENUATORS - 1. Truck-mounted attenuators (TMA) used on TxDOT facilities must meet the requirements outlined in the Manual for Assessing Safety Hardware (MASH). - Refer to the CWZTCD for the requirements of Level 2 or Level 3 TMAs. - 3. Refer to the CWZTCD for a list of approved TMAs. - 4. TMAs are required on freeways unless otherwise noted in the plans. - 5. A TMA should be used anytime that it can be positioned 30 to 100 feet in advance of the area of crew exposure without adversely affecting the work performance. - 6. The only reason a TMA should not be required is when a work area is spread down the roadway and the work crew is an extended distance from the TMA. Traffic Safety Division Standard BARRICADE AND CONSTRUCTION ARROW PANEL. REFLECTORS. WARNING LIGHTS & ATTENUATOR BC(7)-21 | ILE: | bc-21.dgn | DN: T> | kDOT | ck: TxDOT | DW: | TxDO | T | ck: TxDOT | |-----------|---------------|--------|-------------|-----------|-----|----------|------------|-----------| | C) TxDOT | November 2002 | CONT | SECT | ECT JOB | | | HIGHWAY | | | REVISIONS | | 6447 | 42 | 42 001 | | I | IH 20, ETC | | | | 8-14 | DIST | COUNTY SHE | | | HEET NO. | | | | 7-13 | 5-21 | OD4 | | ECTOR E | TC | | | 1.7 | # GENERAL NOTES - 1. For long term stationary work zones on freeways, drums shall be used as the primary channelizing device. - 2. For intermediate term stationary work zones on freeways, drums should be used as the primary channelizing device but may be replaced in tangent sections by vertical panels, or 42" two-piece cones. In tangent sections, one-piece
cones may be used with the approval of the Engineer but only if personnel are present on the project at all times to maintain the cones in proper position and location. - 3. For short term stationary work zones on freeways, drums are the preferred channelizing device but may be replaced in tapers, transitions and tangent sections by vertical panels, two-piece cones or one-piece cones as approved by the Engineer. - 4. Drums and all related items shall comply with the requirements of the current version of the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD) and the "Compliant Work Zone Traffic Control Devices List" (CWZTCD). - 5. Drums, bases, and related materials shall exhibit good workmanship and shall be free from objectionable marks or defects that would adversely affect their appearance or serviceability. - 6. The Contractor shall have a maximum of 24 hours to replace any plastic drums identified for replacement by the Engineer/Inspector. The replacement device must be an approved device. # GENERAL DESIGN REQUIREMENTS Pre-qualified plastic drums shall meet the following requirements: - 1. Plastic drums shall be a two-piece design; the "body" of the drum shall be the top portion and the "base" shall be the bottom. - 2. The body and base shall lock together in such a manner that the body separates from the base when impacted by a vehicle traveling at a speed of 20 MPH or greater but prevents accidental separation due to normal handling and/or air turbulence created by passing vehicles. - 3. Plastic drums shall be constructed of lightweight flexible, and deformable materials. The Contractor shall NOT use metal drums or single piece plastic drums as channelization devices or sign supports. - 4. Drums shall present a profile that is a minimum of 18 inches in width at the 36 inch height when viewed from any direction. The height of drum unit (body installed on base) shall be a minimum of 36 inches and a maximum of 42 inches. - 5. The top of the drum shall have a built-in handle for easy pickup and shall be designed to drain water and not collect debris. The handle shall have a minimum of two widely spaced 9/16 inch diameter holes to allow attachment of a warning light, warning reflector unit or approved - 6. The exterior of the drum body shall have a minimum of four alternating orange and white retroreflective circumferential stripes not less than 4 inches nor greater than 8 inches in width. Any non-reflectorized space between any two adjacent stripes shall not exceed 2 inches in - 7. Bases shall have a maximum width of 36 inches, a maximum height of 4 inches, and a minimum of two footholds of sufficient size to allow base to be held down while separating the drum body from the base. - 8. Plastic drums shall be constructed of ultra-violet stabilized, orange, high-density polyethylene (HDPE) or other approved material. - 9. Drum body shall have a maximum unballasted weight of 11 lbs. - 10. Drum and base shall be marked with manufacturer's name and model number. # RETROREFLECTIVE SHEETING - 1. The stripes used on drums shall be constructed of sheeting meeting the color and retroreflectivity requirements of Departmental Materials Specification DMS-8300, "Sign Face Materials." Type A or Type B reflective sheeting shall be supplied unless otherwise specified - 2. The sheeting shall be suitable for use on and shall adhere to the drum surface such that, upon vehicular impact, the sheeting shall remain adhered in-place and exhibit no delaminating, cracking, or loss of retroreflectivity other than that loss due to abrasion of the sheeting # BALLAST - 1. Unballasted bases shall be large enough to hold up to 50 lbs. of sand. This base, when filled with the ballast material, should weigh between 35 lbs (minimum) and 50 lbs (maximum). The ballast may be sand in one to three sandbags separate from the base, sand in a sand-filled plastic base, or other ballasting devices as approved by the Engineer. Stacking of sandbags will be allowed, however height of sandbags above pavement surface may not exceed 12 inches. - 2. Bases with built-in ballast shall weigh between 40 lbs. and 50 lbs. Built-in ballast can be constructed of an integral crumb rubber base or a solid rubber base. - 3. Recycled truck tire sidewalls may be used for ballast on drums approved for this type of ballast on the CWZTCD list. - 4. The ballast shall not be heavy objects, water, or any material that would become hazardous to motorists, pedestrians, or workers when the drum is struck by a vehicle. - 5. When used in regions susceptible to freezing, drums shall have drainage holes in the bottoms so that water will not collect and freeze becoming a hazard when struck by a vehicle. - 6. Ballast shall not be placed on top of drums. - 7. Adhesives may be used to secure base of drums to pavement. # DETECTABLE PEDESTRIAN BARRICADES - 1. When existing pedestrian facilities are disrupted, closed, or relocated in a TTC zone, the temporary facilities shall be detectable and include accessibility features consistent with the features present in the existing pedestrian facility. Refer to WZ(BTS-2) for Pedestrian Control requirements for Sidewalk Diversions, Sidewalk Detours and Crosswalk Closures. - 2. Where pedestrians with visual disabilities normally use the closed sidewalk, a Detectable Pedestrian Barricade shall be placed across the full width of the closed sidewalk instead of a Type 3 Barricade. - 3. Detectable pedestrian barricades similar to the one pictured above, longitudinal channelizing devices, some concrete barriers, and wood or chain link fencing with a continuous detectable edging can satisfactorily delineate a pedestrian - 4. Tape, rope, or plastic chain strung between devices are not detectable, do not comply with the design standards in the "Americans with Disabilities Act Accessibility Guidelines (ADAAG)" and should not be used as a control for pedestrian - 5. Warning lights shall not be attached to detectable pedestrian barricades. - 6. Detectable pedestrian barricades should use 8" nominal barricade rails as shown on BC(10) provided that the top rail provides a smooth continuous rail suitable for hand trailing with no splinters, burrs, or sharp edges. 18" x 24" Sign (Maximum Sign Dimension) Chevron CW1-8, Opposing Traffic Lane Divider, Driveway sign D70a, Keep Right R4 series or other signs as approved by Engineer See Ballast 12" x 24" Vertical Panel mount with diagonals sloping down towards travel way Plywood, Aluminum or Metal sign substrates shall NOT be used on plastic drums SIGNS, CHEVRONS, AND VERTICAL PANELS MOUNTED ON PLASTIC DRUMS - 1. Signs used on plastic drums shall be manufactured using substrates listed on the CWZTCD. - 2. Chevrons and other work zone signs with an orange background shall be manufactured with Type B_{FL} or Type C_{FL} Orange sheeting meeting the color and retroreflectivity requirements of DMS-8300, "Sign Face Material," unless otherwise specified in the plans. - 3. Vertical Panels shall be manufactured with orange and white sheeting meeting the requirements of DMS-8300 Type A or Type B. Diagonal stripes on Vertical Panels shall slope down toward the intended traveled lane. - 4. Other sign messages (text or symbolic) may be used as approved by the Engineer. Sign dimensions shall not exceed 18 inches in width or 24 inches in height, except for the R9 series signs discussed in note 8 below. - 5. Signs shall be installed using a 1/2 inch bolt (nominal) and nut, two washers, and one locking washer for each - 6. Mounting bolts and nuts shall be fully engaged and adequately torqued. Bolts should not extend more than 1/2 - 7. Chevrons may be placed on drums on the outside of curves, on merging tapers or on shifting tapers. When used in these locations, they may be placed on every drum or spaced not more than on every third drum, A minimum of three (3) should be used at each location called for in the plans. - 8. R9-9, R9-10, R9-11 and R9-11a Sidewalk Closed signs which are 24 inches wide may be mounted on plastic drums, with approval of the Engineer. SHEET 8 OF 12 Texas Department of Transportation Traffic Safety # BARRICADE AND CONSTRUCTION CHANNEL IZING DEVICES BC(8)-21 | E: bc-21.dgn | DN: TxDOT | | ck: TxDOT | DW: | T×DOT | ck: TxDOT | | | |----------------------|-----------|------|-----------|-----|-----------|------------|--|--| | TxDOT November 2002 | CONT | SECT | JOB | | H1GHWAY | | | | | REVISIONS | 6447 | 42 | 001 | | IΗ | IH 20, ETC | | | | -03 8-14
-07 5-21 | DIST | | COUNTY | | SHEET NO. | | | | | -17 | ODA | | FCTOR F | TC | | 1.4 | | | - 1. Vertical Panels (VP's) are normally used to channelize traffic or divide opposing lanes of traffic. - 2. VP's may be used in daytime or nighttime situations. They may be used at the edge of shoulder drop-offs and other areas such as lane transitions where positive daytime and nighttime delineation is required. The Engineer/Inspector shall refer to the Roadway Design Manual for additional requirements on the use VP's for drop-offs. - 3. VP's should be mounted back to back if used at the edge of cuts adjacent to two-way two lane roadways. Stripes are to be reflective orange and reflective white and should always slope downward toward the travel lane. - VP's used on expressways and freeways or other high speed roadways, may have more than 270 square inches of retroreflective area facing traffic. - Selfrighting supports are available with portable base. See "Compliant Work Zone Traffic Control Devices List" (CWZTCD). - Sheeting for the VP's shall be retroreflective Type A or Type B conforming to Departmental Material Specification DMS-8300, unless noted otherwise. - Where the height of reflective material on the vertical panel is 36 inches or greater, a panel stripe of 6 inches shall be used. # VERTICAL PANELS (VPs) - 1. Opposing Traffic Lane Dividers (OTLD) are delineation devices designed to convert a normal one-way roadway section to two-way
operation. OTLD's are used on temporary centerlines. The upward and downward arrows on the sign's face indicate the direction of traffic on either side of the divider. The base is secured to the pavement with an adhesive or rubber weight to minimize movement caused by a vehicle impact or wind gust. - The OTLD may be used in combination with 42" cones or VPs. - Spacing between the OTLD shall not exceed 500 feet. 42" cones or VPs placed between the OTLD's should not exceed 100 foot spacing. - 4. The OTLD shall be orange with a black non-reflective legend. Sheeting for the OTLD shall be retroreflective Type B_{FL} or Type C_{FL} conforming to Departmental Material Specification DMS-8300, unless noted otherwise. The legend shall meet the requirements of DMS-8300. OPPOSING TRAFFIC LANE DIVIDERS (OTLD) - Chevrons are intended to give notice of a sharp change of alignment with the direction of travel and provide additional emphasis and guidance for vehicle operators with regard to changes in horizontal alignment of the roadway. - 3. Chevrons, when used, shall be erected on the outside of a sharp curve or turn, or on the far side of an intersection. They shall be in line with and at right angles to approaching traffic. Spacing should be such that the motorist always has three in view, until the change in alignment eliminates its need. - 4. To be effective, the chevron should be visible for at least 500 feet. - 5. Chevrons shall be orange with a black nonreflective legend. Sheeting for the chevron shall be retroreflective Type B_L or Type C_{FL} conforming to Departmental Material Specification DMS-8300, unless noted otherwise. The legend shall meet the requirements of DMS-8300. - For Long Term Stationary use on tapers or transitions on freeways and divided highways, self-righting chevrons may be used to supplement plastic drums but not to replace plastic drums. # CHEVRONS ### **GENERAL NOTES** - Work Zone channelizing devices illustrated on this sheet may be installed in close proximity to traffic and are suitable for use on high or low speed roadways. The Engineer/Inspector shall ensure that spacing and placement is uniform and in accordance with the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD). - Channelizing devices shown on this sheet may have a driveable, fixed or portable base. The requirement for self-righting channelizing devices must be specified in the General Notes or other plan sheets. - 3. Channelizing devices on self-righting supports should be used in work zone areas where channelizing devices are frequently impacted by errant vehicles or vehicle related wind gusts making alignment of the channelizing devices difficult to maintain. Locations of these devices shall be detailed elsewhere in the plans. These devices shall conform to the TMUTCD and the "Compliant Work Zone Traffic Control Devices List" (CWZTCD). - 4. The Contractor shall maintain devices in a clean condition and replace damaged, nonreflective, faded, or broken devices and bases as required by the Engineer/Inspector. The Contractor shall be required to maintain proper device spacing and alignment. - Portable bases shall be fabricated from virgin and/or recycled rubber. The portable bases shall weigh a minimum of 30 lbs. - 6. Pavement surfaces shall be prepared in a manner that ensures proper bonding between the adhesives, the fixed mount bases and the pavement surface. Adhesives shall be prepared and applied according to the manufacturer's recommendations. - 7. The installation and removal of channelizing devices shall not cause detrimental effects to the final pavement surfaces, including pavement surface discoloration or surface integrity. Driveable bases shall not be permitted on final pavement surfaces. The Engineer/Inspector shall approve all application and removal procedures of fixed bases. # LONGITUDINAL CHANNELIZING DEVICES (LCD) 36 Fixed Base w/ Approved Adhesive (Driveable Base, or Flexible Support can be used) - 1. LCDs are crashworthy, lightweight, deformable devices that are highly visible, have good target value and can be connected together. They are not designed to contain or redirect a vehicle on impact. - 2. LCDs may be used instead of a line of cones or drums. - LCDs shall be placed in accordance to application and installation requirements specific to the device, and used only when shown on the CWZTCD list. - 4. LCDs should not be used to provide positive protection for obstacles, pedestrians or workers. - 5. LCDs shall be supplemented with retroreflective delineation as required for temporary barriers on BC(7) when placed roughly parallel to the travel lanes. - 6. LCDs used as barricades placed perpendicular to traffic should have at least one row of reflective sheeting meeting the requirements for barricade rails as shown on BC(10). Place reflective sheeting near the top of the LCD along the full length of the device. # WATER BALLASTED SYSTEMS USED AS BARRIERS - Water ballasted systems used as barriers shall not be used solely to channelize road users, but also to protect the work space per the appropriate Manual for Assessing Safety Hardware (MASH) crashworthiness requirements based on roadway speed and barrier application. - Water ballasted systems used to channelize vehicular traffic shall be supplemented with retroreflective delineation or channelizing devices to improve daytime/nighttime visibility. They may also be supplemented with pavement markings. - Water ballasted systems used as barriers shall be placed in accordance to application and installation requirements specific to the device, and used only when shown on the CWZTCD list. - 4. Water ballasted systems used as barriers should not be used for a merging taper except in low speed (less than 45 MPH urban areas. When used on a taper in a low speed urban area, the taper shall be delineated and the taper length should be designed to optimize road user operations considering the available geometric conditions. - 5. When water ballasted systems used as barriers have blunt ends exposed to traffic, they should be attenuated as per manufacturer recommendations or flared to a point outside the clear zone. If used to channelize pedestrians, longitudinal channelizing devices or water ballasted systems must have a continuous detectable bottom for users of long canes and the top of the unit shall not be less than 32 inches in height. HOLLOW OR WATER BALLASTED SYSTEMS USED AS LONGITUDINAL CHANNELIZING DEVICES OR BARRIERS | Posted
Speed | Formula | D | esirab
er Len
** | le | Suggested Maximum
Spacing of
Channelizing
Devices | | | | |-----------------|-----------------------|---------------|-----------------------------------|------|--|-----------------|--|--| | | | 10'
Offset | 10' 11' 12'
fset Offset Offset | | On a
Taper | On a
Tangent | | | | 30 | 2 | 150′ | 165′ | 180′ | 30' | 60′ | | | | 35 | $L = \frac{WS^2}{60}$ | 2051 | 2251 | 2451 | 35′ | 70′ | | | | 40 | 80 | 265′ | 295′ | 3201 | 40' | 80′ | | | | 45 | | 450′ | 495′ | 540' | 45′ | 90′ | | | | 50 | | 5001 | 550′ | 6001 | 50′ | 100′ | | | | 55 | L=WS | 550′ | 605′ | 660′ | 55′ | 110′ | | | | 60 | - 1, 5 | 600' | 660′ | 720′ | 60′ | 120′ | | | | 65 | | 650′ | 715′ | 7801 | 65′ | 130′ | | | | 70 | | 700′ | 770′ | 840′ | 70′ | 140′ | | | | 75 | | 750′ | 825′ | 9001 | 75′ | 150′ | | | | 80 | | 800′ | 880′ | 960′ | 80′ | 160′ | | | **X*Taper lengths have been rounded off, L=Length of Taper (FT,) W=Width of Offset (FT,) S=Posted Speed (MPH) # SUGGESTED MAXIMUM SPACING OF CHANNELIZING DEVICES AND MINIMUM DESIRABLE TAPER LENGTHS SHEET 9 OF 12 Traffic Safety Division Standard # BARRICADE AND CONSTRUCTION CHANNELIZING DEVICES BC (9) -21 | FILE: | bc-21.dgn | DN: T | kDOT | ck: TxDOT | D₩≎ | TxD0 | CK: TXDOT | |-----------|---------------|-------|----------------|-----------|-----|---------|-----------| | C TxD0T | November 2002 | CONT | SECT | JOB | | H]GHWAY | | | | REVISIONS | 6447 | 42 | 001 | | ĮΗ | 20, ETC | | 9-07 8-14 | | DIST | COUNTY SHEET N | | | | SHEET NO. | | 7-13 | 5-21 | ODA | | ECTOR, E | TC. | | 15 | # TYPE 3 BARRICADES - Refer to the Compliant Work Zone Traffic Control Devices List (CWZTCD) for details of the Type 3 Barricades and a list of all materials used in the construction of Type 3 Barricades. - Type 3 Barricades shall be used at each end of construction projects closed to all traffic. - 3. Barricades extending across a roadway should have stripes that slope downward in the direction toward which traffic must turn in detouring. When both right and left turns are provided, the chevron striping may slope downward in both directions from the center of the barricade. Where no turns are provided at a closed road, striping should slope downward in both directions toward the center of roadway. - Striping of rails, for the right side of the roadway, should slope downward to the left. For the left side of the roadway, striping should slope downward to the right. - Identification markings may be shown only on the back of the barricade rails. The maximum height of letters and/or company logos used for identification shall be 1". - Barricades shall not be placed parallel to traffic unless an adequate clear zone is provided. - 7. Warning lights shall NOT be installed on barricades. - 8. Where barricades require the use of weights to keep from turning over, the use of sandbags with dry, cohesionless sand is recommended. The sandbags will be tied shut to keep the sand from spilling and to maintain a constant weight. Sand bags shall not be stacked in a manner that covers any portion of a barricade rails reflective sheeting. Rock, concrete, iron, steel or other solid objects will NOT be permitted. Sandbags shall dweigh a minimum of 35 lbs and a maximum of 50 lbs. Sandbags shall be made of a durable material that tears upon vehicular impact. Rubber (such as tire inner tubes) shall not be used for sandbags.
