

SUBMITTAL 200%

			PROJECT NO.
			BR 2020 (895), ETC.
			CONT SECT JOB HIGHWAY
			0910 16 147,ETC WHITTLE, ETC.
			DIST COUNTY SHEET NO.
			TYL SMITH 1
			DESIGN SPEED:
			WHITTLE ST = 30 MPH (MOECC)
0910-16-147			CR 2110 = 35 MPH (MOECC)
30.667 FT.	=	0.005 MI.	CR 289 = 20 MPH (MOECC)
29.333 FT.	=	0.006 MI.	
60.000 FT.	=	0.011 MI.	MOECC = MEETS OR EXCEEDS CURRENT CONDITIONS
- 16 - 14 8			
260.000 FT.	-	0.049 MI.	FUNCTIONAL CLASS: LOCAL ROAD
50.000 FT.	-	0.010 MI.	FONOTIONAL CENSS ECOME NOME
310.000 FT.	=	0.059 MI.	ADT:
			WHITTLE ST
-16-149			EXIST: 104 (2018)
340.000 FT.			PROP: 146 (2038)
40.000 FT.			CR 2110
380.000 FT.	=	0.072 MI.	EXIST: 77 (2018)
			PROP: 108 (2038)
			CR 289
			EXIST: 1643 (2018)

9/7/2021 PREPARED BY: Bradley M. Tiemann, P.E.

BRADLEY M. TIEMANN, P.E. ATKINS PROJECT MANAGER

10/26/2021

DISTRICT DESIGN ENGINEER

APPROVED FOR LETTING: 11/1/2021

2300 (2038)

PROP:

Vernon M. Webb

SUPPLEMENTAL INDEX OF SHEETS

SHEET NO.	DESCRIPTION		BRIDGE_STANDARDS
1 2 3 4 5 6-10, 10A 11-12 13-14	GENERAL TITLE SHEET SUPPLEMENTAL INDEX OF SHEETS TYPICAL SECTIONS (WHITTLE ST) TYPICAL SECTIONS (CR 2110) TYPICAL SECTIONS (CR 289) GENERAL NOTES ESTIMATE & QUANTITY SHEET QUANTITY SUMMARY	77 78 79 80 81 82 83 84-85 86-87 88-89 90-92 93-95	 * PSB-4SB12 * PSB-4SB15 * PSBEB * PSBRA * PSBSD * APSB-30 * SPSB-30 * CSAB * FD * SRR * T223 * C221
15-17	TRAFFIC CONTROL PLAN TCP ADVANCE WARNING SIGNS		TRAFFIC_STANDARDS
18-29	IRAFFIC CONTROL PLAN STANDARDS * BC(1)-21 THRU BC(12)-21	96 97 98 99 100	 * D & OM(1)-20 * D & OM(2)-20 * D & OM(3)-20 * D & OM(5)-20 * D & OM(5)-20 * D & OM(5)-20
30 31 32 33 34 35 36 37 38 39 40	ROADWAY WHITTLE ST SURVEY CONTROL INDEX SHEET WHITTLE ST HORIZONTAL AND VERTICAL CONTROL SHEET CR 2110 HORIZONTAL AND VERTICAL CONTROL SHEET CR 289 SURVEY CONTROL INDEX SHEET CR 289 HORIZONTAL AND VERTICAL CONTROL SHEET HORIZONTAL ALIGNMENT DATA PLAN & PROFILE (WHITTLE ST BRIDGE @ WEST MUD CREEK TRIBUTARY) PLAN & PROFILE (CR 2110 BRIDGE @ KICKAPOO CREEK) PLAN & PROFILE (CR 289 BRIDGE @ PRAIRIE CREEK) MISCELLANEOUS DETAILS	101 102 103 104 105 106 107 108 109 110	ENVIRONMENTAL PERMITS, ISSUES AND COMMITMENTS (WHITTLE ST @ MUD CREEN WHITTLE ST CREEK STORMWATER POLLUTION PREVENTION PLAN (SW3P) SW3P LAYOUT (WHITTLE ST BRIDGE @ WEST MUD CREEK TRIBUTARY) ENVIRONMENTAL PERMITS, ISSUES AND COMMITMENTS (CR 2110 @ KICKAPOO CRI CR 2110 STORMWATER POLLUTION PREVENTION PLAN (SW3P) SW3P LAYOUT (CR 2110 BRIDGE @ KICKAPOO CREEK) ENVIRONMENTAL PERMITS, ISSUES AND COMMITMENTS (CR 289 BRIDGE @ PRAIR CR 289 STORMWATER POLLUTION PREVENTION PLAN (SW3P) SW3P LAYOUT (CR 289 BRIDGE @ PRAIRIE CREEK) CONCRETE WASHOUT DETAIL
41 42 43 44 45 46 47 48 49	ROADWAY_STANDARDS * GF(31)-19 * GF(31)TRTL2-19 * GF(31)MS-19 * BED-14 * SGT(12S)31-18 * SGT(15S)31-20 * SSCC-16 * CCSS * WF(2)-10	111 112	ENVIRONMENTAL ISSUES STANDARDS * EC(1)-16 * EC(2)-16

SCOUR COMPUTATIONS (CR 289 @ PRAIRIE CREEK S TRIBUTARY 1)

DRAINAGE STANDARDS

* SCP-MD * SCP-9

* WF(2)-10 <u>DRA I NAGE</u>

- * MC-MD
- * MC-9-10 * BCS * PW

58 59 60

61-62 63 64

65-66

* RAC (MOD)

BRIDGE BRIDGE LAYOUT (WHITTLE ST @ MUD CREEK) TEST HOLE DATA (WHITTLE ST @ MUD CREEK) CURB DRAIN DETAILS SPECIAL WALL DETAILS BRIDGE LAYOUT (CR 2110 @ KICKAPOO CREEK) TEST HOLE DATA (CR 2110 @ KICKAPOO CREEK) ESTIMATED QUANITITIES AND CONTROL ELEVATIONS (CR 2110 @ KICKAPOO CREEK) BRIDGE LAYOUT (CR 289 @ PRAIRIE CREEK) TEST HOLE DATA (CR 289 @ PRAIRIE CREEK) ESTIMATED QUANTITIES AND CONTROL ELEVATIONS (CR 289 @ PRAIRIE CREEK)

DRAINAGE AREA MAP AND HYDROLOGIC DATA (WHITTLE ST @ W MUD CREEK TRIBUTARY M-C)

DRAINAGE AREA MAP AND HYDROLOGIC DATA (CR 289 @ PRAIRIE CREEK S TRIBUTARY 1)

HYDRAULIC DATA SHEET(WHITTLE ST @ W MUD CREEK TRIBUTARY M-C)

HYDRAULIC DATA SHEET (CR 289 @ PRAIRIE CREEK S TRIBUTARY 1)

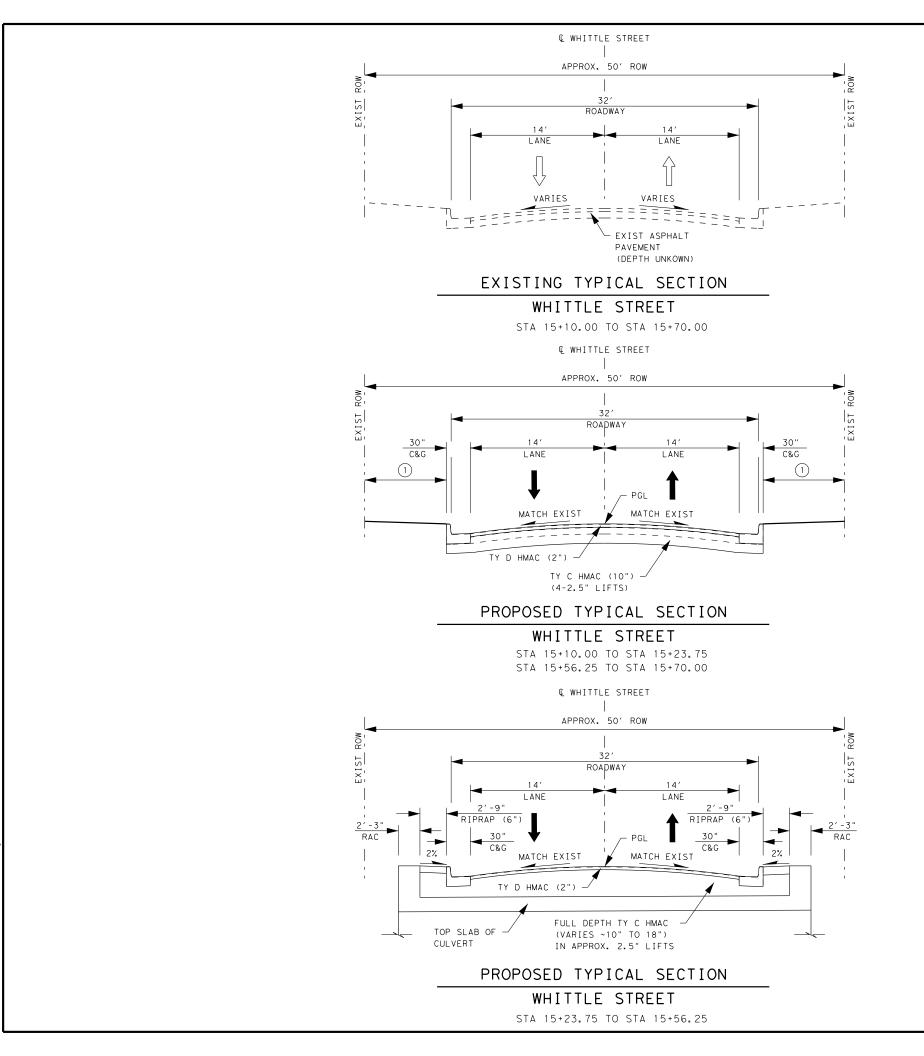
HYDRAULIC DATA SHEET (CR 2110 @ KICKAPOO CREEK)

SCOUR COMPUTATIONS (CR 2110 @ KICKAPOO CREEK)

DRAINAGE AREA MAP AND HYDROLOGIC DATA (CR 2110 @ KICKAPOO CREEK)

-9+

EEK TRIB.)


CREEK)

IRIE CREEK)

* THE STANDARD SHEETS SPECIFICALLY IDENTIFIED ON THIS SHEET HAVE BEEN ISSUED BY ME AND ARE APPLICABLE TO THIS PROJECT.

ATKINS							
Texas Department of Transportation							
SUPPLEMENTAL INDEX OF SHEETS							
FED. RD DIV. No.	STATE		PROJECT No		HIGHW	AY No.	
6	TEXAS	SEE	E TITLE SH	HEET	WHITTLE	ST,ETC	
STATE DISTRICT	COUNT	Y	CONTROL No.	SECTION No.	JOB No.	SHEET No.	
TYL	SMIT	н	0910	16	147,ETC	2	

SUBMITTAL 100%

-9+ tation. anspor PLOT DRIVER: RD_11×17_PDF.pl+ PEN TABLE: Tyler BRG Replacements_tr crite. TPD tvi switty wutting tvb doo (1) VARIES TOPSOIL AND BLOCK SODDING

NOTES:

- SEE BRIDGE LAYOUT SHEETS FOR BRIDGE TYPICAL SECTIONS.
 SEE PLAN & PROFILE SHEET FOR TAPER LOCATIONS AND LIMITS OF GUARD FENCE.
 STOCKPILE AND REUSE 100% EXISTING TOPSOIL INSIDE RIGHT OF WAY.
 FOR CURB AND GUTTER INFORMATION SEE MISCELLANEOUS DETAILS.

REV.No.	DATE	REVISION	BY					
ATKINS								
	Tyler District							
	TYPICAL SECTIONS WHITTLE STREET							
SCALE	: 1"=10'	H, 1"=5′ V	SHEET 1 OF 1					
FED. RD DIV. No.	STATE	PROJECT No.	HIGHWAY No.					
6	TEXAS	SEE TITLE SHEET	WHITTLE ST					

CONTROL No.

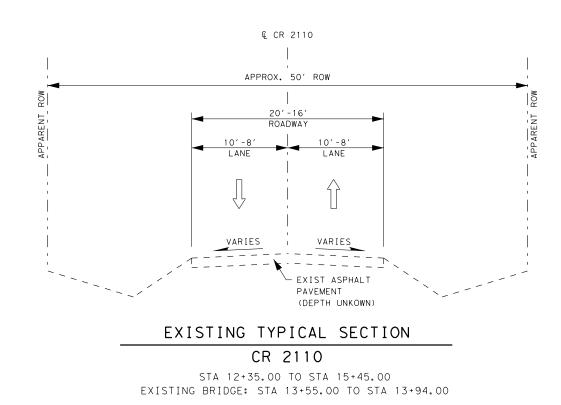
0910

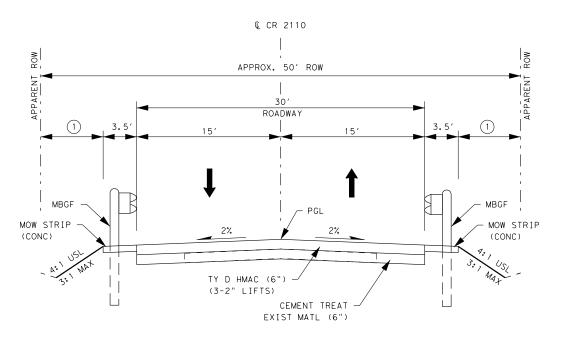
SECTION No.

16

JOB No.

147,ETC


SHEET No.


STATE DISTRICI

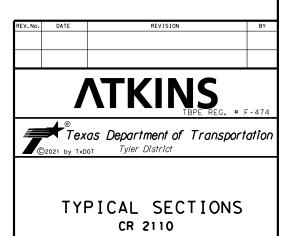
ΤYI

COUNTY

SMITH

1 VARIES TOPSOIL AND BONDED FIBER MATRIX SEED

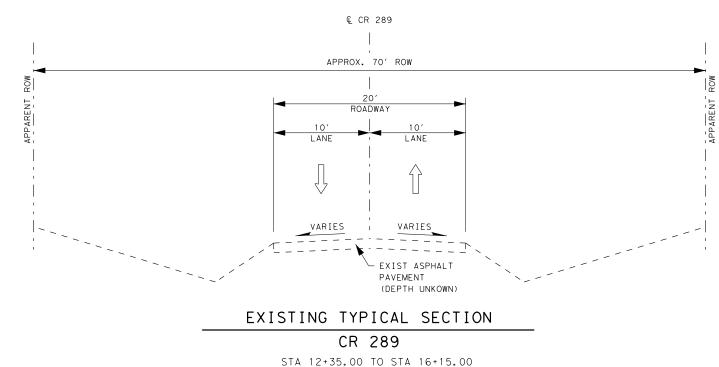
PROPOSED TYPICAL SECTION

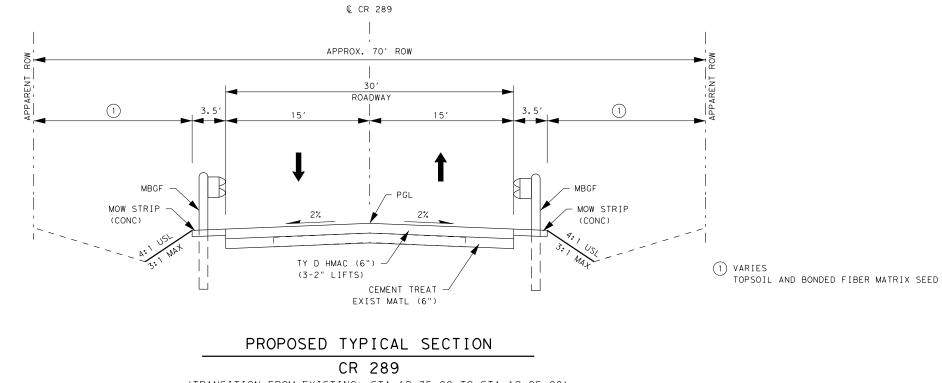

CR 2110

(TRANSITION FROM EXISTING: STA 12+35.00 TO STA 13+00.00) STA 13+00.00 TO STA 13+50.00 PROPOSED BRIDGE: STA 13+50.00 TO STA 14+00.00 STA 14+00.00 TO STA 14+95.00 (TRANSITION TO EXISTING: STA 14+95.00 TO STA 15+45.00)

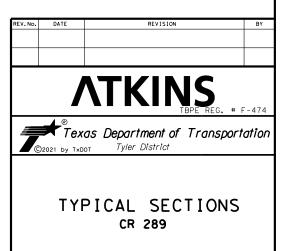
NOTES:

- SEE BRIDGE LAYOUT SHEETS FOR BRIDGE TYPICAL SECTIONS.
 SEE PLAN & PROFILE SHEET FOR TAPER LOCATIONS AND LIMITS OF GUARD FENCE.
 STOCKPILE AND REUSE 100% EXISTING TOPSOIL INSIDE RIGHT OF WAY.
 AT GUARD FENCE LOCATIONS SEE STD. GF (31)MS-19.




SCALE: 1"=10' H, 1"=5' V SHEET 1 OF ED. RD IV. No. STATE PROJECT No. HIGHWAY No. TEXAS SEE TITLE SHEET CR 2110 6 STATE DISTRIC CONTROL SECTION No. No. JOB No. SHEET No. COUNTY TYL SMITH 0910 16 147,ETC

EXISTING BRIDGE: STA 14+09.80 TO STA 14+38.37



(TRANSITION FROM EXISTING: STA 12+35.00 TO STA 12+85.00) STA 12+85.00 TO STA 14+05.00 PROPOSED BRIDGE: STA 14+05.00 TO STA 14+45.00 STA 14+45.00 TO STA 15+65.00 (TRANSITION TO EXISTING: STA 15+65.00 TO STA 16+15.00)

NOTES:

- SEE BRIDGE LAYOUT SHEETS FOR BRIDGE TYPICAL SECTIONS.
 SEE PLAN & PROFILE SHEET FOR TAPER LOCATIONS AND LIMITS OF GUARD FENCE.
 STOCKPILE AND REUSE 100% EXISTING TOPSOIL INSIDE RIGHT OF WAY.
 AT GUARD FENCE LOCATIONS SEE STD. GF (31)MS-19.

SCALE:	1 " = 1 0 '	Н, 1	"=5′ V		SHEET	1 OF 1
FED. RD DIV. No.	STATE		PROJECT No	HIGHWAY No.		
6	TEXAS	SEE	E TITLE SH	CR 289		
STATE DISTRICT	COUNTY		CONTROL No.	SECTION No.	JOB No.	SHEET No.
TYL	SMIT	н	0910	16	147,ETC	5

County: SMITH

Highway: WHITTLE ST, ETC

GENERAL NOTES:

GENERAL.

Contractor questions on this project are to be addressed to the following individuals:

Paul Schneider

paul.schneider@txdot.gov

Travis Singleton

travis.singleton@txdot.gov

Contractor questions will be accepted through email, phone, and in person by the above individuals.

All Contractor questions will be reviewed by the Engineer. Once a response is developed, it will be posted to TxDOT's Public FTP at the following Address:

https://ftp.dot.state.tx.us/pub/txdot-info/Pre-Letting%20Responses/

All questions submitted that generate a response will be posted through this site. The site is organized by District, Project Type (Construction or Maintenance), Letting Date, CCSJ/Project Name.

For this contract, the following standards have been modified:

RAC (MOD)

ITEM 4. SCOPE OF WORK

Upon completion of the work and before final acceptance, remove all foreign material, stains, and marks from concrete surfaces. Sandblast clean concrete surfaces as directed. Clean existing concrete structures that are marked or stained by the Contractor's operations. This work will not be paid for directly, but will be subsidiary to the bid items of the Contract.

During final clean up, remove all foreign material that has accumulated at bridge abutments and bent caps as approved. All work and equipment involved in the removal of this material is subsidiary to the bid items of the Contract.

ITEM 5. CONTROL OF THE WORK

If utility lines need adjustments during construction operations, modify operations and continue the work in a manner that will allow others to make the utility adjustments. Additional working time may be allowed for delays caused by these utility adjustments.

Project Number:

County: SMITH

Highway: WHITTLE ST, ETC

Place and maintain construction hubs near the right of way line in accordance with Article 5.9., "Construction Surveying" on both sides of the roadway until the final item of work is complete.

Establish proposed centerlines throughout the project from control points and alignment data as shown on the plans.

Use "Method C" for construction surveying in accordance with Section 5.9.3.

Refer to the horizontal and vertical alignment data summaries for satellite-control point information.

Utility locations shown on the plans are approximate. Contact utilities in accordance with Article 5.6., "Cooperating With Utilities."

Verify survey control for accuracy before beginning construction.

Notify the Engineer if there are conflicts with survey control accuracy.

"When a precast or cast-in-place concrete element is included in the plans, a precast concrete alternate may be submitted in accordance with "Standard Operating Procedure for Alternate Precast Proposal Submission" found online at <u>https://www.txdot.gov/inside-txdot/forms-publications/consultants-contractors/publications/bridge.html#design</u>. Acceptance or denial of an alternate is at the sole discretion of the Engineer. Impacts to the project schedule and any additional costs resulting from the use of alternates are the sole responsibility of the Contractor."

ITEM 7. LEGAL RELATIONS AND RESPONSIBILITIES

Do not initiate activities in a project specific location (PSL) associated with a U.S. Army Corps of Engineers (COE) permit area that has not been previously evaluated by the COE as part of the permit review of this project. Such activities include haul roads, equipment staging areas, borrow pits, and disposal sites. "Associated," defined here, means "materials are delivered to or from the PSL." The permit area includes all waters of the U.S. or associated wetlands affected by activities associated with this project. Special restrictions may be required for this work. The Contractor is responsible for all consultations with the COE regarding activities (including PSL) that have not been previously evaluated by the COE. Provide the Department with a copy of all consultations or approvals from the COE before initiating activities.

Proceed with activities in PSL that do not affect a COE permit area if Contractor determines that the PSL is non-jurisdictional or proper COE clearances have been obtained in jurisdictional areas or have been previously evaluated by the COE as part of the permit review of this project. The Contractor is responsible for documenting his determination that his activities do not affect a COE permit area. Maintain copies of determination for review by the Department or any regulatory agency.

Sheet 6

Control: 0910-16-147, ETC

County: SMITH

Highway: WHITTLE ST, ETC

Concrete truck drivers and concrete pump operators are required to wash out only in designated areas specifically constructed for eliminating run-off. Dispose of materials in accordance with federal, state, and local requirements.

Placement of any fill material within the channel is not allowed. A temporary crossing must clear span from channel bank to channel bank.

Maintain positive drainage for permanent and temporary work for the duration of the project. The Contractor will be responsible for any items associated with the temporary or interim drainage and all related maintenance. This work will be subsidiary to various bid items.

The total disturbed area for this project is 0.445 acres. The disturbed area in this project and the Contractor Project Specific Locations (PSL's) within 1 mile of the project limits for the Contract will further establish the authorization requirements for storm water discharges. The Department will obtain an authorization to discharge storm water from the Texas Commission on Environmental Quality (TCEQ) for the construction activities shown on the plans. Obtain any required authorization from the TCEQ for any Contractor PSL for construction support activities on or off the ROW. When the total area disturbed for all projects in the Contract and PSLs within 1 mile of the project limits exceed 5 acres, before disturbance, provide a copy of the Contractor NOI for PSLs on the ROW and within 1 mile of the project limits to the Engineer and to any local government that operates a Municipal Separate Storm Sewer System (MSSS).

No significant traffic generator events identified.

ITEM 8. PROSECUTION AND PROGRESS

Prepare the progress schedule as a bar chart.

Construction sequence shall be as follows unless otherwise approved by the Engineer. Begin construction on CR 289 at Prairie Creek. Prairie Creek must be substantially complete and open to traffic prior to road closure and start of construction on CR 2110 at Kickapoo Creek. Kickapoo Creek must be substantially complete and open to traffic prior to road closure and start of construction on Whittle St. at West Mud Creek Tributary.

ITEM 9. MEASUREMENT & PAYMENT

In accordance with Article 9.1., "Measurement of Quantities," furnish the tare and maximum gross weights as well as the volume capacity of all vehicles, trucks, truck-tractors, trailers, semitrailers, or combination of such vehicles used to deliver materials for this Contract. Also, furnish calculations supporting these weights and capacities. Provide all measurements required for pay a minimum of 2 days before the trucks are used.

Project Number:

County: SMITH

Highway: WHITTLE ST, ETC

ITEM 100. PREPARING RIGHT OF WAY

Perform work as necessary off the right of way on temporary or drainage easements and at those locations where improvements have been taken or partially taken by right of way acquisition. Review these locations with the Area Engineer. The cost of this work will be included in the unit price bid for this Item.

Burning will not be permitted within the right-of-way.

ITEMS 110 & 132. EXCAVATION & EMBANKMENT

Before Contract letting, prospective bidders may review the earthwork cross-sections at the Area Engineer's office. The computer data is for non-construction purposes only and is the prospective bidder's responsibility to validate the data with the accompanying plans, specifications, and estimates for this Contract.

Excavation and embankment for driveways, intersections, mailbox turnouts and crossovers will not be paid for directly, but will be subsidiary to the various bid items unless otherwise shown on the plans.

In a cut section, if the soil encountered in the subgrade is unsuitable for reasons other than excess moisture, this material will be declared "waste" and the Contractor will be required to undercut for a minimum depth of 1 ft. and a maximum depth as determined and replaced with a material having a plasticity index of 6 to 18. This required undercutting will be paid for under Item 110, "Excavation."

When excavation is required to adjust stream flow lines at culvert ends, flatten the side slopes of channels and the backslopes of parallel ditches to the maximum extent possible within the existing right of way and channel easements.

ITEM 132. EMBANKMENT

Furnish Type C embankment consisting of suitable earth material (rock, loam, clay, or other approved materials) that will form a stable embankment. The top 2 ft. of embankment material should have a plasticity index between 6 and 18.

ITEM 162. SODDING FOR EROSION CONTROL

Use Cynodon dactylon (Bermudagrass) for block sod.

Blade and rake smooth the area before laying block sod. Refer to the plans and details for areas to receive the sod. Remove 1 in. of soil along paved edges and curb lines before laying sod and

Sheet 7

Control: 0910-16-147, ETC

County: SMITH

Highway: WHITTLE ST, ETC

dress the slope to match all exposed edges after placing the sod. Fertilize the ground with a slow-release homogeneous coated fertilizer at a rate of 1 lb. per 9 sq. yd. before installation of the sod.

ITEM 164. SEEDING FOR EROSION CONTROL

The rates, types of seed, asphalt, and locations for the straw mulch and broadcast seed items will be determined if temporary erosion control is needed.

Mow tall vegetation prior to placement of erosion control measures in order to provide optimal growing conditions. This work will not be paid for directly, but will be subsidiary to the bid items of the Contract.

The season and seed mixture for "Broadcast Seeding (Temporary Erosion Control) (Cool Season)" and "Broadcast Seeding (Temporary Erosion Control) (Warm Season)" is specified below:

Cool Season -September 1 thru November 30Warm Season -May 15 thru August 31

Permanent Planting Mixture						
	Species and Rates					
	(lb. PLS/ac.)					
(5	Season: February 1 to May 15)					
Green Sprangletop	0.5					
Bermudagrass	5.0					
Weeping Lovegrass (Ermelo)	0.5					
Sand Lovegrass	0.5					
Lance-Leaf Coreopsis	1.0					
(Sea	(Season: September 1 to February 1)					
Bermuda (unhulled)	12					
Crimson Clover	10					

Project Number:

County: SMITH

Highway: WHITTLE ST, ETC

	Temporary Seeding
	Warm
	(Season: May 1
Bermudagrass	10
Foxtail Millet	30
	Cool S
	(Season: September
Tall Fescue	4.5
Oats	24
Wheat	34

Place topsoil before temporary seeding unless otherwise directed.