Sandbags shall only be placed along or upon the base supports of the device and shall not be suspended above ground level or hung with rope, wire, chains or other fasteners. - Sheeting for barricades shall be retroreflective Type A or Type B conforming to Departmental Material Specification DMS-8300 unless otherwise noted. # TYPICAL STRIPING DETAIL FOR BARRICADE RAIL Stiffener may be inside or outside of support, but no more than 2 stiffeners shall be allowed on one barricade. # TYPICAL PANEL DETAIL FOR SKID OR POST TYPE BARRICADES TYPE 3 BARRICADE (POST AND SKID) TYPICAL APPLICATION 1. Where positive redirectional capability is provided, drums may be omitted. 2. Plastic construction fencing may be used with drums for safety as required in the plans. 3. Vertical Panels on flexible support may be substituted for drums when the Typical shoulder width is less than 4 feet. Plastic Drum 4. When the shoulder width is greater than 12 feet, steady-burn lights PERSPECTIVE VIEW may be omitted if drums are used. 5. Drums must extend the length These drums are not required of the culvert widening. on one-way roadway LEGEND Plastic drum Plastic drum with steady burn light of two drums s cross the work or yellow warning reflector Steady burn warning light or yellow warning reflector Θ Increase number of plastic drums on the side of approaching traffic if the crown width makes it necessary. (minimum of 2 and maximum of 4 drums) 3"-4" 4" min. orange 2" min. 4" min. white 4" min. orange 4" min. orange 4" min. white 4" min. white 42" min. 28" min. 6" min. 2" min. 2" min. 28" min. PLAN VIEW 2" max. 3" min. 2" to 6" 3" min. CULVERT WIDENING OR OTHER ISOLATED WORK WITHIN THE PROJECT LIMITS Two-Piece cones One-Piece cones Tubular Marker TRAFFIC CONTROL FOR MATERIAL STOCKPILES 28" Cones shall have a minimum weight of 9 1/2 lbs. 42" 2-piece cones shall have a minimum weight of 30 lbs. including base. - Traffic cones and tubular markers shall be predominantly orange, and meet the height and weight requirements shown above. - One-piece cones have the body and base of the cone molded in one consolidated unit. Two-piece cones have a cone shaped body and a separate rubber base, or ballast, that is added to keep the device upright and in place. - Two-piece cones may have a handle or loop extending up to 8" above the minimum height shown, in order to aid in retrieving the device. - 4. Cones or tubular markers shall have white or white and orange reflective bands as shown above. The reflective bands shall have a smooth, sealed outer surface and meet the requirements of Departmental Material Specification DMS-8300 Type A or Type B. - 5. 28" cones and tubular markers are generally suitable for short duration and short-term stationary work as defined on BC(4). These should not be used for intermediate-term or long-term stationary work unless personnel is on-site to maintain them in their proper upright position. - 42" two-piece cones, vertical panels or drums are suitable for all work zone durations. - Cones or tubular markers used on each project should be of the same size and shape. SHEET 10 OF 12 Traffic Safety Division Standard # BARRICADE AND CONSTRUCTION CHANNELIZING DEVICES BC(10)-21 | E: | bc-21.dgn | DN: T | <dot< th=""><th>ck: TxDOT</th><th>DW:</th><th>TxDOT</th><th>ck: TxDOT</th><th>ı</th></dot<> | ck: TxDOT | DW: | TxDOT | ck: TxDOT | ı | |-------|---------------|-------|---|-----------|-----|-------|-----------|---| | TxDOT | November 2002 | CONT | SECT | JOB | | H | IGHWAY | ı | | | REVISIONS | 6447 | 42 | 001 | | IH: | 20, ETC | ı | | 9-07 | 8-14 | DIST | | COUNTY | | | SHEET NO. | ı | | 7-13 | 5-21 | ODA | | ECTOR, E | TC. | | 16 | ı | # WORK ZONE PAVEMENT MARKINGS # **GENERAL** - 1. The Contractor shall be responsible for maintaining work zone and existing pavement markings, in accordance with the standard specifications and special provisions, on all roadways open to traffic within the CSJ limits unless otherwise stated in the plans. - 2. Color, patterns and dimensions shall be in conformance with the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD). - 3. Additional supplemental pavement marking details may be found in the plans or specifications. - 4. Pavement markings shall be installed in accordance with the TMUTCD and as shown on the plans. - 5. When short term markings are required on the plans, short term markings shall conform with the TMUTCD, the plans and details as shown on the Standard Plan Sheet WZ(STPM). - 6. When standard pavement markings are not in place and the roadway is opened to traffic, DO NOT PASS signs shall be erected to mark the beginning of the sections where passing is prohibited and PASS WITH CARE signs at the beginning of sections where passing - 7. All work zone pavement markings shall be installed in accordance with Item 662, "Work Zone Pavement Markings." # RAISED PAVEMENT MARKERS - 1. Raised pavement markers are to be placed according to the patterns - 2. All raised pavement markers used for work zone markings shall meet the requirements of Item 672, "RAISED PAVEMENT MARKERS" and Departmental Material Specification DMS-4200 or DMS-4300. # PREFABRICATED PAVEMENT MARKINGS - 1. Removable prefabricated pavement markings shall meet the requirements - 2. Non-removable prefabricated pavement markings (foil back) shall meet the requirements of DMS-8240. # MAINTAINING WORK ZONE PAVEMENT MARKINGS - 1. The Contractor will be responsible for maintaining work zone pavement markings within the work limits. - 2. Work zone pavement markings shall be inspected in accordance with the frequency and reporting requirements of work zone traffic control device inspections as required by Form 599. - 3. The markings should provide a visible reference for a minimum distance of 300 feet during normal daylight hours and 160 feet when illuminated by automobile low-beam headlights at night, unless sight distance is restricted by roadway geometrics. - 4. Markings failing to meet this criteria within the first 30 days after placement shall be replaced at the expense of the Contractor as per Specification Item 662. # REMOVAL OF PAVEMENT MARKINGS - 1. Pavement markings that are no longer applicable, could create confusion or direct a motorist toward or into the closed portion of the roadway shall be removed or obliterated before the roadway is opened to traffic. - 2. The above shall not apply to detours in place for less than three days, where flaggers and/or sufficient channelizing devices are used in lieu of markings to outline the detour route. - 3. Pavement markings shall be removed to the fullest extent possible, so as not to leave a discernable marking. This shall be by any method approved by TxDOT Specification Item 677 for "Eliminating Existing Pavement Markings and Markers". - 4. The removal of pavement markings may require resurfacing or seal coating portions of the roadway as described in Item 677. - 5. Subject to the approval of the Engineer, any method that proves to be successful on a particular type pavement may be used. - 6. Blast cleaning may be used but will not be required unless specifically shown in the plans. - 7. Over-painting of the markings SHALL NOT BE permitted. - 8. Removal of raised pavement markers shall be as directed by the - 9. Removal of existing pavement markings and markers will be paid for directly in accordance with Item 677, "ELIMINATING EXISTING PAVEMENT MARKINGS AND MARKERS, " unless otherwise stated in the plans. - 10. Black-out marking tape may be used to cover conflicting existing markings for periods less than two weeks when approved by the Engineer. # Temporary Flexible-Reflective Roadway Marker Tabs STAPLES OR NAILS SHALL NOT BE USED TO SECURE TEMPORARY FLEXIBLE-REFLECTIVE ROADWAY MARKER TABS TO THE PAVEMENT SURFACE - 1. Temporary flexible-reflective roadway marker tabs used as guidemarks shall meet the requirements of DMS-8242. - 2. Tabs detailed on this sheet are to be inspected and accepted by the Engineer or designated representative. Sampling and testing is not normally required, however at the option of the Engineer, either "A" or "B" below may be imposed to assure quality before placement on the - A. Select five (5) or more tabs at random from each lot or shipment and submit to the Construction Division, Materials and Pavement Section to determine specification compliance. - B. Select five (5) tabs and perform the following test. Affix five (5) tabs at 24 inch intervals on an asphaltic pavement in a straight line. Using a medium size passenger vehicle or pickup, run over the markers with the front and rear tires at a speed of 35 to 40 miles per hour, four (4) times in each direction. No more than one (1) out of the five (5) reflective surfaces shall be lost or displaced as a result of this test. - 3. Small design variances may be noted between tab manufacturers. - 4. See Standard Sheet WZ(STPM) for tab placement on new pavements. See Standard Sheet TCP(7-1) for tab placement on seal coat work. # RAISED PAVEMENT MARKERS USED AS GUIDEMARKS - 1. Raised pavement markers used as guidemarks shall be from the approved product list, and meet the requirements of DMS-4200, - 2. All temporary construction raised pavement markers provided on a project shall be of the same manufacturer. - 3. Adhesive for guidemarks shall be bituminous material hot applied or butyl rubber pad for all surfaces, or thermoplastic for concrete surfaces. Guidemarks shall be designated as: YELLOW - (two amber reflective surfaces with yellow body). WHITE - (one silver reflective surface with white body). | DEPARTMENTAL MATERIAL SPECIFICATIO | NS | |---|----------| | PAVEMENT MARKERS (REFLECTORIZED) | DMS-4200 | | TRAFFIC BUTTONS | DMS-4300 | | EPOXY AND ADHESIVES | DMS-6100 | | BITUMINOUS ADHESIVE FOR PAVEMENT MARKERS | DMS-6130 | | PERMANENT
PREFABRICATED PAVEMENT MARKINGS | DMS-8240 | | TEMPORARY REMOVABLE, PREFABRICATED PAVEMENT MARKINGS | DMS-8241 | | TEMPORARY FLEXIBLE, REFLECTIVE
ROADWAY MARKER TABS | DMS-8242 | A list of preguglified reflective raised payement markers. non-reflective traffic buttons, roadway marker tabs and other pavement markings can be found at the Material Producer List web address shown on BC(1). SHEET 11 OF 12 Traffic Safety Texas Department of Transportation BARRICADE AND CONSTRUCTION PAVEMENT MARKINGS BC(11)-21 DN: TXDOT CK: TXDOT DW: TXDOT CK: TXDOT bc-21.dgn ©⊺xDOT February 1998 CONT SECT JOB HIGHWAY 6447 42 001 IH 20, ETC 2-98 9-07 5-21 SHEET NO. 1-02 7-13 11-02 8-14 ODA ECTOR, ETC. # DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any Kind is made by TxD0T for any purpose whatsoever. TxD0T assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use. Type I-A Type Y buttons Type I-A Type Y buttons 0000 Type W buttons-Type I-C or II-C-R RAISED PAVEMENT MARKERS 0000 └Type I-C # EDGE & LANE LINES FOR DIVIDED HIGHWAY # LANE & CENTER LINES FOR MULTILANE UNDIVIDED HIGHWAYS BARRICADE AND CONSTRUCTION PAVEMENT MARKING PATTERNS BC(12)-21 DN: TXDOT CK: TXDOT DW: TXDOT CK: TXDO © TxDOT February 1998 CONT SECT JOB H1GHWAY 6447 42 001 IH 20, ETC 1-97 9-07 5-21 SHEET NO. 2-98 7-13 11-02 8-14 ECTOR, ETC. Raised pavement markers used as standard pavement markings shall be from the approved products list and meet the requirements of Item 672 "RAISED PAVEMENT MARKERS." # GENERAL NOTES FOR ALL ELECTRICAL WORK - The location of all conduits, junction boxes, ground boxes, and electrical services is diagrammatic and may be shifted to accommodate field conditions. - 2. Provide new and unused materials. Ensure that all materials and installations comply with the applicable articles of the National Electrical Code (NEC), TxDOT standards and specifications, National Electrical Manufacturers Association (NEMA), and are listed by Underwriters Laboratories (UL) or a Nationally Recognized Testing Lab (NRTL). NRTLs such as Canadian Standard Association (CSA), Intertek Testing Services NA Inc., or FM Approvals LLC can be considered equivalent to UL. Where reference is made to NEMA listed devices, International Electrotechnical Commission (IEC) listed devices will not be considered an acceptable equal to a NEMA listed device. Acceptable devices may have both a NEMA and IEC listing. Faulty fabrication or poor workmanship in any material, equipment, or installation is justification for rejection. Replace or reinstall rejected material or equipment at no additional cost to the Department. - 3. Miscellaneous nuts, bolts and hardware, except for high strength bolts, may be stainless steel when plans specify galvanized, provided the bolt size is $\frac{1}{2}$ in. or less in diameter. - 4. Provide the following test equipment as required by the Engineer to confirm compliance with the contract and the NEC: voltmeter, ammeter, megohm meter (1000 volt DC), ground resistance tester, torque wrenches, and torque screwdrivers. Ensure all equipment has been properly calibrated within the last year. Provide calibration certification to the Engineer upon request. Operate test equipment during inspection as requested by the Engineer. - 5. Install grounding as shown on the plans and in accordance with the NEC. Ensure all metallic conduits; metal poles; luminaires; and metal enclosures are bonded to the equipment grounding conductor. Provide stranded bare copper or green insulated grounding conductors. Ground rods, connectors, and bonding jumpers are subsidiary to the various bid items. - 6. When required by the Engineer, notify the Department in writing of materials from the Material Producers List (MPL) intended for use on each project. Prequalified materials are listed on the MPL on TxDOT's website under "Roadway Illumination and Electrical Supplies." No substitutions will be allowed for materials on this list. # CONDUIT # A. MATERIALS - 1. Provide conduit, junction boxes, fittings, and hardware as per TxDOT Departmental Material Specification (DMS) 11030 "Conduit" and Item 618 "Conduit" of TxDOT's "Standard Specifications For Construction And Maintenance Of Highways, Streets, And Bridges," latest edition. Provide conduits listed under Item 618 on the MPL under "Roadway Illumination and Electrical Supplies. Provide conduit types according to the descriptive code or as shown on the plans. Do not substitute other types of conduits for those shown. Provide liquidtight flexible metal conduit (LFMC) when flexible conduit is called for on galvanized steel rigid metallic conduit (RMC) systems. Provide liquidtight flexible nonmetallic conduit (LFNC) when flexible conduit is called for on polyvinyl chloride (PVC) systems. - 2. Provide galvanized steel RMC for all exposed conduits, unless otherwise shown on the plans. Properly bond all metal conduits. - 3. Unless otherwise shown on the plans, provide junction boxes with a minimum size as shown in the following table, which applies to the greatest number of conductors entering the box through one conduit with no more than four conduits per box. When a mixture of conductor sizes is present, count the conductors as if all are of the larger size. For situations not applicable to the table, size junction boxes in accordance with NEC. | AWG | 3 CONDUCTORS | 5 CONDUCTORS | 7 CONDUCTORS | |-----|----------------|----------------|----------------| | #1 | 10" x 10" x 4" | 12" x 12" x 4" | 16" x 16" x 4" | | #2 | 8" × 8" × 4" | 10" x 10" x 4" | 12" x 12" x 4" | | #4 | 8" × 8" × 4" | 10" x 10" x 4" | 10" x 10" x 4" | | #6 | 8" × 8" × 4" | 8" × 8" × 4" | 10" x 10" x 4" | | #8 | 8" × 8" × 4" | 8" × 8" × 4" | 8" × 8" × 4" | - 4. Junction boxes with an internal volume of less than 100 cu. in. and supported by entering raceways must have threaded entries or hubs identified for the intended purpose and supported by connection of two or more rigid metal conduits. Secure conduit within 3 ft. of the enclosure or within 18 in. of the enclosure if all conduit entries are on the same side. Mechanically secure all junction boxes with an internal volume greater than 100 cu. inches. - Provide hot dipped galvanized cast iron or sand cast aluminum outlet boxes for junction boxes containing only 10 AWG or 12 AWG conductors. Do not use die cast aluminum boxes. Size outlet boxes according to the NEC. - 6. Do not use intermediate metal conduit (IMC) or electrical metallic tubing (EMT) unless specifically required by the plan sheets. When EMT is called for, provide junction boxes made from galvanized steel sheeting, listed and approved for outdoor use, unless otherwise noted on the plans. Size all galvanized steel junction boxes in accordance with the NEC. Provide junction boxes for IMC conduit systems that meet the same requirements for junction boxes used with RMC systems. - 7. Provide PVC junction boxes intended for outdoor use on PVC conduit systems, unless otherwise noted on the plans. - 8. Provide PVC elbows in PVC conduit systems, unless otherwise shown on the plans. Use only a flat, high tensile strength polyester fiber pull tape for pulling conductors through the PVC conduit system. When galvanized steel RMC elbows are specifically called for in the plans and any portion of the RMC elbow is buried less than 18 in., ground the RMC elbow by means of a grounding bushing on a rigid metal extension. Grounding of the rigid metal elbow is not required if the entire RMC elbow is encased in a minimum of 2 in. of concrete. PVC extensions are allowed on these concrete encased rigid metal elbows. RMC or PVC elbows are subsidiary to various bid items. - 9. When required, provide High-Density Polyethylene (HDPE) conduit with factory installed internal conductors according to Item 622 "Duct Cable." At the Contractor's request and with approval by the Engineer, substitute HDPE conduit with no conductors for bored schedule 40 or schedule 80 PVC conduit bid under Item 618. Ensure bored HDPE substituted for PVC is schedule 40 and of the same size PVC called for in the plans. Ensure the substituted HDPE meets the requirements of Item 622, except that the conduit is supplied without factory-installed conductors. Make the transition of the HDPE conduit to PVC (or RMC elbow when required) at the bore pit. Provide conduit of the size and schedule as shown on the plans. Do not extend substituted conduit into ground boxes or foundations. Provide PVC or galvanized steel RMC elbows as called for at all ground boxes and foundations. - 10. Use two-hole straps when supporting 2 in. and larger conduits. On electrical service poles, properly sized stainless steel or hot dipped galvanized one-hole standoff straps are allowed on the service riser conduit. - B. CONSTRUCTION METHODS - 1. Provide and install expansion joint conduit fittings on all structure-mounted conduits at the structure's expansion joints to allow for movement of the conduit. In addition, provide and install expansion joint fittings on all continuous runs of galvanized steel RMC conduit externally exposed on structures such as bridges at maximum intervals of 150 ft. When requested by the project Engineer, supply manufacturer's specification sheet for expansion joint conduit fittings. Repair or replace expansion joint fittings that do not allow for movement at no additional cost to the Department. Provide the method of determining the amount of expansion to the Engineer upon request. Do not use LFMC or LFNC as a substitute for the required expansion conduit fittings. - 2. Space all conduit supports at maximum intervals of 5 ft. Install conduit spacers when attaching metal conduit to surface of concrete structures. See "Conduit Mounting Options" on ED(2). Install conduit support within 3 ft. of all enclosures and conduit terminations. - Do not attach conduit supports directly to
pre-stressed concrete beams except as shown specifically in the plans or as approved by the Engineer. - 4. Unless otherwise shown on the plans, jack or bore conduit placed beneath existing roadways, driveways, sidewalks, or after the base or surfacing operation has begun. Backfill and compact the bore pits below the conduit per Item 476 "Jacking, Boring, or Tunneling Pipe or Box" prior to installing conduit or duct cable to prevent bending of the connections. - 5. When placing conduit in the sub-grade of new roadways, backfill all trenches with excavated material unless otherwise noted on the plans. When placing conduit in the sub-base of new roadways, backfill all trenches with cement-stabilized base as per requirements of Items 110 "Excavation", 400 "Excavation and Backfill for Structures", 401 "Flowable Backfill", 402 "Trench Excavation Protection", and 403 "Temporary Special Shoring." - 6. Provide and place warning tape approximately 10 in. above all trenched conduit as per Item 618. - 7. During construction, temporarily cap or plug open ends of all conduit and raceways immediately after installation to prevent entry of dirt, debris and animals. Temporary caps constructed of durable duct tape are allowed. Tightly fix the tape to the conduit opening. Clean out the conduit and prove it clear in accordance with Item 618 prior to installing any conductors. - 8. Ensure conduit entry into the top of any enclosure is waterproof by installing conduit sealing hubs or using boxes with threaded bosses. This includes surface mounted safety switches, meter cans, service enclosures, auxiliary enclosures and junction boxes. Grounding bushings on water tight sealing hubs are not required. - 9. Fit the ends of all PVC conduit terminations with bushings or bell end fittings. Provide and install a grounding type bushing on all metal conduit terminations. - 10. Install a bonding jumper from each grounding bushing to the nearest ground rod, grounding lug, or equipment grounding conductor. Ensure all bonding jumpers are the same size as the equipment grounding conductor. Bonding of conduit used as a casing under roadways for duct cable is not required, if the duct extends the full length through the casing. - 11. At all electrical services, install a 6 AWG solid copper grounding electrode conductor. - 12. Place conduits entering ground boxes so that the conduit openings are between 3 in. and 6 in. from the bottom of the box. See the ground box detail on sheet ED(4). - 13. Seal ends of all conduits with duct seal, expandable foam, or by other methods approved by the Engineer. Seal conduit immediately after completion of conductor installation and pull tests. Do not use duct tape as a permanent conduit sealant. Do not use silicone caulk as a conduit sealant. - 14. File smooth the cut ends of all mounting strut and conduit. Before installing, paint the field cut ends of all mounting strut and RMC (threaded or non-threaded) with zinc rich paint (94% or more zinc content) to alleviate overspray. Use zinc rich paint to touch up galvanized material as allowed under Item 445 "Galvanizing." Do not paint non-galvanized material with a zinc rich paint as an alternative for materials required to be galvanized. # CONDUITS & NOTES Operation: Division Standard ED(1) - 14 | | | | • | | | | | | | |-------|--------------|------|--------|----------|-----|-----------|-----------|-----------|--| | .E: | ed1-14.dgn | DN: | | CK: | DW: | | | CK: | | | TxDOT | October 2014 | CONT | SECT | JOB | | HIGHWAY | | | | | | REVISIONS | 6447 | 42 | 42 001 | | | H 20, ETC | | | | | | DIST | COUNTY | | | SHEET NO. | | SHEET NO. | | | | | ODA | | ECTOR, E | TC. | | | 19 | | CONDUIT HANGING DETAIL # CONDUIT MOUNTING CHANNEL "SPAN" "W" x "H" "T" less than 2' 1 5/8" x 1 3/8" 12 Ga. 2'-0" to 2'-6" 1 5/8" x 1 5/8" 12 Ga. >2'-6" to 3'-0" 1 5/8" x 2 7/6" 12 Ga. Channels with round or short slotted hole patterns are allowed, if the load carrying capacity is not reduced by more than 15%. Bridge Deck HANGER ASSEMBLY DETAIL ELECTRIC CONDUIT TO BRIDGE DECK ATTACHMENT # CONDUIT MOUNTING OPTIONS Attachment to concrete surfaces See ED(1)B.2 TYPICAL CONDUIT ENTRY TO BRIDGE STRUCTURE DETAIL # EXPANSION ANCHOR NOTES FOR BRIDGE DECK ATTACHMENT - Use torque controlled mechanical expansion anchors that are approved for use in cracked concrete by the International Code Council, Evaluation Service (ICC-ES). The chosen anchor product shall have a designated ICC-ES Evaluation Report number, and its approval status shall be maintained on the ICC-ES website under Division 031600 for Concrete Anchors. - Unless otherwise approved by the Engineer: do not use adhesive anchors; do not use expansion anchors that are not included in the ICC-ES approval list; and do not use expansion anchors that are only approved for use in uncracked concrete. - 3. Use anchors manufactured with stainless steel expansion wedges. Anchors manufactured with carbon steel expansion