Do not use Bahia grass.

Use additional temporary seeding if permanent seeding is placed outside the optimum growing season shown for this Item as directed.

Provide a Bonded Fiber Matrix that meets the current requirements of the Approved Products List for Item 169, "Soil Retention Blanket, Class 1, Type D, Spray Type Blanket," for both permanent and temporary seeding. Install according to manufacturer's recommendations based on a slope steeper than 3:1 with sandy soils. This Item will be paid for under Item 164.

ITEM 166. FERTILIZER

Place fertilizer at the rate of 1 lb. per 9 sq. yd. on areas prepared for seeding.

Sheet 8

Control: 0910-16-147, ETC

for Erosion Control
Season
5 (b (21)
5 to August 31)
Season
1 to November 30)
/

County: SMITH

Highway: WHITTLE ST, ETC

ITEM 168. VEGETATIVE WATERING

Apply water to all newly placed sod or seeded areas the same day of installation. Maintain the sod or seeded areas in a sufficiently watered condition. Do not allow sod or seeded areas to dry out so that water stress is evident.

ITEM 416. DRILLED SHAFT FOUNDATIONS

Collect all cuttings, spoils, and slurry resulting from drilled shaft operations and deposit material into a storage tank for disposal outside the limits of the project. Dispose of waste material in accordance with Section 416.3.7., "Additional Requirements for Slurry Displacement or Underwater Concrete Placement Methods."

Place the level of soil at a 6:1 slope or flatter, where possible, and extend it from the top of the concrete foundation to the established grades. This work will not be paid for directly, but will be subsidiary to this Item.

ITEMS 420 & 427. CONCRETE SUBSTRUCTURES & SURFACE FINISHES FOR CONCRETE

Do not use membrane curing for structural elements.

Provide an ordinary surface finish to the following elements: Surface Area II.

ITEM 421. HYDRAULIC CEMENT CONCRETE

The Engineer will provide strength-testing equipment.

Provide the Engineer with a mixture design report using Department-provided software in accordance with Section 421.4.1., "Classification of Concrete Mix Designs," of the standard specifications. Include in the report the producer's plant, all materials sources, and a unique identification number for the design.

Air is not required on concrete cast-in-place elements on this project. If the Contractor proposes the use of an existing concrete design containing air, the Engineer must approve the design in writing before placement. If used, air testing will be performed in accordance with the specifications.

ITEM 432. RIPRAP

Locations and quantities may be varied as directed by the Engineer to accommodate field conditions.

Sheet 9

Control: 0910-16-147, ETC

Project Number:

County: SMITH

Highway: WHITTLE ST, ETC

ITEM 496. REMOVING STRUCTURES

All materials removed under this Item are the property of the Contractor.

The existing bridge at CR 289 at Prairie Creek has Trestle Piles with coatings that were tested and confirmed to contain lead-based paint. These piles are deemed non-salvageable and are required to be disposed of at a recycler entity with current certifications and registrations according to local, state, and federal laws. Provide invoices to the Engineer verifying proof of delivery.

Demolition of the piles should be by the mechanical shear or other approved method, not associated with torches or heat, to avoid the potential for lead fume hazards. Submit for approval a plan following this criterion.

ITEM 502. BARRICADES, SIGNS, AND TRAFFIC HANDLING

The traffic control plan for this Contract consists of: the installation and maintenance of warning signs and other traffic control devices shown on the plans; specification data, which may be included in the general notes; applicable provisions of the Texas Manual on Uniform Traffic Control Devices (TMUTCD); traffic control plan sheets included on the plans; standard BC sheets; Compliant Work Zone Traffic Control Device List, and Item 502 of the standard specifications.

Use ground-mounted sign mounts with two posts for all temporary work zone signs unless otherwise directed.

Inspect and correct deficiencies each day throughout the duration of the Contract. In accordance with Article 502.4., "Payment," no payment will be made for the month if the Contractor fails to provide or properly maintain signs and devices in compliance with Contract requirements. Temporary warning signs that are visible when conditions do not apply will be considered improper maintenance of signs.

Provide at least one employee on call nights and weekends (or any other time that work is not in progress) for maintenance of signs and traffic control devices. This employee must have an address and telephone number near the project, as approved. Notify the Engineer in writing of the name, address, and telephone number of this employee. The Engineer will furnish this information to local law enforcement officials.

In addition to providing a Contractor's Responsible Person and a phone number for emergency contact, have an employee available to respond on the project for emergencies and for taking corrective measures within 30 minutes.

Sheet 9

County: SMITH

Highway: WHITTLE ST, ETC

Sign all roads intersecting the project in accordance with current BC standards.

Refer to the traffic control plan sheets for traffic handling through the work area. Contractor may vary the signing arrangement and spacing as necessary to fit field conditions; however, any proposed changes in the traffic control plan must be approved before implementation.

When the sequence of work is shown on the plans, the Contractor may submit an alternate proposal for approval. Submit in writing all proposed variations and revisions.

High-visibility safety apparel is required for workers in accordance with the General Notes on current BC standards.

Place and maintain signs, channelizing devices, and flaggers to direct and route traffic at any location and for any period of time as may be required or directed.

When operations require a lane closure, provide cones, vertical panels, drums, signs, flaggers, and flashing arrow panels as necessary to route traffic around the closed lane as shown on the plans and as directed. Lane closures will be limited to one specific lane as directed.

Maintain existing roadside signs within this project's limits during this Contract. In order to accommodate the grading or other operations, temporarily relocate these signs in accordance with the TMUTCD as directed. Use ground-mounted sign mounts with two posts for all relocated signs unless otherwise directed. This work will not be paid for directly, but will be subsidiary to Item 502.

Regulate all construction activities and equipment to minimize inconvenience to the traveling public. At points where it is necessary for trucks to stop, load, or unload, provide warning signs and flaggers to protect the traveling public.

The Contractor Force Account "Safety Contingency" is intended to be used for work zone enhancements that could not be foreseen in the project planning and design stage for the purpose of improving the effectiveness of the Traffic Control Plan. These enhancements will be mutually agreed upon by the Engineer and the Contractor's Responsible Person based on weekly or more frequent traffic management reviews on the project. The Engineer may choose to use existing bid items if it does not slow the implementation of enhancement.

All work required by these general notes, except as provided for by Item 502, will not be paid for directly, but will be subsidiary to Item 502 unless otherwise shown on the plans.

Sheet 10

Control: 0910-16-147, ETC

Project Number:

County: SMITH

Highway: WHITTLE ST, ETC

ITEM 506. TEMPORARY EROSION, SEDIMENTATION, AND ENVIRONMENTAL CONTROLS

Remove dirt, silt, rocks, debris, and other foreign matter that accumulates in all structures due to project erosion and Contractor's operations. Keep stream channels open at all times. This work will not be paid for directly, but will be subsidiary to this Item.

The Engineer will provide copies of documents to meet TxDOT's posting requirements. Laminate, post, and maintain these documents at the project limits and at major roadways intersecting the project as directed. Post required Contractor documents in the same manner and location. This work will be subsidiary to Item 506.

ITEM 529. CONCRETE CURB, GUTTER, AND COMBINED CURB AND GUTTER

Provide steel reinforcement for all curb and curb and gutter unless otherwise directed.

ITEM 540. METAL BEAM GUARD FENCE

All work involved in placement of timber posts in soil cement riprap must be included in the price bid for Item 540.

Do not paint treated timber posts.

ITEM 545. CRASH CUSHION ATTENUATORS

Provide crash cushion attenuators meeting TL-3 requirements.

ITEM 552. WIRE FENCE

Any temporary fencing required during construction of the proposed structure extensions or bridge replacements will not be paid for directly, but will be subsidiary to the various bid items.

Construct and maintain temporary fencing and gates at the locations and limits shown on the plans. Furnish temporary fencing and gates with material and design equal to or better than the present fencing, and adequate to properly control livestock for the duration of the project.

ITEM 3076 DENSE-GRADED HOT-MIX ASPHALT (EXEMPT PRODUCTION)

The Engineer may accept a previously approved design if prior experience using the design was satisfactory. Unless waived by the Engineer, a trial batch will be required as outlined in Item 3076. The Hamburg Wheel Tracking requirements are waived for driveways.

Sheet 10

County: SMITH

Highway: WHITTLE ST, ETC

Give the TxDOT inspector at the spreading and finishing machine 1 weight ticket for each load of material. When directed, weigh asphaltic concrete loads on public scales to ensure the proper weight of material.

For driveways designated by the Engineer to be reconstructed, scarify, blade smooth, sprinkle, and compact to the extent necessary to produce a firm, stable foundation prior to placement of ACP. This work will not be paid for directly, but will be subsidiary to Item 3076.

When using crushed gravel as a coarse aggregate for ACP, use 1% lime as an antistripping agent.

For materials paid for by the ton, provide a summary spreadsheet in accordance with Article 520.2., "Equipment."

Apply a tack coat with a rate of 0.12 gal/sy of residual asphalt between each layer of ACP pavement unless otherwise directed.

Provide a facility at the asphalt concrete pavement plant for use by the Engineer as a laboratory. This is an existing requirement of Item 6, Article 5, "Plant Inspection and Testing," of the Standard Specifications. Provide a facility meeting the requirements of Item 504. At a minimum meet the requirements of 504.2.2.4, "Ty D Structure (Asphalt Mix Control Laboratory)" and 504.2.2.4.1, "Asphalt Content by Ignition Method." In addition, provide the following: At least one exterior door opening with a 48-in. minimum width. If steps are required to gain access to the facility's 48-in. door, provide a landing dock with minimum dimensions of 60 in. wide by 60 in. deep. The strong floor and landing of the facility should support the weight of all equipment and personnel providing a stable, essentially zero deflection during testing operations, acceptable to the Engineer. This facility will be required of all projects with plant produced asphalt concrete pavement.

No direct payment will be made for Engineer field labs. All construction, maintenance, utilities, custodial services, security, and permits necessary to establish and maintain readiness of this facility is the responsibility of the Contractor. This building/facility is required by the standard specifications and is considered a standard part of any asphalt concrete pavement plant producing materials for Department projects.

Furnish a Superpave Gyratory Compactor calibrated in accordance with Tex-241-F for molding production samples. The Superpave Gyratory Compactor will not be paid for directly, but will be subsidiary to the asphalt concrete pavement Items of work.

Sheet 10A

Control: 0910-16-147, ETC

Project Number:

County: SMITH

Highway: WHITTLE ST, ETC

ITEM 6001. PORTABLE CHANGEABLE MESSAGE SIGN

Provide a non-erodible, stable surface to place the Portable Changeable Message Sign (PCMS) units adjacent to the roadway as directed. Payment for this surface is incidental to Item 6001.

Sheet 10A

CONTROLLING PROJECT ID 0910-16-147

Estimate & Quantity Sheet

DISTRICT Tyler

HIGHWAY CR 2110, CR 289, WHITTLE ST

COUNTY Smith

		CONTROL SECTIO	ON JOB	0910-16-147		0910-16-148		0910-16-149			
		PROJECT ID									
		C	DUNTY	Smith		Smit	th	Smith		TOTAL EST.	TOTAL FINAL
			HWAY	WHITTL	E ST	CR 21	.10	CR 28	39		TINAL
ALT	BID CODE	DESCRIPTION	UNIT	EST.	FINAL	EST.	FINAL	EST.	FINAL	-	
	100-6002	PREPARING ROW	STA	0.600		3.100		3.800		7.500	
	104-6022	REMOVING CONC (CURB AND GUTTER)	LF	120.000						120.000	
	105-6011	REMOVING STAB BASE AND ASPH PAV (2"-6")	SY	188.000						188.000	
	110-6001	EXCAVATION (ROADWAY)	СҮ	53.000		97.000		125.000		275.000	
	132-6001	EMBANKMENT (FINAL)(ORD COMP)(TY A)	CY	48.000		172.000		203.000		423.000	
	160-6003	FURNISHING AND PLACING TOPSOIL (4")	SY	38.000		195.000		530.000		763.000	
	162-6002	BLOCK SODDING	SY	38.000						38.000	
	164-6054	BOND FBR MTRX SEED (PERM)(RURAL)(SAND)	SY			195.000		530.000		725.000	
	164-6055	BONDED FBR MTRX SEED (TEMP)(WARM)	SY	19.000		98.000		265.000		382.000	
	164-6056	BONDED FBR MTRX SEED (TEMP)(COOL)	SY	19.000		98.000		265.000		382.000	
	168-6001	VEGETATIVE WATERING	MG	0.800		4.200		11.700		16.700	
	275-6001	CEMENT	TON			12.000		15.000		27.000	
	275-6002	CEMENT TREAT (EXIST MATL) (6")	SY			870.000		1,133.000		2,003.000	
	400-6005	CEM STABIL BKFL	CY	367.000		33.400		30.300		430.700	
	402-6001	TRENCH EXCAVATION PROTECTION	LF	43.000						43.000	
	416-6002	DRILL SHAFT (24 IN)	LF			204.000		183.000		387.000	
	420-6013	CL C CONC (ABUT)	CY			24.000		23.200		47.200	
	420-6057	CL C CONC (WINGWALLS)	CY	0.600						0.600	
	420-6076	CL E CONC (SEAL SLAB)	CY	17.300						17.300	
	422-6007	REINF CONC SLAB (SLAB BEAM)	SF			1,606.000		1,285.000		2,891.000	
	425-6009	PRESTR CONC SLAB BEAM (4SB12)	LF					316.000		316.000	
	425-6011	PRESTR CONC SLAB BEAM (4SB15)	LF			396.000				396.000	
	432-6001	RIPRAP (CONC)(4 IN)	CY	1.800						1.800	
	432-6003	RIPRAP (CONC)(6 IN)	CY	5.400						5.400	
	432-6033	RIPRAP (STONE PROTECTION)(18 IN)	CY			390.000		254.000		644.000	
	432-6045	RIPRAP (MOW STRIP)(4 IN)	CY			10.400		18.600		29.000	
	442-6007	STR STEEL (MISC NON - BRIDGE)	LB	1,776.000						1,776.000	
	450-6006	RAIL (TY T223)	LF			124.000		104.000		228.000	
	450-6030	RAIL (TY C221)	LF	111.000						111.000	
	462-6028	CONC BOX CULV (9 FT X 9 FT)	LF	129.000						129.000	
	466-6173	WINGWALL (PW - 1) (HW=12 FT)	EA	2.000						2.000	
	496-6009	REMOV STR (BRIDGE 0 - 99 FT LENGTH)	EA	1.000		1.000		1.000		3.000	
	500-6001	MOBILIZATION	LS	0.335		0.350		0.315		1.000	
	502-6001	BARRICADES, SIGNS AND TRAFFIC HANDLING	МО	3.000		4.000		4.000		11.000	
	506-6002	ROCK FILTER DAMS (INSTALL) (TY 2)	LF	40.000		16.000		40.000		96.000	
	506-6011	ROCK FILTER DAMS (REMOVE)	LF	40.000		16.000		40.000		96.000	
	506-6027	EXCAV (EROSN & SEDMT CONT, IN VEH)	СҮ	5.000		10.000		10.000		25.000	

DISTRICT	COUNTY	CCSJ	SHEET
Tyler	Smith	0910-16-147	11

Estimate & Quantity Sheet

COUNTY Smith

DISTRICT Tyler

CONTROLLING PROJECT ID 0910-16-147

HIGHWAY CR 2110, CR 289, WHITTLE ST

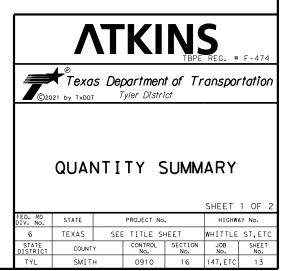
	CONTROL SECTION JOB			CONTROL SECTION JOB		ON JOB	0910-16	6-147	0910-1	6-148	0910-1	6-149		
		PROJECT ID												
	COUNTY			Smit	th	Smi	th	Smi	th	TOTAL EST.	TOTAL FINAL			
		HIG	HWAY	WHITTL	E ST	CR 21	110	CR 2	89					
ALT	BID CODE	DESCRIPTION	UNIT	EST.	FINAL	EST.	FINAL	EST.	FINAL					
	506-6030	BACKHOE WORK (EROSION & SEDMT CONT)	HR	10.000		10.000		10.000		30.000				
	506-6038	TEMP SEDMT CONT FENCE (INSTALL)	LF	130.000		706.000		904.000		1,740.000				
	506-6039	TEMP SEDMT CONT FENCE (REMOVE)	LF	130.000		706.000		904.000		1,740.000				
	506-6046	TRACKHOE WORK (EROSION & SEDMT CONT)	HR	10.000		10.000		10.000		30.000				
	529-6008	CONC CURB & GUTTER (TY II)	LF	120.000						120.000				
	540-6001	MTL W-BEAM GD FEN (TIM POST)	LF			50.000		150.000		200.000				
	540-6007	MTL BEAM GD FEN TRANS (TL2)	EA			2.000		4.000		6.000				
	544-6001	GUARDRAIL END TREATMENT (INSTALL)	EA			2.000		4.000		6.000				
	545-6019	CRASH CUSH ATTEN (INSTL)(S)(N)(TL3)	EA			2.000				2.000				
	552-6003	WIRE FENCE (TY C)	LF			224.000				224.000				
	552-6004	WIRE FENCE (TY D)	LF			98.000				98.000				
	644-6076	REMOVE SM RD SN SUP&AM	EA	5.000				2.000		7.000				
	658-6014	INSTL DEL ASSM (D-SW)SZ (BRF)CTB (BI)	EA			6.000		6.000		12.000				
	658-6060	REMOVE DELIN & OBJECT MARKER ASSMS	EA			4.000		4.000		8.000				
	658-6062	INSTL DEL ASSM (D-SW)SZ 1(BRF)GF2(BI)	EA			12.000		12.000		24.000				
	3076-6015	D-GR HMA TY-C PG64-22	TON	161.000						161.000				
	3076-6035	D-GR HMA TY-D PG64-22	TON	21.000		287.000		374.000		682.000				
	5070-6001	STEEL FENCE (REMOVE)	LF			86.000				86.000				
	5070-6002	STEEL FENCE (INSTALL)	LF			92.000				92.000				
	6001-6001	PORTABLE CHANGEABLE MESSAGE SIGN	DAY	14.000		14.000		14.000		42.000				
	18	EROSION CONTROL MAINTENANCE: CONTRACTOR FORCE ACCOUNT WORK (PART)	LS	1.000						1.000				
		SAFETY CONTINGENCY: CONTRACTOR FORCE ACCOUNT WORK (PARTICIPATING)	LS	1.000						1.000				

DISTRICT	COUNTY	CCSJ	SHEET
Tyler	Smith	0910-16-147	12

							BASIS OF	ESTIMA	TE							
	ITEM	DESCRIPTION		RATE	0910-	SJ 16-147 DUNT	CSJ 0910-16-14 AMOUNT	8 0910	CSJ -16-149 IOUNT	UN I T	CSJ 0910-16-147 QUANTITY	CSJ 0910-16-148 QUANTITY	CSJ 0910-16-149 QUANTITY	PROJECT TOTAL	PAY UNIT	
(1)	166	FERTILIZER		1 LB/9	SY 3	38	195		530	SY	0.01	0.01	0.03	0.05	TON	
		VEGETATIVE WATERING		11 GAL		76 76	390		060	SY	0.8	4.2	11.7	16.7	MG	
		CEMENT (5%) (120 LB/CF)		27.0 LB		0	870		133	SY	0.0	12	15	27	TON	
		MOBILIZATION		27.0 LD	/ 51		010		155	51		12	15	1	LS	CSJ 091
		BARRICADES, SIGNS AND TRAFT									3	4	4	11	MO	
		D-GR HMA TY-C PG 64-22 (10		1100 LB	101	96				SY	53	4	4	53	TON	-
		D-GR HMA TY-C PG 64-22 (15		1650 LB		31				SY	108			108	TON	CSJ 091
												-				
		D-GR HMA TY-D PG 64-22 (2")		220 LB/		87				SY	21			21	TON	CSJ 091
		D-GR HMA TY-D PG 64-22 (6" CONTRACTOR'S INFORMATION C		660 LB/	/SY		870	1,	,133	SY		287	374	661	TON]
									ITEN	3076						CSJ 091
							(1)	(1)		(1)	(1)				(1) SIC
		LOCATION	FROM	ТО	LENGTH		GR HMA PG64-22	D-GR			GR HMA PG64-22	D-GR HMA TY-D PG64-22				
							10")	TY-C P (15")	(AVG.)		(2")	(6")				
			STA	STA	FΤ	(10")	(15")	(AVG.)		(2")	(6")	5Y)			
		0-16-147			FT	WIDTH	10") AREA (SY)	(15")	(AVG.)		(2") AREA (SY)		<u>5Y)</u>			
		0-16-147 HITTLE ST. @ MUD CREEK	STA	STA 15+23.75	F T 1 4	(10") AREA (SY) 48	(15") WIDTH	(AVG.) AREA (SY)		(2")	(6")	<u>5Y)</u>			
	W	HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK				WIDTH	10") AREA (SY) 48	(15")	(AVG.) AREA (SY)) WIDTH	(2") AREA (SY) V 43 101	(6")	57)			LOCAT
	W	HITTLE ST. @ MUD CREEK	15+10.00	15+23.75 15+56.25 15+70.00	14 33 14	WIDTH 31 AVG 31 AVG	10") AREA (SY) 48 48 48	(15") WIDTH	(AVG.) AREA (SY) 131) WIDTH 28	(2") AREA (SY) V 43 101 43	(6")	<u>5Y)</u>			LOCAT
	W	HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK	15+10.00 15+23.75	15+23.75 15+56.25 15+70.00	14 33	WIDTH 31 AVG 31 AVG	10") AREA (SY) 48	(15") WIDTH	(AVG.) AREA (SY)) WIDTH 28 28	(2") AREA (SY) V 43 101	(6")	<u>57)</u>			LOCAT
	W W W CSJ 091	HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK 0-16-148	15+10.00 15+23.75 15+56.25	15+23.75 15+56.25 15+70.00 CSJ 0910	14 33 14 0-16-147 SL	WIDTH 31 AVG 31 AVG	10") AREA (SY) 48 48 48	(15") WIDTH	(AVG.) AREA (SY) 131) WIDTH 28 28	(2") AREA (SY) V 43 101 43	(6")	<u>57)</u>			
	W W W CSJ 091	HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK	15+10.00 15+23.75	15+23.75 15+56.25 15+70.00 CSJ 0910 15+45.00	14 33 14 0-16-147 SL 310	WIDTH 31 AVG 31 AVG BTOTAL	10") AREA (SY) 48 48 48	(15") WIDTH	(AVG.) AREA (SY) 131) WIDTH 28 28	(2") AREA (SY) V 43 101 43	(6") WIDTH AREA (1) 	<u>57)</u>			LOCAT HITTLE ST. @
	W W W CSJ 091	HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK 0-16-148	15+10.00 15+23.75 15+56.25	15+23.75 15+56.25 15+70.00 CSJ 0910 15+45.00	14 33 14 0-16-147 SL	WIDTH 31 AVG 31 AVG BTOTAL	10") AREA (SY) 48 48 48	(15") WIDTH	(AVG.) AREA (SY) 131) WIDTH 28 28	(2") AREA (SY) V 43 101 43	(6")	<u>5</u> Y)		CSJ	HITTLE ST. @ 0910-16-147
	WI WI CSJ 091 CF CSJ 091	HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK 0-16-148 2 2110 @ KICKAPOO CREEK 0-16-149	15+10.00 15+23.75 15+56.25 12+35.00	15+23.75 15+56.25 15+70.00 CSJ 0910 15+45.00 CSJ 0910	14 33 14 0-16-147 SL 310 0-16-148 SL	WIDTH 31 AVG 31 AVG BTOTAL	10") AREA (SY) 48 48 48	(15") WIDTH	(AVG.) AREA (SY) 131) WIDTH 28 28	(2") AREA (SY) V 43 101 43	(6") WIDTH AREA (19 			CSJ CR	HITTLE ST. @ 0910-16-147 2110 @ KIC
	WI WI CSJ 091 CF CSJ 091	HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK 0-16-148 2 2110 @ KICKAPOO CREEK	15+10.00 15+23.75 15+56.25	15+23.75 15+56.25 15+70.00 CSJ 0910 15+45.00 CSJ 0910 16+15.00	14 33 14 0-16-147 SL 310 0-16-148 SL 380	WIDTH 31 AVG 31 AVG BTOTAL	10") AREA (SY) 48 48 48	(15") WIDTH	(AVG.) AREA (SY) 131) WIDTH 28 28	(2") AREA (SY) V 43 101 43	(6") WIDTH AREA (1) 			CSJ CR	HITTLE ST. @
	WI WI CSJ 091 CF CSJ 091	HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK HITTLE ST. @ MUD CREEK 0-16-148 2 2110 @ KICKAPOO CREEK 0-16-149	15+10.00 15+23.75 15+56.25 12+35.00	15+23.75 15+56.25 15+70.00 CSJ 0910 15+45.00 CSJ 0910 16+15.00	14 33 14 0-16-147 SL 310 0-16-148 SL	WIDTH 31 AVG 31 AVG BTOTAL	10") AREA (SY) 48 48 48	(15") WIDTH	(AVG.) AREA (SY) 131) WIDTH 28 28	(2") AREA (SY) V 43 101 43	(6") WIDTH AREA (19 			CSJ CR CSJ	HITTLE ST. @ 0910-16-147 2110 @ KIC

(1) QUANTITIES INCLUDED IN BASIS OF ESTIMATE.