wedges are not allowed. Anchor bodies can be either zinc-plated carbon steel or stainless steel. For application in marine environment, both the anchor body and expansion wedge shall be stainless steel. - 4. Install anchors as shown on the plans and in accordance with the anchor manufacturer's published installation instructions. Arrange a field demonstration test to evaluate the procedures and tools. The test shall be witnessed and approved by the Engineer prior to furnishing anchors on the structure. - 5. Prior to hole drilling, use rebar locator to ensure clearing of existing deck strands or reinforcement. Install anchors to ensure a minimum effective embedment depth, (hef), as shown. Increase (hef)as needed to ensure sufficient thread length for proper torqueing and tightening of anchors. - 6. Use anchors of minimum 1600 Lbs tensile capacity (minimum of steel, concrete breakout, and concrete pullout strengths as determined by ACI 318 Appendix D) at the required minimum embedment depth (^hef). No lateral loads shall be introduced after conduit installation. # ELECTRICAL DETAILS CONDUIT SUPPORTS ED(2)-14 | .E: | ed2-14.dgn | DN: TxDOT | | ck: TxDOT | D₩≎ | TxDOT | ck: TxDOT | | | |-------|--------------|-----------|----------|----------------|-----|------------|-----------|--|--| | TxDOT | October 2014 | CONT | SECT JOB | | | н | H]GHWAY | | | | | REVISIONS | 6447 | 42 | 001 | | IH 20, ETC | | | | | | | | | COUNTY SHEET N | | | | | | | | | | | ECTOR. F | | 20 | | | | # ELECTRICAL CONDUCTORS ### A. MATERIAL INFORMATION - 1. Provide Type XHHW insulated conductors in accordance with Departmental Material Specification (DMS)11040 "Conductors" and Item 620 "Electrical Conductors." Provide conductors as listed on the Material Producers List (MPL) on the Department web site under "Roadway Illumination and Electrical Supplies" Item 620. Color code insulated conductors in conformance with the NEC. Identify grounded (neutral) conductors with white insulation. Identify grounding conductors (ground wires) with green insulation or bare conductors. Identify ungrounded (hot) conductors with any color insulation except green, white, or gray. Keep color scheme consistent throughout the wiring system. Identify conductors 6 American Wire Gauge (AWG) and smaller by continuous color jacket. Identify electrical conductors 4 AWG and larger by continuous color jacket or by colored tape. When identifying conductors with colored tape, mark at least 6 in, of the conductor's insulation with half laps of tape. - 2. Provide a solid copper 6 AWG grounding electrode conductor to bond the electrical service equipment to the concrete encased grounding electrode or the ground rod at the service location. Connect the grounding electrode conductor to the ground rod with a UL listed connector in accordance with DMS 11040. Connect the grounding electrode conductor to the concrete encased grounding electrode as shown in the plans. - 3. Where two or more circuits are present in one conduit or enclosure, permanently identify the conductors of each branch circuit by attaching a non-metallic tag around both circuit conductors at each accessible location. Provide tags with two straps, large enough to indicate circuit number, letter, or other identification as shown in the plans. Print circuit identification on the tag with a permanent marker. - 4. Use listed compression or screw type pressure connectors, terminal blocks, or split bolt connectors for splicing as specified in DMS 11040. Use hot melt adhesive tape to fill the gap and seal the ends of heat shrink tubing. Provide UL listed gel-filled insulating splice covers. Splicing materials, insulating materials, breakaway disconnects, splice covers, and fuse holders are subsidiary to various bid items. - B. CONSTRUCTION METHODS - 1. Use only a flat, high tensile strength polyester fiber pull tape for pulling conductors through the conduit system. After installing conductors in conduit, perform conductor pull test. If a conductor cannot be freely pulled, make any needed alterations or repairs at no additional cost to the department. Perform insulation resistance tests in accordance with Item 620. Coordinate with the Engineer to witness the tests. - 2. Leave 2 ft. minimum, 3 ft. maximum length for each conductor up to the splice in ground boxes. Leave 3 ft. minimum, 4 ft. maximum length of conductor in ground boxes when pulled through with no splice. Leave 1 ft. minimum, 1.5 ft. maximum length of conductor at enclosures, weatherheads and pole bases. - 3. Make splices only in junction boxes, ground boxes, pole bases, or electrical enclosures and use only listed compression or screw type pressure connectors, terminal blocks, or split bolt connectors. Insulate splices with heavy wall heat shrink tubing or gel-filled insulating splice covers to provide a watertight splice. Overlap conductor insulation with heat shrink tubing a minimum of 2 in. past both sides of the splice. Where heat shrink tubing may not shrink sufficiently to provide
a watertight seal around the individual conductors, prior to heating the tubing, increase the diameter of the conductor insulation using hot melt adhesive tape to provide a watertight seal between the individual conductors and the heat shrink tubing. Ensure the tape extends past the heat shrink tubing. Use hot melt adhesive tape to fill the gap and seal the ends of heat shrink tubing. Heat shrink tubing that appears to have been burned, or overheated, is considered defective and must be replaced. - 4. Size and install gel-filled insulating splice covers according to manufacturer's specifications when used in place of heat shrink tubing. - 5. Wire nuts with factory applied waterproof sealant may be used for 8 AWG or smaller conductors in above ground junction boxes, but not in pole bases or ground boxes. Install wire nuts in an upright position to prevent the accumulation of water. - 6. Support conductors in illumination poles with a J-hook at the top of the pole. - 7. When terminating conductors, remove the insulation and jacketing material without nicking the individual strands of the conductor. Conductors with nicked individual conductor strands or removed strands will be considered damaged. - 8. Replace conductors and cables that are damaged beyond repair or that fail an insulation resistance test at no additional cost to the department. - 9. Do not repair damaged conductors with duct tape, electrical tape, or wire nuts. Use only approved splicing methods. - 10. Do not terminate more than one conductor under a single connector, unless the connector is rated for multiple conductors. Do not exceed the pressure connector's listing for maximum number and size of conductors allowed. - 11. Install breakaway connectors on conductors bid under Item 620 whenever those conductors pass through a breakaway support device. Follow manufacturer's instructions when terminating conductors to breakaway connectors. Properly torque threaded connections. Proper terminations are critical to the safe operation of breakaway devices. Trim waterproofing boots on breakaway connectors to fit snugly around the conductor to ensure waterproof connection. Only one conductor may enter a single opening in a boot. Provide waterproof boots with the correct number of openings. Leave unused openings factory sealed. Use prequalified breakaway connectors as shown on the MPL. 12. Provide and install a separate stranded equipment grounding conductor (EGC) in all conduits that contain circuit wiring of 50 volts or more. Unless shown elsewhere, size the EGC to be the same size as the largest current carrying conductor contained in the conduit. Ensure all EGCs are bonded together at every accessible location. For traffic signal installations, provide a minimum size 8 AWG EGC. The EGC is paid for under Item 620. # C. TEMPORARY WIRING - Install temporary conductors and electrical equipment in accordance with the NEC article "Temporary Installations" and Department standard sheets. - 2. Provide a ground fault circuit interrupter (GFCI) for power outlets for portable electrical equipment, power tools, ice machines, ice storage bins and refrigerators located outdoors at grade. GFCI may be any one of the following: molded cord and plug set, receptacle, or circuit breaker type. - Use listed wire nuts with factory applied sealant for temporary wiring where approved. - 4. Enclose conductor splices within a listed enclosure or ground box, or ensure the splices are more than 10 ft. above grade vertically and more than 5 ft. horizontally from any metal structure. Where installing temporary conductors in areas subject to vehicle traffic or mobile construction equipment, ensure the vertical clearance to ground is at least 18 ft. when measured at the lowest point. Ground messenger wires that support power conductors in conformance with the NEC. - Protect and when necessary repair any existing electrical conduits uncovered during the construction process in a timely manner and in conformance with the NEC. # GROUND RODS & GROUNDING ELECTRODES ### A. MATERIAL INFORMATION Provide and install a grounding electrode at electrical services. Provide ground rods according to DMS 11040 and the plans. Larger diameter or longer length rods may be called for in some specific locations, see the individual plans sheets. Concrete encased grounding electrodes may be called for in specific locations including electrical service, see individual plan sheets. # B. CONSTRUCTION METHODS - 1. Furnish auxiliary ground rods for lightning protection and install in soil, concrete, or both, as called for in the plans. For ground rods installed in concrete, ensure the connection of the conductor to the ground rod is readily accessible for inspection or repairs. For ground rods installed in soil, ensure that the upper end is between 2 to 4 in. below finished grade. - 2. Do not place ground rods in the same drilled hole as a timber pole. - Install ground rods so the imprinted part number is at the upper end of the rod. - 4. Remove all non-conductive coatings such as concrete splatter from the rod at the clamp location. - Route all conductors as short and straight as possible for connection to lightning protection ground rods. When a bend is required, ensure a minimum radius bend of four inches for these conductors. - 6. Unless otherwise called for in the plans, protect grounding electrode conductors with non-metallic conduit. When protecting grounding electrode conductors with metal conduit, provide and install a grounding type bushing and properly sized bonding jumper on each end of the metal conduit. - 7. Written authorization is required before installing a ground rod in a horizontal trench for rocky soil or a solid rock bottom. # SPLICE OPTION 1 Compression Type SPLICE OPTION 2 Split Bolt Type # APRON FOR GROUND BOX - (1) Uniformly space ends of conduits within the ground box. Position ends of conduits so that ground box walls do not interfere with the installation of grounding bushings or bell end fittings. - (2) Maintain sufficient space between conduits to allow for proper installation of bushing. - (3) Place aggregate under the box, not in the box. Aggregate should not encroach on the interior volume of the box. - (4) Install a grounding bushing on the upper end of all RMC terminating in a ground box. Ground RMC elbows when any part of the elbow is less than 18 in. below the bottom of the ground box. Install a PVC bushing or bell end fitting on the upper end of all PVC conduits terminating in a ground box. | GROU | ND BOX DIMENSIONS | |------|--| | TYPE | OUTSIDE DIMENSIONS (INCHES) (Width x Length X Depth) | | Α | 12 X 23 X 11 | | В | 12 X 23 X 22 | | С | 16 X 29 X 11 | | D | 16 X 29 X 22 | | E | 12 X 23 X 17 | | | GROU | JND BO | ох со | VER D | IMENS | IONS | | | | | |----------|---------------------|--------|--------|--------|--------|-------|-------|---|--|--| | TYPE | DIMENSIONS (INCHES) | | | | | | | | | | | ITPE | Н | I | J | К | L | М | N | Р | | | | A, B & E | 23 1/4 | 23 | 13 ¾ | 13 ½ | 9 % | 5 1/8 | 1 3/8 | 2 | | | | C & D | 30 ½ | 30 1/4 | 17 1/2 | 17 1/4 | 13 1/4 | 6 ¾ | 1 3/8 | 2 | | | SIDE # GROUND BOX COVER **END** # GROUND BOXES A. MATERIALS - Provide polymer concrete ground boxes measuring 16x30x24 in. (WxLxD) or smaller in accordance with Departmental Material Specification (DMS) 11070 "Ground Boxes" and Item 624 "Ground Boxes." - 2. Provide Type A, B, C, D, and E ground boxes as shown in the plans, and as listed on the Material Producers List (MPL) on the Department web site under "Roadway Illumination and Electrical Supplies," Item 624. - 3. Ensure ground box cover is correctly labeled in accordance with DMS 11070. - 4. Provide larger ground boxes in accordance with Item 624 and as shown in the plans. - B. CONSTRUCTION METHODS - 1. Remove all gravel and dirt from conduit. Cap all conduits prior to placing aggregate and setting ground box. Provide Grade 3 or 4 coarse aggregate as shown on Table 2 of Item 302 "Aggregates for Surface Treatments." Ensure aggregate bed is in place and at least 9 inches deep, prior to setting the ground box. Install ground box on top of aggregate. - 2. Cast ground box aprons in place. Reinforcing steel may be field bent. Ensure the depth of concrete for the apron extends from finished grade to the top of the aggregate bed under the box. Ground box aprons, including concrete and reinforcing steel, are subsidiary to ground boxes when called for by descriptive code. - 3. Keep bolt holes in the box clear of dirt. Bolt covers down when not working in ground boxes. - 4. Install all conduits and ells in a neat and workmanlike manner. Uniformly space conduits so grounding bushings and bell end fittings can easily be installed. - 5. Temporarily seal all conduits in the ground box until conductors are installed. - 6. Permanently seal conduits immediately after the completion of conductor installation and pull tests. Permanently seal the ends of all conduits with duct seal, expandable foam, or other method as approved. Do not use duct tape as a permanent conduit sealant. Do not use silicone caulk as a sealant. - 7. When a ground rod is present in a ground box, bond all equipment grounding conductors together and to the ground rod with listed connectors. - 8. When a type B or D ground box is stacked to meet volume requirements, it is allowable to cut an appropriately sized hole for conduit entry in the side wall at least 18 inches below grade. - 9. If an existing ground box in the contract has a metal cover, bond the cover to the equipment grounding conductor with a 3 ft. long stranded bonding jumper the same size as the grounding conductor. The bonding jumper is subsidiary to various bid items. Verify existing ground boxes with metal covers are shown on the plans, with notes fully describing the work required. - 10. If other ground boxes with metal covers are within the project limits but are not
part of the contract, the Engineer may direct the Contractor to bond the metal covers, identifying the specific boxes in writing. This work will be paid for separately. - 11. Bond metal ground box covers to the grounding conductor with a tank ground type lug. Operations Division Standard # GROUND BOXES ED(4)-14 | FILE: | ed4-14.dgn | DN: TxDOT | | ck: TxDOT | DW: | TxDO | ſ | ck: TxD01 | |---------|--------------|-----------|------|-----------|-----|------|-----|-----------| | © TxD0T | October 2014 | CONT | SECT | JOB | | | HIG | HWAY | | | REVISIONS | 6447 | 42 | 001 | | ĮΗ | 20 | , ETC | | | | DIST | | COUNTY | | | S | HEET NO. | | | | ODA | | ECTOR, E | TC. | | | 22 | # ELECTRICAL SERVICES NOTES - 1.Provide new materials. Ensure installation and materials comply with the applicable provisions of the National Electrical Code (NEC) and National Electrical Manufacturers Association (NEMA) standards. Ensure material is Underwriters Laboratories (UL) listed. Provide and install electrical service conduits, conductors, disconnects, contactors, circuit breaker panels, and branch circuit breakers as shown on the Electrical Service Data chart in the plans. Faulty fabrication or poor workmanship in material, equipment, or installation is justification for rejection. Where manufacturers provide warranties and guarantees as a customary trade practice, furnish these to the State. - 2.Provide electrical services in accordance with Electrical Details standard sheets, Departmental Material Specification (DMS) 11080 "Electrical Services,"DMS 11081 "Electrical Services-Type A," DMS 11082 "Electrical Services-Type C," DMS 11083 "Electrical Services-Type D," DMS 11084 "Electrical Services-Type T," DMS 11085 "Electrical Services-Pedestal (PS)", and Item 628 "Electrical Services" of the Standard Specifications. Provide electrical service types A, C, and D, as listed on the Material Producers List (MPL) on the Department web site under "Roadway Illumination and Electrical Supplies," Item 628. Provide other service types as detailed on the plans. - Provide all work, materials, services, and any incidentals needed to install a complete electrical service as specified in the plans. - 4.Coordinate with the Engineer and the utility provider for metering and compliance with utility requirements. Primary line extensions, connection charges, meter charges, and other charges by the utility company to provide power to the location are paid for in accordance with Item 628. Get approval for the costs associated with these charges prior to engaging the utility company to do the work. Consult with the utility provider to determine costs and requirements, and coordinate the work as approved. - 5.The enclosure manufacturer will provide Master Lock Type 2 with brass tumblers keyed *2195 for all custom electrical enclosures. Installing Contractor is to provide Master Lock *2195 Type 2 with brass tumblers for "off the shelf" enclosures. Master Lock *2195 keys and locks become property of the State. Unless otherwise approved, do not energize electrical service equipment until locks are installed. - 6.Enclosures with external disconnects that de-energize all equipment inside the enclosure do not need a dead front trim. Protect incoming line terminations from incidental contact as required by the NEC. - 7. When galvanized is specified for nuts, screws, bolts or miscellaneous hardware, stainless steel may be used. - 8.Provide wiring and electrical components rated for 75°C. Provide red, black, and white colored XHHW service entrance conductors of minimum size 6 American Wire Gauge (AWG). Identify size 6 AWG conductors by continuous color jacket. Identify electrical conductors sized 4 AWG and larger by continuous color jacket or by colored tape. Mark at least 6 inches of the conductor's insulation with half laps of colored tape, when identifying conductors. Ensure each service entrance conductor exits through a separately bushed non-metallic opening in the weatherhead. The lengths of the conductors outside the weatherhead are to be 12 inches minimum, 18 inches maximum, or as required by utility. - 9.All electrical service conduit and conductors attached to the electrical service including the riser or the elbow below ground are subsidiary to the electrical service. For an underground utility feed, all service conduit and conductors after the elbow, including service conduit and conductors for the utility pole riser when furnished by the Contractor, will be paid for separately. - 10.Provide rigid metal conduit (RMC) for all conduits on service, except for the I_2' in. PVC conduit containing the electrical service grounding electrode conductor. Size the service entrance conduit as shown in the plans. Ensure conduit for branch circuit entry to enclosure is the same size as that shown on the layout sheets for branch circuit conduit. Extend all rigid metal conduits a minimum of 6 inches underground and then couple to the type and schedule of the conduit shown on the layout for that particular branch circuit. Install a grounding bushing on the RMC where it terminates in the service enclosure. - 11.Use of liquidtight flexible metal conduit (LFMC) is allowed between the meter and service enclosure when they are mounted 90 to 180 degrees to each other. Size the LFMC the same size as service entrance conduit. LFMC must not exceed 3 feet in length. Strap LFMC within 1 foot of each end. LFMC less than 12 inches in length need not be strapped. Each end of LFMC must have a grounding bushing or be terminated with a grounding fitting. The LFMC must contain a grounded (neutral) conductor. Ensure any bend in LFMC never exceeds 180 degrees. A pull test is required on all installed conductors, with at least six inches of free conductor movement demonstrated to the satisfaction of the Engineer. - Ensure all mounting hardware and installation details of services conform to utility company specifications. - 13.For all electrical service enclosures listed under Item 628 on the MPL, the UL 508 enclosure manufacturers will prepare and submit a schematic drawing unique to each service. Before shipment to the job site, place the applicable laminated schematic drawings and the laminated plan sheet showing the electrical service data chart used to build the enclosure in the enclosure's data pocket. The installing contractor will copy and laminate the actual project plan sheets detailing all equipment and branch circuits supplied by that service. The laminated plan sheets are to be placed in the service enclosure's document pocket. Reduce 11 in. x 17 in. plan sheets to 8 ½ in. x 11 in. before laminating. If the installation differs from the plan sheets, the installing contractor is to redline plan sheets before laminating. - 14.When providing an "Off The Shelf" Type D or Type T service, provide laminated plan sheets detailing equipment and branch circuits supplied by that service. Reduce 11 in. x 17 in. plan sheets to 8 ½ in. x 11 in before laminating. Deliver these drawings before completion of the work to the Engineer, instead of placing in enclosure that has no door pocket. - 5.Do not install conduit in the back wall of a service enclosure where it would penetrate the equipment mounting panel inside the enclosure. Provide grounding bushings on all metal conduits, and terminate bonding jumpers to grounding bus. Grounding bushings are not required when the end of the metal conduit is fitted with a conduit sealing hub or threaded boss, such as a meter base hub. # SERVICE ASSEMBLY ENCLOSURE - 1.Provide threaded hub for all conduit entries into the top of enclosure - 2.Type galvanized steel (GS) enclosures may be used for Type C panelboards and for Type D and T services that do not use an enclosure mounted photocell or lighting contactor. Provide GS enclosures in accordance with DMS 11080, 11082, 11083, and 11084. - 3.Provide aluminum (AL) and stainless steel (SS) enclosures for Types A, C, and D in accordance with DMS 11080, 11081, 11082, 11083, and 11084. Do not paint stainless steel. - 4.Provide pedestal service (PS) enclosures in accordance with ED(9) and DMS 11080 and 11085. Do not provide GS pedestal services. If GS is shown in the PS descriptive code, provide an AL enclosure. # MAIN DISCONNECT & BRANCH CIRCUIT BREAKERS - 1.Field drill flange-mounted remote operator handle if needed, to ensure handle is lockable in both the "On" and "Off" positions - 2. When the utility company provides a transformer larger than 50 KVA, verify that the available fault current is less than the circuit breaker's ampere interrupting capacity (AIC) rating and provide documentation from the electric utility provider to the Engineer. ### PHOTOELECTRIC CONTROL 1.Provide photocell as listed on the MPL. Move, adjust, or shield the photocell from stray or ambient night time light to ensure proper operation. Mount photocell facing north when practical. Mount top of pole photocells as shown on Top Mounted Photocell Detail. | | | | * ELE | CTRICAL | SERVIC | E DATA | | | | | | | |------------------------|-------------------------|--|--------------------------------|-----------------------------------|--------------------------|--------------------------------|--------------------------------|--------------------------------------|-------------------------|----------------------------------|---------------------------|-------------| | Elec.
Service
ID | Plan
Sheet
Number | Electrical Service Description | Service
Conduit
* * Size | Service
Conductors
No./Size | Safety
Switch
Amps | Main
Ckt. Bkr.
Pole/Amps | Two-Pole
Contractor
Amps | Panelbd/
Loadcenter
Amp Rating | Branch
Circuit
ID | Branch
Ckt. Bkr.