		ROADWAY	SUMMARY			
			ITEM 110	ITEM 132	ITEM 275	ITEM 529
LOCATION	BEGINNING STATION	ENDING STATION	EXCAVATION (ROADWAY)	EMBANKMENT (FINAL)(ORD COMP)(TY_A)	CEMENT TREAT (EXIST MATL) (6")	CONC CURB & GUTTER (TY II)
			CY	CY	SY	LF
WHITTLE ST. @ MUD CREEK	15+10.00	15+70.00	53	48		120
CSJ 0910-16-147 SUBTOTAL			53	48	0	120
CR 2110 @ KICKAPOO CREEK	12+35.00	15+45.00	97	172	870	
CSJ 0910-16-148 SUBTOTAL			97	172	870	0
CR 289 @ PRAIRIE CREEK	12+35.00	16+15.00	125	203	1133	
CSJ 0910-16-149 SUBTOTAL			125	203	1133	0
	PR	OJECT TOTAL	. 275	423	2003	120


			ITEM 432	ITEN	1 540	ITEM 544	ITEM 545	ITEM	1 658
LOCATION	BEGINNING STATION	ENDING STATION	RIPRAP (MOW STRIP)(4 IN)	MTL W-BEAM GD FEN (TIM POST)	MTL BEAM GD FEN TRANS (TL2)	GUARDRAIL END TREATMENT (INSTALL)	CRASH CUSH ATTEN (INSTL)(S) (N)(TL3)	INSTL DEL ASSM (D-SW)SZ (BRF)CTB (BI)	INSTL DE ASSM (D-SW)SZ 1 (BRF)GF (BI)
			CY	LF	EA	EA	EA	ΕA	EA
WHITTLE ST. @ MUD CREEK	15+10.00	15+70.00							
CSJ 0910-16-147 SUBTOTAL			0	0	0	0	0	0	0
CR 2110 @ KICKAPOO CREEK	12+35.00	15+45.00	10.4	50	2	2	2	6	12
CSJ 0910-16-148 SUBTOTAL			10.4	50	2	2	2	6	12
CR 289 @ PRAIRIE CREEK	12+35.00	16+15.00	18.6	150	4	4		6	12
CSJ 0910-16-149 SUBTOTAL			18.6	150	4	4	0	6	12
	PR	DJECT TOTAL	29.0	200	6	6	2	12	24

PLOT DRIVER: RD_11×17_PDF.p1+ PEN TABLE: Tyler BRG Replacements_transportation.tb1 FILE: TBR_TYL_SMITH_QTY_01.dgn

PORTAE	BLE CHANGEABLE MESSAGE S	IGN
		ITEM 6001
(1) SIGN	LOCATION	PORTABLE CHANGEABLE MESSAGE SIGN
		DAY
-147		
SIGN #1	WHITTLE ST. @ MUD CREEK	7
IGN #2	WHITTLE ST. @ MUD CREEK	7
-147 SUBTOTAL		14
-148		
SIGN #1	CR 2110 @ KICKAPOO CREEK	7
IGN #2	CR 2110 @ KICKAPOO CREEK	7
-148 SUBTOTAL		14
-149		
5IGN #1	CR 289 @ PRAIRIE CREEK	7
IGN #2	CR 289 @ PRAIRIE CREEK	7
-149 SUBTOTAL		14
	PROJECT TOTAL	42
	5.8	

SIGN PLACEMENT AS DIRECTED

	FE	NCE SUMMA	NRY			
			ITEN	552	ITEM	5070
DCATION	BEGINNING STATION	ENDING STATION	WIRE FENCE (TY C)	WIRE FENCE (TY D)	STEEL FENCE (REMOVE)	STEEL FENCE (INSTALL)
			LF	LF	LF	LF
T. @ MUD CREEK	15+10.00	15+70.00				
-147 SUBTOTAL			0	0	0	0
KICKAPOO CREEK	12+35.00	15+45.00	224	98	86	92
-148 SUBTOTAL			224	98	86	92
PRAIRIE CREEK	12+35.00	16+15.00				
-149 SUBTOTAL			0	0	0	0
	PR	OJECT TOTAL	224	98	86	92

				LF CY	SF	LF	LF	CY	LF	EA					
CR 2110	@ KICKAPOO (CREEK	33.4	204 24.0	1606		396.00	390.0	124	1					
5.1.0910-16-	148 SUBTOTAL		33.4	204 24.0	1606	0	396.00	390.0	124	1					
30 0310 10	THE SEPTEME			201 2110	1000	Ŭ	330.00	33010	121	· ·					
CR 289	@ PRAIRIE CF	REEK	30.3	183 23.2	1285	316.00		254.0	104	1					
<u></u>			70.7		1005	74.0.00		054.0							
<u>SJ 0910-16-</u>	149 SUBTOTAL			183 23.2 387 47.2		316.00	0 396.00	254.0 644.0	104 228	2					
	PRU	JECT TOTAL	0.1	301 41.2	2091	516.00	290.00	644.0	220	2					
						E DOS I			,						
		ITEM 160	ITEM 162		ITEM 164	ERUSI		1 168				ITEM 506			
LOCA	TION	TILWITOO	1100102				(1)	(1)				11200 300	,		
FROM	то	FURNISHING AND PLACING TOPSOIL (4")	BLOCK SODDING	BOND FBR MTRX SEED (PERM) (RURA L) (SAND)	BONDED FBR MTRX SEED (TEMP) (WARM)	BONDED FBR MTRX SEED (TEMP) (COOL)	VEGETATIVE WATERING (PERM)	VEGETATIVE WATERING (TEMP)	ROCK FILTER DAMS (INSTALL) (TY 2)	ROCK FILTER DAMS (REMOVE)	EXCAV (EROSN & SEDMT CONT, IN VEH)	BACKHOE WORK (EROSION & SEDMT CONT)	TEMP SEDMT CONT FENCE (INSTALL)	TEMP SEDMT CONT FENCE (REMOVE)	TRACKH WORK (EROSIO SEDMT CONT)
STA	STA	SY	SY	CV	614										HR
		51		SY	SY	SY	SY	SY	LF	LF	CY	HR	LF	LF	1113
SJ 0910-16-	47	51	51	51	SY	SY	SY	SY	LF	LF	CY	HR	LF	LF	
SJ 0910-16- HITTLE ST. @	MUD CREEK			51											
SJ 0910-16- HITTLE ST. 0 15+10.00	47	38	38	0	19 19	19	38	38	40 40	40 40	CY 5 5	HR 10	LF 130 130	LF 130 130	10
SJ 0910-16- HITTLE ST. (15+10.00 CSJ 0910-16-	47 MUD CREEK 15+70.00 147 SUBTOTAL	38			19				40	40	5	10	130	130	
SJ 0910-16- HITTLE ST. 0 15+10.00 CSJ 0910-16-	47 MUD CREEK 15+70.00 147 SUBTOTAL 48	38	38		19	19	38	38	40	40	5	10	130	130	10
SJ 0910-16- HITTLE ST. 0 15+10.00 CSJ 0910-16- SJ 0910-16- R 2110 @ KIC	47 MUD CREEK 15+70.00 147 SUBTOTAL 48 CKAPOO CREEK	38 38	38	0	19 19	19 19	38 38	38 38	40 40	40 40	5 5	10 10	1 <u>30</u> 1 <u>30</u>	1 30 1 30	<u>10</u> 10
SJ 0910-16- HITTLE ST. 0 15+10.00 CSJ 0910-16- SJ 0910-16- R 2110 @ KIC 12+35.00	47 MUD CREEK 15+70.00 147 SUBTOTAL 48 KAPOO CREEK 15+45.00	38 38 195	38 38	0	19 19 98	19 19 98	38 38 195	38 38 195	40 40 16	40 40 16	5 5 10	10 10 10	130 130 706	1 30 1 30 706	10 10 10
SJ 0910-16- HITTLE ST. 0 15+10.00 CSJ 0910-16- SJ 0910-16- R 2110 @ KIC 12+35.00	47 MUD CREEK 15+70.00 147 SUBTOTAL 48 CKAPOO CREEK	38 38	38	0	19 19	19 19	38 38	38 38	40 40	40 40	5 5	10 10	1 <u>30</u> 1 <u>30</u>	1 30 1 30	<u>10</u> 10
SJ 0910-16- HITTLE ST. 0 15+10.00 CSJ 0910-16- SJ 0910-16- R 2110 @ KI0 12+35.00 CSJ 0910-16-	47 MUD CREEK 15-70.00 147 SUBTOTAL 48 CKAPOO CREEK 15+45.00 148 SUBTOTAL	38 38 	38 38	0	19 19 98	19 19 98	38 38 195	38 38 195	40 40 16	40 40 16	5 5 10	10 10 10	130 130 706	1 30 1 30 706	10 10 10
SJ 0910-16- HITLE ST. 6 15+10.00 CSJ 0910-16- SJ 0910-16- R 2110 @ KI(12+35.00 CSJ 0910-16- SJ 0910-16-	47 MUD CREEK 15+70.00 147 SUBTOTAL 48 KAPOO CREEK 15+45.00 148 SUBTOTAL 49	38 38 	38 38	0	19 19 98	19 19 98	38 38 195	38 38 195	40 40 16	40 40 16	5 5 10	10 10 10	130 130 706	1 30 1 30 706	10 10 10
SJ 0910-16- HITTLE ST. 0 15+10.00 SJ 0910-16- R 2110 @ KIC 12+35.00 SJ 0910-16- SJ 0910-16- R 289 @ PRA 12+35.00	47 MUD CREEK 15+70.00 147 SUBTOTAL 48 CKAPOO CREEK 15+45.00 148 SUBTOTAL 49 RIE CREEK 16+15.00	38 38 195 195 530	38 38 0	0 195 195 530	19 19 98 98 265	19 19 98 98 265	38 38 195 195 530	38 38 195 195 530	40 40 16 16 40	40 40 16 16 40	5 5 10 10	10 10 10 10 10	1 30 1 30 706 706 904	1 30 1 30 706 706 904	10 10 10 10 10
SJ 0910-16- HITILE ST. 0 15+10.00 CSJ 0910-16- SJ 0910-16- R 2110 @ KIC 12+35.00 CSJ 0910-16- SJ 0910-16- SJ 0910-16- 12+35.00 CSJ 0910-16-	47 MUD CREEK 15+70.00 147 SUBTOTAL 48 CKAPOO CREEK 15+45.00 148 SUBTOTAL 49 RIE CREEK	38 38 195 195	38 38	0 195 195	19 19 98 98	19 19 98 98	38 38 195 195	38 38 195 195	40 40 16 16	40 40 16 16	5 5 10 10	10 10 10 10	130 130 706 706	1 30 1 30 706 706	10 10 10 10

ITEM 425

CL C CONC (ABUT) REINF CONC SLAB (SLAB BEAM) REAM (4SB12) PRESTR CONC SLAB BEAM (4SB12) (4SB15)

ITEM 432 | ITEM 450 | ITEM 496

RAIL (TY T223) REMOV STR (BRIDGE 0 - 99 FT LENGTH)

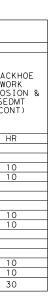
RIPRAP (STONE PROTECTIO N)(18 IN)

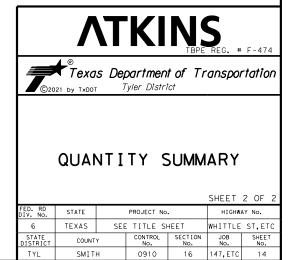
BRIDGE SUMMARY

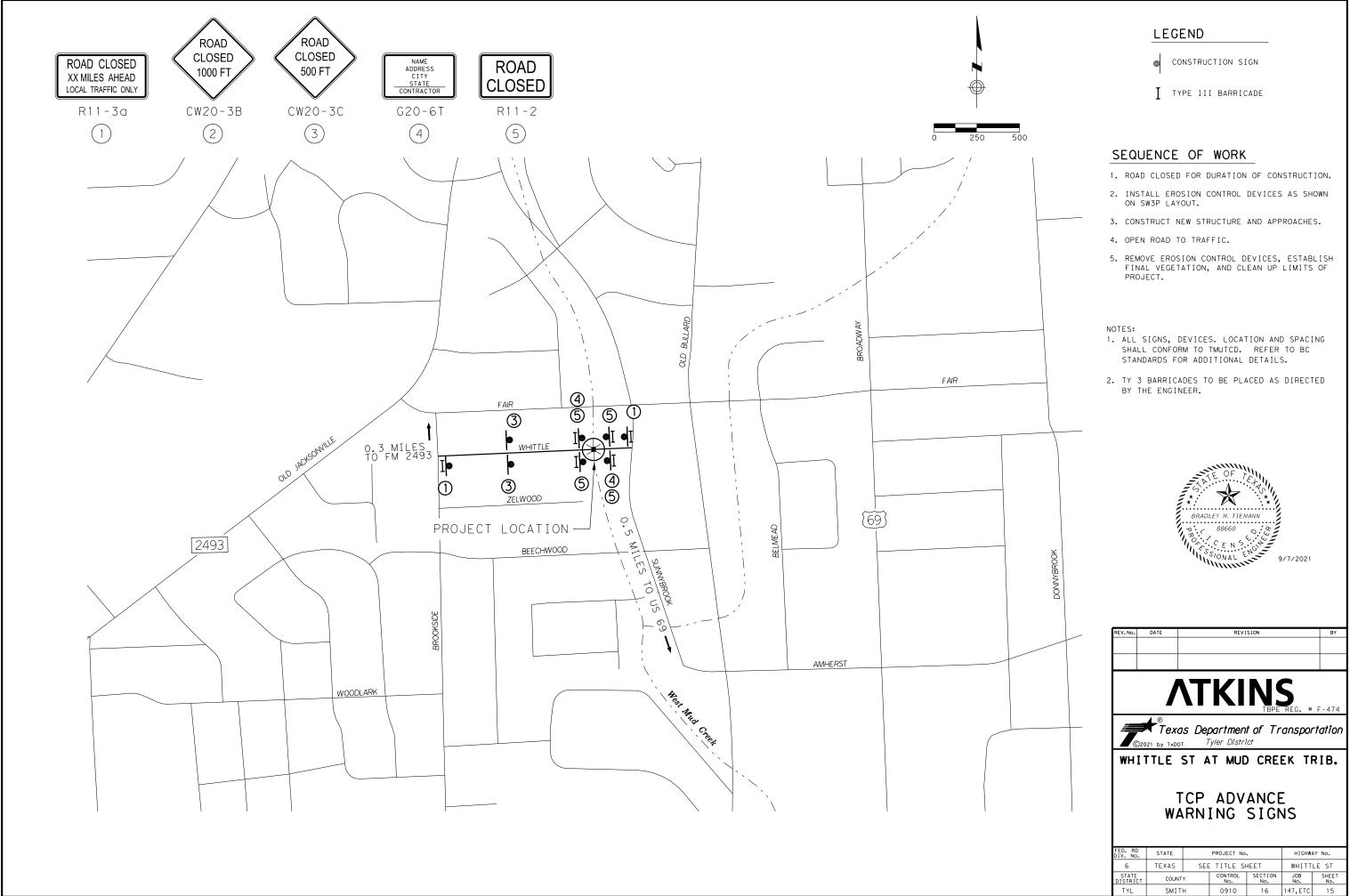
ITEM 400 ITEM 416 ITEM 420 ITEM 422

CEM STABIL DRILL BKFL SHAFT (24 IN)

(1) QUANTITIES INCLUDED IN BASIS OF ESTIMATE.

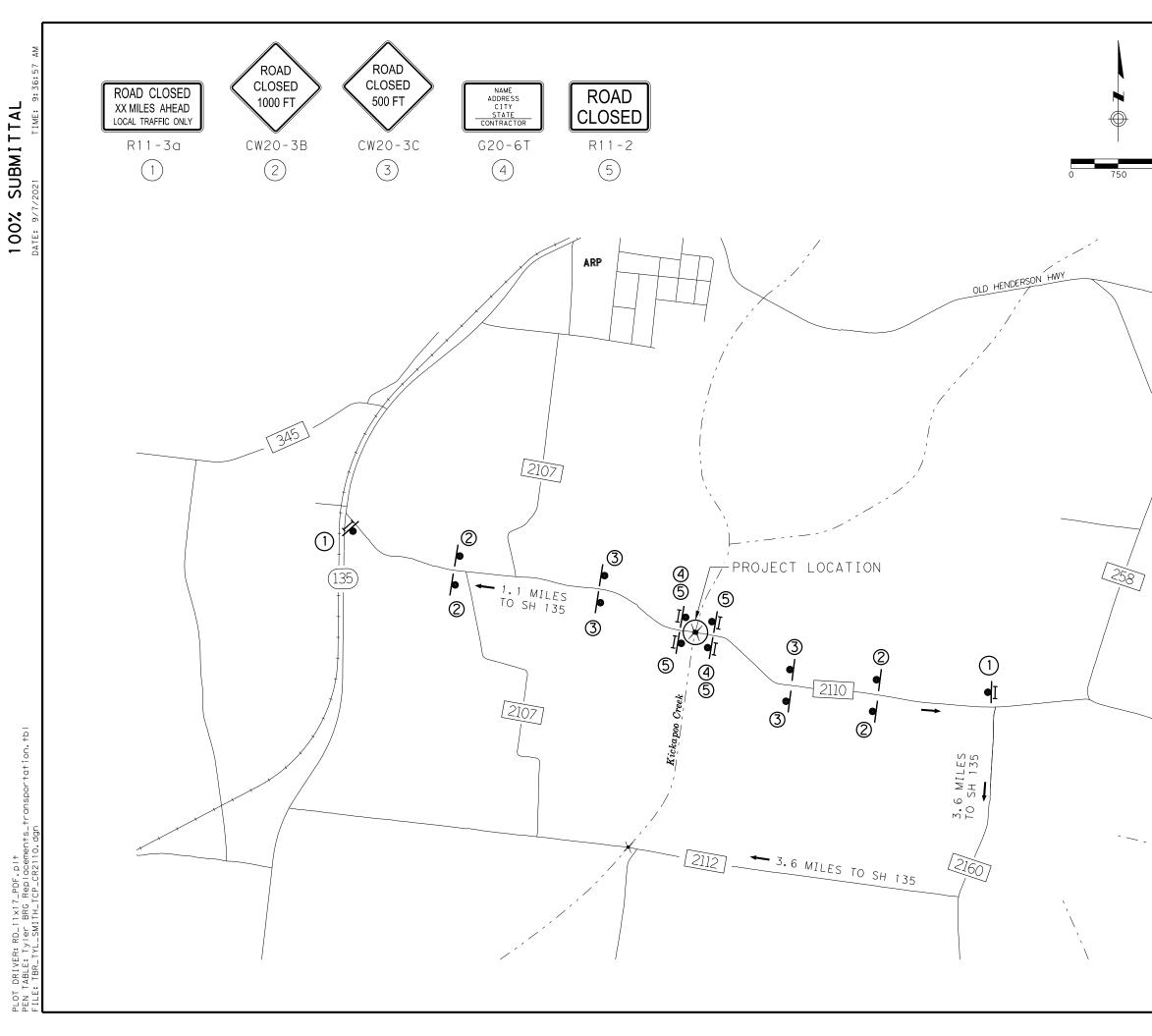

LOCATION


			REMOVAL SUMM	ARY		
		ITEM 100	ITEM 104	ITEM 105	ITEM 644	ITEM 658
LOCA	TION	PREPARING ROW	REMOVING CONC	REMOVING STAB BASE AND ASPH PAV (2"-6")		REMOVE DELIN & OBJECT MARKER ASSMS
FROM	ТО					
STA	STA	STA	LF	SY	EA	EA
CSJ 0910-16-1	47					
WHITTLE ST. @	MUD CREEK					
15+10.00	15+70.00	0.6	120	188	5	
CSJ 0910-16-	147 SUBTOTAL	0.6	120	188	5	0
	1.0					
CSJ 0910-16-1						
CR 2110 @ KIC	15+45.00	3.1				4
CSJ 0910-16-		3.1	0	0	0	4
030 0310 10	140 JUDIOTAL	5.1	0	0	0	
CSJ 0910-16-1	49	1				
CR 289 @ PRAI						
12+35.00	16+15.00	3.8			2	4
CSJ 0910-16-	149 SUBTOTAL	3.8	0	0	2	4
PI	ROJECT TOTAL	7.5	120	188	7	8


PLOT DRIVER: RD_11x17_PDF.pl+ PEN TABLE: Tyler BRG Replacements_transpor FILE: TBR_TYL_SMITH_QTY_02.dgn

tation.tbl

			BRIDGI	E CLASS (CULVERT S	UMMARY					
	ITEM 400	ITEM 402	ITEM 420	ITEM 420	ITEM 432	ITEM 432	ITEM 442	ITEM 450	ITEM 462	ITEM 466	ITEM 496
LOCATION	CEM STABIL BKFL	TRENCH EXCAVATION PROTECTION	CL C CONC (WINGWALLS)	CL E CONC (SEAL SLAB)	RIPRAP (CONC) (4 IN)	RIPRAP (CONC) (6 IN)	STR STEEL (MISC NON - BRIDGE)	RAIL (TY C221)	CONC BOX CULV (9 FT X 9 FT)	WINGWALL (PW - 1) (HW=12 FT)	REMOV ST (BRIDGE - 99 FT LENGTH)
	CY	LF	CY	CY	CY	CY	LB	LF	LF	EA	EA
WHITTLE ST. @ MUD CREEK	367.0	43	0.6	17.3	1.8	5.4	1776	111	129	2	1
CSJ 0910-16-147 SUBTOTAL	367.0	43	0.6	17.3	1.8	5.4	1776	111	129	2	1
PROJECT TOTAL	367.0	43	0.6	17.3	1.8	5.4	1776	111	129	2	1



SUBMITTAL 100%

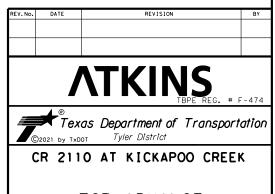
<u>т</u>р_

LEGEND

CONSTRUCTION SIGN

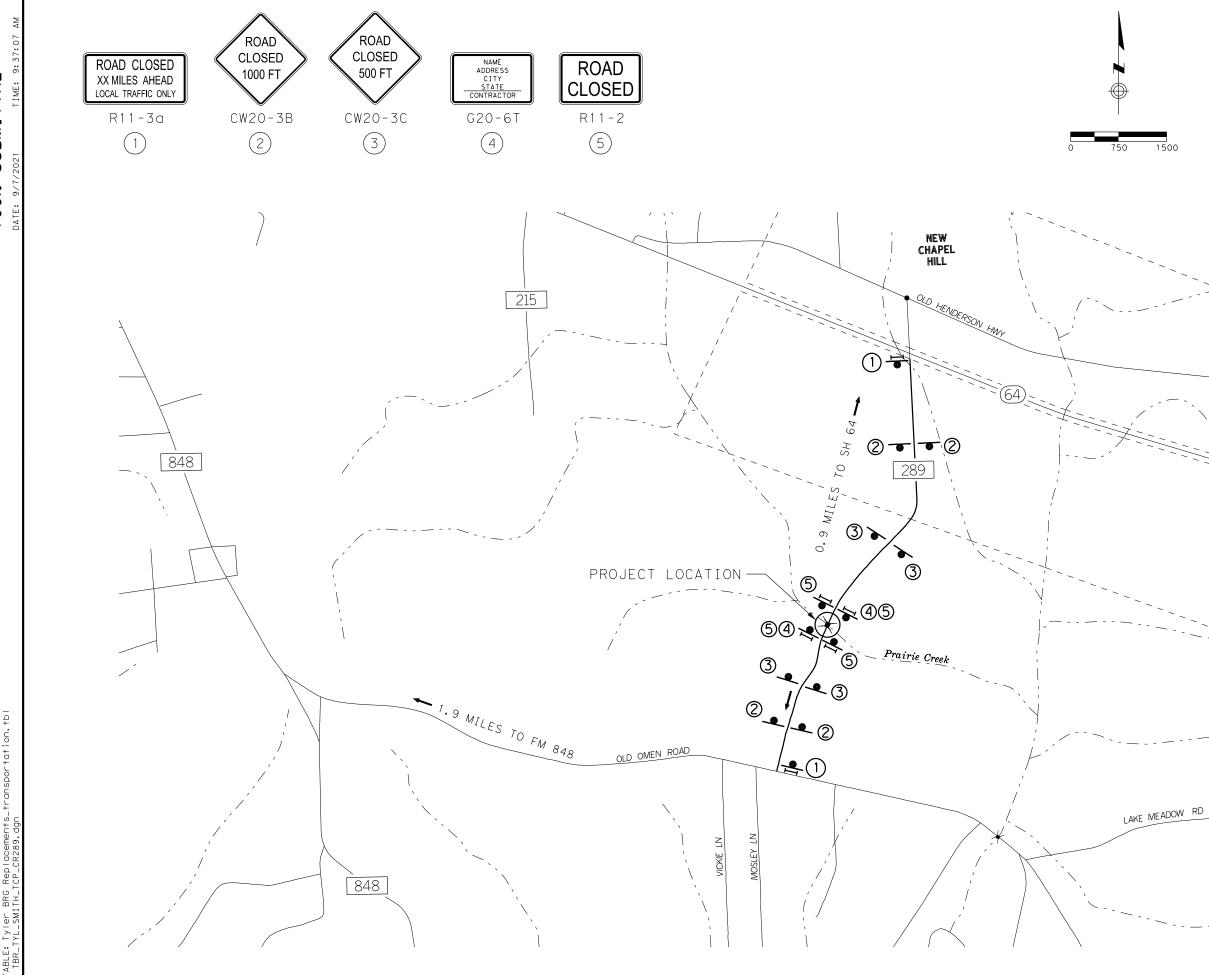
I TYPE III BARRICADE

1500


SEQUENCE OF WORK

- 1. ROAD CLOSED FOR DURATION OF CONSTRUCTION.
- 2. INSTALL EROSION CONTROL DEVICES AS SHOWN ON SW3P LAYOUT.
- 3. CONSTRUCT NEW STRUCTURE AND APPROACHES.
- 4. OPEN ROAD TO TRAFFIC.
- REMOVE EROSION CONTROL DEVICES, ESTABLISH FINAL VEGETATION, AND CLEAN UP LIMITS OF PROJECT.

NOTES:


- 1. ALL SIGNS, DEVICES. LOCATION AND SPACING SHALL CONFORM TO TMUTCD. REFER TO BC STANDARDS FOR ADDITIONAL DETAILS.
- 2. TY 3 BARRICADES TO BE PLACED AS DIRECTED BY THE ENGINEER.

TCP ADVANCE WARNING SIGNS

FED. RD DIV. No.	STATE		PROJECT No		HIGHW	AY No.
6	TEXAS	SEE	TITLE SH	HEET	CR 2	2110
STATE DISTRICT	COUNT	Y	CONTROL No.	SECTION No.	JOB No.	SHEET No.
TYL	SMIT	н	0910	16	147,ETC	16

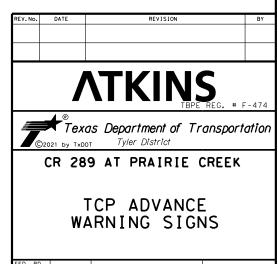
SUBMITTAL 100%

T DRIVER: RD_11×17_PDF.plt TABLE: Tyler BRG Replacen PL01 PEN

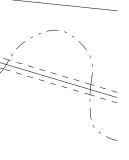
LEGEND

CONSTRUCTION SIGN

I TYPE III BARRICADE


SEQUENCE OF WORK

- 1. ROAD CLOSED FOR DURATION OF CONSTRUCTION.
- 2. INSTALL EROSION CONTROL DEVICES AS SHOWN ON SW3P LAYOUT.
- 3. CONSTRUCT NEW STRUCTURE AND APPROACHES.
- 4. OPEN ROAD TO TRAFFIC.
- 5. REMOVE EROSION CONTROL DEVICES, ESTABLISH FINAL VEGETATION, AND CLEAN UP LIMITS OF PROJECT.


NOTES:

- 1. ALL SIGNS, DEVICES. LOCATION AND SPACING SHALL CONFORM TO TMUTCD. REFER TO BC STANDARDS FOR ADDITIONAL DETAILS.
- 2. TY 3 BARRICADES TO BE PLACED AS DIRECTED BY THE ENGINEER.

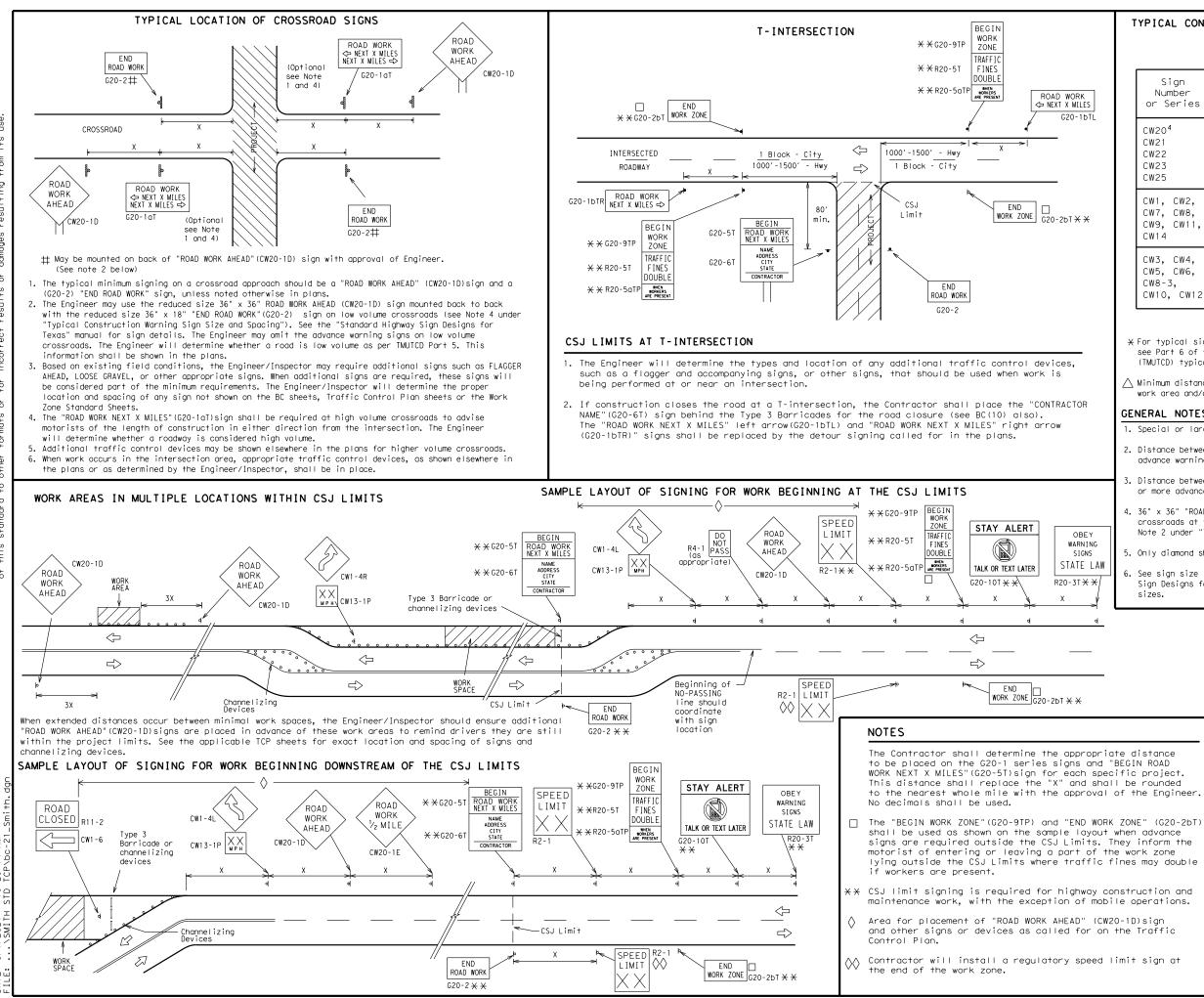
FED. RD DIV. No.	STATE		PROJECT No		HIGHW	AY No.
6	TEXAS	SEE	TITLE SH	HEET	CR	289
STATE DISTRICT	COUNT	Y	CONTROL No.	SECTION No.	JOB No.	SHEET No.
TYL	SMIT	н	0910	16	147,ETC	17

BARRICADE AND CONSTRUCTION (BC) STANDARD SHEETS GENERAL NOTES:

- 1. The Barricade and Construction Standard Sheets (BC sheets) are intended to show typical examples for placement of temporary traffic control devices, construction pavement markings, and typical work zone signs. The information contained in these sheets meet or exceed the requirements shown in the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD).
- The development and design of the Traffic Control Plan (TCP) is the 2. responsibility of the Engineer.
- The Contractor may propose changes to the TCP that are signed and sealed by a licensed professional engineer for approval. The Engineer may develop, sign and seal Contractor proposed changes.
- 4. The Contractor is responsible for installing and maintaining the traffic control devices as shown in the plans. The Contractor may not move or change the approximate location of any device without the approval of the Engineer.
- 5. Geometric design of lane shifts and detours should, when possible, meet the applicable design criteria contained in manuals such as the American Association of State Highway and Transportation Officials (AASHTO), "A Policy on Geometric Design of Highways and Streets," the TxDOT "Roadway Design Manual" or engineering judgment.
- When projects abut, the Engineer(s) may omit the END ROAD WORK, TRAFFIC FINES DOUBLE, and other advance warning signs if the signing would be redundant and the work areas appear continuous to the motorists. If the adjacent project is completed first, the Contractor shall erect the necessary warning signs as shown on these sheets, the TCP sheets or as directed by the Engineer. The BEGIN ROAD WORK NEXT X MILES sign shall be revised to show appropriate work zone distance.
- 7. The Engineer may require duplicate warning signs on the median side of divided highways where median width will permit and traffic volumes justify the signing.
- 8. All signs shall be constructed in accordance with the details found in the "Standard Highway Sign Designs for Texas," latest edition. Sign details not shown in this manual shall be shown in the plans or the Engineer shall provide a detail to the Contractor before the sign is manufactured.
- The temporary traffic control devices shown in the illustrations of the 9. BC sheets are examples. As necessary, the Engineer will determine the most appropriate traffic control devices to be used.
- 10. Where highway construction or maintenance work is being undertaken, other than mobile operations as defined by the Texas Manual on Uniform Traffic Control Devices, CSJ limit signs are required. CSJ limit signs are shown ON BC(2). THE OBEY WARNING SIGNS STATE LAW sign. STAY ALERT TALK OR TEXT LATER and the WORK ZONE TRAFFIC FINES DOUBLE sign with plaque shall be erected in advance of the CSJ limits. The BEGIN ROAD WORK NEXT X MILES, CONTRACTOR and END ROAD WORK signs shall be erected at or near the CSJ limits. For mobile operations, CSJ limit signs are not required.
- 11. Traffic control devices should be in place only while work is actually in progress or a definite need exists.
- 12. The Engineer has the final decision on the location of all traffic control devices.
- 13. Inactive equipment and work vehicles, including workers' private vehicles must be parked away from travel lanes. They should be as close to the right-of-way line as possible, or located behind a barrier or guardrail, or as approved by the Engineer.

WORKER SAFETY NOTES:

- 1. Workers on foot who are exposed to traffic or to construction equipment within the right-of-way shall wear high-visibility safety apparel meeting the requirements of ISEA "American National Standard for High-Visibility Apparel." or equivalent revisions, and labeled as ANSI 107-2004 standard performance for Class 2 or 3 risk exposure. Class 3 garments should be considered for high traffic volume work areas or night time work.
- 2. Except in emergency situations, flagger stations shall be illuminated when flagging is used at night.


COMPLIANT WORKZONE TRAFFIC CONTROL DEVICES

- 1. Only pre-qualified products shall be used. The "Compliant Work Zone Traffic Control Devices List" (CWZTCD) describes pre-aualified products and their sources.
- 2. Work zone traffic control devices shall be compliant with the Manual for Assessing safety Hardware (MASH).

THE DOCUMENTS BELOW CAN BE FOUND ON-LINE AT http://www.txdot.gov
COMPLIANT WORK ZONE TRAFFIC CONTROL DEVICES LIST (CWZTCD)
DEPARTMENTAL MATERIAL SPECIFICATIONS (DMS)
MATERIAL PRODUCER LIST (MPL)
ROADWAY DESIGN MANUAL - SEE "MANUALS (ONLINE MANUALS)"
STANDARD HIGHWAY SIGN DESIGNS FOR TEXAS (SHSD)
TEXAS MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (TMUTCD)
TRAFFIC ENGINEERING STANDARD SHEETS

3866		12		
Texas Department	of Transp	ortation	Sa Div	affic afety vision ndard
BARRICADE AI GENER AND RE	RAL N	IOTES		ION
			3	
	(1) -		3	
			J TxDOT	ck: TxDOT
BC	(1) -	-21	TxDOT	CK: TXDOT Ghway
FILE: bc-21.dgn © TxDOT November 2002 REVISIONS	(1) -	- 21 CK: TXDOT DW:	ТхDOT	
BC FILE: bc-21.dgn © TxDOT November 2002	(1) -	- 21 ск: тхрот dw: јов	T×DOT HI WHITTL	GHWAY
BC FILE: bc-21.dgn © TxDOT November 2002 4-03 7-13	(1) - DN: TXDOT CONT SECT 0910 16	- 21 ck: TxDOT DW: JOB 147, ETC	T×DOT HI WHITTL	GHWAY E ST,ETC

SUFET 1 OF 12

AA 14 10: 20: TD TCP 9/7/2021 DATE:

TYPICAL	CONSTRUCTION	WARNING	SIGN	SIZE	AND	SPACING ^{1,5,6}

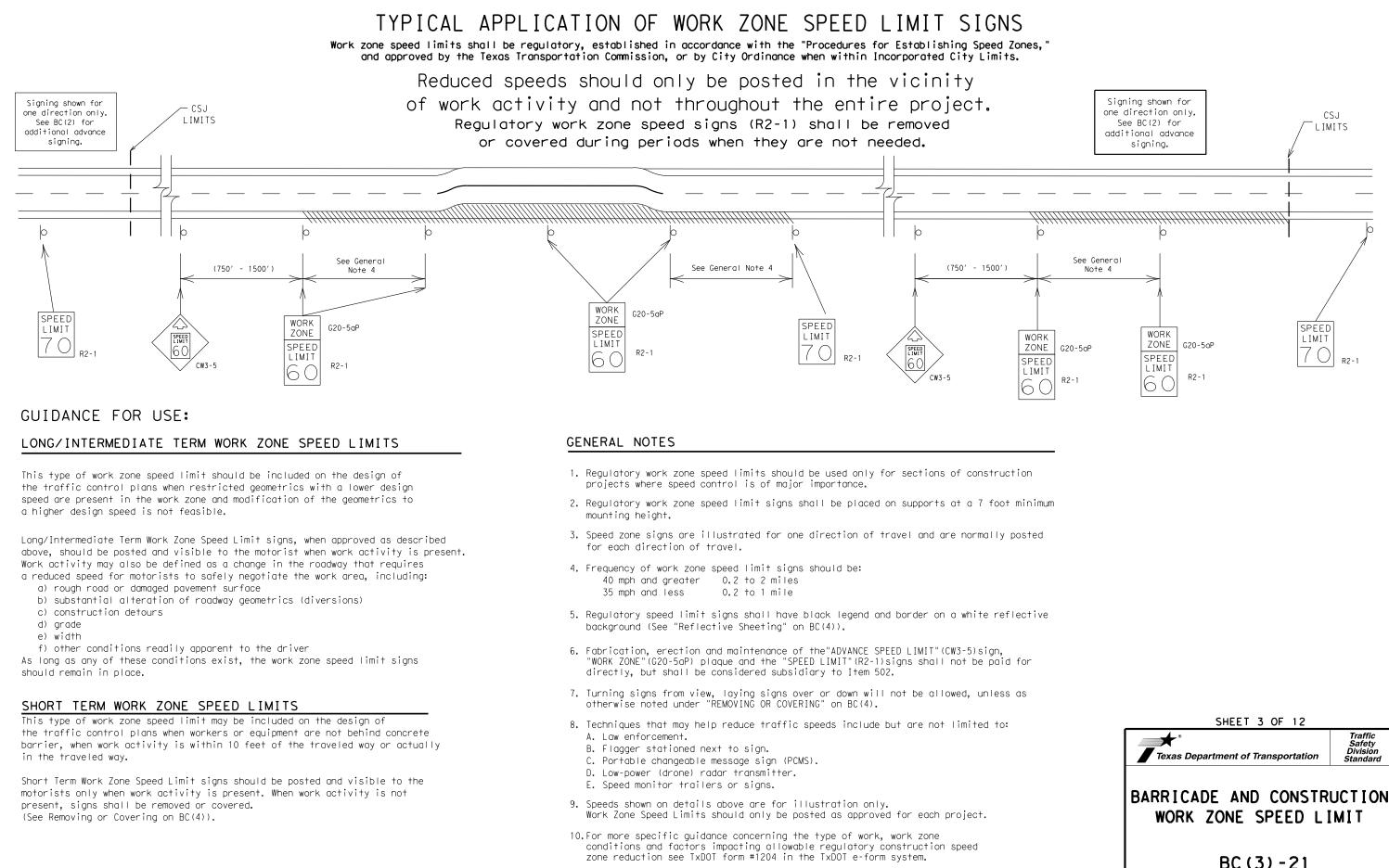
SIZE

Sign Number or Series	Conventional Road	Expressway/ Freeway
CW20 ⁴ CW21 CW22 CW23 CW25	48" × 48"	48" × 48"
CW1, CW2, CW7, CW8, CW9, CW11, CW14	36" × 36"	48" × 48"
CW3, CW4, CW5, CW6, CW8-3, CW10, CW12	48" x 48"	48" × 48"

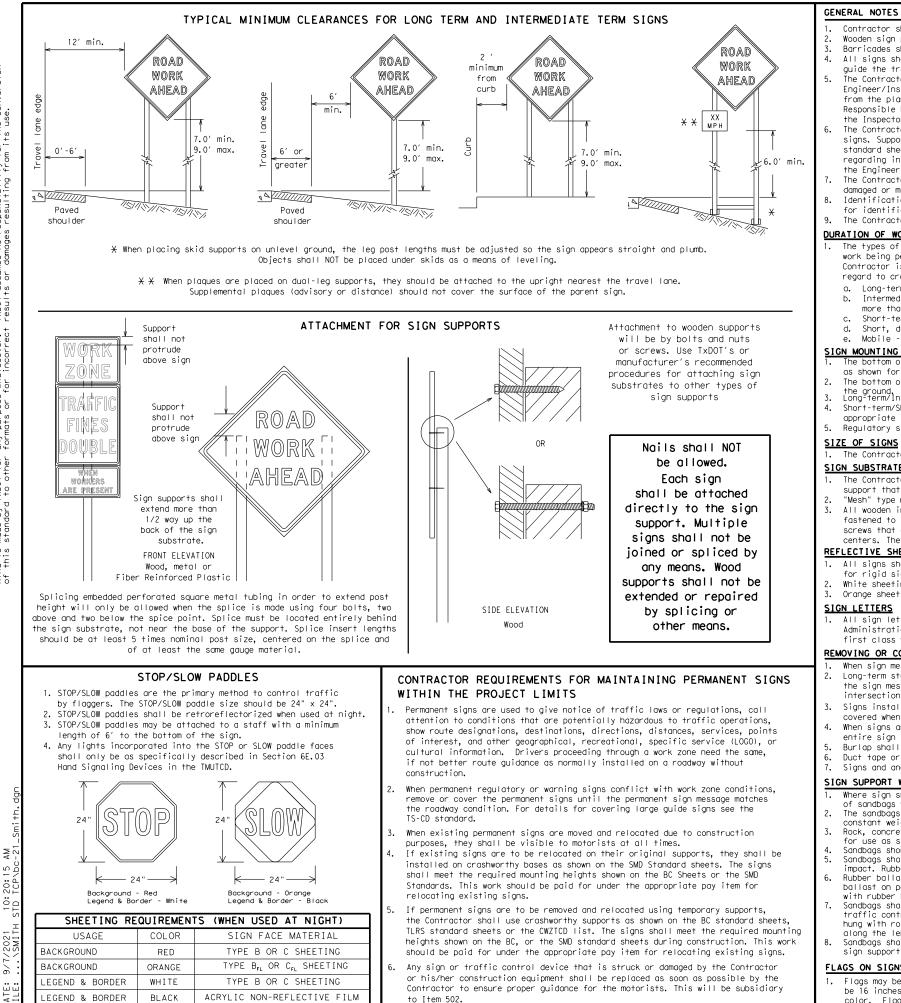
5. Active				
Posted Speed	Sign∆ Spacing "X"			
MPH	Feet (Apprx.)			
30	120			
35	160			
40	240			
45	320			
50	400			
55	500 ²			
60	600 ²			
65	700 2			
70	800 ²			
75	900 ²			
80	1000 ²			
*	* 3			

SPACING

X For typical sign spacings on divided highways, expressways and freeways, see Part 6 of the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD) typical application diagrams or TCP Standard Sheets.


igtriangle Minimum distance from work area to first Advance Warning sign nearest the work area and/or distance between each additional sign.

GENERAL NOTES


- 1. Special or larger size signs may be used as necessary.
- 2. Distance between signs should be increased as required to have 1500 feet advance warning.
- 3. Distance between signs should be increased as required to have 1/2 mile or more advance warning.
- 4. 36" x 36" "ROAD WORK AHEAD" (CW20-1D)signs may be used on low volume crossroads at the discretion of the Engineer as per TMUTCD Part 5. See Note 2 under "Typical Location of Crossroad Signs".
- 5. Only diamond shaped warning sign sizes are indicated.
- 6. See sign size listing in "TMUTCD", Sign Appendix or the "Standard Highway Sign Designs for Texas" manual for complete list of available sign design sizes.

		LEGEND					
	H	Type 3 Barricade					
	000	Channelizing Devices					
	•	Sign					
	X See Typical Construction Warning Sign Size and Spacing chart or the TMUTCD for sign spacing requirements.						
	SHEET 2 OF 12						
Те	Traffic Safety Division Standard						
BARRICADE AND CONSTRUCTION PROJECT LIMIT BC(2)-21							

FILE:	bc-21.dgn	DN: T:	x DOT	ск: TxDOT	DW:	ТхDО	Т	ск∶ТхDОТ
© TxDOT	November 2002	CONT	SECT	JOB			HIGH	WAY
	REVISIONS	0910	16	147,ET	C	WHIT	TLE	ST,ETC
9-07	8-14	DIST		COUNTY			SI	HEET NO.
7-13	5-21	TYL		SMITH	H			19
96								

FILE:	bc-21.dgn	dn: Tx	DOT	ск: TxDOT	DW:	TxDO	T	ск∶ТхDОТ
(C) TxDOT	November 2002	CONT	SECT	JOB			HIGH	WAY
0.07	REVISIONS	0910	16	147,ET	С	WHIT	TLE	ST,ETC
9-07	8-14 5-21	DIST		COUNTY			SH	EET NO.
7-13 5-21	TYL		SMITH	Ŧ			20	
97								

GENERAL NOTES FOR WORK ZONE SIGNS

- Contractor shall install and maintain signs in a straight and plumb condition and/or as directed by the Engineer.
- Wooden sign posts shall be painted white.
- Barricades shall NOT be used as sign supports
- guide the traveling public safely through the work zone.
- the Inspector's TxDOT diary and having both the Inspector and Contractor initial and date the agreed upon changes. the Engineer can verify the correct procedures are being followed.
- damaged or marred reflective sheeting as directed by the Engineer/Inspector.
- for identification shall be 1 inch.
- The Contractor shall replace damaged wood posts. New or damaged wood sign posts shall not be spliced.

DURATION OF WORK (as defined by the "Texas Manual on Uniform Traffic Control Devices" Part 6)

- regard to crashworthiness and duration of work requirements.
- a. Long-term stationary work that occupies a location more than 3 days.
- more than one hour.
- Short, duration work that occupies a location up to 1 hour.
- Mobile work that moves continuously or intermittently (stopping for up to approximately 15 minutes.)

SIGN MOUNTING HEIGHT

- as shown for supplemental plaques mounted below other signs.
- the ground. Long-term/Intermediate-term Signs may be used in lieu of Short-term/Short Duration signing.
- 4. Short-term/Short Duration signs shall be used only during daylight and shall be removed at the end of the workday or raised to
- appropriate Long-term/Intermediate sign height.

The Contractor shall furnish the sign sizes shown on BC (2) unless otherwise shown in the plans or as directed by the Engineer.

SIGN SUBSTRATES

- centers. The Engineer may approve other methods of splicing the sign face.

REFLECTIVE SHEETING

- 1. All signs shall be retroreflective and constructed of sheeting meeting the color and retro-reflectivity requirements of DMS-8300

SIGN LETTERS

first class workmanship in accordance with Department Standards and Specifications.

REMOVING OR COVERING

- When sign messages may be confusing or do not apply, the signs shall be removed or completely covered.
- intersections where the sign may be seen from approaching traffic. 3. Signs installed on wooden skids shall not be turned at 90 degree angles to the roadway. These signs should be removed or completely
- covered when not required.
- entire sign face and maintain their opaque properties under automobile headlights at night, without damaging the sign sheeting. Burlap shall NOT be used to cover signs.
- Duct tape or other adhesive material shall NOT be affixed to a sign face.
- Signs and anchor stubs shall be removed and holes backfilled upon completion of work.

SIGN SUPPORT WEIGHTS

- 1. Where sign supports require the use of weights to keep from turning over, the use of sandbags with dry, cohesionless sand should be used. The sandbags will be tied shut to keep the sand from spilling and to maintain a
- constant weight. Rock, concrete, iron, steel or other solid objects shall not be permitted
- for use as sign support weights. Sandbags should weigh a minimum of 35 lbs and a maximum of 50 lbs.
- Sandbags shall be made of a durable material that tears upon vehicular impact. Rubber (such as tire inner tubes) shall NOT be used.
- Rubber ballasts designed for channelizing devices should not be used for ballast on portable sign supports. Sign supports designed and manufactured with rubber bases may be used when shown on the CWZTCD list. Sandbags shall only be placed along or laid over the base supports of the
- traffic control device and shall not be suspended above ground level or hung with rope, wire, chains or other fasteners. Sandbags shall be placed along the length of the skids to weigh down the sign support.
- Sandbags shall NOT be placed under the skid and shall not be used to level sign supports placed on slopes.

FLAGS ON SIGNS

1. Flags may be used to draw attention to warning signs. When used, the flag shall be 16 inches square or larger and shall be orange or fluorescent red-orange in color. Flags shall not be allowed to cover any portion of the sign face.

All signs shall be installed in accordance with the plans or as directed by the Engineer. Signs shall be used to regulate, warn, and

The Contractor may furnish either the sign design shown in the plans or in the "Standard Highway Sign Designs for Texas" (SHSD). The Engineer/Inspector may require the Contractor to furnish other work zone signs that are shown in the TMUTCD but may have been omitted from the plans. Any variation in the plans shall be documented by written agreement between the Engineer and the Contractor's Responsible Person. All changes must be documented in writing before being implemented. This can include documenting the changes in

The Contractor shall furnish sign supports listed in the "Compliant Work Zone Traffic Control Device List" (CWZICD) for small roadside signs. Supports for temporary large roadside signs shall meet the requirements detailed on the Temporary Large Roadside Signs (TLRS) standard sheets. The Contractor shall install the sign support in accordance with the manufacturer's recommendations. If there is a question regarding installation procedures, the Contractor shall furnish the Engineer a copy of the manufacturer's installation recommendations so

The Contractor is responsible for installing signs on approved supports and replacing signs with damaged or cracked substrates and/or

Identification markings may be shown only on the back of the sign substrate. The maximum height of letters and/or company logos used

The types of sign supports, sign mounting height, the size of signs, and the type of sign substrates can vary based on the type of work being performed. The Engineer is responsible for selecting the appropriate size sign for the type of work being performed. The Contractor is responsible for ensuring the sign support, sign mounting height and substrate meets manufacturer's recommendations in

Intermediate-term stationary - work that occupies a location more than one daylight period up to 3 days, or nighttime work lasting

Short-term stationary - daytime work that occupies a location for more than 1 hour in a single daylight period.

The bottom of Long-term/Intermediate-term signs shall be at least 7 feet, but not more than 9 feet, above the paved surface, except

The bottom of Short-term/Short Duration signs shall be a minimum of 1 foot above the pavement surface but no more than 2 feet above

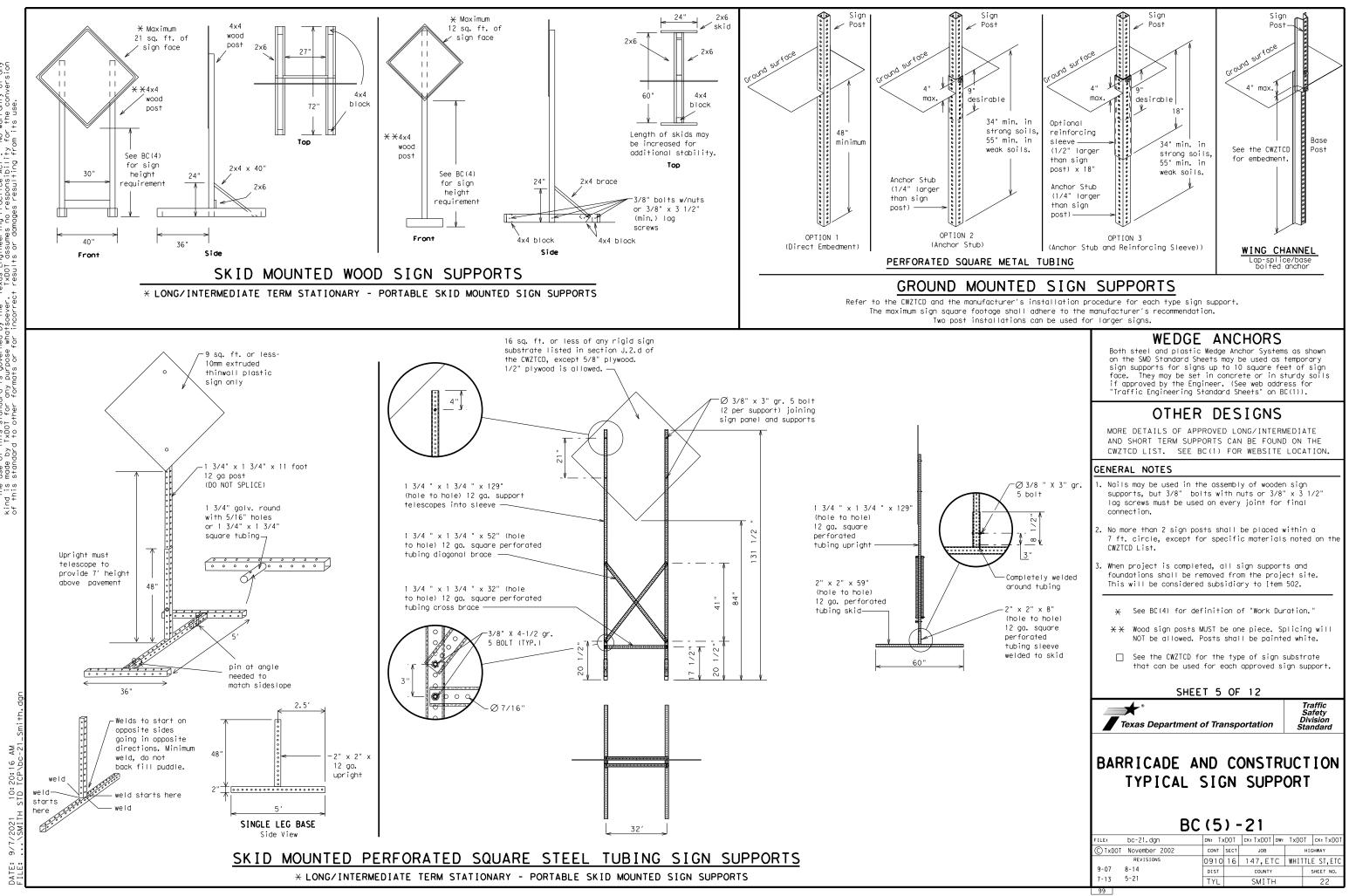
Regulatory signs shall be mounted at least 7 feet, but not more than 9 feet, above the paved surface regardless of work duration.