Pole/Amps | Branch
Circuit
Amps | KVA
Load | | SB 183 | 289 | ELC SRV TY A 240/480 100(SS)AL(E)SF(U) | 2" | 3/*2 | 100 | 2P/100 | 100 | N/A | Lighting NB | 2P/40 | 26 | 28.1 | | | | | | | | | | |
Lighting SB | 2P/40 | 25 | | | | | | | | | | | | Underpass | 1P/20 | 15 | | | | | | | | | | | | | | | | | NB Access | 30 | ELC SRV TY D 120/240 060(NS)SS(E)TS(0) | 1 1/4" | 3/*6 | N/A | 2P/60 | | 100 | Sig. Controller | 1P/30 | 23 | 5.3 | | | | | | | | | 30 | | Luminaires | 2P/20 | 9 | | | | | | | | | | | | CCTV | 1P/20 | 3 | | | | | | | | | | | | | | | | | 2nd & Main | 58 | ELC SRV TY T 120/240 000(NS)GS(N)SP(0) | 1 1/4" | 3/*6 | N/A | N/A | N/A | 70 | Flashing Beacon 1 | 1P/20 | 4 | 1.0 | | | | | | | | | | | Flashing Beacon 2 | 1P/20 | 4 | | - Example only, not for construction. All new electrical services must have electrical service data chart specific to that service as shown in the plans - * * Verify service conduit size with utility. Size may change due to utility meter requirements. Ensure conduit size meets the National ELectrical Code. # TOP MOUNTED PHOTOCELL Install conduit strap maximum 3 feet from box. 5 foot maximum spacing between straps supporting conduit. ED(5)-14 | FILE: | ed5-14.dgn | DN: Tx | TOC | ск: TxDOT | DW: | TxDOT | ск: ТхDОТ | |-----------|--------------|--------|------|-----------|-----|-------|-----------| | © TxDOT | October 2014 | CONT | SECT | JOB | | H | IIGHWAY | | REVISIONS | | 6447 | 42 | 001 | | IH : | 20, ETC | | | | DIST | | COUNTY | | | SHEET NO. | | | | ODA | | ECTOR, ET | c. | | 23 | ATE: SCHEMATIC TYPE A THREE WIRE SCHEMATIC TYPE C THREE WIRE | | WIRING LEGEND | |-------|---| | | | | | Power Wiring | | | Control Wiring | | — N — | Neutral Conductor | | — G— | Equipment grounding conductor-always required | | | SCHEMATIC LEGEND | |----|---| | 1 | Safety Switch (when required) | | 2 | Meter (when required-verify with electric utility provider) | | 3 | Service Assembly Enclosure | | 4 | Main Disconnect Breaker (See Electrical
Service Data) | | 5 | Circuit Breaker, 15 Amp (Control Circuit) | | 6 | Auxiliary Enclosure | | 7 | Control Station ("H-O-A" Switch) | | 8 | Photo Electric Control (enclosure-
mounted shown) | | 9 | Lighting Contactor | | 10 | Power Distribution Terminal Blocks | | 11 | Neutral Bus | | 12 | Branch Circuit Breaker
(See Electrical Service Data) | | 13 | Separate Circuit Breaker Panelboard | | 14 | Load Center | | 15 | Ground Bus | # SCHEMATIC TYPE T # 120/240 VOLTS - THREE WIRE Galvanized steel-"Buy Off The Shelf" only. When required install photocell top of the pole or on luminaire only, no lighting contractor will be installed. Traffic Operations Division Standard ELECTRICAL DETAILS SERVICE ENCLOSURE AND NOTES ED(6)-14 | ILE: | ed6-14.dgn | DN: TxDOT | | ck: TxDOT | DW: | TxDOT | ck: TxDOT | | |---------|--------------|-----------|--------|-----------|-----|-----------|-----------|--| | C TxDOT | October 2014 | CONT | SECT | JOB | | HIGHWAY | | | | | REVISIONS | | 42 | 001 | | IH. | 20, ETC | | | | | DIST | COUNTY | | | SHEET NO. | | | | | | ODA | | CCTOD C | | | 24 | | # SUPPORT TYPE STEEL POLE (SP) AND STEEL FRAME (SF) - 1.Provide steel pole and steel frame supports as per TxDOT Departmental Material Specification (DMS)11080 "Electrical Services." Mount all equipment and conduit on 12 gauge galvanized steel or stainless steel channel strut, 1 $\frac{1}{2}$ in. or 1 $\frac{5}{8}$ in. wide by 1 in. up to 3 $\frac{3}{4}$ in. deep Unistrut, Kindorf, B-line or equal. Bolt or weld all channel and hardware to vertical members as approved. Do not stack channel. File smooth and paint field cut ends of all channel with zinc-rich paint before installing. - 2. Provide poles for overhead service with an eyebolt or similar fitting for attachment of the service drop to the pole in conformance with the electric utility provider's specifications. - 3. Provide and install galvanized $\frac{y_4}{4}$ in. x 18 in. x 4 in. (dia. x length x hook length) anchor bolts for underground service supports. Provide and install galvanized $\frac{3}{4}$ in. x 56 in. x 4 in. anchor bolts for overhead service supports. Ensure anchor bolts have 3 in of thread, with $3 \frac{1}{4}$ in, to $3 \frac{1}{2}$ in, of the exposed anchor bolt projecting above finished foundation. Provide and install leveling nuts for all anchor bolts. - 4. Bond one of the anchor bolts to the rebar cage with 6 AWG bare stranded copper conductor. Use listed mechanical connectors rated for embedment in concrete. See Inset B. - 5. Furnish and install rigid metallic ells in all steel pole and steel frame foundations for all conduits entering the service from underground. - 6.Use class C concrete for foundations. Ensure reinforcing steel is Grade 60 with 3" of unobstructed concrete cover. - 7. Drill and tap steel poles and frames for $\frac{1}{2}$ in. X 13 UNC tank ground fitting. For steel pole service supports, provide and install tank ground fitting 4 in. to 6 in. below electrical service enclosure. Provide properly sized hole through the bottom of the enclosure for the service grounding electrode conductor. Ensure electrical service grounding electrode conductor is as short and straight as possible from the enclosure to the tank ground fitting. For steel frame service supports, provide and install tank ground fitting on steel frame post. Install service grounding electrode conductor in a non-metallic conduit or tubing from the enclosure to the steel frame post. Connect electrical service grounding electrode conductor to the tank ground fitting. See steel frame and steel pole details and Inset A for more information. Size service entrance conduit and branch circuit conduit as shown in the plans. For underground conduit runs from the electrical service, extend RMC from the service enclosure to an RMC elbow, and then connect the schedule type and size of conduit shown in the plans. Provide and install grounding bushings where RMC terminates in the enclosure. Grounding bushings are not required when RMC is fitted into a sealing hub or threaded boss. - 8. If Steel pole or frame is painted, bond each separate painted piece with a bonding jumper attached to a tapped hole. - 9. Provide $\frac{1}{4}$ " 20 machine screws for bonding. Do not use sheet metal screws. Remove all nonconductive material at contact points. Terminate bonding jumpers with listed devices. Install minimum size 6 AWG stranded copper bonding jumpers. Make up all threaded bonding connections wrench tight. - 10. Avoid contact of the service drop and service entrance conductors with the metal pole to prevent abrasion of the insulated conductors. - 11. Shop drawings are not required for service support structure unless specifically stated elsewhere or directed by the Engineer. CONT SECT JOB 6447 42 001 TOP VIEW SERVICE SUPPORT TY SF (0) & SF (U) equipment 2 1/2" TYP. → /₁/₂ POLE TOP PLATE 1 1/4 -- 5 ½" BASE PLATE DETAIL BOTTOM OF POLE expansion ioint material Dimension varies, install only as to accommodate wide as required 1/2" 1 1/4' Operation Division Standard ED(7) - 14 DN: TXDOT CK: TXDOT DW: TXDOT CK: TXDO © TxDOT October 2014 IH 20. ETC 5" thick concrete pad (class C concrete and 6" X 6" #6 wire mesh) Texas Department of Transportation Inset A See Note 7. WITH SAFETY SWITCH (typ.) at 6" pitch and #2 spiral Lenath INSET B HOOKED ANCHOR DETAIL SERVICE SUPPORT TYPE SP(U) - UNDERGROUND SERVICE # TRAFFIC SIGNAL NOTES - 1. Do not pass luminaire conductors through the signal controller cabinet. - Include an equipment grounding conductor in all conduits throughout the electrical system. Bond all exposed metal parts to the grounding conductor. - 3. Provide roadway luminaires, when required, in accordance with the material and construction sections of Item 610, "Roadway Illumination Assemblies," except for performance testing of luminaires. Test installed roadway luminaires for proper operation as a part of the associated traffic signal system test. - 4. If internally illuminated street name signs are approved for use, ground the fixture to the pole with a 12 AWG green XHHW conductor. - Bond anchor bolts to rebar cage in two locations using #3 bars or 6 AWG stranded copper conductors. Use Listed mechanical connectors rated for embedment in concrete. See TXDOT standard TS-FD for further details. - 6. Drill and tap signal poles for ½ in. X 13 UNC tank ground fitting. Provide and install tank ground fitting 4 in. to 6 in. directly below electrical service enclosure. Provide properly sized hole through the bottom of the enclosure for the service grounding electrode conductor. Connect the electrical service grounding electrode conductor to the tank ground fitting. Ensure electrical service grounding electrode conductor is as short and straight as possible from the enclosure to the tank ground fitting. See Inset A detail for further information. Size service entrance conduit and branch circuit conduit as shown in the plans. - 7. Mount electrical service enclosure and meter to signal pole with stainless steel bands. Ensure bands are a minimum width of $\frac{3}{4}$ in. Secure enclosures to bands using two-bolt brackets. Install brackets near top and bottom of each enclosure. Install properly sized stainless steel washers on each bolt in the enclosure. Band or drill and tap properly sized stand-off straps to signal pole for attaching conduit. - 8. Conduct pull tests and insulation resistance tests on all illumination and power conductors as required in Item 620 "Electrical Conductors" and ED(3). To prevent electronics damage, do not conduct insulation resistance tests on traffic signal cables after termination. - 9. Lock all enclosures and bolt down all ground box covers before applying power to the signal installation. - 10. Terminate conduits entering the top of enclosures with a conduit-sealing hub or threaded boss such as meter hub. Install a grounding bushing on all metal conduits not connected to conduit-sealing hub or threaded boss. Bond the grounding bushing to the ground bus with a bonding jumper. Seal all conduits entering enclosures with
duct seal or expanding foam. Do not use silicone to seal conduit ends. - 11. For all conduits, ensure the burial depth is a minimum of 18". Ensure the minimum burial depth for conduit placed under a roadway is 24". # SIGNAL POLE WITH SERVICE Type T electrical service mounted on signal pole shown as an example. See electrical details, layout sheets, and electrical service data chart for additional details. SIGNAL CONTROLLER FRONT VIEW for details)- SIGNAL POLE Traffic Operations Division Standard Texas Department of Transportation and conduit details # ELECTRICAL DETAILS TYPICAL TRAFFIC SIGNAL SYSTEM DETAILS ED(8) - 14 SIGNAL CONTROLLER See TS-CF standard for conduit and grounding requirements. See layout sheets for ground box locations and any additional conduits that are required. # PEDESTAL SERVICE NOTES - 1. Manufacture pedestal electrical services in accordance with Departmental Material Specifications (DMS)11080 "Electrical Services", 11085 "Electrical Services-Pedestal (PS)" and Item 628 "Electrical Services. "Provide pedestal electrical services as listed on the Material Producers list (MPL) on the Department's web site under "Roadway Illumination and Electrical Supplies," Item 628. Ensure all mounting hardware and installation details of services meet utility company specifications. Contact the local utility company for approval of pedestal details prior to installing the electrical pedestal service. Submit any changes required by the utility company prior to manufacturing the pedestal enclosure. - 2. When a meter socket is required, provide a socket with a minimum 100 amp rating that complies with local utility requirements. - 3. Provide Class A or C concrete for pedestal service foundations in accordance with Item 420, "Concrete Substructures," except that concrete will not be paid for directly but is considered subsidiary to Item 628. - 4. Provide #4 reinforcing steel for foundations in accordance with Item 440, "Reinforcement for Concrete." - 5. Install $\frac{1}{2}$ in, X 2 $\frac{1}{16}$ in, minimum length concrete single expansion type anchors for mounting pedestal enclosure to foundation. Anchor location to match mounting holes in each corner of enclosure. Secure each of the four corners of the pedestal enclosure to the anchors in the foundation with a $\frac{1}{2}$ in, galvanized or stainless steel machine thread bolt, a properly sized locknut and a flat washer. - 6. Finish top of concrete foundation in a neat and workmanlike manner. If leveling washers are used, ensure no more than $\frac{1}{16}$ in, gap at any corner. Do not exceed a maximum dip or rise in the foundation of $\frac{1}{16}$ in, per foot. When properly installed, ensure the top of the service enclosure is level front to back and side to side within $\frac{1}{16}$ in. Repair rocking or movement of the service enclosure at no additional cost to the department. - 7. Do not use liquidtight flexible metal conduit (LFMC) on pedestal type services. - 8. Ensure all elbows in the foundation are sized as per utility provider's conduit requirements for underground conduit and feeders. PVC extensions may be installed provided the ends of the rigid metal conduits are more than 2 in. below the top of the concrete foundation. Where extension conduits are metal, grounding bushings must be installed with a bonding jumper properly terminated. ANCHOR BOLT DETAIL SECTION A-A TYPE C shown, TYPE A similar except that TYPE A shall have individual circuit breakers (CB) mounted on an equipment mounting panel. CB Handles shall protrude through hinged deadfront trim. LEGEND 1 Meter Socket, (when required) 2 Meter Socket Window, (when required) 3 Equipment Mounting Panel 4 Photo Electric Control Window, (When required) 5 Hinged Deadfront Trim 6 Load Side Conduit Trim 7 Line Side Conduit Area 8 Utility Access Door, with handle 9 Pedestal Door 10 Hinged Meter Access 11 Control Station (H-O-A Switch) 12 Main Disconnect 13 Branch Circuit Breakers 14 Copper Clad Ground Rod - 5/8" X 10' Texas Department of Transportation Traffic Operations Division Standard # ELECTRICAL DETAILS ELECTRICAL SERVICE SUPPORT PEDESTAL SERVICE TYPE PS ED(9)-14 | LE: ed9-14.dgn | DN: TxDOT | | ck: TxDOT | DW: | TxDOT | ck: TxDOT | | | |--------------------|-----------|--------|-----------|-----|-----------|------------|--|--| | TxDOT October 2014 | CONT | SECT | JOB | | H]GHWAY | | | | | REVISIONS | 6447 | 42 | 001 | | | IH 20, ETC | | | | | DIST | COUNTY | | | SHEET NO. | | | | | | ODA | | ECTOR, E | 27 | | | | | DATE: # TIMBER POLE (TP) SERVICE SUPPORT NOTES - Ensure electrical service support is a class 5 treated timber pole as per Item 627 "Treated Timber Poles." Embed timber pole to depth required in Item 627. - Conduit and electrical conductors attached to the electrical service pole and underground within 12 in. of service pole are not paid for directly but are subsidiary to the electrial service. - Install pole-top mounted photocell (T) on north side of pole, or in service enclosure (E) as required. See Electrical Service Data chart in plan set. - 4. Gain pole as required to provide flat surface for each channel. Gain timber pole to $\frac{5}{8}$ in. max. depth and 1 $\frac{7}{8}$ in. max. height. Gain pole in a neat and workmanlike manner. - 5. Mount meter and service equipment on stainless steel or galvanized channel (Unistrut, Kindorf, or equal). Provide channel sized 1 in. to 3 $\frac{7}{4}$ maximum depth, and $1\frac{1}{2}$ in. to $1\frac{5}{6}$ in. maximum width. File smooth the cut ends of galvanized channel and paint with zinc rich paint before installing on pole. Secure each channel section to timber pole with two galvanized or SS lag bolts, $\frac{1}{4}$ in. minimum diameter by $\frac{1}{2}$ in. minimum length. Use a galvanized or SS flat washer on each lag bolt. Do not stack channel. - 6. When excess length must be trimmed from poles, trim from the top end only. - (1) Class 5 pole, height as required - ② Service drop from utility company (attached below weatherhead) - 3 Service conduit (RMC) and service entrance conductors - One Red, One Black, One White (See Electrical Service Data) - (4) Safety switch (when required) - (5) Meter (when required) - (6) Service enclosure - (7) 6 AWG bare grounding electrode conductor in ½ in. PVC to ground rod extend ½ in. PVC 6 in. underground. - (8) % in. x 8 ft. Copper clad ground rod - drive ground rod to a depth of 2 in. to 4 in. below grade. - (9) RMC same size as branch circuit conduit. - See pole-top mounted photocell detail on ED(5). - (1) When required by the serving utility provide bare 6 AWG copper conductor. Run wire from pole top to butt wrap or copper butt plate. Protect conductor with non-conductive material to a height of 8 ft. above finished grade. - (2) When required by utility, cut top of pole at an angle to enhance rain run off. # GRANITE CONCRETE (GC) & OTHER CONCRETE (OC) NOTES Ensure electrical service support structures bid as type Granite Concrete (GC) or Other Concrete (OC) meet the following requirements. - Provide GC and OC poles that meet the requirements of DMS 11080 "Electrical Services." - 2. Provide prestressed concrete poles suitable for direct embedment into the ground without special foundations. - 3. Verify poles are marked as required on DMS 11080. Location of marking should be approximately 4' above final grade. Use the two-point pickup locations when handling pole in horizontal position, and one-point pickup location for use in raising the pole to a vertical position. These marks are small but conspicuous. - 4. Embed poles 42 in. or 10% of the length plus 2 ft., whichever is greater. - Ensure all installation details of services are in accordance with utility company specifications. - Install a one point rack or eye bolt bracket 6 inches to 12 inches below the weatherhead as an overhead service drop anchoring point for the electric utility. - 7. Furnish and install galvanized or stainless steel channel strut 1 $\frac{1}{2}$ in, or 1 $\frac{5}{8}$ in. wide by 1 in. up to 3 $\frac{3}{4}$ in. deep (Unistrut, Kindorf, B-line or equal). Attach channel strut with stainless steel concrete anchors (max. 1" depth), square U-bolts or back to back channel strut with long bolts, or other secure mounting as approved by the Engineer. Ensure bolts are galvanized in accordance with ASTM A153. Do not stack channel struts. - 8. Backfill the holes thoroughly by tamping in 6 in. lifts. After tamping to grade, place additional backfill material in a 6 inch high cone around the pole to allow for settling. Use material equal in composition and density to the surrounding area. Backfilling will not be paid for directly but is subsidiary to various bid items. CONCRETE SERVICE SUPPORT Overhead(O) # CONCRETE SERVICE SUPPORT Underground(U) # DETAIL A See Note 7. Before installing channel that has been cut, file sharp edges and paint with zinc-rich paint. Ensure there is no paint splatter on the pole. # DUCT CABLE & HDPE CONDUIT NOTES - Provide duct cable in accordance with Departmental Material Specification (DMS) 11060 "Duct Cable" and Item 622 "Duct Cable." Provide duct cable as listed on the Material Producer List (MPL) on the Department web site under "Roadway Illumination and Electrical Supplies" Item 622. - Provide High-Density Polyethylene (HDPE) conduit in accordance with DMS 11060 and Item 618, "Conduit." Provide HDPE as listed on the MPL on the Department web site under "Roadway Illumination and Electrical Supplies," Item 618. - 3. Supply duct cable with a minimum 2 in. diameter, unless otherwise shown in the plans. Provide duct cable and HDPE conduit as shown by descriptive code or on the plans. Bend duct cable and HDPE conduit as recommended by the manufacturer, with a minimum bending radius of 26 in. for 2 in. duct. Follow manufacturers' recommendations when handling duct cable and HDPE conduit reels and during installation of duct cable and HDPE conduit. - 4. Do not splice conductors within duct cable or
HDPE conduit. Couple duct cable and HDPE entering a ground box or foundation to a PVC elbow. When galvanized steel RMC elbows are called for in the plans and any portion of the RMC elbow is buried less than 18" from possible contact, ground the RMC elbow. - 5. Furnish and install duct cable with factory installed conductors, sized as shown in the plans and as required by the National Electrical Code (NEC). The NEC contains specific requirements for duct cable in Article, "Nonmetallic Underground Conduit with Conductors: Type NUCC." - 6. When conduit casing is called for in the plans, extend duct cable or HDPE conduit through the conduit casing in one continuous length without connection to the casing. - 7. Seal the ends of duct cable or HDPE conduit with duct seal, expandable foam, or other approved method after completing the pull tests required by Item 622. - 8. Provide minimum cover of 24 in. under roadways, 18 in. in other locations, or as shown on the plans. - 9. Furnish and install listed fittings to couple duct cable or HDPE conduit to other types of conduit. Duct cable and HDPE conduit may be field-threaded and spliced with PVC or RMC threaded couplings; connected with listed tie-wrap fittings; connected using listed coupling made of HDPE with stainless steel external banding clamps and locking rings; connected with approved electrofusion conduit couplings; or connected using an approved chemical fusion method using an epoxy or adhesive specifically designed for HDPE couplings and connectors all installed in accordance with their manufacturer's instructions. Do not use PVC glue on HDPE. Do not use water pipe fittings, or connect conduit with heat shrink tubing. # DUCT CABLE/HDPE TO PVC # DUCT CABLE/HDPE AT GROUND BOX When the upper end of an RMC EII does not enter the ground box, it may be extended with a SCH-40 PVC conduit nipple and bell end, provided there is a minimum of 18" of cover over all parts of the elbow. If not, a rigid extension and ground bushing is required. # DUCT CABLE / HDPE AT FOUNDATION BORE PIT DETAIL Traffic Operations Division Standard # DUCT CABLE/ HDPE CONDUIT ED(11)-14 | .E: | ed11-14.dgn | DN: TxDOT | | ck: TxDOT | DW: | TxDOT | ck: TxDOT | | | | |-------|--------------|-----------|---------------------|-----------|-----|------------|-----------|--|--|--| | TxDOT | October 2014 | CONT | CONT SECT JOB HIGHW | | | GHWAY | | | | | | | REVISIONS | 6447 | 42 | 001 | | IH 20, ETC | | | | | | | | DIST | | COUNTY | | SHEET NO. | | | | | | | | ODA | ECTOR, ETC. | | | 29 | | | | | # BATTERY BOX GROUND BOXES NOTES # A. MATERIALS - Provide polymer concrete or fiberglass reinforced plastic (FRP) battery box ground box and cover in accordance with Departmental Material Specification (DMS) 11071 "Battery Box Ground Boxes." Battery box will accommodate up to 4 batteries, each measuring 8 in. x 13.5 in. x 10 in. (W x L x D). Label battery box ground box cover in accordance with DMS 11071. - 2. Supply a marine grade batteries with covers. Secure the marine grade batteries with covers to the stainless steel rack in the bottom of the ground box with tie down straps. # B. CONSTRUCTION METHODS - Ensure conduit entry will not interfere with placement of the batteries in the battery box ground box. - 2. Remove all gravel and dirt from conduit. Cap all conduits prior to placing aggregate and setting bottery box ground box. Provide Grade 3 or 4 coarse aggregate as shown on Table 2 of Item 302 "Aggregates for Surface Treatments." Ensure the aggregate bed is in place and is a minimum of 9 in. deep prior to setting the box. Install battery box ground box on top of aggregate. - 3. Cast battery box aprons in place. Reinforcing steel may be field bent. Ensure the depth of concrete for the apron extends from finished grade to the top of the aggregate bed under the box. Battery box ground box aprons, including concrete and reinforcing steel, are subsidiary to battery box ground boxes when called for by descriptive code. - 4. Bolt covers down when not working in battery box ground boxes. Keep bolt holes in the box clear of dirt. # PLAN VIEW # APRON FOR BATTERY BOX GROUND BOXES - 1) Place aggregate under the box and not in the box. Aggregate should not encroach on the interior volume of the box. - 2 Install bushing or bell end fitting on the upper end of all ells. - (3) Install all conduits in a neat and workmanlike manner. BATTERY BOX TOP VIEW # SECTION X-X SECTION Y-Y # ELECTRICAL DETAILS BATTERY BOX GROUND BOXES Division Standard Lift Pin Polymer Concrete -Fiberglass reinforced plastic or polymer concrete body ED(12)-14 | FILE: ed12-14.dgn | DN: Tx | DOT | ck: TxDOT | DW: | TxDOT | ck: TxD01 | | |---------------------|--------|-----------|-----------|--------|-----------|-----------|--| | CTxDOT October 2014 | CONT | SECT | JOB | | HIGHWAY | | | | REVISIONS | 6447 | 42 | 001 | 001 IH | | 20, ETC | | | | DIST | COUNTY | | | SHEET NO. | | | | | ODA | ODA ECTOR | | r | | 30 | | # ROADWAY ILLUMINATION ASSEMBLY NOTES - 1. Details apply to roadway lighting installations bid or referenced under Item 610, "Roadway Illumination Assemblies." Provide, furnish, and install all other materials not shown on the plans which may be necessary for complete and proper construction. Where manufacturers provide warranties or guarantees as a customary trade practice, furnish to the State such warranties or quarantees. - 2. The locations of poles and fixtures may be shifted by the Engineer to accommodate local conditions. Install or remove poles and luminaires located near overhead electrical lines using established industry and utility safety practices and in accordance with laws governing such work. Consult with the appropriate utility company prior to beginning such work. - 3. Provide new and unused materials. Ensure that all materials and installations comply with the applicable articles of the National Electrical Code (NEC), TxDOT standards and specifications, National Electrical Manufacturers Association (NEMA), and are listed by Underwriters Laboratories (UL) or a Nationally Recognized Testing Lab (NRTL). NRTLs such as Canadian Standard Association, Intertek Testing Services NA Inc., or FM Approvals LLC can be considered equivalent to UL. Faulty fabrication or poor workmanship in any material, equipment, or installation is justification for rejection. - 4. Provide Roadway Illumination Light Fixtures as per TxDOT Departmental Material Specification (DMS) 11010, Item 610, and as shown on the Material Producers List (MPL) for Roadway Illumination and Electrical Supplies. - 5. Fabricate steel roadway illumination poles in accordance with Roadway Illumination Poles (RIP) standards and Item 610. Poles fabricated according to RIP standards do not require shop drawing submittals. - a. Alternate designs to RIP standards or the use of aluminum to fabricate poles will require the submission of shop drawings electronically. For instructions on submitting shop drawings electronically see "Guide to Electronic Shop Drawing Submittal" on the TxDOT web site. - b. Limitations on use of the RIP standard: The RIP standard details were developed for installations in locations where the 3-second gust basic maximum wind speed is 110 mph, and where the elevation of the base of the pole is less than (i.e. not more than) 25' above the elevation of the surrounding terrain, in accordance with the "AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals," 6th Edition (2013) of the AASHTO Design Specifications. For poles to be installed in regions where the maximum basic wind speed exceeds 110 mph or to be mounted more than 25' above the surrounding terrain, provide poles meeting the following requirements: - i. Submittals. Following the electronic shop drawing submittal process (see Guide to Electronic Shop Drawing Submittal on the TxDOT web site), submit to the Engineer for approval fabrication drawings and calculations for the poles, sealed by a Texas licensed professional engineer (P.E.). - ii. Luminaire Structural Support Requirements. Provide light poles, arms, and anchor bolt assemblies with a 25 year design life to safely resist dead loads, ice loads and the required basic wind speeds at the location of installation in accordance with the 6th edition (2013) of the AASHTO Design Specifications. For transformer base poles, include transformer base and connecting hardware in calculations and shop drawing submittals. Structurally test all transformer bases to resist the theoretical plastic moment capacity of the pole. Submit certification of the plastic moment load test and FHWA breakaway requirement test of the model of base being furnished with the shop drawings. Show breakaway base model number, manufacturer's name, and logo on shop drawings. Include on manufacturer's shop drawings the ASTM designations for all materials to be used. - 6. For both transformer and shoe-base type illumination poles, provide and install double-pole breakaway fuse holders as specified by DMS-11040. Breakaway fuse holders are listed on the MPL for Roadway Illumination and Electrical Supplies under Items 610 & 620. Provide 10 amp time delay fuses for breakaway connectors in light poles, or inside the light fixture for underpass luminaires. In each pole, connect luminaires to the breakaway connector with continuous stranded 12 AWG copper conductors as listed on the MPL. Bond all equipment grounding conductors together and to the ground lug in the transformer base or hand hole. - 7. Tighten anchor bolts for shoe base, concrete traffic barrier base, and bridge mount roadway illumination poles, in accordance with Item 449. - 8. Install T-Base with following procedure: - a. Anchor Bolt Tightening. - i. Coat the threads of the anchor bolts with electrically conductive lubricant. - ii. Place the T-base over the anchor bolts. Foundation must be level and flat. The maximum permissible gap under any one corner of the t-base is
1/8" before nuts are tightened. - iii.Coat the bearing surfaces of the nuts and washers with electrically conductive lubricant. Install (1) 1/2" hold down washer, (1) lock washer, and (1) nut on each anchor bolt. Turn the nuts onto the bolts so that each is hand-tight against the washer. - iv. Using a torque wrench, tighten each nut to 150 ft-lb. Uniform contact is required between the foundation and the T-base in the corner regions of the T-base, and all corner gaps must be closed after applying torque. If a gap still exists after torquing to 150 ft-lbs, continue torquing each bolt incrementally until gap is closed or maximum allowable torque of 250 ft. pound is reached, whichever comes first. If 250 ft-lbs is not enough to close the gap the foundation must be leveled. Gaps along the straight sides of the T-bases and the foundation are permissible. Ensure that no high point of contact occurs between the straight sides of the T-base and the - v. Check top of T-base for level. If not level then foundation must be leveled. - b. Top Bolt Procedure - i. Erect pole over T-base with crane. Coat bolts, nuts, washers, and lock washers with electrically conductive - ii. Install bolts and 1/2" connecting washers from the inside of the T-base, thread up through the pole base. Install flat washers, lock washers and nuts snug tight according to Item 447, "Structural Bolting." - iii. Tighten each nut to 150 ft-Ib. using a torque wrench. - c. Level and Plumb - i. Ensure pole is plumb and mast arm is perpendicular to the roadway according to plans to within 5 - 9. Construct luminaire pole foundations in accordance with Item 416, "Drilled Shaft Foundations," and TxDOT standard sheet RID(2). - 10. Provide and install underpass luminaires in accordance with Item 610, DMS-11010, and TxDOT standard sheet RID(3). Typical luminaire size for underpass luminaires is 150W HPS or 150W EQ LED. - 11. Mount luminaires on arms level as shown by the luminaire level indicator. - 12. Orient luminaires perpendicular to the roadway intended to be lit unless otherwise shown on the plans. # Wiring Diagram Notes: - Use 1/2 in. -13 UNC threaded, copper or tin-plated copper, pole bonding connector, sized appropriately for conductors, bonded to T-base, or use ground lug in handhole as available. - Use pre-qualified two-pole breakaway connectors for all luminaire pole installations. For luminaires fed by a circuit with a neutral conductor, use double pole breakaway connectors with the neutral side unfused and marked white. - Split Bolt or other connector. # Decorative LED Lighting Notes: - 1. LED Drivers in Remote Outdoor enclosures (for drivers that do not include an enclosure as part of a factory assembly): - a. Provide NEMA 3R outdoor enclosure or as approved. - b. Install enclosure at least 12" above ground or other horizontal surface. Mount vertically or on ceiling, and avoid direct sun where possible. - c. Install drivers with at least 2 inches of space from enclosure walls. - d. For multiple drivers in an enclosure, provide at least 4 inches side to side and 1 inch end to end from other drivers or electronic equipment - e. For drivers mounted on back wall of enclosure, mount enclosure on 1 5/8" strut or other standoff to dissipate heat, or mount driver to side of the enclosure or to the metal cover. - f. Provide remote drivers with a maximum of 100 watts - g. Provide drivers with documentation of 100,000 hr lifetime at Tcase of 65C or higher. Driver Spacing In Remote Enclosure G = Grounding Conductor TYPICAL WIRING DIAGRAM LUMINAIRES SERVED AT 480V ON 240/480 VOLT SERVICE OR LUMINAIRES SERVED AT 240V FOR 120/240 VOLT SERVICE. Texas Department of Transportation # ROADWAY **ILLUMINATION** DETAILS Traffic Safety | RI | DC | 1)-20 | | |----|-----|-------|----| | gn | DN: | CK: | DI | | .E: rid1-20.dgn | DN: | | CK: | DW: | CK: | | |----------------------|------|--------|----------|-----------|-----------|---| | © TxDOT January 2007 | CONT | SECT | JOB | | HIGHWAY | ı | | REVISIONS | 6447 | 42 | 001 [| | H 20, ETC | ı | | -17
-20 | DIST | COUNTY | | SHEET NO. | ı | | | -20 | ODA | | ECTOR, E | TC. | 31 | | SHOWING SLOPED GRADE | SECT | NOI | A-A | |---------|---------|------------| | SHOWING | CONSTAN | T GRADE | ### TABLE 1 ANCHOR BOLTS ANCHOR POLF BOLT CIRCLE MOUNTING BOL T SIZE HEIGHT Shoe Base T-Base 1in.x <40 ft. 14 in. 13 in. 30in. 1 ¼in. x 30in 40-50 ft. 15 in. 17 1/4 in | TABLE 2 | | | | | | |---|------------------------------------|----|----|--|--| | RECOMMENDED FOUNDATION
LENGTHS
(See note 1) | | | | | | | MOUNT ING
HE I GHT | TEXAS CONE PENETROMETER N Blows/ft | | | | | | HE I GH I | 10 | 15 | 40 | | | | <20 ft. | 6′ | 6, | 6′ | | | | >20 ft.
to 30 ft. | 8′ | 6, | 6′ | | | | >30 ft.
to 40 ft. | 8′ | 8′ | 6′ | | | | >40 ft.
to 50 ft. | 10' | 8′ | 6′ | | | | TABLE 3 | | | | | | | |------------------------|--|-------------------------|--|--|--|--| | | PAY QUANTITY OF RIPRAP PER FOUNDATION (Install only when shown on the plans) | | | | | | | Foundation
Diameter | RIPRAP
DIAMETER | RIPRAP
(CONC) (CL B) | | | | | | 30 in. | 78 in. | 0.35 CY | | | | | Top of Foundation T-BASE . +0." Fnd. (-1/2" -Base FOUNDATION DETAIL Hex nut Lock washer Lock washer Flat washer Hex nut -Baseplate Ho I ddown Washer -Flat washer Hex nut 1/2" Typ, 3/4" max-1/4" Typ, -1/2" max Anchor bolts Tied to rebar cage see note -Bottom Anchor SHOE BASE Bolt Template See RIP Standard **GENERAL NOTES:** - 1. "Recommended Foundation Lengths" table is for information purposes only. Foundation lengths shall be as shown on the plans, or as directed by the Engineer. Foundations will be paid for under Item 416, "Drilled Shaft Foundations." unless otherwise shown on the plans. - 2. Erect roadway illumination assembly poles plumb and true. Form and level the top 6" of the foundation so the pole will be plumb. Use leveling nuts to plumb shoe base poles. Do not use shims or leveling nuts under transformer bases. Do not grout between baseplate and the foundation. - 3. Ensure Class 2A and 2B fit for anchor bolts and nuts. Tap and chase nuts after galvanizing. Anchor bolt body with rolled threads need not be full - 4. Use appropriate class of concrete as specified in Items 416 and 432. Concrete for riprap may be upgraded to Class C at no extra cost to the Department. - 5. Place riprap around the foundation when called for elsewhere in the plans. Riprap will be paid for under Item 432. - 6. Locate breakaway roadway illumination assemblies as shown in the placement table, unless otherwise dimensioned on the plans. Protect non-breakaway illumination assemblies from vehicular impact (i.e. 2.5 ft. behind guard rail or mounted on traffic barrier), or located outside the clear zone, except that 2.5 ft. from curb face is minimum desired for light poles on city streets, 45 mph or less. See Roadway Design Manual for further information. - 7. Use 4 hold down and 4 connecting washers on transformer base poles as recommended by the manufacturer and supplied with base. - 8. Install a minimum of 2 conduits in each foundation. See lighting layout sheets for locations of foundations with more than 2 conduits. Cap unused conduits in foundations on both ends. - 9. Conduit location in foundations is critical for breakaway devices. Place conduits 2 in. apart on centerline as shown. - Bond anchor bolt to rebar cage with #6 bare stranded copper conductor. Use listed mechanical connectors rated for embedment in concrete. The bonded steel in the foundation creates a concrete encased grounding electrode which replaces the ground rod. - Grade earthwork around T-base foundations even with the finished grade as shown in Section A-A to ensure proper function of the breakaway device. Use riprap on T-base foundations that are located on sloped grades, and as shown on the plans for level grades. # TABLE 4 BREAKAWAY POLE PLACEMENT (See note 6) ** POLE OFFSET (DISTANCE TO FACE OF TRANSFORMER BASE) ROADWAY FUNCTIONAL CLASSIFICATION Freeway Mainlanes 15 ft. (minimum and (roadway with full control of access) typical) from lane edge All curbed, 45 mph 2.5 ft. minimum (15 ft. or less design speed desirable) from curb face 10 ft. minimum*(15 ft. All others desirable) from lane edge - * or as close to ROW line as is practical - ** provide 2/5 of the luminaire mounting height behind the pole for "falling area" to prevent encroachment on the other travel lanes. See design auidelines. Texas Department of Transportation Traffic Safety Division Standard ROADWAY ILLUMINATION DETAILS (RDWY ILLUM FOUNDATIONS) | RID(2)-20 | | | | | | | | |-----------|-----------|--|-----|-----|--|--|--| | ١ | DN: | | CK: | DW: | | | | | 2007 | CONT SECT | | JOB | | | | | FILE: rid2-20.dgn CK: ©⊺xDOT January 2 HIGHWAY 6447 42 001 IH 20. ETC DIST COUNTY ANCHOR BOLT DETAIL UNDERPASS LIGHTING TYPE 1 Drill 1/16" dia. / Rotate as necessary to place Luminairefixture perpendicular to roadway **PLAN VIEW SIDE** PLAN VIEW **FIXTURE** ARM DETAIL **ORIENTATION** Connect conduit on tapered section of beam. $2 - \frac{5}{8}$ " Dia. thru-bolts (A325 or A193 B7), each **FRONT** (Beam height greater than 54") IN RD IL AM (U/P) (TY 2) 3 - No. 12 XHHW in 3/4" RMC for Branch Circuit used Disconnect runs from fused disconnect to underpass Luminaires -Ground Box (As shown on CONDUIT DETAIL layout sheets) Metal Conduit (Typ)- -¾" RMC to Type 2 Luminaire # CONDUIT CONNECTION PROFILE # Reinforcing Strands Minimum Distance (See Table Below) # TABLE 5 LOCATION OF UNDERPASS LIGHT | MOUNTING BE | ACKET TABLE | | | | | |----------------|---------------------|--|--|--|--| | SPAN
LENGTH | MINIMUM
DISTANCE | | | | | | ≤ 50′ | 10'-0" | | | | | | 50' - 70' | 15′-0" | | | | | | 70′ - 90′ | 20′-0" | | | | | | > 90' | 25′-0" | | | | | 2. Conduit will be paid for under Item 618, "Conduit" and conductors will be paid for under Item
620, "Electrical Conductors," unless otherwise shown on the plans. Luminaire locations, conduit and conductor sizes and routing are typical and diagrammatic only. See project layout sheets for 3. Adjust conduit in saddles to place fixture height and orientation as required. See fixture orientation detail and plans. Where practicable, place luminaires so the bottom of luminaire is above the bottom of the beam, maximum of 3 in. (See detail UNDERPASS LIGHTING ARM TYPE 2) 4. Except as noted, galvanize all structural steel and exposed bolts, nuts, and washers in accordance with Item 445 'Galvanizina". A. ALL 150 watt HPS and 150 watt equivalent LED Luminaires 5. Fabrication of brackets and support arms will not be paid for directly but is subsidiary to Item 610, "Roadway Illumination 6. Install a heavy duty NEMA 3R fused disconnect or breaker enclosure rated at 30 amps and 480 volts to switch underpass luminaires as shown on plans, with at least one per bridge circuit. Install 20 amp time-delay fuses or inverse-time circuit breakers. Mount disconnect or breaker enclosure 10 ft. (min) above grade on columns or bent caps as approved by the Department. Modify disconnect to allow padlocking in the "ON" and "OFF" positions. Padlocks and disconnect switches or circuit breakers for underpass fixtures will not be paid for directly but are subsidiary to the various bid items of the contract. 7. Conduit on columns, caps, and slab is shown surface mounted. For new columns and caps, embed PVC conduit in concrete. Bond and ground metal junction boxes and conduit. # B. TYPE **GENERAL NOTES:** specific details. 1. Provide 2 in, rigid metal conduit (2.375" O.D., 0.146" wall) for Type 1 arm shaft. $rac{3}{8}$ in. stainless steel bolt or stud non-epoxy type expansion anchors for concrete for Type 1 mounting. Except as noted, provide an allowable 2650 lbs minimum pull-out force (after consideration of adjustment factors for edge distance and bolt spacing) for each anchor, Install each anchor to the embedment depth recommended by the manufacturer. 3. Attach conduit to plate with 4 saddles, four - $\frac{3}{8}$ in. diameter bolts, nylon throat lock nuts, and lock washers. # C. TYPE 2 1. Provide 2 in, rigid metal conduit (2.375" 0.D., 0.146" wall) or provide a combination of 2 $\frac{1}{2}$ in. (2.875" O.D., 0.193" wall) and 2 in. (2.375" O.D., 0.146" wall) rigid metal conduits with a reducing bushing as beam height stipulated for Type 2 arm shaft. Field cutting and threading will be permitted. Paint cut and threaded areas with zinc rich paint after conduit is connected to adjacent fitting. 2. Connecting conduit may be strapped to tapered section only of precast beams as shown. Anchor as approved by the Engineer. Maximum anchor depth is 1 in. Indiscriminate drilling into precast concrete beams may result in reduced beam strength. Use drilling location and method as directed by the Engineer. See Location of Underpass Lighting Mounting Bracket detail. The locations shown in the table are such that reinforcing strands will not be damaged. Texas Department of Transportation Traffic Safety Division # ROADWAY ILLUMINATION DETAILS (UNDERPASS LIGHT FIXTURES) RID(3) - 20 | | | | | • | | | | | |---|---------------------------|-------------|-----------|------|-----------|-----|-------|-----------| | | FILE: | rid3-20.dgn | DN: TxDOT | | ck: TxDOT | DW: | TxDOT | ck: TxDOT | | ı | C TxDOT | May 2013 | CONT | SECT | JOB | | н | GHWAY | | 4 | REVISIONS
2-14
7-17 | | 6447 | 42 | 001 | | IH 2 | O, ETC | | ı | | | DIST | | COUNTY | | | SHEET NO. | | ı | 12-20 | | ODA | | ECTOR, E1 | c. | | 33 | LOCATION OF UNDERPASS LIGHT MOUNTING BRACKET UNDERPASS LIGHTING TYPE 2 | | SHIPPING PARTS LIST - POLES AND LUMINAIRE ARMS | | | | | | | | | | |--------------|--|---------------|-----------|--------------------------|---------------|-----------|---------------|------------|---------------|----------| | Nominal | Shoe B | ase | | T-Bas | е | | | CSB/SSCB N | Mounted | | | Mounting Ht. | Designation | | Quantity | Designation | | Quantity | Des | ignation | | Quantity | | (f+) | Pole A1 A2 | Luminaire | Qualifity | Pole A1 A2 | Luminaire | Qualifity | Pole | A1 A2 | Luminaire | Qualify | | 20 | (Type SA 20 S - 4) | (150W EQ) LED | | (Type SA 20 T - 4) | (150W EQ) LED | | | | | | | | (Type SA 20 S - 4 - 4) | (150W EQ) LED | | (Type SA 20 T - 4 - 4) | (150W EQ) LED | | | | | | | 30 | (Type SA 30 S - 4) | (250W EQ) LED | | (Type SA 30 T - 4) | (250W EQ) LED | | (Type SP 28 S | - 4) | (250W EQ) LED | | | | (Type SA 30 S - 4 - 4) | (250W EQ) LED | | (Type SA 30 T - 4 - 4) | (250W EQ) LED | | (Type SP 28 S | - 4 - 4) | (250W EQ) LED | | | | (Type SA 30 S - 8) | (250W EQ) LED | | (Type SA 30 T - 8) | (250W EQ) LED | | (Type SP 28 S | - 8) | (250W EQ) LED | | | | (Type SA 30 S - 8 - 8) | (250W EQ) LED | | (Type SA 30 T - 8 - 8) | (250W EQ) LED | | (Type SP 28 S | - 8 - 8) | (250W EQ) LED | | | 40 | (Type SA 40 S - 4) | (250W EQ) LED | | (Type SA 40 T - 4) | (250W EQ) LED | | (Type SP 38 S | - 4) | (250W EQ) LED | | | | (Type SA 40 S - 4 - 4) | (250W EQ) LED | | (Type SA 40 T - 4 - 4) | (250W EQ) LED | | (Type SP 38 S | - 4 - 4) | (250W EQ) LED | | | | (Type SA 40 S - 8) | (250W EQ) LED | | (Type SA 40 T - 8) | (250W EQ) LED | | (Type SP 38 S | - 8) | (250W EQ) LED | | | | (Type SA 40 S - 8 - 8) | (250W EQ) LED | | (Type SA 40 T - 8 - 8) | (250W EQ) LED | | (Type SP 38 S | - 8 - 8) | (250W EQ) LED | | | | (Type SA 40 S - 10) | (250W EQ) LED | | (Type SA 40 T - 10) | (250W EQ) LED | | (Type SP 38 S | - 10) | (250W EQ) LED | | | | (Type SA 40 S - 10 - 10) | (250W EQ) LED | | (Type SA 40 T - 10 - 10) | (250W EQ) LED | | (Type SP 38 S | - 10 - 10) | (250W EQ) LED | | | | (Type SA 40 S - 12) | (250W EQ) LED | | (Type SA 40 T - 12) | (250W EQ) LED | | (Type SP 38 S | - 12) | (250W EQ) LED | | | | (Type SA 40 S - 12 - 12) | (250W EQ) LED | | (Type SA 40 T - 12 - 12) | (250W EQ) LED | | (Type SP 38 S | - 12 - 12) | (250W EQ) LED | | | 50 | (Type SA 50 S - 4) | (400W EQ) LED | | (Type SA 50 T - 4) | (400W EQ) LED | | (Type SP 48 S | - 4) | (400W EQ) LED | | | | (Type SA 50 S - 4 - 4) | (400W EQ) LED | | (Type SA 50 T - 4 - 4) | (400W EQ) LED | | (Type SP 48 S | - 4 - 4) | (400W EQ) LED | | | | (Type SA 50 S - 8) | (400W EQ) LED | | (Type SA 50 T - 8) | (400W EQ) LED | | (Type SP 48 S | - 8) | (400W EQ) LED | | | | (Type SA 50 S - 8 - 8) | (400W EQ) LED | | (Type SA 50 T - 8 - 8) | (400W EQ) LED | | (Type SP 48 S | 8 - 8) | (400W EQ) LED | | | | (Type SA 50 S - 10) | (400W EQ) LED | | (Type SA 50 T - 10) | (400W EQ) LED | | (Type SP 48 S | - 10) | (400W EQ) LED | | | | (Type SA 50 S - 10 - 10) | (400W EQ) LED | | (Type SA 50 T - 10 - 10) | (400W EQ) LED | | (Type SP 48 S | - 10 - 10) | (400W EQ) LED | | | · | (Type SA 50 S - 12) | (400W EQ) LED | | (Type SA 50 T - 12) | (400W EQ) LED | | (Type SP 48 S | - 12) | (400W EQ) LED | | | | (Type SA 50 S - 12 - 12) | (400W EQ) LED | · | (Type SA 50 T - 12 - 12) | (400W EQ) LED | | (Type SP 48 S | - 12 - 12) | (400W EQ) LED | | | | | THER | | |------|-------------|-----------|----------| | | Designation | | | | Pole | A1 A2 | Luminaire | Quantity | | | | • | _ | + | | | | | | | | | | | | | | | | # **GENERAL NOTES:** - 1. All work, materials and services not shown on the plans which may be necessary for complete and proper construction shall be performed, furnished and installed by the Contractor. Faulty fabrication or poor workmanship in any material, equipment or installation will be considered justification for rejection. Where manufacturers provide warranties or guarantees as a customary trade practice, furnish to the Department such warranties or guarantees. - 2. The location of poles and fixtures are diagrammatic only and may be shifted by the Engineer to accommodate local conditions. Install or remove poles and luminaires located near overhead electrical lines using established industry and utility safety practices and in accordance with laws governing such work. Consult with the appropriate utility company prior to beginning such work. - 3. Standard Steel Pole Designs. Steel poles fabricated in accordance with the details and dimensions shown herein, shall be considered standard designs. Submission of shop drawings and design calculations for standard designs is not required. - 4. Optional Steel Pole Designs. Multi-sided steel poles may be allowed as optional designs, if steel poles are permitted or required, pending approval by the Department as outlined below. - a. Shop Drawings. Optional designs require submission of shop drawings and design calculations bearing the seal of an engineer licensed in the State of Texas, in accordance with Item 441, "Steel Structures." The Department may elect to pre-approve some shop drawings for optionally designed poles. Submission of shop drawings and design calculations is not required for structures fabricated in accordance with the details of shop drawings on the pre-approved list maintained by the TxDOT Traffic Operations Division. Any deviation from the pre-approved shop drawings will require submission of shop drawings of the complete assembly and design calculations as described above. - dssembly did design Catalitations as desir local above. b. Structural Support Design for Luminaires. Lighting support structures shall be designed for a 25 year design life in accordance with the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals, 6th Edition (2013) and Interim Revisions thereto. All poles shall be designed for 110 mph 3-second gust wind speeds. The Gust Factor, G, and Wind Importance Factor, Ir, shall be applied as per the AASHTO Specifications assuming a 25-year design life. The design wind
pressure for hurricane wind velocities greater than 100 mph shall not be less than the design wind pressure using 100 mph with the non-hurricane Wind Importance Factor, Ir, value. For transformer base poles, fabricator shall include transformer base and connecting hardware in design calculations and shop drawing submittals. All transformer bases shall have been structurally tested to resist the theoretical plastic moment capacity of the pole. Certification of the plastic moment load test and FHWA breakaway requirement test of the model of base being furnished shall be submitted with the shop drawings. Shop drawings shall show breakaway base model number, and manufacturer's name and logo. Manufacturer's shop drawings shall include the ASTM designations for all materials to be used. - c. Mast Arm Attachments. All poles and attachments shall be structurally designed to support two 12-foot mast arms and luminaires. Poles shall be supplied with mast arm combinations as shown in the plans. All - mast arms shall be designed for a 60-pound luminaire having an effective projected area of 1.6 square feet. d. Anchor Bolt Assembly. Anchor bolt assemblies for optionally designed poles shall be the same as those shown herein. - 5. Aluminum Pole Designs. Aluminum pole designs may be allowed, if aluminum poles are permitted or required, pending approval by the Department as outlined below. - a. Meet all of the requirements stated above for optional steel pole designs and the following: 1. Aluminum poles shall be fabricated in accordance with "Structural Welding Code-Aluminum" AWS D1.2. anti-seize compound, Never-Seez Compound, Permatex 133K or equal. - Aluminum pole designs shall use the same anchor bolt assembly and be subject to the same geometric restraints and other requirements for steel poles specified herein. Aluminum poles shall be equipped with vibration mitigation devices, as approved by the engineer. - Aluminum poles shall be equipped with vibration mitigation devices, as approved by the engineer. Pole components shall be constructed using the following material: Shaft: ASTM B221 or B241 Alloy 6063-T6, ASTM B209 Alloy 5086-H34, ASTM B221 Alloy 6005-T5. Base Flange: ASTM B26 Alloy 356.0-T6 or ASTM B108 Alloy 356.0-T6 (Yield strength test required). Mast Arms: ASTM B209 Alloy 6061-T6 or ASTM B221 Alloy 6005-T5. Mast Arms: ASTM B241 Alloy 6061-T6 or ASTM B209 Alloy 6063-T6. Pole Cap: ASTM B209 Alloy 5086-H32 or ASTM B108 or B26 Alloy 356.0-T6. Bolts: Stainless Steel AISI 300 series. Bolts threading into aluminum threads shall be treated with - 6. Special Designs. Poles with architectural treatments shall meet the requirements shown elsewhere in the plans. - 7. Luminaire Mounting Height. Actual luminaire mounting height shall be the nominal mounting height given on RIP(2) for all pole-arm combinations except for poles with 4 ft. luminaire arms, which shall be 3^7 -0" lower than the nominal height, unless otherwise shown or directed. ## EXPLANATION OF ROADWAY ILLUMINATION ASSEMBLY DESIGNATIONS (TYPE SA 50 T - X - X) (400W EQ) LED SA: Pole and mast arm may be steel or— aluminum. ST: Pole and mast arm must be steel AL: Pole and mast arm must be aluminum. Special (ovalized) steel or aluminum pole for installing on CSB or SSCB. See standard sheet CSB (4), or SSCB (4). Two numerical digits denote nominal mounting height in feet. Next letter denotes type of base, (S-Shoe Base, -T-Transformer Base, or B-Bridge/Ret.Wall Mount) First number denotes length of mast arm Use of second mast arm is indicated by second dashed number which denotes length in feet. Luminaire ratina in watts (i.e. 400W). Equivalent wattage LED fixtures will include EQ (i.e. 400W EQ) Last letters indicate light source (S - High Pressure Sodium; LED - LED luminaire) SHEET 1 OF 4 ROADWAY ILLUMINATION **POLES** Traffic Safety RIP(1)-19 | FILE: rip-19.dgn | DN: | | CK: | DW: | | CK: | |----------------------|------|------|----------|-----|------|----------| | © TxDOT January 2007 | CONT | SECT | JOB | | H1G | YAW | | REVISIONS | 6447 | 42 | 001 | I | Н 20 | , ETC | | 7-17
12-19 | DIST | | COUNTY | | SI | HEET NO. | | 12 13 | ODA | | ECTOR, E | TC. | | 34 | # SHOE BASE POLE | | SHOE BASE POLE | | | | | | |--|--------------------------|-------------------------|----------------|---------------------------|----------------------------|--| | Luminaire
Mounting
Height
(Nominal)(ft) | Base
Diameter
(in) | Top
Diameter
(in) | Length
(ft) | Pole
Thickness
(in) | Design
Moment
(K-ft) | | | 20.00 | 7.00 | 4.90 | 15.00 | 0.1196 | 7.1 | | | 30.00 | 7.50 | 4.00 | 25.00 | 0.1196 | 13.2 | | | 31.00-39.00 | 8.00 | 4.36-3.24 | 26.00-34.00 | 0.1196 | 20.7 | | | 40.00 | 8.50 | 3.60 | 35.00 | 0.1196 | 20.7 | | | 50.00 | 10.50 | 4.20 | 45.00 | 0.1196 | 30.3 | | # Top Detail, 1 1 Simplex Arm Connection 60% of CP-3 Pole Thickness See Transformer Base Baseplate Detail. Sheet 4 of 4 See Transformer Base Details. Sheet 4 of 4 See Transformer Base Anchor Bolt Assembly Detail, TRANSFORMER BASE POLE See Pole | | TRANSFORMER BASE POLE | | | | | | | |--|--------------------------|-------------------------|----------------|---------------------------|----------------------------|--|--| | Luminaire
Mounting
Height
(Nominal)(ft) | Base
Diameter
(in) | Top
Diameter
(in) | Length
(ft) | Pole
Thickness
(in) | Design
Moment
(K-ft) | | | | 20.00 | 7.00 | 5.11 | 13.50 | 0.1196 | 7.1 | | | | 30.00 | 7.50 | 4.21 | 23.50 | 0.1196 | 13.2 | | | | 31.00-39.00 | 8.00 | 4.57-3.45 | 24.50-32.50 | 0.1196 | 20.7 | | | | 40.00 | 8.50 | 3.81 | 33.50 | 0.1196 | 20.7 | | | | 50.00 | 10.00 | 3.91 | 43.50 | 0.1196 | 30.3 | | | # Rise 1 Simplex Arm Connection Height Seam Weld located 45° from mast arm axis 60% of Thickness See Handhole Detail, Sheet 3 of 4-Min. Max. on .'-0" '-6" Oval Sect See Concrete Traffic Barrier ,9 Base Baseplate Detail. Sheet 4 of 4 See Concrete Traffic Barrier Base Anchor Bolt Assembly Detail, Sheet 4 of 4 See Pole Top Detail, # CONCRETE TRAFFIC BARRIER BASE POLE | CONCRETE TRAFFIC BARRIER BASE POLE (CSB/SSCB) | | | | | | | | | |---|----------|--------|---|------|---|-----------------------|--|------| | | Design M | Pole | unting Diameter Diameter Length Thickness | | Diameter Diameter Length Thicknes | Luminaire
Mounting | | | | Perp.