The Contractor shall ensure the sign substrate is installed in accordance with the manufacturer's recommendations for the type of sign support that is being used. The CWZTCD lists each substrate that can be used on the different types and models of sign supports. "Mesh" type materials are NOT an approved sign substrate, regardless of the tightness of the weave. All wooden individual sign panels fabricated from 2 or more pieces shall have one or more plywood cleat, 1/2" thick by 6" wide, fastened to the back of the sign and extending fully across the sign. The cleat shall be attached to the back of the sign using wood screws that do not penetrate the face of the sign panel. The screws shall be placed on both sides of the splice and spaced at 6"

for rigid signs or DMS-8310 for roll-up signs. The web address for DMS specifications is shown on BC(1). White sheeting, meeting the requirements of DMS-8300 Type A, shall be used for signs with a white background. 3. Orange sheeting, meeting the requirements of DMS-8300 Type B_{FL} or Type C_{FL}, shall be used for rigid signs with orange backgrounds.

1. All sign letters and numbers shall be clear, and open rounded type uppercase alphabet letters as approved by the Federal Highway Administration (FHWA) and as published in the "Standard Highway Sign Design for Texas" manual. Signs, letters and numbers shall be of

2. Long-term stationary or intermediate stationary signs installed on square metal tubing may be turned away from traffic 90 degrees when the sign message is not applicable. This technique may not be used for signs installed in the median of divided highways or near any


When signs are covered, the material used shall be opaque, such as heavy mil black plastic, or other materials which will cover the

SHEET 4 OF 12

S Texas Department of Transportation Traffic Safety Division Standard

BARRICADE AND CONSTRUCTION TEMPORARY SIGN NOTES

BC (4) - 21								
ILE:	bc-21.dgn		DN: T;	<dot< td=""><td>ск:ТхDОТ</td><td>DW:</td><td>TxDO</td><td>Г ск: ТхDOT</td></dot<>	ск:ТхDОТ	DW:	TxDO	Г ск: ТхDOT
C TxDOT	November 2002		CONT	SECT	JOB			HIGHWAY
	REVISIONS		0910	16	147,ET	C	WHIT	TLE ST,ETC
9-07	8-14		DIST		COUNTY			SHEET NO.
7-13	5-21		TYL		SMITH	H		21
98								

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TXDDI for any purpose whatsoever. TXDDI assumes no responsibility for the conversion of this standard to other formats or for incortect results or damages resulting fram its use.

WHEN NOT IN USE. REMOVE THE PCMS FROM THE RIGHT-OF-WAY OR PLACE THE PCMS BEHIND BARRIER OR GUARDRAIL WITH SIGN PANEL TURNED PARALLEL TO TRAFFIC

PORTABLE CHANGEABLE MESSAGE SIGNS

- 1. The Engineer/Inspector shall approve all messages used on portable changeable message signs (PCMS).
- 2. Messages on PCMS should contain no more than 8 words (about four to eight characters per word), not including simple words such as "TO, "FOR." "AT." etc.
- 3. Messages should consist of a single phase, or two phases that alternate. Three-phase messages are not allowed. Each phase of the message should convey a single thought, and must be understood by itself.
- 4. Use the word "EXIT" to refer to an exit ramp on a freeway; i.e., "EXIT CLOSED." Do not use the term "RAMP."
- Always use the route or interstate designation (IH, US, SH, FM) 5. along with the number when referring to a roadway.
- When in use, the bottom of a stationary PCMS message panel should be a minimum 7 feet above the roadway, where possible.
- 7. The message term "WEEKEND" should be used only if the work is to start on Saturday morning and end by Sunday evening at midnight. Actual days and hours of work should be displayed on the PCMS if work is to begin on Friday evening and/or continue into Monday morning.
- 8. The Engineer/Inspector may select one of two options which are available for displaying a two-phase message on a PCMS. Each phase may be displayed for either four seconds each or for three seconds each.
- Do not "flash" messages or words included in a message. The message should be steady burn or continuous while displayed.
- 10. Do not present redundant information on a two-phase message; i.e., keeping two lines of the message the same and changing the third line. 11. Do not use the word "Danger" in message.
- 12. Do not display the message "LANES SHIFT LEFT" or "LANES SHIFT RIGHT" on a PCMS. Drivers do not understand the message.
- 13. Do not display messages that scroll horizontally or vertically across the face of the sign.
- 14. The following table lists abbreviated words and two-word phrases that are acceptable for use on a PCMS. Both words in a phrase must be displayed together. Words or phrases not on this list should not be abbreviated, unless shown in the TMUTCD.
- 15. PCMS character height should be at least 18 inches for trailer mounted units. They should be visible from at least 1/2 (.5) mile and the text should be legible from at least 600 feet at night and 800 feet in daylight. Truck mounted units must have a character height of 10 inches and must be legible from at least 400 feet.
- 16. Each line of text should be centered on the message board rather than left or right justified.
- 17. If disabled, the PCMS should default to an illegible display that will not alarm motorists and will only be used to alert workers that the PCMS has malfunctioned. A pattern such as a series of horizontal solid bars is appropriate.

WORD OR PHRASE	ABBREVIATION	WORD OR PHRASE	ABBREVIATION
Access Road	ACCS RD	Major	MAJ
Alternate	ALT	Miles	MI
Avenue	AVE	Miles Per Hour	MPH
Best Route	BEST RTE	Minor	MNR
Boulevard	BLVD	Monday	MON
Bridge	BRDG	Normal	NORM
Cannot	CANT	North	N
Center	CTR	Northbound	(route) N
Construction Ahead	CONST AHD	Parking	PKING
	XING	Road	RD
Detour Route	DETOUR RTE	Right Lane	RT LN
Do Not	DONT	Saturday	SAT
	F	Service Road	SERV RD
East	-	Shoulder	SHLDR
Eastbound	(route) E FMFR	Slippery	SLIP
Emergency		South	S
Emergency Vehicle	EMER VEH	Southbound	(route) S
Entrance, Enter	ENT	Speed	SPD
Express Lane	EXP LN	Street	ST
Expressway	EXPWY	Sunday	SUN
XXXX Feet	XXXX FT	Telephone	PHONE
Fog Ahead	FOG AHD	Temporary	TEMP
Freeway	FRWY, FWY	Thursday	THURS
Freeway Blocked	FWY BLKD	To Downtown	TO DWNTN
Friday	FRI	Traffic	TRAF
Hazardous Driving		Travelers	TRVI RS
Hazardous Material		Tuesday	TUES
High-Occupancy	HOV	Time Minutes	TIME MIN
Vehicle	HWY	Upper Level	UPR LEVEL
Highway		Vehicles (s)	VEH, VEHS
Hour(s)	HR, HRS	Warning	WARN
Information	INFO	Wednesday	WED
It Is	ITS	Weight Limit	WTLIMIT
Junction	JCT	West	W
Left	LFT	Westbound	(route) W
Left Lane	LFT LN	Wet Pavement	WET PVMT
Lane Closed	LN CLOSED	Will Not	WONT
Lower Level	LWR LEVEL		
Maintenance	MAINT		

RECOMMENDED	PHASES	AND	FORMATS	FOR	PCMS	MESSAGES	DUR
	(

(The Engineer may approve other messages not specifically covered here.)

Δ

Phase 1: Condition Lists

Road/Lane/Ramp Closure List

	•	011101 0
FREEWAY CLOSED X MILE	FRONTAGE ROAD CLOSED	ROADWORK XXX FT
ROAD CLOSED AT SH XXX	SHOULDER CLOSED XXX FT	FLAGGER XXXX FT
ROAD CLSD AT FM XXXX	RIGHT LN CLOSED XXX FT	RIGHT LN NARROWS XXXX FT
RIGHT X LANES CLOSED	RIGHT X LANES OPEN	MERGING TRAFFIC XXXX FT
CENTER LANE CLOSED	DAYTIME LANE CLOSURES	LOOSE GRAVEL XXXX FT
NIGHT LANE CLOSURES	I-XX SOUTH EXIT CLOSED	DETOUR X MILE
VARIOUS LANES CLOSED	EXIT XXX CLOSED X MILE	ROADWORK PAST SH XXXX
EXIT CLOSED	RIGHT LN TO BE CLOSED	BUMP XXXX FT
MALL DRIVEWAY CLOSED	X LANES CLOSED TUE - FRI	TRAFFIC SIGNAL XXXX FT
XXXXXXXX BLVD CLOSED	¥ LANES SHIFT in Phase 1	I must be used

Other Co	ndition List
ROADWORK XXX FT	ROAD REPAIRS XXXX FT
FLAGGER XXXX FT	LANE NARROWS XXXX FT
RIGHT LN NARROWS XXXX FT	TWO-WAY TRAFFIC XX MILE
MERGING TRAFFIC XXXX FT	CONST TRAFFIC XXX FT
LOOSE GRAVEL XXXX FT	UNEVEN LANES XXXX FT
DETOUR X MILE	ROUGH ROAD XXXX FT
ROADWORK PAST SH XXXX	ROADWORK NEXT FRI-SUN
BUMP XXXX FT	US XXX EXIT X MILES
TRAFFIC SIGNAL XXXX FT	L ANE S SHIFT

	/Effect on Travel _ist
MERGE RIGHT	FORM X LINES RIGHT
DETOUR NEXT X EXITS	USE XXXXX RD EXIT
USE EXIT XXX	USE EXIT I-XX NORTH
STAY ON US XXX SOUTH	USE I-XX E TO I-XX N
TRUCKS USE US XXX N	WATCH FOR TRUCKS
WATCH FOR TRUCKS	EXPECT DELAYS
EXPECT DELAYS	PREPARE TO STOP
REDUCE SPEED XXX FT	END SHOULDER USE
USE OTHER ROUTES	WATCH FOR WORKERS
STAY IN LANE	×

APPLICATION GUIDELINES

- Only 1 or 2 phases are to be used on a PCMS. 2. The 1st phase (or both) should be selected from the
- "Road/Lane/Ramp Closure List" and the "Other Condition List".
- 3. A 2nd phase can be selected from the "Action to Take/Effect on Travel, Location, General Warning, or Advance Notice Phase Lists".
- 4. A Location Phase is necessary only if a distance or location is not included in the first phase selected.
- 5. If two PCMS are used in sequence, they must be separated by a minimum of 1000 ft. Each PCMS shall be limited to two phases, and should be understandable by themselves.
- 6. For advance notice, when the current date is within seven days of the actual work date, calendar days should be replaced with days of the week. Advance notification should typically be for no more than one week prior to the work.

WORDING ALTERNATIVES

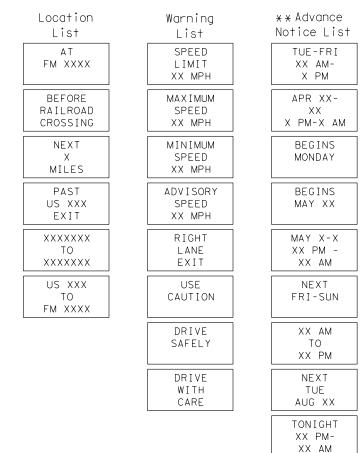
- 1. The words RIGHT, LEFT and ALL can be interchanged as appropriate.
- appropriate.
- EAST, WEST, NORTH and SOUTH (or abbreviations E, W, N and S) can be interchanged as appropriate.
- 4. Highway names and numbers replaced as appropriate.
- ROAD, HIGHWAY and FREEWAY can be interchanged as needed.
- 6. AHEAD may be used instead of distances if necessary. 7. FT and MI. MILE and MILES interchanged as appropriate.
- 8. AT. BEFORE and PAST interchanged as needed.
- 9. Distances or AHEAD can be eliminated from the message if a
- location phase is used.

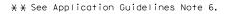
PCMS SIGNS WITHIN THE R.O.W. SHALL BE BEHIND GUARDRAIL OR CONCRETE BARRIER OR SHALL HAVE A MINIMUM OF FOUR (4) PLASTIC DRUMS PLACED PERPENDICULAR TO TRAFFIC ON THE UPSTREAM SIDE OF THE PCMS, WHEN EXPOSED TO ONE DIRECTION OF TRAFFIC. WHEN EXPOSED TO TWO WAY TRAFFIC. THE FOUR DRUMS SHOULD BE PLACED WITH ONE DRUM AT EACH OF THE FOUR CORNERS OF THE UNIT.

with STAY IN LANE in Phase 2.

FULL MATRIX PCMS SIGNS

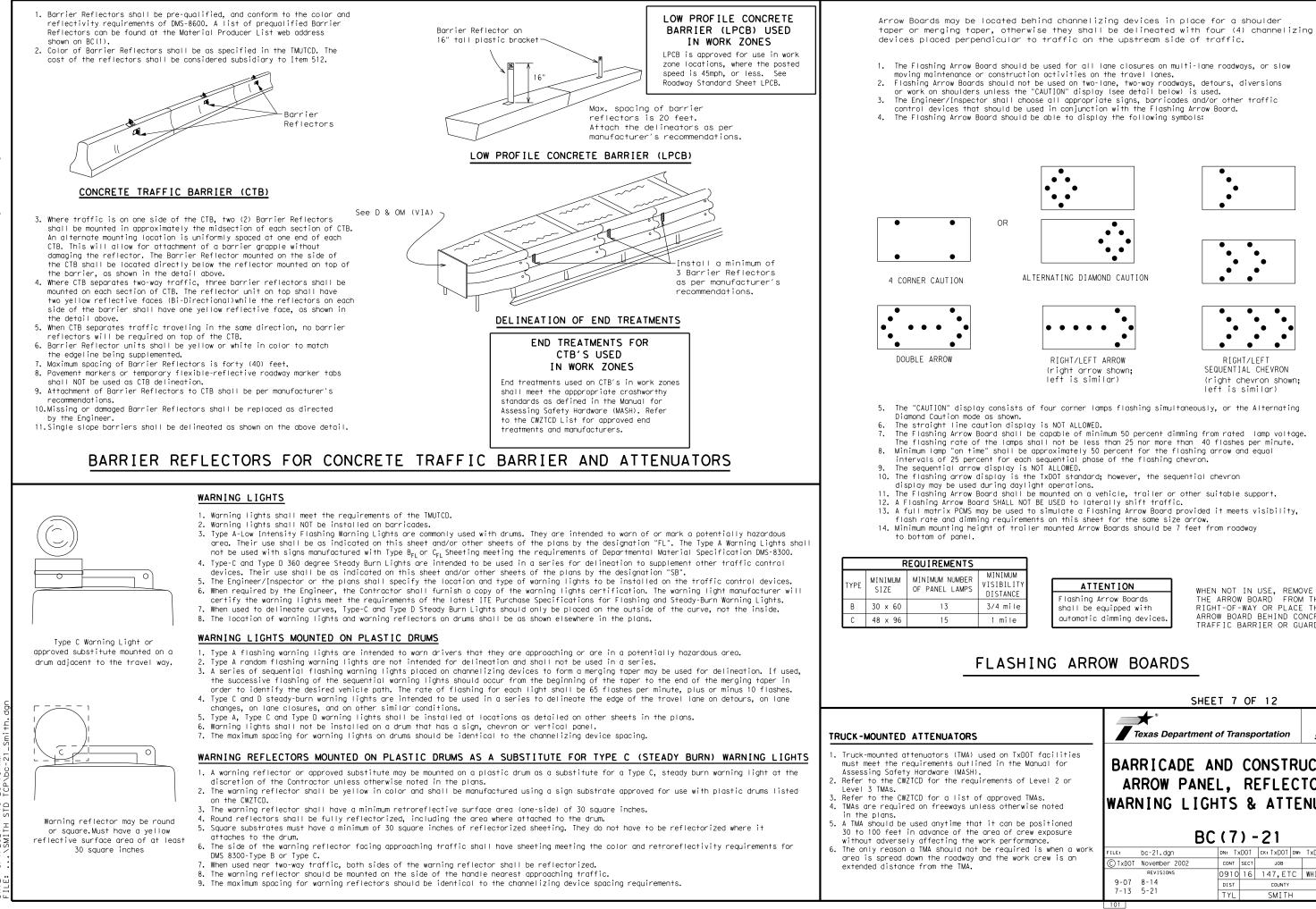
- 1. When Full Matrix PCMS signs are used, the character height and legibility/visibility requirements shall be maintained as listed in Note 15 und CHANGEABLE MESSAGE SIGNS" above.
- 2. When symbol signs, such as the "Flagger Symbol" (CW20-7) are represented graphically on the Full Matrix PCMS sign and, with the approval of the shall maintain the legibility/visibility requirement listed above
- 3. When symbol signs are represented graphically on the Full Matrix PCMS, they shall only supplement the use of the static sign represented, and for, or replace that sign.
- 4. A full matrix PCMS may be used to simulate a flashing arrow board provided it meets the visibility, flash rate and dimming requirements on BC same size arrow


any Ion


Roadway

designation # IH-number, US-number, SH-number, FM-number

RING ROADWORK ACTIVITIES


Phase 2: Possible Component Lists

2. Roadway designations IH, US, SH, FM and LP can be interchanged as

	S	HEET 6 OF	12	
	Texas Departm	ent of Transp	ortation	Traffic Safety Division Standard
		AND CO BLE CHA BE SIGN	NGEAB	LE
der "PORTABLE				
he Engineer, it		BC (6) -	-21	
	FILE: bc-21.dgn	dn: TxDOT	ск: TxDOT dw:	TxDOT CK: TxDOT
I shall not substitute	© TxDOT November 2002	CONT SECT	JOB	HIGHWAY
	REVISIONS	0910 16	147,ETC	WHITTLE ST,ETC
(7), for the	9-07 8-14	DIST	COUNTY	SHEET NO.
	7-13 5-21	TYL	SMITH	23

AN V 10: 20: 18 STD_TCPNPC 9/7/2021 DATE:

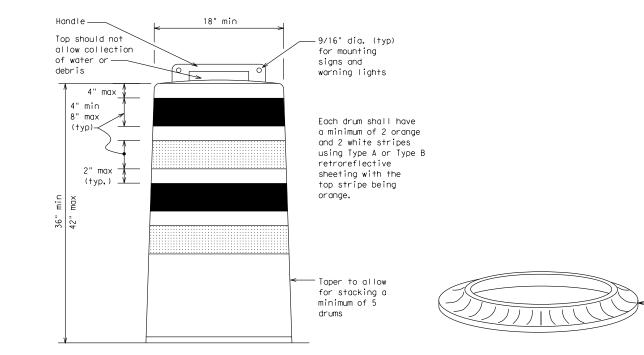
WHEN NOT IN USE, REMOVE THE ARROW BOARD FROM THE RIGHT-OF-WAY OR PLACE THE ARROW BOARD BEHIND CONCRETE TRAFFIC BARRIER OR GUARDRAIL.

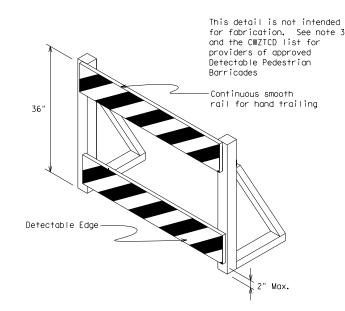
	SH	EET 7 OF 12	
	Texas Departme	ent of Transportation	Traffic Safety Division Standard
d on TxDOT facilities in the Manual for	BARRICADE	AND CONSTR	UCTION
nents of Level 2 or	ARROW PAN	IEL, REFLEC	TORS.
pproved TMAs. s otherwise noted	WARNING LI		
t can be positioned ea of crew exposure < performance.	В	C(7)-21	
required is when a work the work crew is an	FILE: bc-21,dgn	DN: TXDOT CK: TXDOT DW	: TxDOT CK:TxDOT
The work crew to di	CTxDOT November 2002	CONT SECT JOB	HIGHWAY
	REVISIONS	0910 16 147,ETC	WHITTLE ST,ETC
	9-07 8-14	DIST COUNTY	SHEET NO.
	7-13 5-21	TYL SMITH	24
	101		

GENERAL NOTES

- 1. For long term stationary work zones on freeways, drums shall be used as the primary channelizing device.
- 2. For intermediate term stationary work zones on freeways, drums should be used as the primary channelizing device but may be replaced in tangent sections by vertical panels, or 42" two-piece cones. In tangent sections, one-piece cones may be used with the approval of the Engineer but only if personnel are present on the project at all times to maintain the cones in proper position and location.
- 3. For short term stationary work zones on freeways, drums are the preferred channelizing device but may be replaced in tapers, transitions and tangent sections by vertical panels, two-piece cones or one-piece cones as approved by the Engineer.
- 4. Drums and all related items shall comply with the requirements of the current version of the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD) and the "Compliant Work Zone Traffic Control Devices List" (CWZTCD).
- 5. Drums, bases, and related materials shall exhibit good workmanship and shall be free from objectionable marks or defects that would adversely affect their appearance or serviceability.
- 6. The Contractor shall have a maximum of 24 hours to replace any plastic drums identified for replacement by the Engineer/Inspector. The replacement device must be an approved device.

GENERAL DESIGN REQUIREMENTS

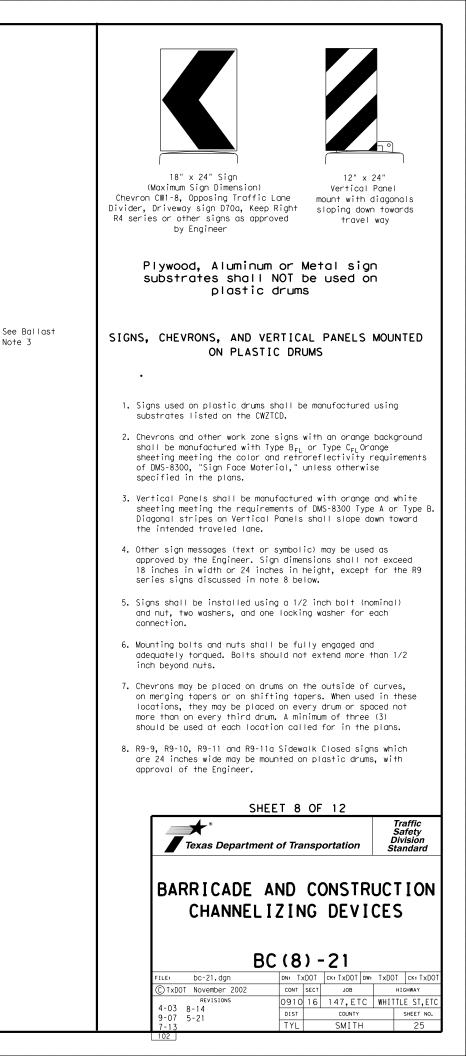

- Pre-qualified plastic drums shall meet the following requirements:
- 1. Plastic drums shall be a two-piece design; the "body" of the drum shall be the top portion and the "base" shall be the bottom.
- 2. The body and base shall lock together in such a manner that the body separates from the base when impacted by a vehicle traveling at a speed of 20 MPH or greater but prevents accidental separation due to normal handling and/or air turbulence created by passing vehicles.
- 3. Plastic drums shall be constructed of lightweight flexible, and deformable materials. The Contractor shall NOT use metal drums or single piece plastic drums as channelization devices or sign supports.
- 4. Drums shall present a profile that is a minimum of 18 inches in width at the 36 inch height when viewed from any direction. The height of drum unit (body installed on base) shall be a minimum of 36 inches and a maximum of 42 inches.
- 5. The top of the drum shall have a built-in handle for easy pickup and shall be designed to drain water and not collect debris. The handle shall have a minimum of two widely spaced 9/16 inch diameter holes to allow attachment of a warning light, warning reflector unit or approved compliant sign.
- 6. The exterior of the drum body shall have a minimum of four alternating orange and white retroreflective circumferential stripes not less than 4 inches nor greater than 8 inches in width. Any non-reflectorized space between any two adjacent stripes shall not exceed 2 inches in
- 7. Bases shall have a maximum width of 36 inches, a maximum height of 4 inches, and a minimum of two footholds of sufficient size to allow base to be held down while separating the drum body from the base.
- 8. Plastic drums shall be constructed of ultra-violet stabilized, orange, high-density polyethylene (HDPE) or other approved material.
- 9. Drum body shall have a maximum unballasted weight of 11 lbs.
- 10. Drum and base shall be marked with manufacturer's name and model number.


RETROREFLECTIVE SHEETING

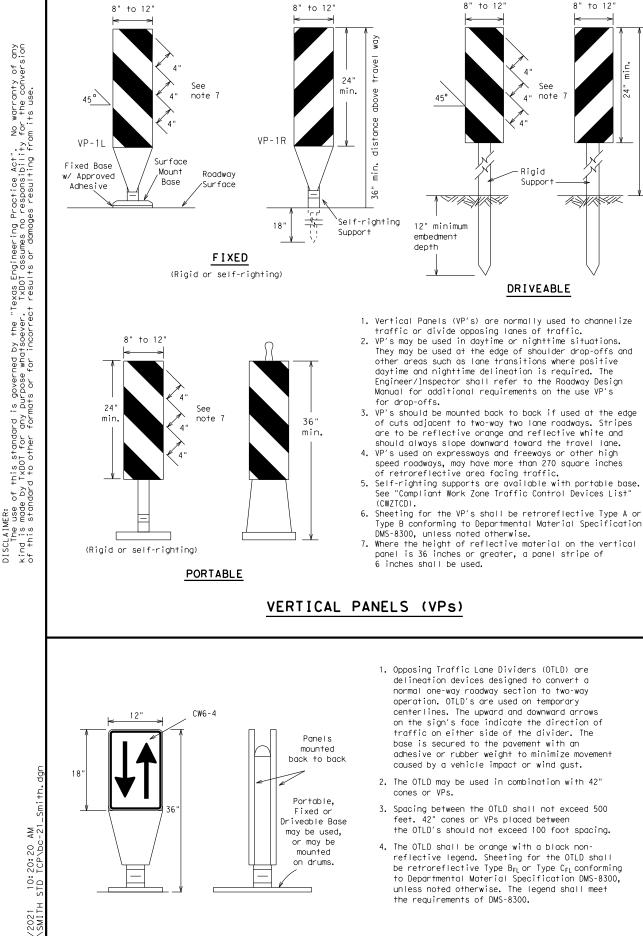
- 1. The stripes used on drums shall be constructed of sheeting meeting the color and retroreflectivity requirements of Departmental Materials Specification DMS-8300, "Sign Face Materials." Type A or Type B reflective sheeting shall be supplied unless otherwise specified in the plans.
- 2. The sheeting shall be suitable for use on and shall adhere to the drum surface such that, upon vehicular impact, the sheeting shall remain adhered in-place and exhibit no delaminating, cracking, or loss of retroreflectivity other than that loss due to abrasion of the sheeting surface.