to Rail | About & | | | | | (f+) | | (:0) | | 13.2 | 10.3 | 0.1196 | 23.00 | 5.78 | 9.00 | 28.00 | | | | 20.8 | 16.6 | 0.1196 | 33.00 | 4.38 | 9.00 | 38.00 | | | | 30.5 | 25.1 | 0.1345 | 43.00 | 4.48 | 10.50 | 48.00 | | | | | 16.6 | 0.1196 | 33.00 | 4.38 | 9.00 | 38.00 | | | # GENERAL NOTES: - 1. Designs conform to AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals, 6th Edition (2013) and Interim Revisions thereto. Design 3-Second Gust Wind Speed equals 110 mph with a 1.14 gust factor. A wind importance factor of 0.80 is applied to adjust the wind speed to a 25 year recurrence interval. Design moments listed in tables assume base of pole is 25' above natural ground level. - Structures are designed to support two 12' luminaire mast arms and luminaires. Mast arms are designed to support a 60-pound luminaire having an effective projected area of 1.6 square feet. - 3. Fabrication shall be in accordance with the Specifications and with the details, dimensions, and weld procedures shown herein. Do not submit shop drawings for roadway illumination pole assemblies fabricated in accordance with the details, dimensions, and weld procedures shown herein. Weld references call for preapproved weld procedures which the Fabricator must obtain prior to fabrication. Materials, fabrication tolerances, and shipping practices shall meet the requirements of these sheets and the Specifications. In the absence of specified fabrication tolerances, dimensions shall be within the tolerances generally obtainable in normal fabrication practice. - For mounting heights between values shown in the tables, use base diameter and thickness values for the larger height. - Unless otherwise noted, all steel parts shall be galvanized in accordance with Item 445, "Galvanizing." - 6. Steel poles shall be fabricated in accordance with Item 441, "Steel Structures." Longitudinal seam welds for pole sections shall have 60% minimum penetration. All welding shall be in accordance with AWS D1.1, Structural Welding Code-Steel. - 7. Two-section poles joined by circumferential welds will not be permitted, unless otherwise shown on the plans. Poles may be fabricated in two sections and field-assembled by the lap-joint method. The two sections shall telescope together with a lap length of not less than 1-1/2 times the shaft diameter at the lap joint. - Alternate material equal to or better than material specified may be substituted with the approval of the Engineer. - Lubricate and tighten anchor bolts, when erecting shoe base poles and concrete traffic barrier base poles, in accordance with Item 449, "Anchor Bolts." - 10. All poles, except Transformer Base Poles, shall have hand holes with reinforcing frames and covers. For ground mounted shoe base poles, hand holes shall be placed 90 degrees to mast arm unless otherwise noted on the plans. For poles mounted on a concrete traffic barrier with one luminaire arm, hand holes shall be located 180 degrees from luminaire arm. For poles mounted on a concrete traffic barrier with two luminaire arms, all hand holes shall be on the same side of the barrier. For poles mounted on a bridge lighting bracket or a retaining wall lighting bracket, hand hole shall be on traffic side of the pole, at a height that will clear the barrier. - 11. The finished pole shall have a smooth, uniform finish free of pits, blisters, or other
defects. Scratched, chipped, and other damaged galvanized areas on poles and mast arms shall be repaired in accordance with Item 445, "Galvanizing." - 12. Pole length is based on a 5'-6" luminaire arm rise. 4 ft. luminaire arms have a 2'-6" rise. A pole with 4 ft. luminaire arms will have an actual mounting height 3'-0" less than the nominal mounting height. Increasing the pole length to meet the nominal mounting height is allowed, but unnecessary unless otherwise directed by the engineer. - 13. Erect transformer base poles in accordance with sheet RID(1). | MATERIAL DATA | | | | | | | |-------------------------------|---|------------------------|--|--|--|--| | COMPONENT | ASTM
DESIGNATION | MIN.
YIELD
(ksi) | | | | | | Pole Shaft (0.14"/ft. Taper) | A572 Gr 50,
A595 Gr A,
A1011 HSLAS
Gr 50 Cl 2 ③,
or A1008 HSLAS
Gr 50 Cl 2 | 50 | | | | | | Base Plate and Handhole Frame | A572 Gr.50, or
A36 | 36 | | | | | | T-Base Connecting Bolts | F3125 Gr A325 | 92 | | | | | | Anchor Bolts | F1554 Gr 55,
A193-B7 or A321 | 55
105 | | | | | | Anchor Bolt Templates | A36 | 36 | | | | | | Heavy Hex (H.H.) Nuts | A194 Gr 2H, or
A563 Gr DH | | | | | | | Flat Washers | F436 | | | | | | # NOTES: - 1)2'-6" rise for 4 ft. luminaire arms. - ② Before ovalized as shown on Concrete Traffic Barrier Base Baseplate details, Sheet 4 of 4. - (3) A1011 SS Gr 50 may be used instead of HSLAS, provided the material meets the elongation requirements for HSLAS. # POLE ASSEMBLY FABRICATION TOLERANCES TABLE | IOLERANCES | IADLE | |--|----------------| | DIMENSION | TOLERANCE | | Shaft length | +1" | | I.D. of outside piece of slip fitting pieces | +1/8", -1/16" | | O.D. of inside piece of slip fitting pieces | +1/32", -1/8" | | Shaft diameter: other | +3/16" | | Out of "round" | 1/4" | | Straightness of shaft | ±1/4" in 10 ft | | Twist in multi-sided shaft | 4° in 50 ft | | Perpendicular to baseplate | 1/8" in 24" | | Pole centered on baseplate | ±1/4" | | Location of Attachments | ±1/4" | | Bolt hole spacing | ±1/16" | SHEET 2 OF 4 Traffic Safety Division Standard ROADWAY ILLUMINATION POLES RIP(2)-19 | FILE: rip-19.dgn | DN: | | CK: | DW: | CK: | |----------------------|------|------|----------|-----|-----------| | © TxDOT January 2007 | CONT | SECT | JOB | | H]GHWAY | | REVISIONS | 6447 | 42 | 001 | I | H 20, ETC | | 7-17
12-19 | DIST | | COUNTY | • | SHEET NO. | | 12 13 | ODA | | ECTOR, E | TC. | 35 | ATE: # LUMINAIRE ARM | LUMINAIRE ARM DIMENSIONS | | | | | | |--------------------------|------------|-------|--|--|--| | Nominal
Arm Length | Arm Length | Rise | | | | | 4′-0" | 3′-6" | 2′-6" | | | | | 6′-0" | 5′-6" | 5′-6" | | | | | 8′-0" | 7′-6" | 5′-6" | | | | | 10'-0" | 9′-6" | 5′-6" | | | | | 12′-0" | 11'-6" | 5′-6" | | | | | ARM ASSEMBLY TOLERANCE | | |------------------------|-------------| | DIMENSION | TOLERANCE | | Arm Length | ±1" | | Arm Rise | ±1" | | Deviation from flat | 1/8" in 12" | | Spacing between holes | ±1/32" | # UPPER SIMPLEX FITTING (Gusset not shown for clarity) POLE SIMPLEX DETAIL (9) ARM SIMPLEX DETAIL 9 # NOTES: - Any of the materials listed for plates may be used where the drawings do not specify a particular ASTM designation. - (5) A576 must be suitable for forging and also meet minimum tensile strength of 65 ksi, minimum yield of 35 ksi, and elongation in 2 inches of 22 percent. - (6) A572, A1008 HSLAS-F, and A1011 HSLAS-F materials may have higher yield strengths but shall not have less elongation than the grade indicated. - (7) Dimensional limits are given to show acceptable variation in design. All of a Fabricator's production of a particular arm length shall have the same dimensions within specified tolerances. - 8 Each pole simplex fitting shall be supplied with 2 bolts and 2 lock washers of the size specified. The bolts and lock washers shall be secured to the pole with the other hardware items called for in the plans. - Proposed deviations in arm simplex dimensions or materials must be submitted to the Department for approval. - (0) A welded handhole frame is permissible. Maximum of two (2) CJP weld splices is allowed. | MATERIALS | | | | | |-------------------------------------|--|--|--|--| | Pole or Arm Simplex | ASTM A27 Gr 65-35 or Gr 70-36, A148
Gr 80-50, A576 Gr 1021 (\$),or A36
(Arm only) | | | | | Arm Pipes | ASTM A53 Gr A or B,A500 Gr B,
A501, A 1008 HSLAS-F Gr 50 ⑥, or
A1011 HSLAS-F Gr 50 ⑥ | | | | | Arm Struts and
Gusset Plates (4) | ASTM A36,A572 Gr 50 6, or A588 | | | | | Misc. | ASTM designations as noted | | | | | | | | | | SECTION C-C # SIMPLEX ATTACHMENT DETAIL SECTION B-B SIDE $\sqrt{2}$ LA-3 Тур 1/8" Min Gusset Plate SHEET 3 OF 4 # ROADWAY ILLUMINATION POLES Traffic Safety Division Standard RIP(3) - 19 | FILE: rip-19.dgn DN: | | | CK: | DW: | CK: | |----------------------|------|--------|----------|-----|-----------| | © TxDOT January 2007 | CONT | SECT | JOB | | HIGHWAY | | REVISIONS | 6447 | 42 | 2 001 1 | | H 20, ETC | | 7-17
12-19 | DIST | COUNTY | | | SHEET NO. | | 12-19 | ODA | | ECTOR, E | TC. | 36 | ATE: 1174. POLE TOP Lip LA-3> V2 Тур HANDHOLE # SHOE BASE BASEPLATE | SHO | DE BASE | BASEF | PLATE 1 | ABLE | |---------------------------------|----------------|--------|---------|-----------------------| | MOUNTING
HEIGHTS
(noming) | BOLT
CIRCLE | SQUARE | THICK | BOLT HOLE
DIAMETER | | 20' - 39' | 13" | 13" | 1 1/4" | 1 1/4" | | 40′ | 15" | 15" | 1 1/4" | 1 1/2" | | 50′ | 15" | 15" | 1 1/2" | 1 1/2" | # SHOE BASE ANCHOR BOLT ASSEMBLY | SHOE BA | SE A | NCHOR E | BOLT ASSEM | BLY TABLE | |----------------------------------|--------------|----------------------------|-----------------------|-----------------------| | MOUNTING
HEIGHTS
(nominal) | A.B.
Dia. | BOLT
CIRCLE
DIAMETER | CTR. HOLE
DIAMETER | BOLT HOLE
DIAMETER | | 20′-39′ | 1 " | 13" | 11" | 1 1/16 " | | 40′-50′ | 1 1/4" | 15" | 12 1/2" | 1 % " | # CONCRETE TRAFFIC BARRIER BASE BASEPLATE | CONCRETE TRAFFIC BARRIER
BASE BASEPLATE TABLE | | | | | | |--|-----------|----------|-----------|--|--| | MOUNTING
HEIGHTS
(nominal) | POLE DIA. | DIM. A | DIM. B | | | | 28' - 38' | 9" | 7"± 1/4" | 10"± 1/4" | | | | 48′ | 10 ½" | 7"± 1/4" | 13"± 1/4" | | | # CONCRETE TRAFFIC BARRIER BASE ANCHOR BOLT ASSEMBLY | ı | TRANSFORM | IER BA | SE ANCHO | OR BOLT AS | SEMBLY TABL | |---|----------------------------------|--------------|----------------------------|-----------------------|-----------------------| | | MOUNTING
HEIGHTS
(nominal) | A.B.
Dia. | BOLT
CIRCLE
DIAMETER | CTR. HOLE
DIAMETER | BOLT HOLE
DIAMETER | | ı | 20' - 39' | 1 " | 14" | 12" | 1 1/16 " | | ı | 40' - 50' | 1 1/4" | 17 1/4" | 14 ¾" | 1 5/6 " | | | | | | | | # TRANSFORMER BASE BASEPLATE | TRANSFORMER BASE BASEPLATE TABLE | | | | | | | |----------------------------------|----------------|--------|---------|-------------------------|-----------------------|-------------------------| | MOUNTING
HEIGHTS
(nominal) | BOLT
CIRCLE | SQUARE | THICK | CONNECTING
BOLT DIA. | BOLT HOLE
DIAMETER | TRANSFOMER
BASE TYPE | | 20' - 39' | 13" | 13" | 1 1/4" | 1" | 1 1/4" | Α | | 40′ | 15" | 15" | 1 1/4" | 1 1/4" | 1 1/2" | В | | 50′ | 15" | 15" | 1 1/2 " | 1 1/4" | 1 1/2" | В | TRANSFORMER BASE ANCHOR BOLT ASSEMBLY # **TRANSFORMER** BASE TABLE TOP B.C. TYPE 13" 14" ½" thk Hold-down Connecting ## DETAIL B ## TOP PLAN # **BOTTOM PLAN** # 15" 17 1/4 Lock 1. For mounting heights between those shown in the table, use the values in the table for 2. All breakaway bases shall meet the breakaway Specifications for Structural Supports for 6th Edition (2013) and Interim Revisions thereto, and shall have been tested by Highway Signs, Luminaires and Traffic Signals, requirements of the AASHTO Standard GENERAL NOTES: the larger mounting height. - 4. Bases shall be stamped, incised or by other approved permanent means, marked to show fabricator's name or logo, and model number. Such information shall be placed in a readily seen location, inside or outside the base, but shall not be placed on the door. - 5. Doors for transformer bases shall be made of plastic, fiberglass or other non-metallic material approved by the Engineer and shall be attached with stainless steel screws or bolts. Transformer bases shall be cleaned by grit blast cleaning after heat treatment. Certification by the manufacturer of heat treatment shall be furnished with transformer bases. The certification shall show the metal alloy and temper and that the base meets those requirements, chemical and physical. The certification shall also show the material ASTM specification. Transformer bases shall be cast with a removable tab bar for material testing. Some bars may have been removed by the manufacturer for testing. # NOTES: - (f) Anchor Bolt Templates do not need to be aalvanized. - Pole diameter before ovalized. ### ANCHOR BOLT FABRICATION TOLERANCES TABLE DIMENSION TOLERANCE Length ± 1/2' Threaded length ± 1/2" Galvanized length (if required) - 1/4" **ELEVATION** TRANSFORMER BASE **DETAILS** SHEET 4 OF 4 Texas Department of Transportation ROADWAY ILLUMINATION **POLES** Traffic Safety Division Standard RIP(4) - 19 | FILE: rip-19.dgn | DN: | | CK: | DW: | | CK: | |----------------------|------|----------|----------|-----------|------|--------| | © TxDOT January 2007 | CONT | SECT | JOB | | н10 | HWAY | | REVISIONS | 6447 | 42 | 001 | | IH 2 | O, ETC | | 7-17
12-19 | DIST | COUNTY S | | SHEET NO. | | | | 12 13 | ODA | | ECTOR. F | TC. | | 37 | Conventional Roads | | LEGEND | | | | | | | | |------------|---|----|--|--|--|--|--|--| | ~~~ | Type 3 Barricade |
| Channelizing Devices | | | | | | | | Heavy Work Vehicle | | Truck Mounted
Attenuator (TMA) | | | | | | | ₽ | Trailer Mounted
Flashing Arrow Board | M | Portable Changeable
Message Sign (PCMS) | | | | | | | • | Sign | ♦ | Traffic Flow | | | | | | | \Diamond | Flag | ПO | Flagger | | | | | | | Posted
Speed | Formula | Minimum
Desirable
Taper Lengths
** | | Spacir
Channe | | Minimum
Sign
Spacing
"X" | Suggested
Longitudinal
Buffer Space | | |-----------------|-----------------|---|---------------|------------------|---------------|-----------------------------------|---|------| | * | | 10'
Offset | 11'
Offset | 12'
Offset | On a
Taper | On a
Tangent | Distance | "B" | | 30 | WS ² | 150′ | 1651 | 1801 | 30' | 60′ | 120′ | 90' | | 35 | L = WS | 2051 | 2251 | 245' | 35′ | 70′ | 160′ | 120′ | | 40 | 80 | 2651 | 2951 | 3201 | 40′ | 80′ | 240' | 155′ | | 45 | | 4501 | 4951 | 540′ | 45′ | 90′ | 320′ | 195′ | | 50 | | 5001 | 5501 | 600' | 50′ | 100′ | 400′ | 240′ | | 55 | L=WS | 550′ | 6051 | 660′ | 55′ | 110′ | 500′ | 295′ | | 60 | L-W3 | 600′ | 660′ | 7201 | 60′ | 120' | 600′ | 350′ | | 65 | | 650′ | 715′ | 780′ | 65′ | 130′ | 700′ | 410′ | | 70 | | 7001 | 7701 | 8401 | 70′ | 140′ | 800′ | 475′ | | 75 | | 7501 | 8251 | 900' | 75′ | 150′ | 900' | 540′ | - * Conventional Roads Only - ** Taper lengths have been rounded off. - L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH) | TYPICAL USAGE | | | | | | | |---------------|-------------------|--------------------------|---|--|--|--| | MOBILE | SHORT
DURATION | SHORT TERM
STATIONARY | INTERMEDIATE LONG TERM TERM STATIONARY STATIONARY | | | | | | 1 | 1 | | | | | ### GENERAL NOTES - 1. Flags attached to signs where shown are REQUIRED. - 2. All traffic control devices illustrated are REQUIRED, except those denoted with the triangle symbol may be omitted when stated elsewhere in the plans, or for routine maintenance work, when approved by the Engineer. - 3. Inactive work vehicles or other equipment should be parked near the right-of-way line and not parked on the paved shoulder. - 4. A Shadow Vehicle with a TMA should be used anytime it can be positioned 30 to 100 feet in advance of the area of crew exposure without adversely affecting the performance or quality of the work. If workers are no longer present but road or work conditions require the traffic control to remain in place, Type 3 Barricades or other channelizing devices may be substituted for the Shadow Vehicle and TMA. - 5. Additional Shadow Vehicles with TMAs may be positioned off the paved surface, next to those shown in order to protect wider work spaces. - 6. See TCP(5-1) for shoulder work on divided highways, expressways and - 7. CW21-5 "SHOULDER WORK" signs may be used in place of CW20-1D "ROAD WORK AHEAD" signs for shoulder work on conventional Texas Department of Transportation Traffic Operations Division Standard TRAFFIC CONTROL PLAN CONVENTIONAL ROAD SHOULDER WORK TCP(1-1)-18 | ILE: tcp1-1-18.dgn | DN: | | CK: | DW: | CK: | |------------------------|------|------|----------|-----|-----------| | CTxDOT December 1985 | CONT | SECT | JOB | | H] GHWAY | | REVISIONS
2-94 4-98 | 6447 | 42 | 001 I | | H 20, ETC | | 3-95 2-12 | DIST | | COUNTY | | SHEET NO. | | -97 2-18 | ODA | | ECTOR, E | TC. | 38 | | | LEGEND | | | | | | | | |------------|---|----|--|--|--|--|--|--| | ~~~ | Type 3 Barricade | | Channelizing Devices | | | | | | | | Heavy Work Vehicle | | Truck Mounted
Attenuator (TMA) | | | | | | | | Trailer Mounted
Flashing Arrow Board | M | Portable Changeable
Message Sign (PCMS) | | | | | | | - | Sign | ♡ | Traffic Flow | | | | | | | \Diamond | Flag | ЦO | Flagger | | | | | | | Posted Formula
Speed | | Minimum
Desirable
Taper Lengths
** | | | Spacir
Channe | | Minimum
Sign
Spacing
"x" | Suggested
Longitudinal
Buffer Space | Stopping
Sight
Distance | |-------------------------|-----------------------|---|---------------|---------------|------------------|-----------------|-----------------------------------|---|-------------------------------| | * | | 10'
Offset | 11'
Offset | 12'
Offset | On a
Taper | On a
Tangent | Distance | "B" | | | 30 | 2 | 150′ | 1651 | 1801 | 30' | 60′ | 1201 | 90′ | 200' | | 35 | $L = \frac{WS^2}{60}$ | 2051 | 225′ | 245′ | 35′ | 70′ | 160′ | 120′ | 250' | | 40 | 80 | 2651 | 2951 | 3201 | 40' | 80′ | 240' | 155′ | 3051 | | 45 | | 450′ | 4951 | 540′ | 45′ | 90' | 320′ | 195′ | 360' | | 50 | | 5001 | 550′ | 600, | 50′ | 100′ | 4001 | 240′ | 425′ | | 55 | L=WS | 550′ | 6051 | 660′ | 55′ | 110′ | 500′ | 295′ | 495′ | | 60 | L "3 | 600' | 660' | 720′ | 60′ | 120' | 600' | 350′ | 570′ | | 65 | | 650′ | 715′ | 780′ | 65′ | 130' | 700′ | 410′ | 645′ | | 70 | | 700′ | 770′ | 840′ | 701 | 140′ | 800′ | 475′ | 730′ | | 75 | | 750' | 825′ | 900′ | 75′ | 150′ | 9001 | 540′ | 820′ | * Conventional Roads Only ** Taper lengths have been rounded off. L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH) | TYPICAL USAGE | | | | | | | | | |---------------|---|---|--|--|--|--|--|--| | MOBILE | MOBILE SHORT SHORT TERM INTERMEDIATE LONG TERM DURATION STATIONARY TERM STATIONARY STATIONARY | | | | | | | | | | 1 | 1 | | | | | | | ### GENERAL NOTES ROAD WORK AHEAD - 1. Flags attached to signs where shown are REQUIRED. - 2. All traffic control devices illustrated are REQUIRED, except those denoted with the triangle symbol may be omitted when stated elsewhere in the plans, or for routine maintenance work, when approved by the Engineer. - 3. The CW3-4 "BE PREPARED TO STOP" sign may be installed after the CW20-4D "ONE LANE ROAD AHEAD" sign, but proper sign spacing shall be maintained. - 4. Sign spacing may be increased or an additional CW20-1D "ROAD WORK AHEAD" sign may be used if advance warning ahead of the flagger or R1-2 "YIELD" sign is less than 1500 feet. 5. A Shadow Vehicle with a TMA should be used anytime it can be positioned 30 to 100 feet - in advance of the area of crew exposure without adversely affecting the performance or quality of the work. If workers are no longer present but road or work conditions require the traffic control to remain in place, Type 3 Barricades or other channelizing devices may be substituted for the Shadow Vehicle and TMA. - 6. Additional Shadow Vehicles with TMAs may be positioned off the paved surface, next to those shown in order to protect wider work spaces. ## TCP (1-2a) - 7. R1-2 "YIELD" sign traffic control may be used on projects with approaches that have adequate sight distance. For projects in urban areas, work spaces should be no longer than one half city block. In rural areas on roadways with less than 2000 ADT, work spaces should be no longer than 400 feet. - 8. Ri-2 "YIELD" sign with Ri-20P "TO ONCOMING TRAFFIC" plaque shall be placed on a support at a 7 foot minimum mounting height. - 9. Flaggers should use two-way radios or other methods of communication to control traffic. - 10. Length of work space should be based on the ability of flaggers to communicate. - 11. If the work space is located near a horizontal or vertical curve, the buffer distances should be increased in order to maintain adequate stopping sight distance to the flagger and a queue of stopped vehicles (see table above). - 12. Channelizing devices on the center-line may be omitted when a pilot car is leading traffic and approved by the Engineer. - 3. Flaggers should use 24" STOP/SLOW paddles to control traffic. Flags should be limited to emergency situations. Traffic Operations Division Standard TRAFFIC CONTROL PLAN ONE-LANE TWO-WAY TRAFFIC CONTROL TCP(1-2)-18 | FILE: tcp1-2-18, dgn | DN: | | CK: | DW: | | CK: | |----------------------|------|---------------|--------|-----|------------|-----------| | ℂTxDOT December 1985 | CONT | SECT | JOB | | н | SHWAY | | 4-90 4-98 REVISIONS | 6447 | 42 | 001 | | IH 20, ETC | | | 2-94 2-12 | DIST | | COUNTY | | | SHEET NO. | | 1-97 2-18 | ODA | A ECTOR, ETC. | | | | 39 | | | LEGEND | | | | | | | | | |------------|---|----|--|--|--|--|--|--|--| | ~~~ | Type 3 Barricade | | Channelizing Devices | | | | | | | | | Heavy Work Vehicle | | Truck Mounted
Attenuator (TMA) | | | | | | | | | Trailer Mounted
Flashing Arrow Board | M | Portable Changeable
Message Sign (PCMS) | | | | | | | | - | Sign | ♡ | Traffic Flow | | | | | | | | \Diamond | Flag | LO | Flagger | | | | | | | | Posted Formula
Speed | | Desirable
Taper Lengths
** | | | Spaci:
Channe | | Minimum
Sign
Spacing
"X" | Suggested
Longitudinal
Buffer Space | |-------------------------|---------------------|----------------------------------|---------------|---------------|------------------|-----------------|-----------------------------------|---| | * | | 10'
Offset | 11'
Offset | 12'
Offset | On a
Taper | On a
Tangent | Distance | "B" | | 30 | 2 | 1501 | 1651 | 180′ | 30′ | 60′ | 120' | 90′ | | 35 | L = WS ² | 2051 | 2251 | 245′ | 35′ | 70′ | 160′ | 120′ | | 40 | 80 | 2651 | 295′ | 3201 | 40′ | 80′ | 240′ | 155′ | | 45 | | 450' | 4951 | 540' | 45′ | 90′ | 320′ | 195′ | | 50 | | 500′ | 550′ | 6001 | 50′ | 100′ | 400' | 240′ | | 55 | L=WS | 550′ | 605′ | 660′ | 55′ | 110′ | 500′ | 295′ | | 60 | - " - | 600′ | 660′ | 720′ | 60′ | 120' | 600′ | 350′ | | 65 | | 650′ | 715′ | 7801 | 65′ | 130′ | 7001 | 410′ | | 70 | | 700′ | 770′ | 840′ | 70' | 140′ | 800' | 475′ | | 75 | | 750′ | 825′ | 900′ | 75′ | 150′ | 900′
| 540′ | - * Conventional Roads Only - ** Taper lengths have been rounded off. L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH) | TYPICAL USAGE | | | | | | | | | | | |---------------|-------------------|--------------------------|---------------------------------|-------------------------|--|--|--|--|--|--| | MOBILE | SHORT
DURATION | SHORT TERM
STATIONARY | INTERMEDIATE
TERM STATIONARY | LONG TERM
STATIONARY | | | | | | | | | 1 1 | | | | | | | | | | ### GENERAL NOTES - 1. Flags attached to signs where shown are REQUIRED. - All traffic control devices illustrated are REQUIRED, except those denoted with the triangle symbol may be omitted when stated elsewhere in the plans, or for routine maintenance work, when approved by the Engineer. - Flagger control should NOT be used unless roadway conditions or heavy traffic volume require additional emphasis to safely control traffic. Additional flaggers may be positioned in advance of traffic queues to alert traffic to reduce speed. - 4. DO NOT PASS, PASS WITH CARE and construction regulatory speed zone signs may be installed downstream of the ROAD WORK AHEAD signs. - 5. When the work zone is made up of several work spaces, channelizing devices should be placed laterally across the closed lane to re-emphasize closure. Laterally placed channelizing devices should be repeated every 500 to 1000 feet in urban areas and every 1/4 to 1/2 mile in rural areas. - 6. A Shadow Vehicle with a TMA should be used anytime it can be positioned 30 to 100 feet in advance of the area of crew exposure without adversely affecting the performance or quality of the work. If workers are no longer present but road or work conditions require the traffic control to remain in place, Type 3 Barricades or other channelizing devices may be substituted for the Shadow Vehicle and TMA. - 7. Additional Shadow Vehicles with TMAs may be positioned off the paved - surface, next to those shown in order to protect wider work spaces. 8. Where traffic is directed over a yellow centerline, channelizing devices which separate two-way traffic should be spaced on tapers at 20', or 15' if posted speed are 35 mph or slower, and for tangent sections, at 1/25 where S is the speed in mph. This tighter device spacing is intended for the area of conflicting markings not the entire work zone. Traffic Operations Division Standard TRAFFIC CONTROL PLAN TRAFFIC SHIFTS ON TWO LANE ROADS TCP(1-3)-18 | FILE: tcp1-3-18.dgn | DN: | | CK: | DW: | CK: | |------------------------|------|--------|----------|-----|------------| | ℂTxDOT December 1985 | CONT | SECT | JOB | | HIGHWAY | | REVISIONS
2-94 4-98 | 6447 | 42 | 42 001 | | IH 20, ETC | | 8-95 2-12 | DIST | COUNTY | | | SHEET NO. | | 1-97 2-18 | ODA | | ECTOR, E | TC. | 40 | 153 | | LEGEND | | | | | | | | | | |------------|---|----|--|--|--|--|--|--|--|--| | ~~~ | Type 3 Barricade | | Channelizing Devices | | | | | | | | | | Heavy Work Vehicle | | Truck Mounted
Attenuator (TMA) | | | | | | | | | | Trailer Mounted
Flashing Arrow Board | M | Portable Changeable
Message Sign (PCMS) | | | | | | | | | - | Sign | ♡ | Traffic Flow | | | | | | | | | \Diamond | Flag | ЦO | Flagger | | | | | | | | | Posted
Speed | Formula | * * Devices | | ng of
Lizing | Minimum
Sign
Spacing
"x" | Suggested
Longitudinal
Buffer Space | | | |-----------------|---------------------|---------------|---------------|-----------------|-----------------------------------|---|----------|------| | * | | 10'
Offset | 11'
Offset | 12'
Offset | On a
Taper | On a
Tangent | Distance | "B" | | 30 | 2 | 1501 | 1651 | 180′ | 30′ | 60′ | 120′ | 90′ | | 35 | L = WS ² | 2051 | 225′ | 245' | 35′ | 70′ | 160′ | 120' | | 40 | 60 | 265′ | 2951 | 3201 | 40′ | 80′ | 240' | 155′ | | 45 | | 450′ | 495′ | 540' | 45′ | 90′ | 3201 | 195′ | | 50 | | 5001 | 550′ | 6001 | 50 <i>°</i> | 100′ | 400' | 240′ | | 55 | L=WS | 550′ | 6051 | 660′ | 55′ | 110′ | 500′ | 295′ | | 60 | " " " | 600′ | 660′ | 720′ | 60′ | 120′ | 600′ | 350′ | | 65 | | 650′ | 715′ | 780′ | 65′ | 130′ | 700′ | 410′ | | 70 | | 700′ | 770′ | 840′ | 70′ | 140′ | 800′ | 475′ | | 75 | | 750′ | 8251 | 9001 | 75′ | 150′ | 900′ | 540′ | - * Conventional Roads Only - ₩ Taper lengths have been rounded off. L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH) | TYPICAL USAGE | | | | | | | | | | | |---------------|-------------------|--------------------------|---------------------------------|-------------------------|--|--|--|--|--|--| | MOBILE | SHORT
DURATION | SHORT TERM
STATIONARY | INTERMEDIATE
TERM STATIONARY | LONG TERM
STATIONARY | | | | | | | | | | | | | | | | | | | ### GENERAL NOTES - 1. Flags attached to signs where shown are REQUIRED. - 2. All traffic control devices illustrated are REQUIRED, except those denoted with the triangle symbol may be omitted when stated elsewhere in the plans, or for routine maintenance work, when approved by the Engineer. 3. The CW20-1D "ROAD WORK AHEAD" sign may be repeated if the - visibility of the work zone is less than 1500 feet. 4. A Shadow Vehicle with a TMA should be used anytime it can be positioned 30 to 100 feet in advance of the area of crew exposure without adversely affecting the performance or quality of the work. If workers are no longer present but road or work conditions require the traffic control to remain in place, Type 3 Barricades or other channelizing devices may be substituted for the Shadow Vehicle and TMA. - 5. Additional Shadow Vehicles with TMAs may be positioned off the paved surface, next to those shown in order to protect wider work spaces. 6. If this TCP is used for a left lane closure , CW20-5TL "LEFT LANE CLOSED" signs shall be used and channelizing devices shall be placed on the centerline where needed to protect the work space from opposing traffic with the arrow panel placed in the closed lane near the end of the merging taper. 7. Where traffic is directed over a yellow centerline, channelizing devices which separate two-way traffic should be spaced on tapers at 20' or 15' if posted speeds are 35 mph or slower, and for tangent sections, at 1/2S where S is the speed in mph. This tighter device spacing is intended for the areas of conflicting markings, not the entire work zone. Traffic Operations Division Standard TRAFFIC CONTROL PLAN LANE CLOSURES ON MULTILANE CONVENTIONAL ROADS TCP(1-4)-18 | FILE: tcp1-4-18.dgn | DN: | | CK: | DW: | CK: | | |------------------------|------|-------------|--------|-----|------------|--| | © TxDOT December 1985 | CONT | SECT | JOB | | HIGHWAY | | | REVISIONS
2-94 4-98 | 6447 | | 001 | | IH 20, ETC | | | 8-95 2-12 | DIST | | COUNTY | | SHEET NO. | | | 1-97 2-18 | ODA | ECTOR, ETC. | | | 41 | | | Posted
Speed | peed | | Desirable
Taper Lengths
X X | | | d Maximum
ng of
lizing
ices | Minimum
Sign
Spacing
"X" | Suggested
Longitudinal
Buffer Space | |-----------------|-----------------------|---------------|-----------------------------------|---------------|---------------|--------------------------------------|-----------------------------------|---| | * | | 10'
Offset | 11'
Offset | 12'
Offset | On a
Taper | On a
Tangent | Distance | "В" | | 30 | 2 | 150′ | 165′ | 180′ | 30′ | 60′ | 120′ | 90′ | | 35 | $L = \frac{WS^2}{60}$ | 2051 | 2251 | 2451 | 35′ | 70′ | 160′ | 120′ | | 40 | 80 | 265′ | 295′ | 3201 | 40′ | 80′ | 240' | 155′ | | 45 | | 450′ | 495′ | 540' | 45′ | 90′ | 3201 | 195′ | | 50 | | 5001 | 550′ | 6001 | 50′ | 100′ | 400′ | 240′ | | 55 | L=WS | 550′ | 605′ | 660′ | 55′ | 110′ | 500′ | 295′ | | 60 | L-W3 | 600' | 660′ | 7201 | 60′ | 120′ | 600′ | 350′ | | 65 | | 650′ | 715′ | 780′ | 65′ | 130′ | 700′ | 410' | | 70 | | 700′ | 770′ | 840' | 70′ | 140′ | 800′ | 475′ | | 75 | | 750′ | 825′ | 9001 | 75′ | 150′ | 900′ | 540′ | - * Conventional Roads Only - XX Taper lengths have been rounded off. L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH) | | TYPICAL USAGE | | | | | | | | | |--------|---|---|--|--|--|--|--|--|--| | MOBILE | MOBILE SHORT SHORT TERM INTERMEDIATE LONG TERM DURATION STATIONARY TERM STATIONARY STATIONARY | | | | | | | | | | | | ✓ | | | | | | | | ## **GENERAL NOTES** - 1. Flags attached to signs where shown, are REQUIRED. - All traffic control devices illustrated are REQUIRED, except those denoted with the triangle symbol may be omitted when stated elsewhere in the plans, or for routine maintenance work, when approved by the Engineer. - Channelizing devices used to close lanes may be supplemented with the Chevron Alignment Sign placed on every other channelizing device. Chevrons may be attached to plastic drums as per BC Standards. - 4. Shadow Vehicle with TMA and high intensity rotating, flashing, oscillating or strobe lights. A Shadow Vehicle with a TMA should be used anytime it can be positioned 30 to 100 feet in advance of the area of crew exposure without adversely affecting the performance or quality of the work. If workers are no longer present but road or work conditions require the traffic control to remain in place, Type 3 Barricades or other channelizing devices may be substituted for the Shadow Vehicle and TMA. - Additional Shadow Vehicles with TMAs may be positioned in each closed lane, on the shoulder or off the paved surface, next to those shown in order to protect a wider work space. Texas Department of Transportation Traffic Operations Division Standard TRAFFIC CONTROL PLAN LANE CLOSURES FOR DIVIDED HIGHWAYS TCP(1-5)-18 | ILE: tcp1-5-18.dgn | DN: | | CK: | DW: | | CK: | |---------------------|------|------|----------|-----|------|-----------| | TxDOT February 2012 | CONT | SECT | JOB | | H] | GHWAY | | REVISIONS
2-18 | 6447 |
42 | 001 | | IH 2 | 0, ETC | | 2-10 | DIST | | COUNTY | | | SHEET NO. | | | ODA | | ECTOR, E | TC. | | 42 | LANE CLOSURE NEAR ENTRANCE RAMPS TCP (1-5c) RAMP CLOSED R11-2bT 48" X 30' USE NEXT RAMP CW25-1T 48" X 48" Channelizing Devices at 20' spacing -See TCP(1-4a) for lane closure details if a lane closure is needed to close a lane which is normally required to enter the ramp. RAMP CLOSED AHEAD END ROAD WORK **쇼 쇼** G20-2 48" X 24" 30' Min. \Diamond 公 (See notes 4 & 5) \Diamond 公 -See TCP(1-5a) for advance warning signs for lane closure \Diamond CW20RP-3D 48" X 48" 155 | | LEGEND | | | | | | | | | |------------|---|----|--|--|--|--|--|--|--| | | Type 3 Barricade | | Channelizing Devices | | | | | | | | | Heavy Work Vehicle | | Truck Mounted
Attenuator (TMA) | | | | | | | | ₽ | Trailer Mounted
Flashing Arrow Board | M | Portable Changeable
Message Sign (PCMS) | | | | | | | | - | Sign | Ŷ | Traffic Flow | | | | | | | | \Diamond | Flag | LO | Flagger | | | | | | | | | · | | | | | | | | | | Posted
Speed
* | Formula | D | Minimur
esirab
er Lend
** | le
gths | Suggested Maximum
Spacing of
Channelizing
Devices | | Suggested
Longitudinal
Buffer Space | | |----------------------|-----------------------|---------------|------------------------------------|---------------|--|-----------------|---|--| | | | 10′
Offset | 11'
Offset | 12'
Offset | On a
Taper | On a
Tangent | "B" | | | 30 | 2 | 1501 | 1651 | 1801 | 30' | 60′ | 90' | | | 35 | $L = \frac{WS^2}{60}$ | 2051 | 225' | 245' | 35′ | 70′ | 120′ | | | 40 | 80 | 265′ | 295′ | 320' | 40' | 80′ | 155′ | | | 45 | | 4501 | 4951 | 540′ | 45′ | 90′ | 195′ | | | 50 | | 500′ | 550′ | 6001 | 50′ | 100′ | 240′ | | | 55 | L=WS | 550′ | 6051 | 660′ | 55′ | 110′ | 295′ | | | 60 | L - W 5 | 600' | 660′ | 7201 | 60′ | 120′ | 350′ | | | 65 | | 650′ | 715′ | 780′ | 65′ | 130′ | 410′ | | | 70 | | 700′ | 770′ | 840′ | 70′ | 140′ | 475′ | | | 75 | | 750′ | 8251 | 900′ | 75′ | 150′ | 540′ | | | 80 | | 800′ | 880′ | 960' | 80′ | 160′ | 615′ | | * Conventional Roads Only ROAD WORK G20-2 48" X 24" RIGHT SHOULDER CLOSED CW21-5aR 48" X 48" RIGHT SHOULDER CLOSED 1000 FT CW16-3aP RIGHT SHOULDER CLOSED 000 FT CW21-5bR 48" X 48' ROAD WORK AHEAD CW20-1D 48" X 48" 30" X 12" OR CW21-5aR 48" X 48" $\langle \cdot \rangle$ - XXTaper lengths have been rounded off. - L=Length of Taper (FT) W=Width of Offset (FT) S=Posted Speed (MPH | TYPICAL USAGE | | | | | | | | | |---------------|-------------------------------|--------------------------|---------------------------------|-------------------------|--|--|--|--| | MOBILE | SHORT
DURATION | SHORT TERM
STATIONARY | INTERMEDIATE
TERM STATIONARY | LONG TERM
STATIONARY | | | | | | | TCP(5-1a) TCP(5-1b) TCP(5-1b) | | | | | | | | ## GENERAL NOTES - A Shadow Vehicle with a TMA should be used anytime it can be positioned 30' to 100' in advance of the area of crew exposure without adversely effecting the performance or quality of the work. Type 3 barricades or drums may be substituted when workers on foot are no longer present when approved by the Engineer. - 2. 28" tall or taller one-piece cones will be allowed only for Short Duration or Short Term stationary operations when workers are present to maintain the devices upright and in proper location. Intermediate Term stationary work areas should use Drums, Vertical Panels or 42" tall two-piece Traffic Operations Division Standard TRAFFIC CONTROL PLAN SHOULDER WORK FOR FREEWAYS / EXPRESSWAYS TCP (5-1)-18 | FILE: | : tcp5-1-18.dgn DN: | | | CK: | DW: | | 0 | K: | |---------|---------------------|------|------|---------|-----|----|--------|----------| | © TxD0T | February 2012 | CONT | SECT | JOB | | | H I GH | WAY | | | REVISIONS | 6447 | 42 | 001 | | ĮΗ | 20 | , ETC | | 2-18 | | DIST | | COUNTY | | | SH | IEET NO. | | | | ODA | | ECTOP E | TC | | | 43 | TCP (6-1a) TYPICAL FREEWAY ONE LANE CLOSURE Type 3 Barricade Truck Mounted Attenuator (TMA) Trailer Mounted Flashing Arrow Board Flag Flag Flag Flag LEGEND Channelizing Devices Truck Mounted Attenuator (TMA) Portable Changeable Message Sign (PCMS) Traffic Flow Flagger | Posted
Speed | Formula | D | Minimur
esirab
Lengtl
** | le | Suggested Maximum
Spacing of
Channelizing
Devices | | Suggested
Longitudinal
Buffer Space | |-----------------|---------|---------------|-----------------------------------|---------------|--|-----------------|---| | | | 10'
Offset | 11'
Offset | 12'
Offset | On a
Taper | On a
Tangent | "B" | | 45 | | 450′ | 495′ | 540′ | 45′ | 90′ | 1951 | | 50 | | 5001 | 550′ | 6001 | 50′ | 100′ | 240′ | | 55 | L=WS | 550′ | 605′ | 660′ | 55′ | 110′ | 295′ | | 60 | - " - | 600′ | 660' | 720′ | 60′ | 120' | 350′ | | 65 | | 650′ | 715′ | 780′ | 65′ | 130′ | 410′ | | 70 | | 700′ | 770′ | 840′ | 70′ | 140′ | 475′ | | 75 | | 750′ | 825′ | 9001 | 75′ | 150′ | 540′ | | 80 | | 8001 | 8801 | 960' | 80′ | 160' | 615′ | ** Taper lengths have been rounded off. L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH) | TYPICAL USAGE | | | | | | | | | | |---------------|---|--|--|--|--|--|--|--|--| | MOBILE | MOBILE SHORT SHORT TERM INTERMEDIATE LONG TERM STATIONARY STATIONARY STATIONARY | | | | | | | | | | | 1 1 1 | | | | | | | | | ## GENERAL NOTES - All traffic control devices illustrated are REQUIRED. Devices denoted with the triangle symbol may be omitted when stated elsewhere in the plans. - 2. Drums or 42"cones are the typical channelizing devices. For Intermediate Term Stationary work, drums shall be used on tapers with drums or 42" cones used on tangent sections. Other channelizing devices may be used as directed by the Engineer. - All construction signs and barricades placed during any phase of work shall remain in place until removal is approved by the Engineer. - 4. The Engineer may direct the Contractor to furnish additional signs and barricades as required to maintain traffic flow, detours and motorist safety during construction. - 5. Static message boards or changeable message signs stating the date and duration of ramp or freeway lane closures shall be placed a minimum of seven (7) calendar days in advance of the actual closure. - 6. Phase 2 of the PCMS message should include appropriate information formatted as shown on BC(6), such as "MERGE LEFT," recommended advisory speed, delay information, or other specific warnings. - Duplicate construction warning signs should be erected on the medians side of freeways where median width will permit and traffic volume justifies the signing. - 8. The number of closed lanes may be increased provided the spacing of traffic control - devices, taper lengths and tangent lengths meet the requirements of the TMUTCD. 9. Warning signs for intermediate term stationary work should be mounted at 7' to the bottom of the sign. - 10. Warning signs shown shall be appropriately altered for left lane closures. When signs are mounted at 1' height for short term stationary or short duration work, sign versions shown in the SHSD for Texas with distances on the sign face rather than mounted on a plaque below the sign may be used. - 11. When possible, PCMS units should be located in advance of the last available exit ramp prior to the lane closure to allow motorists an alternate route. They may also be relocated to improve advance warning in case of unanticipated queuing or congestion. - 12. For Intermediate Term Stationary work at night, floodlights should be used to illuminate the work area and equipment crossings. Floodlights shall not produce a disabling glare condition for road users or workers. - 13. The END ROAD WORK (G20-2) sign may be omitted when it conflicts with G20-2 signs already in place on the project. A shadow vehicle equipped with a Truck Mounted Attenuator is typically required. A shadow vehicle equipped with a TMA shall be used if it can be positioned 30′ to 100′ in advance of the area of crew exposure without adversely affecting the work performance. WORK 1 MILE CW20-1F TCP (6-1b) TYPICAL FREEWAY TWO LANE CLOSURE # TRAFFIC CONTROL PLAN FREEWAY LANE CLOSURES TCP(6-1)-12 | | | | | _ | | | _ | | |--------|------------|-----|-------|---|-----------|-----|-----------|-----------| | LE: | tcp6-1.dgn | | DN: T | <dot< td=""><td>ck: TxDOT</td><td>D₩≎</td><td>T×DOT</td><td>ck: TxDOT</td></dot<> | ck: TxDOT | D₩≎ | T×DOT | ck: TxDOT | |)TxDOT | February 1 | 998 | CONT | SECT | JOB | | ΗI | GHWAY | | -12 | REVISIONS | | 6447 | 42 | 12 001 I | | IH 2 | 20, ETC | | -12 | | | DIST | DIST COUNTY | | | SHEET NO. | | | | | | ODA | | ECTOR, E | TC. | | 44 | END ROAD WORK 48" X 24" (See Note 4) 48" X 48" WORK AHEAD CW13-1P 24" X 24" (Plaque See note 1) with TMA and high intensity rotating, flashing, oscillating or strobe lights See TCP(6-1) for TCP (6-2a) ENTRANCE RAMP OPEN WORK WITHIN 500' OF RAMP Lane Closure Details and Additional Signing. | | LEGEND | | | | | | | | | |------------|---|----|--|--|--|--|--|--|--| | ~~~ | Type 3 Barricade | | Channelizing Devices | | | | | | | | | Heavy Work Vehicle | | Truck Mounted