BALLAST

- 1. Unballasted bases shall be large enough to hold up to 50 lbs. of sand. This base, when filled with the ballast material, should weigh between 35 lbs (minimum) and 50 lbs (maximum). The ballast may be sand in one to three sandbags separate from the base, sand in a sand-filled plastic base, or other ballasting devices as approved by the Engineer. Stacking of sandbags will be allowed, however height of sandbags above pavement surface may not exceed 12 inches.
- 2. Bases with built-in ballast shall weigh between 40 lbs. and 50 lbs. Built-in ballast can be constructed of an integral crumb rubber base or a solid rubber base.
- 3. Recycled truck tire sidewalls may be used for ballast on drums approved for this type of ballast on the CWZTCD list.
- 4. The ballast shall not be heavy objects, water, or any material that would become hazardous to motorists, pedestrians, or workers when the drum is struck by a vehicle.
- 5. When used in regions susceptible to freezing, drums shall have drainage holes in the bottoms so that water will not collect and freeze becoming a hazard when struck by a vehicle.
- 6. Ballast shall not be placed on top of drums.
- 7. Adhesives may be used to secure base of drums to pavement.


DETECTABLE PEDESTRIAN BARRICADES

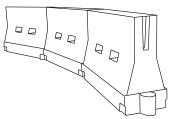
- 1. When existing pedestrian facilities are disrupted, closed, or relocated in a TTC zone, the temporary facilities shall be detectable and include accessibility features consistent with the features present in the existing pedestrian facility. Refer to WZ(BTS-2) for Pedestrian Control requirements for Sidewalk Diversions, Sidewalk Detours and Crosswalk Closures.
- 2. Where pedestrians with visual disabilities normally use the closed sidewalk, a Detectable Pedestrian Barricade shall be placed across the full width of the closed sidewalk instead of a Type 3 Barricade.
- 3. Detectable pedestrian barricades similar to the one pictured above, longitudinal channelizing devices, some concrete barriers, and wood or chain link fencing with a continuous detectable edging can satisfactorily delineate a pedestrian
- 4. Tape, rope, or plastic chain strung between devices are not detectable, do not comply with the design standards in the "Americans with Disabilities Act Accessibility Guidelines (ADAAG)" and should not be used as a control for pedestrian movements.
- 5. Warning lights shall not be attached to detectable pedestrian barricades.
- 6. Detectable pedestrian barricades should use 8" nominal barricade rails as shown on BC(10) provided that the top rail provides a smooth continuous rail suitable for hand trailing with no splinters, burrs, or sharp edges.


ion

e Ç

No warranty for the conv om its use.

Note 3



OPPOSING TRAFFIC LANE DIVIDERS (OTLD)

36 Fixed Base w/ Approved Adhesive (Driveable Base, or Flexible Support can be used) CHEVRONS LONGITUDINAL CHANNELIZING DEVICES (LCD) 2. LCDs may be used instead of a line of cones or drums. used only when shown on the CWZTCD list. on BC(7) when placed roughly parallel to the travel lanes. WATER BALLASTED SYSTEMS USED AS BARRIERS

Min.

- 1. The chevron shall be a vertical rectangle with a minimum size of 12 by 18 inches.
- 2. Chevrons are intended to give notice of a sharp change of alignment with the direction of travel and provide additional emphasis and guidance for vehicle operators with regard to changes in horizontal alignment of the roadway.
- 3. Chevrons, when used, shall be erected on the out side of a sharp curve or turn, or on the far side of an intersection. They shall be in line with and at right angles to approaching traffic. Spacing should be such that the motorist always has three in view, until the change in alignment eliminates its need.
- 4. To be effective, the chevron should be visible for at least 500 feet.
- 5. Chevrons shall be orange with a black nonreflective legend. Sheeting for the chevron shall be retroreflective Type $B_{\mathsf{FL}}\,\text{or}$ Type $C_{\mathsf{FL}}\,\text{conforming}$ to Departmental Material Specification DMS-8300, unless noted otherwise. The legend shall meet the requirements of DMS-8300.
- 6. For Long Term Stationary use on tapers or transitions on freeways and divided highways, self-righting chevrons may be used to supplement plastic drums but not to replace plastic drums.

- 1. LCDs are crashworthy, lightweight, deformable devices that are highly visible, have good target value and can be connected together. They are not designed to contain or redirect a vehicle on impact.
- 3. LCDs shall be placed in accordance to application and installation requirements specific to the device, and
- 4. LCDs should not be used to provide positive protection for obstacles, pedestrians or workers.
- 5. LCDs shall be supplemented with retroreflective delineation as required for temporary barriers
- 6. LCDs used as barricades placed perpendicular to traffic should have at least one row of reflective sheeting meeting the requirements for barricade rails as shown on BC(10). Place reflective sheeting near the top of the LCD along the full length of the device.
- 1. Water ballasted systems used as barriers shall not be used solely to channelize road users, but also to protect the work space per the appropriate Manual for Assessing Safety Hardware (MASH) crashworthiness requirements based on roadway speed and barrier application.
- 2. Water ballasted systems used to channelize vehicular traffic shall be supplemented with retroreflective delineation
- or channelizing devices to improve daytime/nighttime visibility. They may also be supplemented with pavement markings. 3. Water ballasted systems used as barriers shall be placed in accordance to application and installation requirements
- specific to the device, and used only when shown on the CWZTCD list.
- 4. Water ballasted systems used as barriers should not be used for a merging taper except in low speed (less than 45 MPH) urban areas. When used on a taper in a low speed urban area, the taper shall be delineated and the taper length should be designed to optimize road user operations considering the available geometric conditions.
- 5. When water ballasted systems used as barriers have blunt ends exposed to traffic, they should be attenuated as per manufacturer recommendations or flared to a point outside the clear zone.

If used to channelize pedestrians, longitudinal channelizing devices or water ballasted systems must have a continuous detectable bottom for users of long canes and the top of the unit shall not be less than 32 inches in height.

HOLLOW OR WATER BALLASTED SYSTEMS USED AS LONGITUDINAL CHANNELIZING DEVICES OR BARRIERS

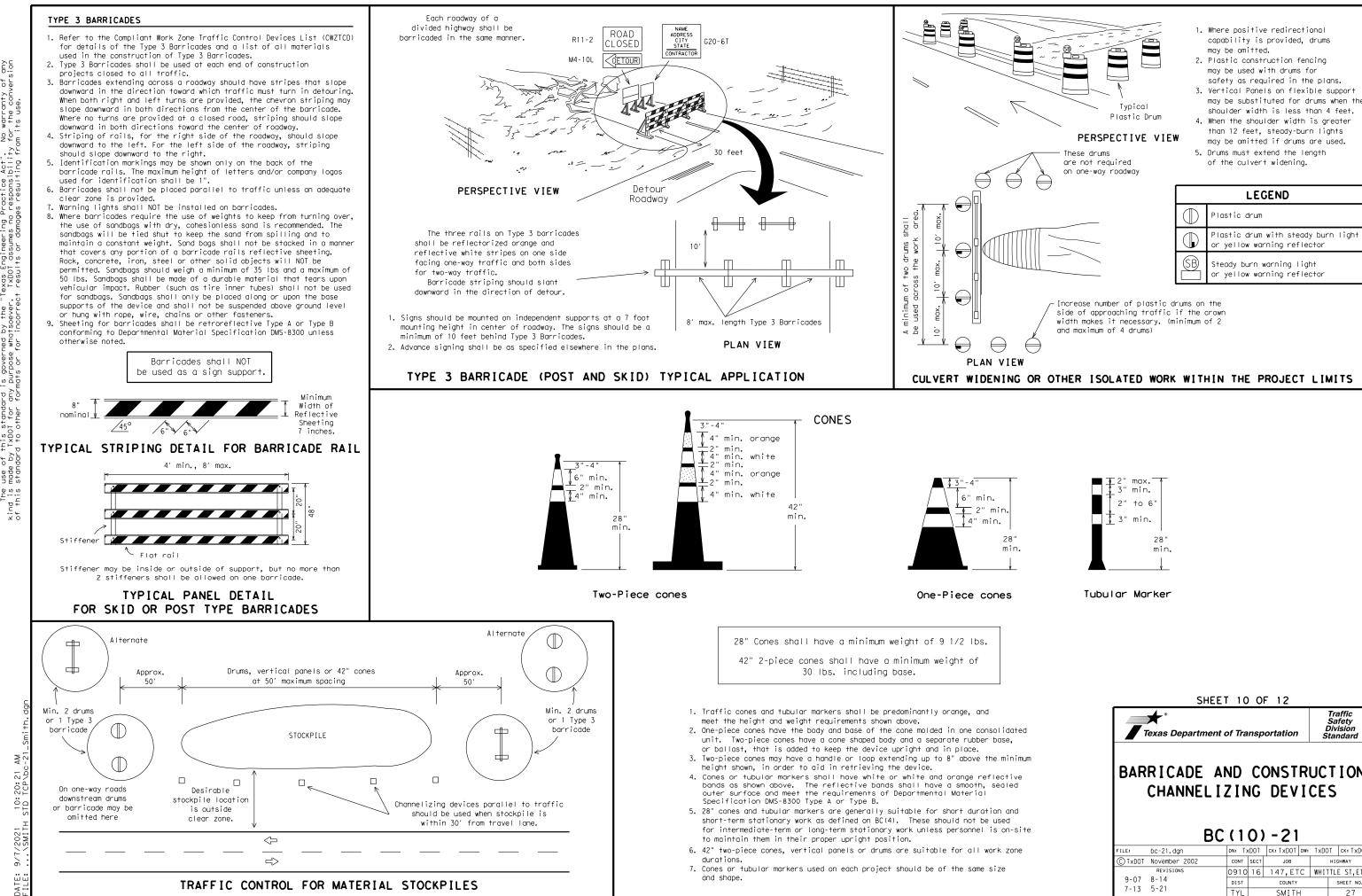
9/7/2021

GENERAL NOTES

- 1. Work Zone channelizing devices illustrated on this sheet may be installed in close proximity to traffic and are suitable for use on high or low speed roadways. The Engineer/Inspector shall ensure that spacing and placement is uniform and in accordance with the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD).
- 2. Channelizing devices shown on this sheet may have a driveable, fixed or portable base. The requirement for self-righting channelizing devices must be specified in the General Notes or other plan sheets.
- 3. Channelizing devices on self-righting supports should be used in work zone areas where channelizing devices are frequently impacted by errant vehicles or vehicle related wind gusts making alignment of the channelizing devices difficult to maintain. Locations of these devices shall be detailed elsewhere in the plans. These devices shall conform to the TMUTCD and the "Compliant Work Zone Traffic Control Devices List" (CWZTCD).
- 4. The Contractor shall maintain devices in a clean condition and replace damaged, nonreflective, faded, or broken devices and bases as required by the Engineer/Inspector. The Contractor shall be required to maintain proper device spacing and alignment.
- 5. Portable bases shall be fabricated from virgin and/or recycled rubber. The portable bases shall weigh a minimum of 30 lbs.
- 6. Pavement surfaces shall be prepared in a manner that ensures proper bonding between the adhesives, the fixed mount bases and the pavement surface. Adhesives shall be prepared and applied according to the manufacturer's recommendations.
- 7. The installation and removal of channelizing devices shall not cause detrimental effects to the final pavement surfaces, including pavement surface discoloration or surface integrity. Driveable bases shall not be permitted on final pavement surfaces. The Engineer/Inspector shall approve all application and removal procedures of fixed bases.

Posted Speed	Formula	Minimum Desirable Taper Lengths X X			Suggested Maximum Spacing of Channelizing Devices			
		10' Offset	11' Offset	12' Offset	On a Taper	On a Tangent		
30		150′	165′	180′	30′	60′		
35	$L = \frac{WS^2}{60}$	205′	225′	245′	35′	70′		
40	00	265′	295′	320′	40′	80′		
45		450′	495′	540′	45 <i>'</i>	90′		
50		500′	550′	600′	50′	100′		
55	L=WS	550′	605′	660′	55′	110′		
60	L 113	600 <i>′</i>	660′	720′	60′	120′		
65		650′	715′	780′	65′	130′		
70		700′	770′	840′	70′	140'		
75		750′	825′	900′	75′	150′		
80		800′	880′	960′	80′	160′		

L=Length of Taper (FT.) W=Width of Offset (FT.) S=Posted Speed (MPH) SUGGESTED MAXIMUM SPACING OF


 \times Taper lengths have been rounded off.

CHANNELIZING DEVICES AND MINIMUM DESIRABLE TAPER LENGTHS

SHEET 9 OF 12	
Texas Department of Transportation	Traffic Safety Division Standard

BARRICADE AND CONSTRUCTION CHANNELIZING DEVICES

		BC	(9) -	-21				
ILE:	bc-21.dgn		DN: T>	DOT	ск: TxDOT	DW:	TxDO	T	ск: TxDOT
C) TxDOT	November 2002		CONT	SECT	JOB			HIG	HWAY
	REVISIONS		0910	16	147,ET	С	WHIT	TLE	E ST,ETC
9-07	8-14		DIST		COUNTY			\$	SHEET NO.
7-13	5-21		TYL		SMITH	ł			26
103									

conver; + + + S⊓ s+ No - E ractice Act". r responsibility : s resulting fror ssumes no i gc sg st XOS ET TXDOT governed by the "T. rpose whatsoever. s or for incorrect e e e for d of this sto by TxDOT t Anord to oth DISCLAIMER: The use o kind is made of this stand

> AN 10: 20: 21 7/2021 6

104

	SHEE	т 1С	0	F 12			
	★* Texas Department o	of Tra	nsp	ortation		ċ	Traffic Safety Division tandard
	BARRICADE AND CONSTRUCTION CHANNELIZING DEVICES						
				-21			
FILE:	bc-21.dgn	DN: T;	<dot< th=""><th>ск: TxDOT</th><th>DW:</th><th>TxDO</th><th>T CK: TXDOT</th></dot<>	ск: TxDOT	DW:	TxDO	T CK: TXDOT
© TxDOT	November 2002	CONT	SECT	JOB			HIGHWAY
	REVISIONS	0910	16	147,ET	C	WHIT	TLE ST,ETC
9-07	8-14	DIST		COUNTY			SHEET NO.
7-13	5-21	TYL		SMITH	1		27

WORK ZONE PAVEMENT MARKINGS

GENERAL

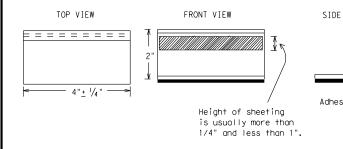
- The Contractor shall be responsible for maintaining work zone and existing pavement markings, in accordance with the standard specifications and special provisions, on all roadways open to traffic within the CSJ limits unless otherwise stated in the plans.
- Color, patterns and dimensions shall be in conformance with the "Texas Manual on Uniform Traffic Control Devices" (TMUTCD).
- 3. Additional supplemental pavement marking details may be found in the plans or specifications.
- 4. Pavement markings shall be installed in accordance with the TMUTCD and as shown on the plans.
- When short term markings are required on the plans, short term markings shall conform with the TMUTCD, the plans and details as shown on the Standard Plan Sheet WZ (STPM).
- 6. When standard pavement markings are not in place and the roadway is opened to traffic, DO NOT PASS signs shall be erected to mark the beginning of the sections where passing is prohibited and PASS WITH CARE signs at the beginning of sections where passing is permitted.
- All work zone pavement markings shall be installed in accordance with Item 662, "Work Zone Pavement Markings."

RAISED PAVEMENT MARKERS

- 1. Raised pavement markers are to be placed according to the patterns on BC(12).
- All raised pavement markers used for work zone markings shall meet the requirements of Item 672, "RAISED PAVEMENT MARKERS" and Departmental Material Specification DMS-4200 or DMS-4300.

PREFABRICATED PAVEMENT MARKINGS

- 1. Removable prefabricated pavement markings shall meet the requirements of DMS-8241.
- Non-removable prefabricated pavement markings (foil back) shall meet the requirements of DMS-8240.


MAINTAINING WORK ZONE PAVEMENT MARKINGS

- The Contractor will be responsible for maintaining work zone pavement markings within the work limits.
- Work zone pavement markings shall be inspected in accordance with the frequency and reporting requirements of work zone traffic control device inspections as required by Form 599.
- 3. The markings should provide a visible reference for a minimum distance of 300 feet during normal daylight hours and 160 feet when illuminated by automobile low-beam headlights at night, unless sight distance is restricted by roadway geometrics.
- Markings failing to meet this criteria within the first 30 days after placement shall be replaced at the expense of the Contractor as per Specification Item 662.

REMOVAL OF PAVEMENT MARKINGS

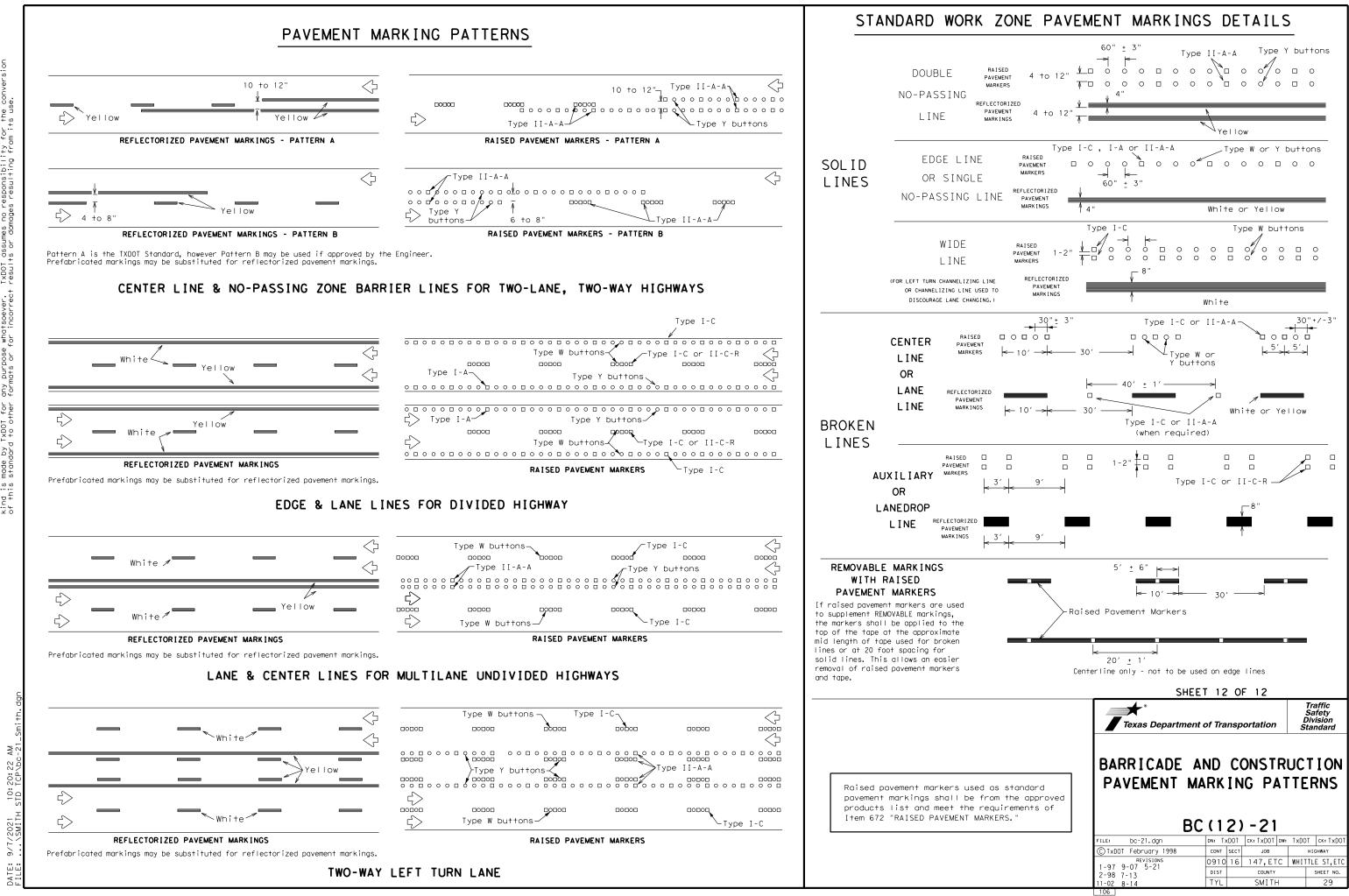
- Pavement markings that are no longer applicable, could create confusion or direct a motorist toward or into the closed portion of the roadway shall be removed or obliterated before the roadway is opened to traffic.
- The above shall not apply to detours in place for less than three days, where flaggers and/or sufficient channelizing devices are used in lieu of markings to outline the detour route.
- Pavement markings shall be removed to the fullest extent possible, so as not to leave a discernable marking. This shall be by any method approved by TxDOT Specification Item 677 for "Eliminating Existing Pavement Markings and Markers".
- 4. The removal of pavement markings may require resurfacing or seal coating portions of the roadway as described in Item 677.
- Subject to the approval of the Engineer, any method that proves to be successful on a particular type pavement may be used.
- 6. Blast cleaning may be used but will not be required unless specifically shown in the plans.
- 7. Over-painting of the markings SHALL NOT BE permitted.
- 8. Removal of raised pavement markers shall be as directed by the Engineer.
- Removal of existing pavement markings and markers will be paid for directly in accordance with Item 677, "ELIMINATING EXISTING PAVEMENT MARKINGS AND MARKERS," unless otherwise stated in the plans.
- 10.Black-out marking tape may be used to cover conflicting existing markings for periods less than two weeks when approved by the Engineer.

Temporary Flexible-Reflective Roadway Marker Tabs

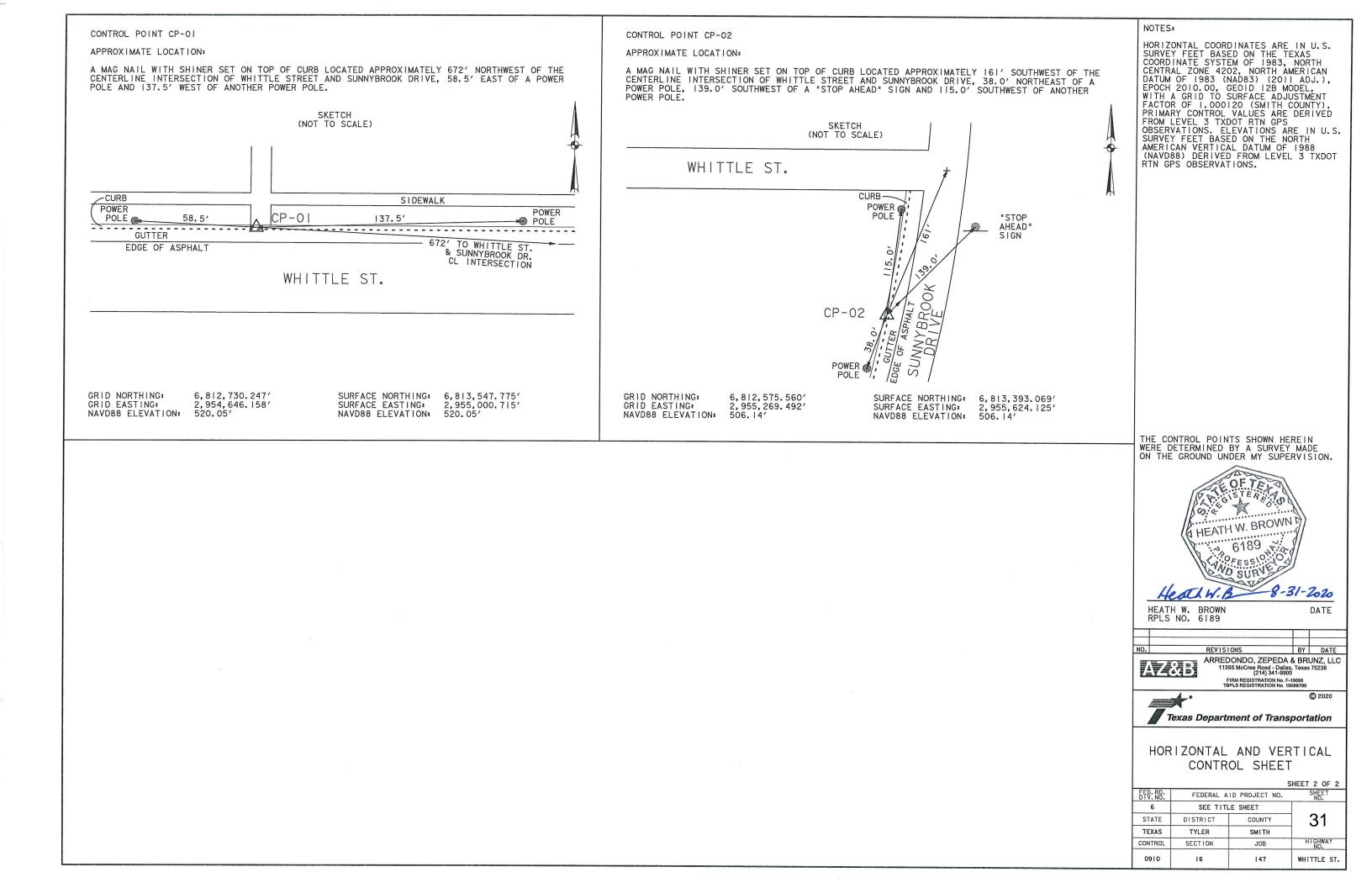
STAPLES OR NAILS SHALL NOT BE USED TO SECU TEMPORARY FLEXIBLE-REFLECTIVE ROADWAY MARK TABS TO THE PAVEMENT SURFACE

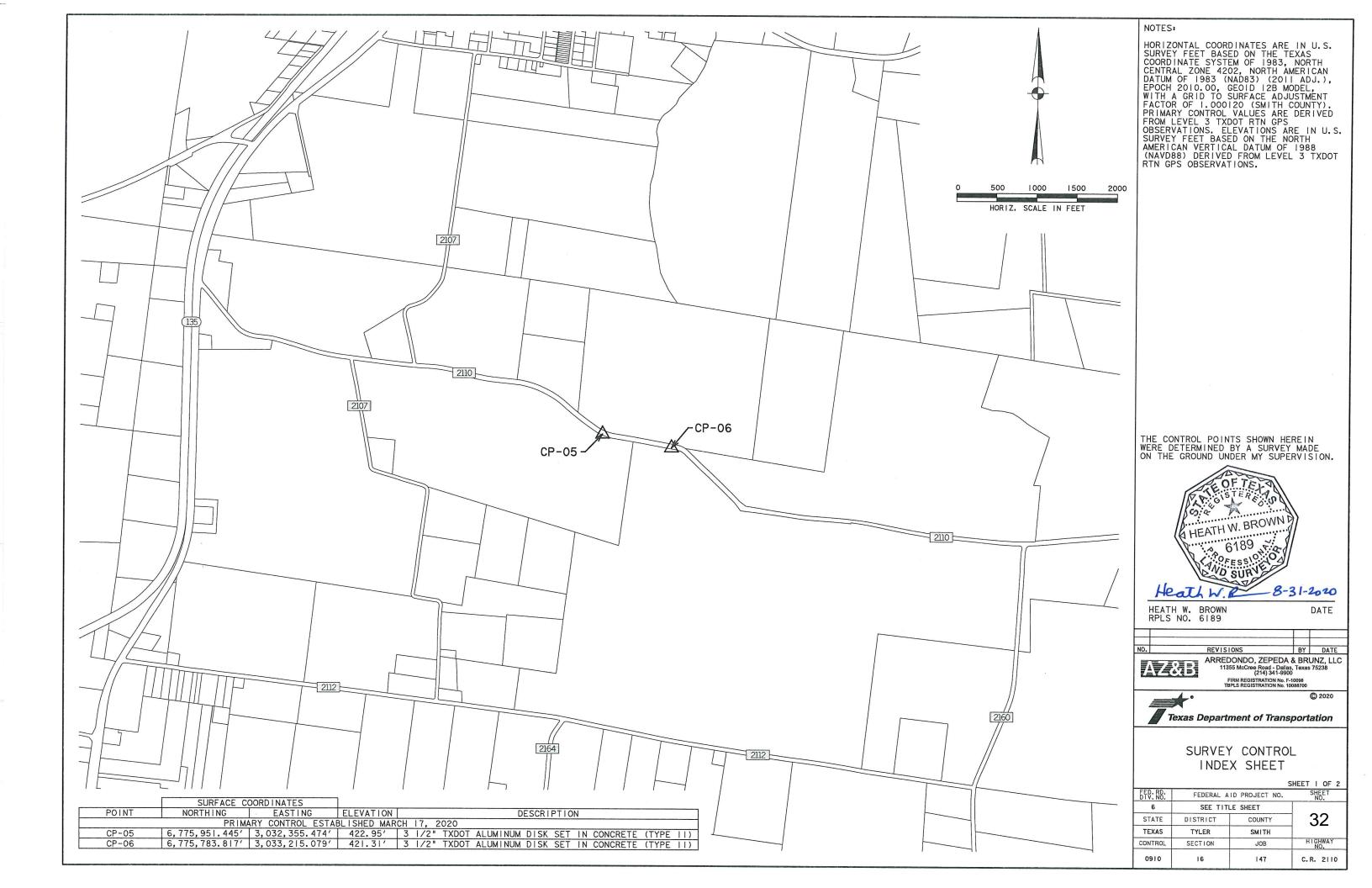
- Temporary flexible-reflective roadway marker tabs used as guiden shall meet the requirements of DMS-8242.
- Tabs detailed on this sheet are to be inspected and accepted by Engineer or designated representative. Sampling and testing is n normally required, however at the option of the Engineer, either or "B" below may be imposed to assure quality before placement of roadway.
 - A. Select five (5) or more tabs at random from each lot or sh and submit to the Construction Division, Materials and Pav Section to determine specification compliance.
 - B. Select five (5) tabs and perform the following test. Affix (5) tabs at 24 inch intervals on an asphaltic pavement in straight line. Using a medium size passenger vehicle or pi run over the markers with the front and rear tires at a sp of 35 to 40 miles per hour, four (4) times in each directi more than one (1) out of the five (5) reflective surfaces be lost or displaced as a result of this test.
- 3. Small design variances may be noted between tab manufacturers.
- 4. See Standard Sheet WZ(STPM) for tab placement on new pavements. Standard Sheet TCP(7-1) for tab placement on seal coat work.