Attenuator (TMA) | | | | | | | | E | Trailer Mounted
Flashing Arrow Board | M | Portable Changeable
Message Sign (PCMS) | | | | | | | | - | Sign | ♡ | Traffic Flow | | | | | | | | \Diamond | Flag | LO | Flagger | | | | | | | | Posted
Speed | Formula | Minimum
Desirable
Taper Lengths "L"
** | | | Spacir
Channe | | Suggested
Longitudinal
Buffer
Space | |-----------------|---------|---|---------------|---------------|------------------|-----------------|---| | | | 10'
Offset | 11'
Offset | 12'
Offset | On a
Taper | On a
Tangent | "B" | | 45 | | 450′ | 495′ | 540′ | 45′ | 90' | 1951 | | 50 | | 5001 | 550′ | 6001 | 50′ | 100′ | 240' | | 55 | L=WS | 550′ | 605′ | 660′ | 55′ | 110′ | 295′ | | 60 | L-#3 | 600′ | 660′ | 720′ | 60′ | 120′ | 350′ | | 65 | | 650′ | 715′ | 780′ | 65′ | 130′ | 410′ | | 70 | | 700′ | 770′ | 840′ | 70′ | 140′ | 475′ | | 75 | | 750′ | 825′ | 900′ | 75′ | 150′ | 540′ | | 80 | | 800' | 880′ | 960′ | 80′ | 160′ | 615' | ** Taper lengths have been rounded off. L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH) | TYPICAL USAGE | | | | | | | | | |---|---|---|---|--|--|--|--|--| | MOBILE SHORT SHORT TERM INTERMEDIATE LONG TERM DURATION STATIONARY TERM STATIONARY STATIONARY | | | | | | | | | | | 1 | 1 | 1 | | | | | | ## **GENERAL NOTES** - 1. All traffic control devices illustrated are REQUIRED. Devices denoted with the triangle symbol may be omitted when stated elsewhere in the plans. - 2. ADDED LANE Symbol (CW4-3) sign may be omitted when sign - between ramp and mainlane can be seen from both roadways. 3. See "Advance Notice List" on BC(6) for recommended date - and time formatting options for PCMS Phase 2 message. 4. The END ROAD WORK (G20-2) sign may be omitted when it conflicts with G20-2 signs already in place on the project. *A shadow vehicle equipped with a Truck Mounted Attenuator is typically required. A shadow vehicle equipped with a TMA shall be used if it can be positioned 30' to 100' in advance of the area of crew exposure without adversely affecting the work performance. Additional requirements for lane closures and advance signing shall be as shown on TCP (6-1) or as directed by the Engineer. # TRAFFIC CONTROL PLAN WORK AREA NEAR RAMP TCP(6-2)-12 | FILE: tcp6-2.dgn | | DN: T | DN: TxDOT CK: TxDC | | : TxDC | OT CK: TXDOT | | |-----------------------|-----------|-------|--------------------|-------------|--------|--------------|--| | © TxDOT February 1994 | | CONT | SECT | JOB | | HIGHWAY | | | | REVISIONS | 6447 | 42 | 001 | I | H 20, ETC | | | 1-97 8-98 | | DIST | COUNTY | | | SHEET NO. | | | 4-98 8 | -12 | ODA | | ECTOR, ETC. | | 45 | | Shadow Vehicle with TMA and high intensity strobe lights- rotating, flashing, oscillating or | 30' Min. TCP (6-3a) ENTRANCE RAMP OPEN See TCP(6-1) for Lane Closure Details and Additional Signing. 48" X 48" ROAD WORK AHEAD X X MPH CW13-1P LEGEND M L Minimum Desirable Taper Lengths ** ffsetOffsetOffse 450' 495' 540 500' 550' 600' 550' 605' 660' 600' 660' 720' 650' 715' 780' 700' | 770' | 840' 750' 825' 900' 800' 880' 960' TYPICAL USAGE SHORT TERM STATIONARY Channelizing Devices ruck Mounted Attenuator (TMA) Traffic Flow Flagger On a Tangen 90′ 1001 110′ 1201 130′ 140′ 150′ 160′ Suggested Maximu Spacing of Channelizing Devices On a Taper 45' 50' 55′ 60′ 65′ 70′ 75′ 80′ INTERMEDIATE TERM STATIONARY Texas Department of Transportation TCP (6-3) -12 DN: TXDOT CK: TXDOT DW: TXDOT CK: TXDO IH 20. ETC SHEET NO. JOB 001 Traffic Operations Division Standard TRAFFIC CONTROL PLAN WORK AREA BEYOND RAMP CONT SECT 6447 42 DIST tcp6-3.dgn February 1994 C) TxDOT 4-98 8-12 Portable Changeable Message Sign (PCMS) Suggested Longitudinal Buffer Space "B" 195′ 240' 295' 350' 410' 4751 540' 615′ LONG TERM STATIONARY TCP (6-4b) EXIT RAMP OPEN | | LEGEND | | | | | | | | | |------------|---|----------|--|--|--|--|--|--|--| | <i></i> | Type 3 Barricade | | Channelizing Devices (CDs) | | | | | | | | | Heavy Work Vehicle | | Truck Mounted
Attenuator (TMA) | | | | | | | | E | Trailer Mounted
Flashing Arrow Board | S | Portable Changeable
Message Sign (PCMS) | | | | | | | | - | Sign | Ą | Traffic Flow | | | | | | | | \Diamond | Flag | LO | Flagger | | | | | | | | • | | | | | | | | | | | Posted
Speed | Formula | Desirable
Taper Lengths "L"
** | | | Spaci:
Channe | | Suggested
Longitudinal
Buffer Space | |-----------------|---------|--------------------------------------|---------------|---------------|------------------|-----------------|---| | | | 10'
Offset | 11'
Offset | 12'
Offset | On a
Taper | On a
Tangent | "B" | | 45 | | 450′ | 495′ | 540' | 45′ | 90' | 1951 | | 50 | | 5001 | 550′ | 6001 | 50′ | 100' | 240' | | 55 | L=WS | 550′ | 605′ | 660′ | 55′ | 110' | 295′ | | 60 | L-#3 | 600' | 660′ | 720′ | 60′ | 120′ | 350′ | | 65 | | 650′ | 715′ | 780′ | 65′ | 130' | 410′ | | 70 | | 700′ | 770′ | 840′ | 701 | 140' | 475′ | | 75 | | 750' 825' 900' | | 75′ | 150′ | 540′ | | | 80 | | 8001 | 880′ | 960′ | 80′ | 160′ | 615′ | ** Taper lengths have been rounded off. L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH) | TYPICAL USAGE | | | | | | | | | |---------------|-------------------|--------------------------|---------------------------------|-------------------------|--|--|--|--| | MOBILE | SHORT
DURATION | SHORT TERM
STATIONARY | INTERMEDIATE
TERM STATIONARY | LONG TERM
STATIONARY | | | | | | | 1 | 1 | 1 | | | | | | ## GENERAL NOTES - All traffic control devices illustrated are REQUIRED. Devices denoted with the triangle symbol may be omitted when stated elsewhere in the plans. - 2. See BC Standards for sign details. *A shadow vehicle equipped with a Truck Mounted Attenuator is typically required. A shadow vehicle equipped with a TMA shall be used if it can be positioned 30' to 100' in advance of the area of crew exposure without adversely affecting the work performance. Additional requirements for lane closures and advance signing shall be as shown on TCP (6-1) or as directed by the Engineer. # TRAFFIC CONTROL PLAN WORK AREA AT EXIT RAMP TCP (6-4) -12 | FILE: | tcp6-4.dgn | DN: T | KDOT | ck: TxDOT | DW: | TxDOT CK: TxDOT | | | |-----------|---------------|-------|-------------|-----------|-----|-----------------|-----------|--| | © TxD0T | Feburary 1994 | CONT | SECT | JOB | | H1GHWAY | | | | | 6447 | 42 | 001 | | ĮΗ | IH 20, ETC | | | | 1-97 8-98 | | DIST | COUNTY | | | | SHEET NO. | | | 4-98 8-12 | | ODA | | ECTOR, E | TC. | | 47 | | (See Note | | LEGEND | | | | | | | | | | |------------|---|----|--|--|--|--|--|--|--|--| | ~~~ | Type 3 Barricade | | Channelizing Devices | | | | | | | | | | Heavy Work Vehicle | | Truck Mounted
Attenuator (TMA) | | | | | | | | | (E) | Trailer Mounted
Flashing Arrow Board | M | Portable Changeable
Message Sign (PCMS) | | | | | | | | | - | Sign | ♡ | Traffic Flow | | | | | | | | | \Diamond | Flag | LO | Flagger | | | | | | | | | Posted
Speed | Formula | * * | | | Spaci:
Channe | | Suggested
Longitudinal
Buffer Space | |-----------------|---------|----------------|---------------|---------------|------------------|-----------------|---| | | | 10'
Offset | 11'
Offset | 12'
Offset | On a
Taper | On a
Tangent | "B" | | 45 | | 450′ | 4951 | 540' | 45′ | 90' | 195′ | | 50 | | 5001 | 550′ | 6001 | 50′ | 100' | 240' | | 55 | L=WS | 550′ | 605′ | 660′ | 55′ | 110′ | 295′ | | 60 | L - W 3 | 600′ | 660′ | 720′ | 60′ | 120′ | 350′ | | 65 | | 650′ | 715′ | 780′ | 65′ | 130' | 410′ | | 70 | | 700′ | 770′ | 840′ | 701 | 140' | 475′ | | 75 | | 750' 825' 900' | | | 75′ | 150′ | 540′ | | 80 | | 8001 | 880′ | 960′ | 80′ | 160′ | 615′ | ** Taper lengths have been rounded off. L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH) | | TYPICAL USAGE | | | | | | | | | |--------|-------------------|--------------------------|---------------------------------|-------------------------|--|--|--|--|--| | MOBILE | SHORT
DURATION | SHORT TERM
STATIONARY | INTERMEDIATE
TERM STATIONARY | LONG TERM
STATIONARY | | | | | | | | 1 1 1 | | | | | | | | | ## GENERAL NOTES - All traffic control devices illustrated are REQUIRED. Devices denoted with the triangle symbol may be omitted when stated elsewhere in the plans. - 2. See BC standards for sign details. - If adequate longitudinal buffer length "B" does not exist between the work space and the exit ramp, consideration should be given to closing the ramp. *A shadow vehicle equipped with a Truck Mounted Attenuator is typically required. A shadow vehicle equipped with a TMA shall be used if it can be positioned 30' to 100' in advance of the area of crew exposure without adversely affecting the work performance. Additional requirements for lane closures and advance signing shall be as shown on TCP (6-1) or as directed by the Engineer. # TRAFFIC CONTROL PLAN WORK AREA BEYOND EXIT RAMP TCP(6-5)-12 | FILE: tcp6-5.dgn | DN: T: | kD0T | ck: TxDOT | DW: | TxDOT | ck: TxDOT | | |----------------------|--------|--------|-----------|-----|-------|------------|--| | ©TxDOT Feburary 1998 | | SECT | JOB | | н1 | H]GHWAY | | | REVISIONS | | 42 | 001 | | [H 2 | IH 20, ETC | | | 1-97 8-98 | DIST | COUNTY | | | | SHEET NO. | | | 4-98 8-12 | ODA | | ECTOR, E | TC. | 48 | | | | | LEGEND | | | | | | | | | | |------------|---|----|--|--|--|--|--|--|--|--| | ~/// | Type 3 Barricade | | Channelizing Devices | | | | | | | | | | Heavy Work Vehicle | | Truck Mounted
Attenuator (TMA) | | | | | | | | | E | Trailer Mounted
Flashing Arrow Board | M | Portable Changeable
Message Sign (PCMS) | | | | | | | | | - | Sign | ♡ | Traffic Flow | | | | | | | | | \Diamond | Flag | ЦO | Flagger | | | | | | | | | Posted
Speed | Formula | * * Devices | | Minimum
Sign
Spacing
"X" | Suggested
Longitudinal
Buffer Space | | | |
| |-----------------|---------------------|-------------------------|---------------|-----------------------------------|---|-----------------|----------|------|--| | * | | 10'
Offset | 11'
Offset | 12'
Offset | On a
Taper | On a
Tangent | Distance | "B" | | | 30 | 2 | 150′ | 1651 | 180′ | 30' | 60′ | 120' | 90′ | | | 35 | L = WS ² | 2051 | 225′ | 245' | 35′ | 70′ | 160′ | 120′ | | | 40 | 80 | 265′ | 295′ | 3201 | 40' | 80′ | 240' | 155′ | | | 45 | | 450′ | 4951 | 540' | 451 | 90′ | 320′ | 195′ | | | 50 | | 5001 | 550' | 6001 | 50′ | 100′ | 400' | 240' | | | 55 | L=WS | 550′ | 605′ | 660′ | 55′ | 110′ | 500′ | 295′ | | | 60 | L-#3 | 600' | 660′ | 720' | 60′ | 120' | 600′ | 350′ | | | 65 | | 650′ | 715′ | 780′ | 65′ | 130′ | 700′ | 410′ | | | 70 | | 700' 770' 840' 70' 140' | | 8001 | 475′ | | | | | | 75 | | 750′ | 8251 | 900' | 75′ | 150′ | 900' | 540′ | | * Conventional Roads Only ** Taper lengths have been rounded off. L=Length of Taper(FT) W=Width of Offset(FT) S=Posted Speed(MPH) WORKERS IN BUCKET TRUCKS SHALL NOT WORK ABOVE OPEN LANES OF TRAFFIC. ## **GENERAL NOTES** - 1. The minimum size channelizing device is the 28" cone. 42" Two-piece cones, drums, vertical panels or barricades will be required when the device must be left unattended at night. - 2. Obstructions or hazards at the work area shall be clearly marked and delineated at all times. - 3. Flaggers and Flagger Symbol (CW20-7) signs may be required according to field conditions. - 4. Vehicles parked in roadway shall be equipped with at least two high intensity rotating, flashing, oscillating or strobe type lights. - 5. High level warning devices (flag trees) may be used at corners of the vehicle. - 6. When work operations are performed on existing signals, the signals may be placed in flashing red mode when approved by the engineer. If existing signals do not have power, All-Way Stop (R1-1 and R1-3P) signs may be implemented when approved by the engineer. - 7. For Short-Term Stationary work the buffer space "B" from the above table should be used if field conditions permit. For Short Duration (less than 1 hour) any buffer space provided will enhance the safety of the setup. - 8. The arrow board at this location may be omitted for Short Duration work if the work vehicle has an arrow board in operation. As an option, the arrow board may be placed at the end of the taper in the closed lane if space is not available at the beginning of the taper. - 9. Signs and devices for the NEAR SIDE LANE CLOSURE may be altered for a left lane closure by using a LEFT LANE CLOSED (CW20-5TL) and adding channelizing devices on the centerline to protect the work space from opposing traffic. SHEET 1 OF 2 Traffic Operations Division Standard # TRAFFIC SIGNAL WORK TYPICAL DETAILS WZ(BTS-1)-13 | LE: wzbts-13.dgn | DN: T> | <dot< td=""><td>ck: TxDOT</td><td>DW:</td><td>TxDOT</td><td>CH</td><td>: TxDOT</td></dot<> | ck: TxDOT | DW: | TxDOT | CH | : TxDOT | | |------------------|-----------|--|-----------|-----|---------|-----|---------|--| | TxDOT April 1992 | CONT SECT | | JOB | | H]GHWAY | | AY | | | REVISIONS | 6447 | 42 | 001 | | IH 2 | 20, | ETC. | | | -98 10-99 7-13 | DIST | | COUNTY | | | | ET NO. | | | -98 3-03 | ODA | E | CTOR. | ETC | :. | | 49 | | # TYPICAL ADVANCE SIGNAL PROJECT SIGNING FOR LONG TERM and INTERMEDIATE-TERM STATIONARY WORK OPERATIONS # REFLECTIVE SHEETING All signs shall be retroreflective and constructed of sheeting meeting the requirements of the DMS and color usage table shown on this sheet. warning sign spacing. 5. See the Table on sheet 1 of 2 for Typical ### SIGN SUPPORT WEIGHTS - Weights used to keep signs from turning over should be sandbags filled with dry, cohesionless material. - The sandbags will be tied shut to keep the sand from spilling and to maintain a constant weight. - Rock, concrete, iron, steel or other solid objects will not be permitted for use as sign support weights. - Sandbags should weigh a minimum of 35 lbs and a maximum of 50 lbs. - Sandbaas shall be made of a durable material that tears upon vehicular impact. Rubber, such as tire inner tubes, shall not be used. - Rubber ballasts designed for channelizing devices should not be used for ballast on portable sign supports. Sign supports designed and manufactured with rubber bases may be used when shown on the CWZTCD - Sandbags shall only be placed along or laid over the base supports of the traffic control device and shall not be suspended above ground level or hung with rope, wire, chains or other fastners. Sandbags shall be placed along the length of the skids to weigh down the - Sandbags shall NOT be placed under the skid and shall not be used to level sign supports placed on slopes. | LEGEND | | | |--------|----------------------|--| | 4 | Sign | | | | Channelizing Devices | | | | Type 3 Barricade | | | DEPARTMENTAL MATERIAL | SPECIFICATIONS | |-----------------------------------|----------------| | SIGN FACE MATERIALS | DMS-8300 | | FLEXIBLE ROLL-UP REFLECTIVE SIGNS | DMS-8310 | | COLOR | USAGE | SHEETING MATERIAL | |--------|------------------|---| | ORANGE | BACKGROUND | TYPE B _{FL} OR TYPE C _{FL} SHEETING | | WHITE | BACKGROUND | TYPE A SHEETING | | BLACK | LEGEND & BORDERS | ACRYLIC NON-REFLECTIVE SHEETING | Only pre-qualified products shall be used. A copy of the "Compliant Work Zone Traffic Control Devices List" (CWZTCD) describes pre-qualified products and their sources and may be found at the following web address: http://www.txdot.gov/txdot_library/publications/construction.htm # GENERAL NOTES FOR WORK ZONE SIGNS - Signs shall be installed and maintained in a straight and plumb condition. - Wooden sign posts shall be painted white. - Barricades shall NOT be used as sign supports. - Nails shall NOT be used to attach signs to any support. - All signs shall be installed in accordance with the plans or as directed by the Engineer. - The Contractor shall furnish the sign design shown in the plans or in the "Standard Highway Sign Designs for Texas" (SHSD). - The Contractor shall furnish sign supports and substrates listed in the "Compliant Work Zone Traffic Control Device List" (CWZTCD), installed as per the manufacturer's recommendations. - Temporary signs that have damaged or cracked substrates and/or damaged or marred reflective sheeting shall be replaced as directed by the Engineer. - Identification markings may be shown only on the back of the sign substrate. The maximum height of letters and/or company logos used for identification shall be 1". - Damaged wood posts shall be replaced. Splicing wood posts will not be allowed. ### DURATION OF WORK Work zone durations are defined in Part 6, Section 66.02 of the Texas Manual on Uniform Traffic Control Devices (TMUTCD). ## SIGN MOUNTING HEIGHT - Sign height of Long-term/Intermediate-term warning signs shall be as shown on Figure 6F-1 of the TMUTCD. - Sign height of Short-term/Short Duration warning signs shall be as shown on Figure 6F-2 of the TMUTCD. - Regulatory signs shall be mounted at least 7 feet, but not more than 9 feet, above the paved surface regardless of work duration. ## REMOVING OR COVERING - When signs are covered, the material used shall be opaque, such as heavy mil black plastic, or other materials which will cover the entire sign face and maintain their opaque properties under automobile headlights at night without damaging the sign sheeting. Burlap, or heavy materials such as plywood or aluminum shall not be used to cover signs. - Duct tape or other adhesive material shall NOT be affixed to a sign face. $\,$ - Signs and anchor stubs shall be removed and holes back filled upon completion of the work. Temporary Traffic Barrier 10' Min. SIDEWALK CLOSED R9-9 24" x 12" fencing or longitudinal channelizing devices, or as directed by the Engineer. "CROSSWALK CLOSURES" as detailed above will require the Engineer's approval R9 series signs shown may be placed on supports detailed on the BC standards or CWZTCD list, or when fabricated from approved lightweight plastic substrates, they may be mounted on top of a plastic drum at or near the For speeds less than 45 mph longitudinal channelizing devices may be used instead of traffic barriers when approved by the Engineer. Attenuation of blunt ends and installation of water filled devices shall be as per BC(9) Where pedestrians with visual disabilities normally use the closed sidewalk Detectable Pedestrian Barricades should be used instead of the Type 3 Location of devices are for general guidance, Actual device spacing and location must be field adjusted to meet actual conditions. The width of existing sidewalk should be maintained if practical. Pavement markings for mid-block crosswalks shall be paid for under the When crosswalks or other pedestrian facilities are closed or relocated. temporary facilities shall be detectable and shall include accessibility features consistent with the features present in the existing pedestrian prior to installation. and manufacturer's recommendations. location shown. Barricades shown. appropriate bid items. ♡ || ☆ ♦ SIDEWALK CLOSE CROSS HERE R9-11aR 24" x 12' \Diamond ₹> Note 4 below SIDEWALK DIVERSION -4' Min.(See Note 7 below SIDEWALK CLOSEI CROSS HERE R9-11aL 24" x 12" CW2OSG- ♡ | ☆ | SHEET 2 OF 2 TRAFFIC SIGNAL WORK BARRICADES AND SIGNS CONT SECT 6447 42 WZ (BTS-2) -13 DN: TXDOT CK: TXDOT DW: TXDOT CK: TXDO JOB ECTOR, ETC. Texas Department of Transportation wzbts-13.dgn April 1992 C) TxDOT 2-98 10-99 7-13 4-98 3-03 Operation: Division Standard HIGHWAY 001 IH 20, ETC SIGNA WORK ♦ ₹> SIGNAL WORK AHEAD CW20SG-1 48" x 48