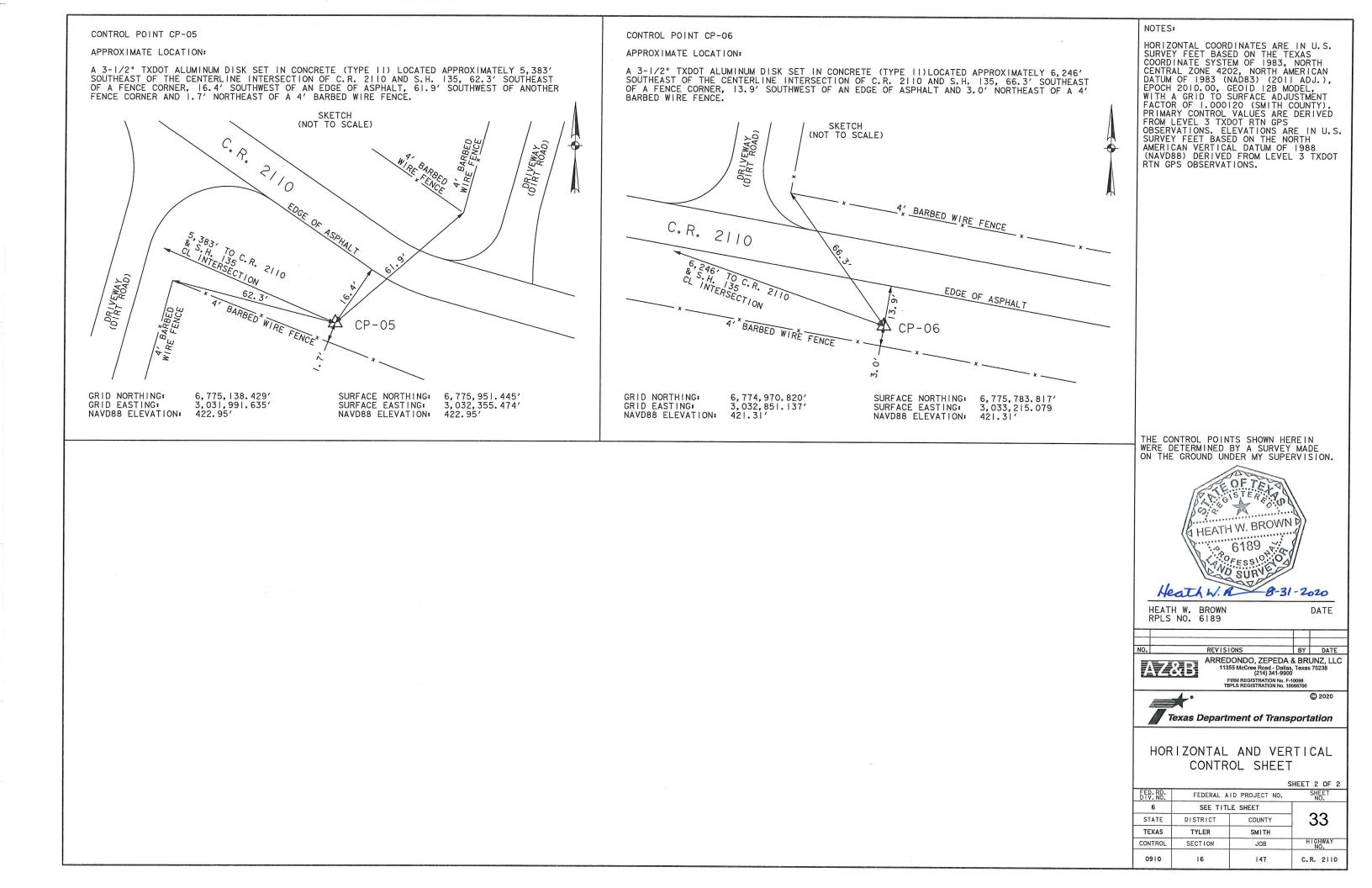
RAISED PAVEMENT MARKERS USED AS GUIDEMARK

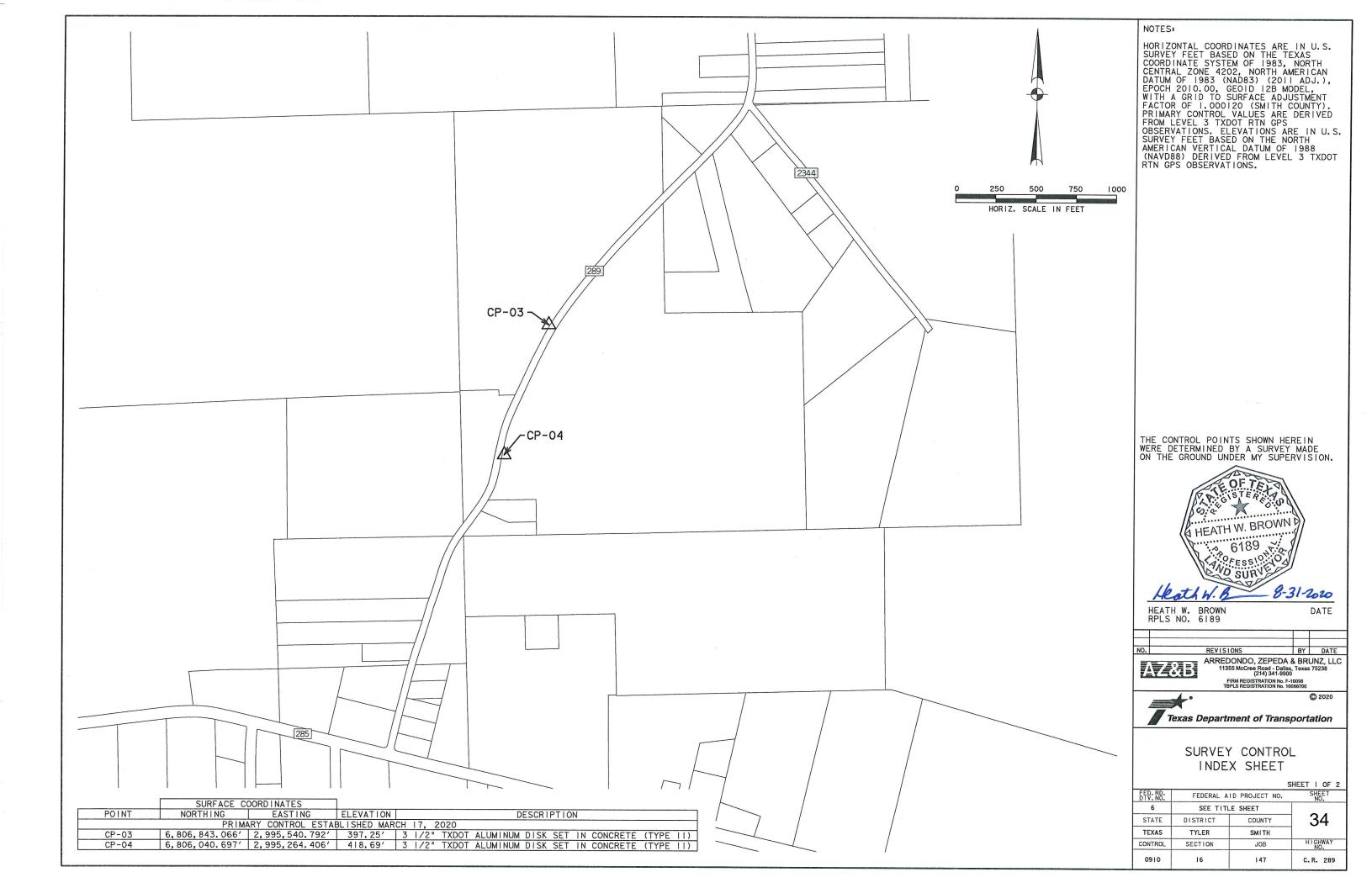

- Raised pavement markers used as guidemarks shall be from the approduct list, and meet the requirements of DMS-4200.
- 2. All temporary construction raised pavement markers provided on project shall be of the same manufacturer.
- Adhesive for guidemarks shall be bituminous material hot applie butyl rubber pad for all surfaces, or thermoplastic for concresurfaces.

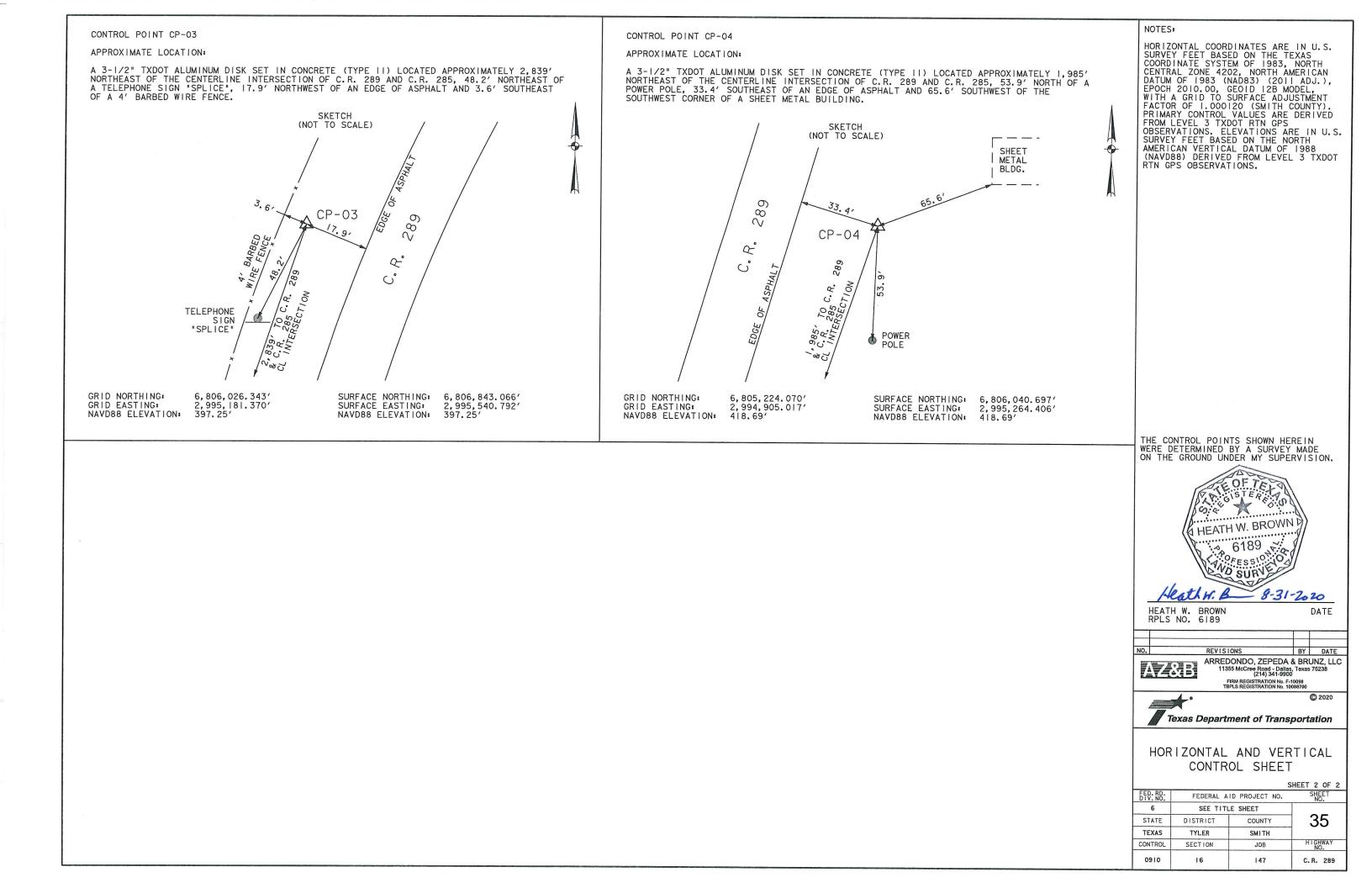

Guidemarks shall be designated as:

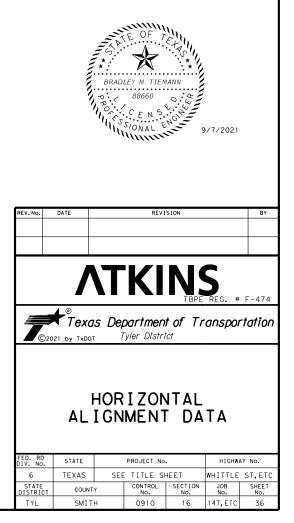

YELLOW - (two amber reflective surfaces with yellow body). WHITE - (one silver reflective surface with white body).

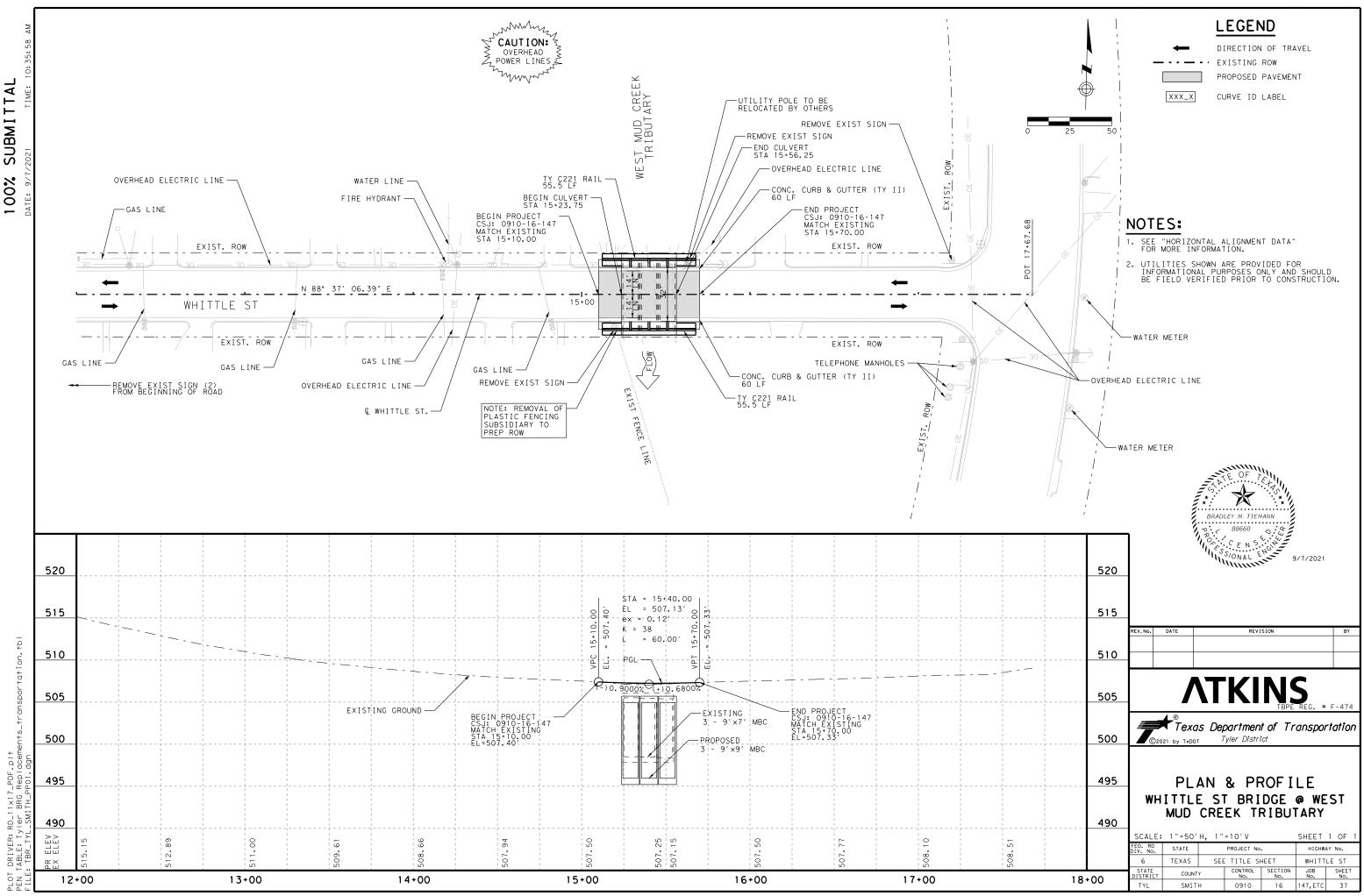

	DEPARTMENTAL MATERIAL SPECIFICAT	
	PAVEMENT MARKERS (REFLECTORIZED)	DMS-4200
	TRAFFIC BUTTONS	DMS-4300
	EPOXY AND ADHESIVES	DMS-6100
VIEW	BITUMINOUS ADHESIVE FOR PAVEMENT MARKERS	DMS-6130
77	PERMANENT PREFABRICATED PAVEMENT MARKINGS	DMS-8240
	TEMPORARY REMOVABLE, PREFABRICATED PAVEMENT MARKINGS	DMS-8241
] 	TEMPORARY FLEXIBLE, REFLECTIVE ROADWAY MARKER TABS	DMS-8242
sive pad	A list of prequalified reflective raised pavemen non-reflective traffic buttons, roadway marker t pavement markings can be found at the Material F web address shown on BC(1).	abs and other
RE ER		
orks		
the ot "A" n the		
ipment ement		
five a okup, eed on. No shall		
See		
5		
proved		
d or e		
	SHEET 11 OF 12	
		Traffic
	Texas Department of Transportation	Safety Division Standard
	BARRICADE AND CONST PAVEMENT MARKIN	
	BC(11)-21	
	FILE: bc-21.dgn DN: TXDOT ск: TXDOT (C) TXDOT February 1998 CONT SECT JOB	
	REVISIONS 0910 16 147, ET 1-02 7-13 DIST COUNTY	C WHITTLE ST,ET SHEET NO.


105

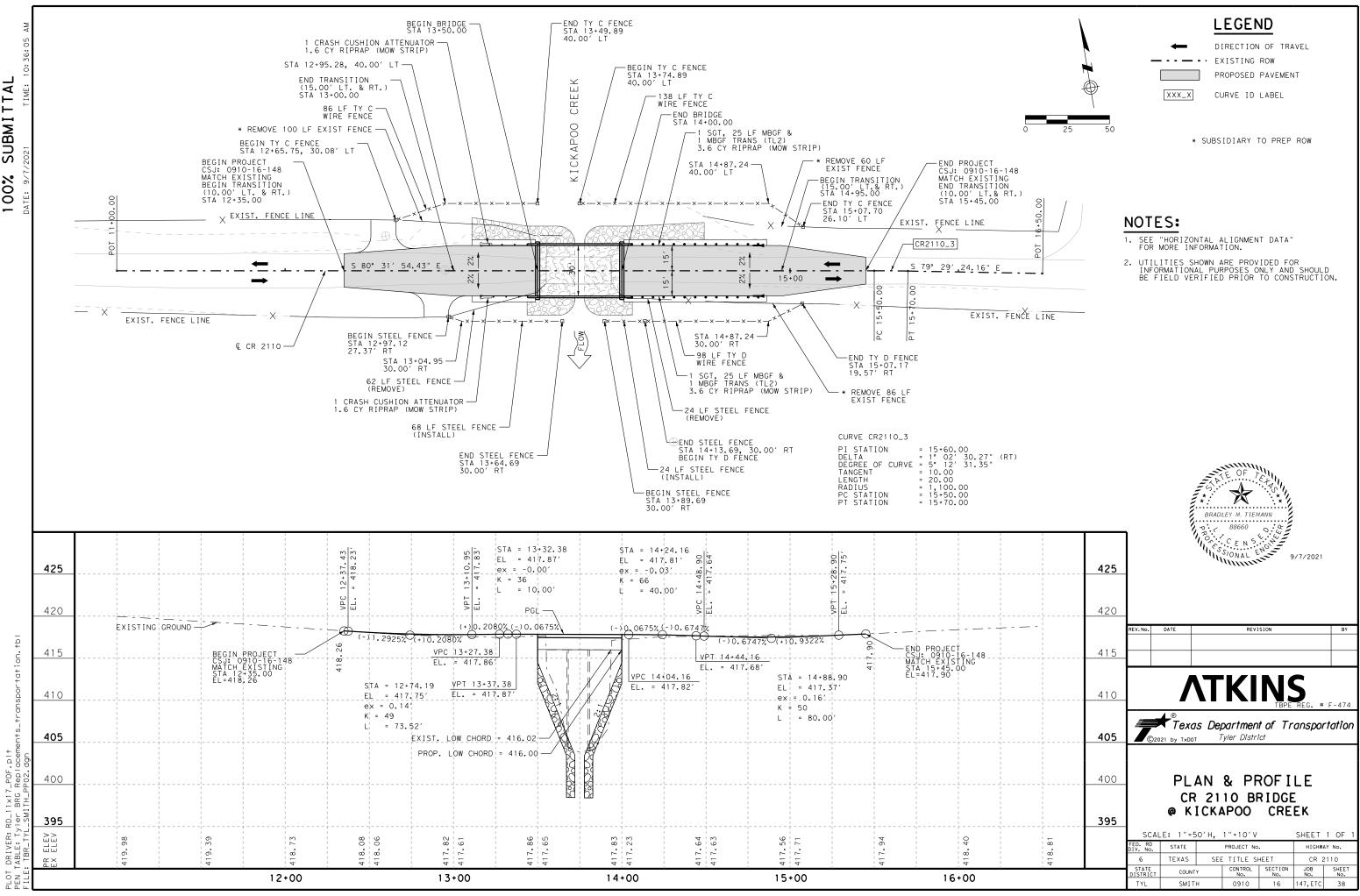




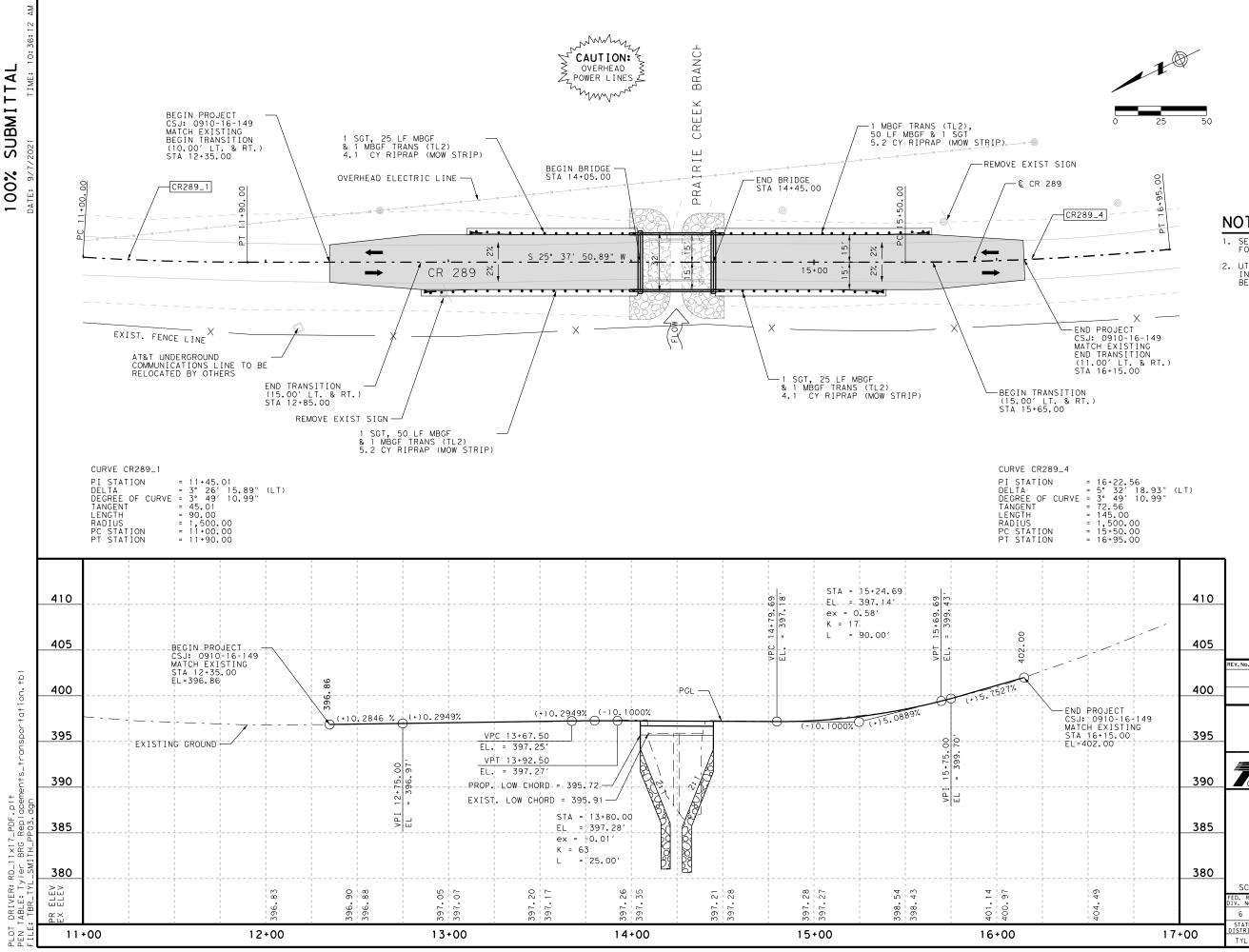

<u>Whittle st @ Alignment</u>


Beginning chain W	HITTLE description	
Point 100	N 6,813,529.0550 E 2,954,906.9830 Sta	10+00.00
Course from 100 t	o 101 N 88° 37′ 06.39" E Dist 740.7912	
Point 101	N 6,813,546.9158 E 2,955,647.5589 Sta	17+40.79
Course from 101 t	o 102 N 88° 37′ 06.39" E Dist 26.8896	
Point 102	N 6,813,547.5641 E 2,955,674.4407 Sta	17+67.68
Ending chain WHIT	TLE description	

<u>CR 2110 @ ALIGNMENT</u>


Point CR21101	Ν	6,775,92	0.0464	Е	3,032,	558.33	51 S†a	11	+00.00
Course from CR21	101 to PC	CR2110_3	S 80°	31′	54.43"	E Dis	+ 450.0	000	
			Curve *						
Curve CR2110_3 .I. Station Pelta = Pegree = angent = ength = adius = ixternal = .ong Chord =	1° 02′ 5° 12′ 1,1	5+60.00 30.27" 31.35" 10.0003 20.0000 00.0000 0.0455 19.9997	N (RT)	6,7	75,844	.3761	E	3,033,	012.0688
lid. Ord. = C. Station T. Station C.C. Back = S head = S	1 1 80° 31′ 5 79° 29′ 2	0.0455 5+50.00 5+70.00 4.43" E 4.16" E	N N N	6,1	75,846 75,842 74,761	.5520	E E	3,033, 3,033, 3,032,	002.2048 021.9013 821.2543
:hord Bear = S :ourse from PT Cf		9.29" E	S 70°	201	24 16"	FDie	+ 80 00	00	
oint CR21105		6,775,82					92 Sta		+50.00
ndina chain CR2									
	CR	289	Ę.	АL	IGNN	ЛЕNT	T		
	<u>CR</u>	289	Ę.	<u>AL</u>	<u>I G N N</u>	<u>ien</u>	Γ		
	CR289 desc nterline	ription					_		
eginning chain (eature: Road_Cer	CR289 desc nterline	ription	Curve	===== Dato			_		
Curve CR289_1 I. Station Pelta = Pegree = angent = Length = Radius = Xternal =	CR289 desc nterline 3° 26 3° 49' 1,5	ription 1+45.01 15.89" 45.0135 90.0000 00.0000 0.6753					_		
Curve CR289_1 .I. Station Delta = Pagree = angent = Adius = Xternal = ong Chord = .C. Station .C. Station .C. Station .C. Station	CR289 desc nterline 3° 26' 3° 49' 1,5	ription 	 Curve *	 Data 6,8	:===== C - *	.0086 .3522	 E E	2,995, 2,995, 2,995,	505.1423 527.0123 485.6707 838.0709
Curve CR289_1 P.I. Station Pelta = legree = angent = adius = id. Ord. = C. Station .C. S	CR289 desc nterline 3° 26' 3° 49' 1,5 1,5 29° 04' 0 25° 37' 5 27° 20' 5	ription ======== 1+45.01 15.89" 10.99" 10.035 90.0000 0.6753 89.9865 0.6749 1+00.00 1+90.00 0.89" W 8.83" W	Curve * (LT) N N N N	 6, 8 6, 8 6, 8 6, 8	306, 763 306, 034	. 0086 . 3522 . 4244 . 5687	_ Е Е Е	2,995, 2,995, 2,995, 2,995, 2,996,	505.1423 527.0123 485.6707
Curve CR289_1 .I. Station lelta = legree = angent = ladius = .xternal = .ong Chord = lid. Ord. = .C. Station .I. Station .C.	CR289 desc nterline 3° 26' 3° 49' 1,5 1,5 29° 04' 0 25° 37' 5 27° 20' 5	ription ======== 1+45.01 15.89" 10.99" 10.035 90.0000 0.6753 89.9865 0.6749 1+00.00 1+90.00 0.89" W 8.83" W	Curve * N(LT) N N N N	0, 8 6, 8 6, 8 6, 8 6, 8 6, 8	306, 724 306, 724 306, 763 306, 683 306, 034 7′ 50. 8	. 0086 . 3522 . 4244 . 5687	_ Е Е Е	2,995, 2,995, 2,995, 2,995, 2,996,	505.1423 527.0123 485.6707
Curve CR289_1 .I. Station pelta = length = length = ladius = .xternal = .d. Ord. = .C. Station .C. S	CR289 desc nterline 3° 26' 3° 49' 1,5 1,5 29° 04' 0 25° 37' 5 27° 20' 5	ription ======== 1+45.01 15.89" 10.99" 10.035 90.0000 0.6753 89.9865 0.6749 1+00.00 1+90.00 0.89" W 8.83" W	Curve * (LT) N N N N	6,8 6,8 6,8 6,8 6,8 5° 37 Date	306, 724 306, 724 306, 683 306, 683 306, 034 7′ 50. 8	.0086 .3522 .4244 .5687 9" W D	E E E E ist 360	2,995, 2,995, 2,995, 2,995, 2,996,	505.1423 527.0123 485.6707
Curve CR289_1 . I. Station Pelta = legree = angent = adjus = Xternal = ong Chord = id. Ord. = .C. Station .C. St	CR289 desc nterline 3° 26' 3° 49' 1,5 29° 04' 0 25° 37' 5 27° 20' 5 R289_1 to 5° 32' 3° 49' 1,5	ription ======= 1+45.01 15.89" 10.99" 45.0135 90.0000 00.6753 89.9865 0.6749 1+00.00 1+90.00 1+90.00 6.77" W 8.83" W PC CR289 6+22.56	Curve N (LT) N N N N N Curve *	6,8 6,8 6,8 6,8 6,8 5° 37 Date	306, 724 306, 724 306, 683 306, 683 306, 034 7′ 50. 8	.0086 .3522 .4244 .5687 9" W D	E E E E ist 360	2,995, 2,995, 2,995, 2,995, 2,996,	505.1423 527.0123 485.6707

100% SUBMITTAL DATE: 9/7/2021 TIME: 10:



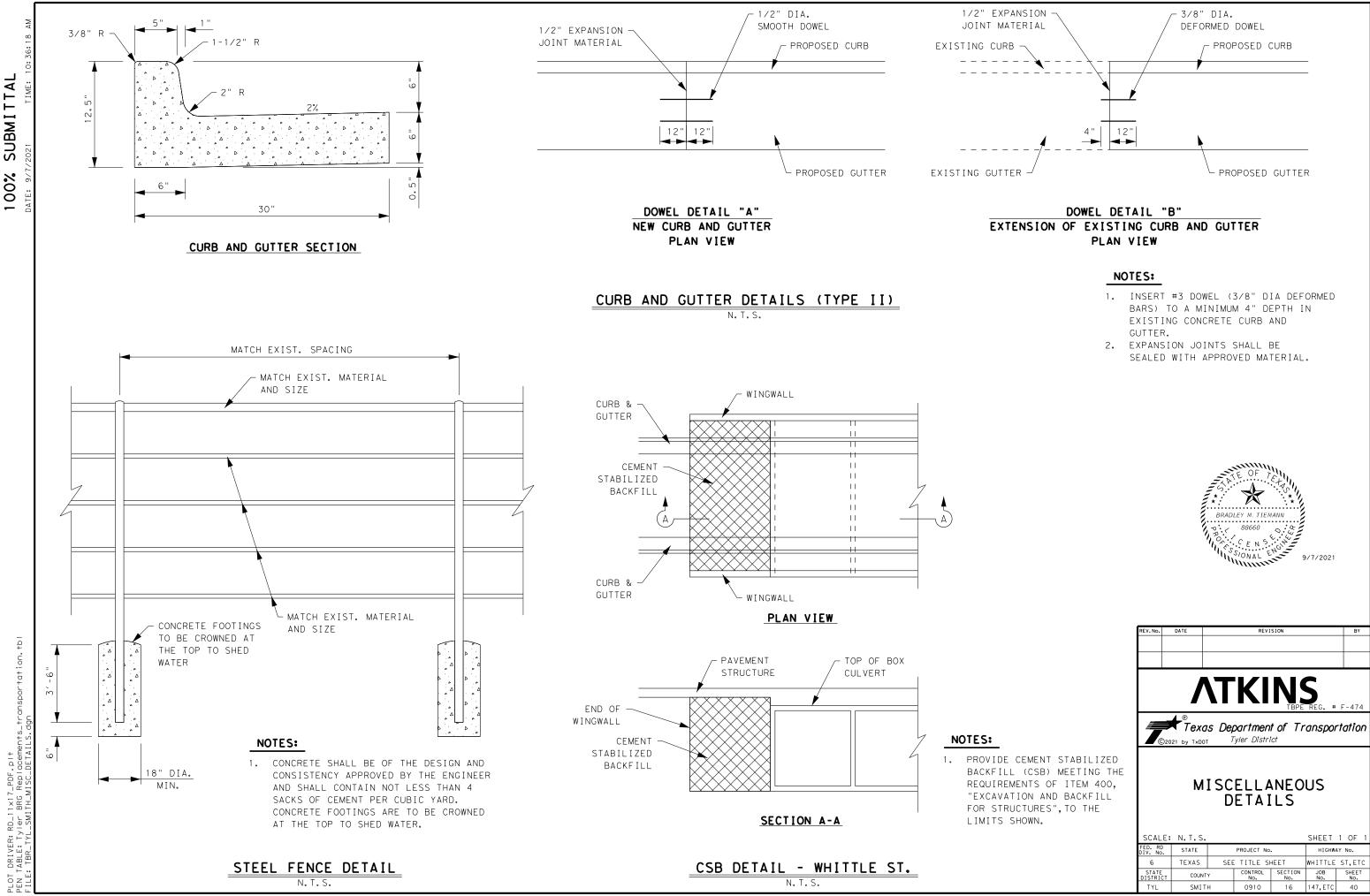
DRIVE TABLE:

٩. Å

A Ľ SUBMI 200%

. pl+ RD_11×17_PDF. ER: F DRIVE TABLE: PLOT PEN

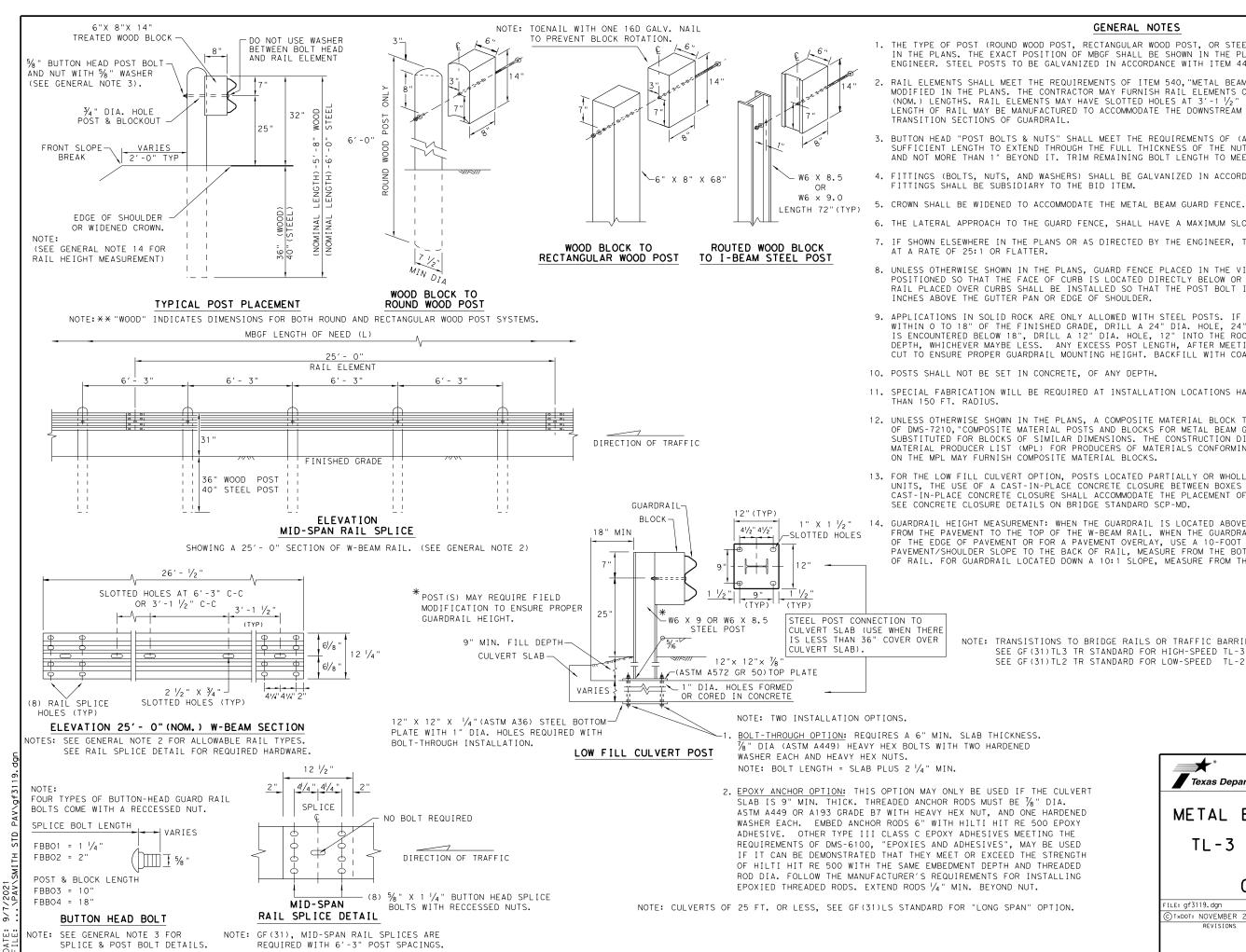
SUBMI 200 _


LEGEND

DIRECTION OF TRAVEL EXISTING ROW PROPOSED PAVEMENT CURVE ID LABEL

NOTES:

- 1. SEE "HORIZONTAL ALIGNMENT DATA" FOR MORE INFORMATION.
- 2. UTILITIES SHOWN ARE PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND SHOULD BE FIELD VERIFIED PRIOR TO CONSTRUCTION.


= 16+22.56 = 5° 32' 18.93" (1 = 3° 49' 10.99" = 72.56 = 145.00 = 1,500.00 = 15+50.00 = 16+95.00	LT)	BRADLEY M. TIEMANN 888660
	410	88660 88660 SS/ONAL EN 9/7/2021
	405	REV.No. DATE REVISION BY
	400	
PROJECT 0910-16-149 H EXISTING 16+15.00 102.00	395	ATKINS
	390	Texas Department of Transportation ©2021 by 1x00T Tyler District
	385	PLAN & PROFILE
	380	CR 289 BRIDGE @ PRAIRIE CREEK
404. 49		SCALE: 1"=50'H, 1"=10'V SHEET 1 1 FED. RD STATE PROJECT NO. HIGHWAY NO. 6 TEXAS SEE TITLE SHEET CR 289
	+00	STATE COUNTRY CONTROL SECTION JOB SHEET DISTRICT COUNTY No. No. No. No. No. TYL SMITH 0910 16 147, ETC 39

100%

: CEMENT STABILIZED
L (CSB) MEETING THE
MENTS OF ITEM 400,
TION AND BACKFILL
RUCTURES", TO THE
SHOWN.

SCALE: N.T.S. SHEET 1 OF 1											
FED. RD DIV. No.	STATE		PROJECT No	HIGHW	AY No.						
6	TEXAS	SEE	E TITLE SH	HEET	WHITTLE	ST,ETC					
STATE DISTRICT	COUNT	Y	CONTROL No.	SECTION No.	JOB No.	SHEET No.					
TYL	SMIT	н	0910	16	147,ETC	40					

SOEVE USE. TING FROM ANY SUL 1 FOR S RE T X D O T D A M A G B ∩ A MADE SUL TS RES K I ND RECT ANY INCOF ANTY OF OR FOR WARR. P NO ENGINEERING PRACTICE ACT". OF THIS STANDARD TO OTHER "TEXAS THE THIS STANDARD IS GOVERNED BY MES NO RESPONSIBILITY FOR THE DISCLAIMER: THE USE OF TXDOT ASSUM

9/7/202

GENERAL NOTES

1. THE TYPE OF POST (ROUND WOOD POST, RECTANGULAR WOOD POST, OR STEEL POST) WILL BE AS SHOWN IN THE PLANS. THE EXACT POSITION OF MBGF SHALL BE SHOWN IN THE PLANS OR AS DIRECTED BY THE ENGINEER. STEEL POSTS TO BE GALVANIZED IN ACCORDANCE WITH ITEM 445, "GALVANIZING.

RAIL ELEMENTS SHALL MEET THE REQUIREMENTS OF ITEM 540, "METAL BEAM GUARD FENCE" EXCEPT AS MODIFIED IN THE PLANS. THE CONTRACTOR MAY FURNISH RAIL ELEMENTS OF 25'- 0", OR 12'- 6" (NOM.) LENGTHS. RAIL ELEMENTS MAY HAVE SLOTTED HOLES AT 3'-1 1/2" C-C OR 6'-3" C-C. A SPECIAL LENGTH OF RAIL MAY BE MANUFACTURED TO ACCOMMODATE THE DOWNSTREAM ANCHOR TERMINAL (DAT) AND THE

3. BUTTON HEAD "POST BOLTS & NUTS" SHALL MEET THE REQUIREMENTS OF (ASTM A307), AND SHALL BE OF SUFFICIENT LENGTH TO EXTEND THROUGH THE FULL THICKNESS OF THE NUT AND 5/8" WASHER (FWC16a) AND NOT MORE THAN 1" BEYOND IT. TRIM REMAINING BOLT LENGTH TO MEET REQUIRED LENGTH.

4. FITTINGS (BOLTS, NUTS, AND WASHERS) SHALL BE GALVANIZED IN ACCORDANCE WITH ITEM 445, "GALVANIZING. FITTINGS SHALL BE SUBSIDIARY TO THE BID ITEM.

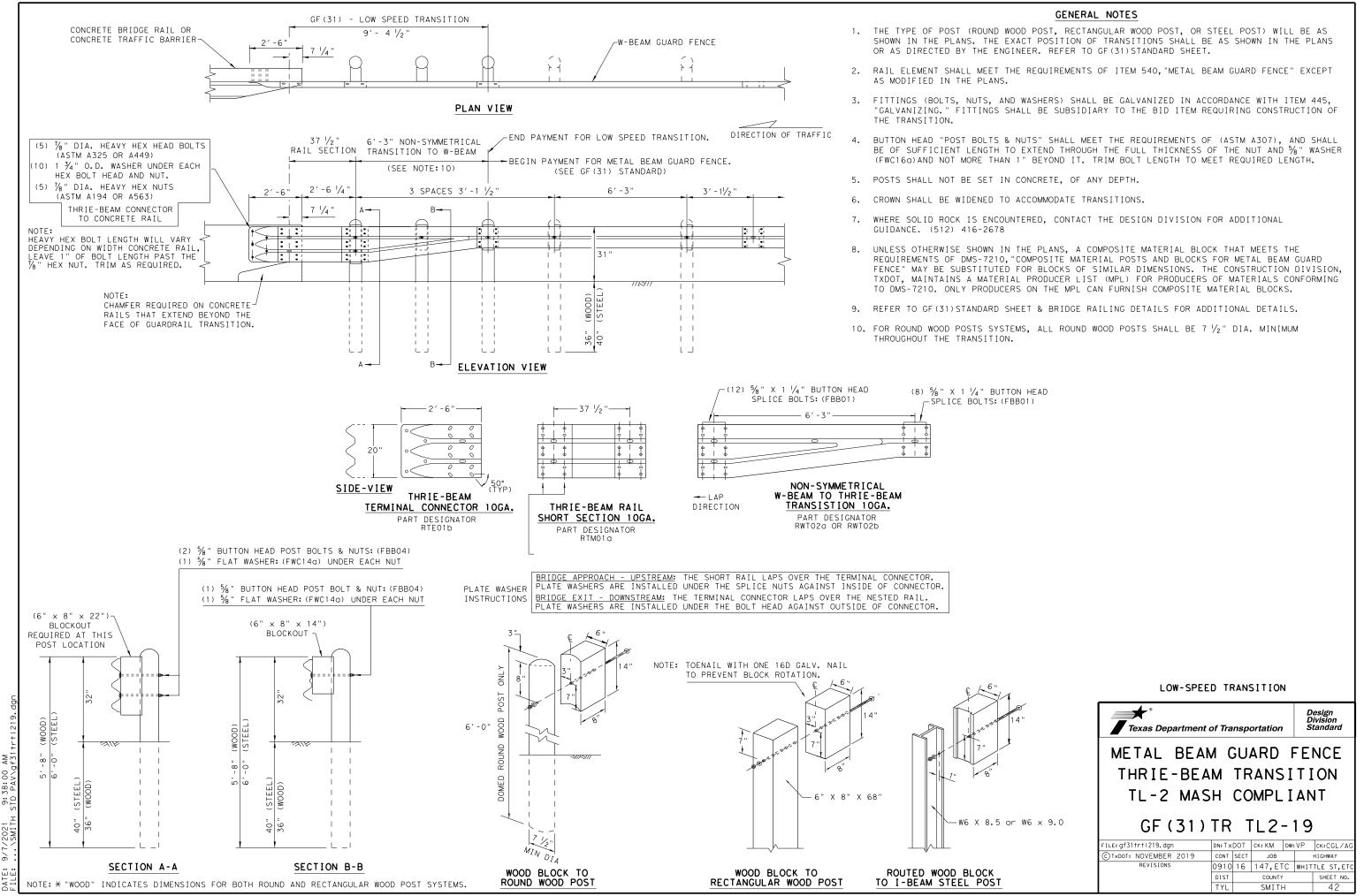
6. THE LATERAL APPROACH TO THE GUARD FENCE, SHALL HAVE A MAXIMUM SLOPE OF 1V:10H.

7. IF SHOWN ELSEWHERE IN THE PLANS OR AS DIRECTED BY THE ENGINEER, THE GUARD FENCE MAY BE FLARED

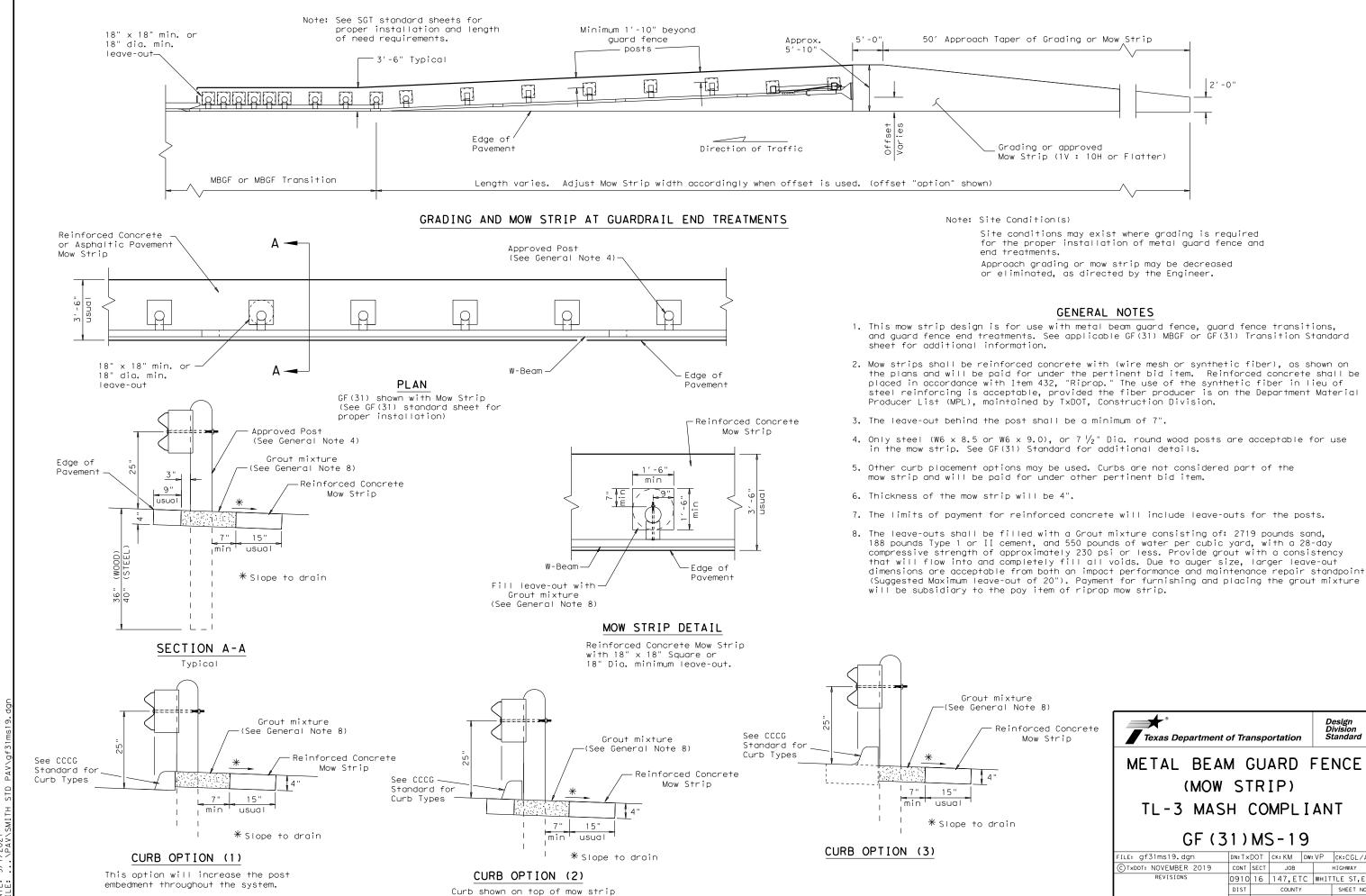
8. UNLESS OTHERWISE SHOWN IN THE PLANS, GUARD FENCE PLACED IN THE VICINITY OF CURBS SHALL BE POSITIONED SO THAT THE FACE OF CURB IS LOCATED DIRECTLY BELOW OR BEHIND THE FACE OF THE RAIL. RAIL PLACED OVER CURBS SHALL BE INSTALLED SO THAT THE POST BOLT IS LOCATED APPROXIMATELY 25

9. APPLICATIONS IN SOLID ROCK ARE ONLY ALLOWED WITH STEEL POSTS. IF SOLID ROCK IS ENCOUNTERED WITHIN O TO 18" OF THE FINISHED GRADE, DRILL A 24" DIA. HOLE, 24" INTO THE ROCK. IF SOLID ROCK IS ENCOUNTERED BELOW 18", DRILL A 12" DIA. HOLE, 12" INTO THE ROCK OR TO THE STANDARD EMBEDMENT DEPTH, WHICHEVER MAYBE LESS. ANY EXCESS POST LENGTH, AFTER MEETING THESE DEPTHS, MAY BE FIELD CUT TO ENSURE PROPER GUARDRAIL MOUNTING HEIGHT. BACKFILL WITH COARSE AGGREGATE MATERIAL.

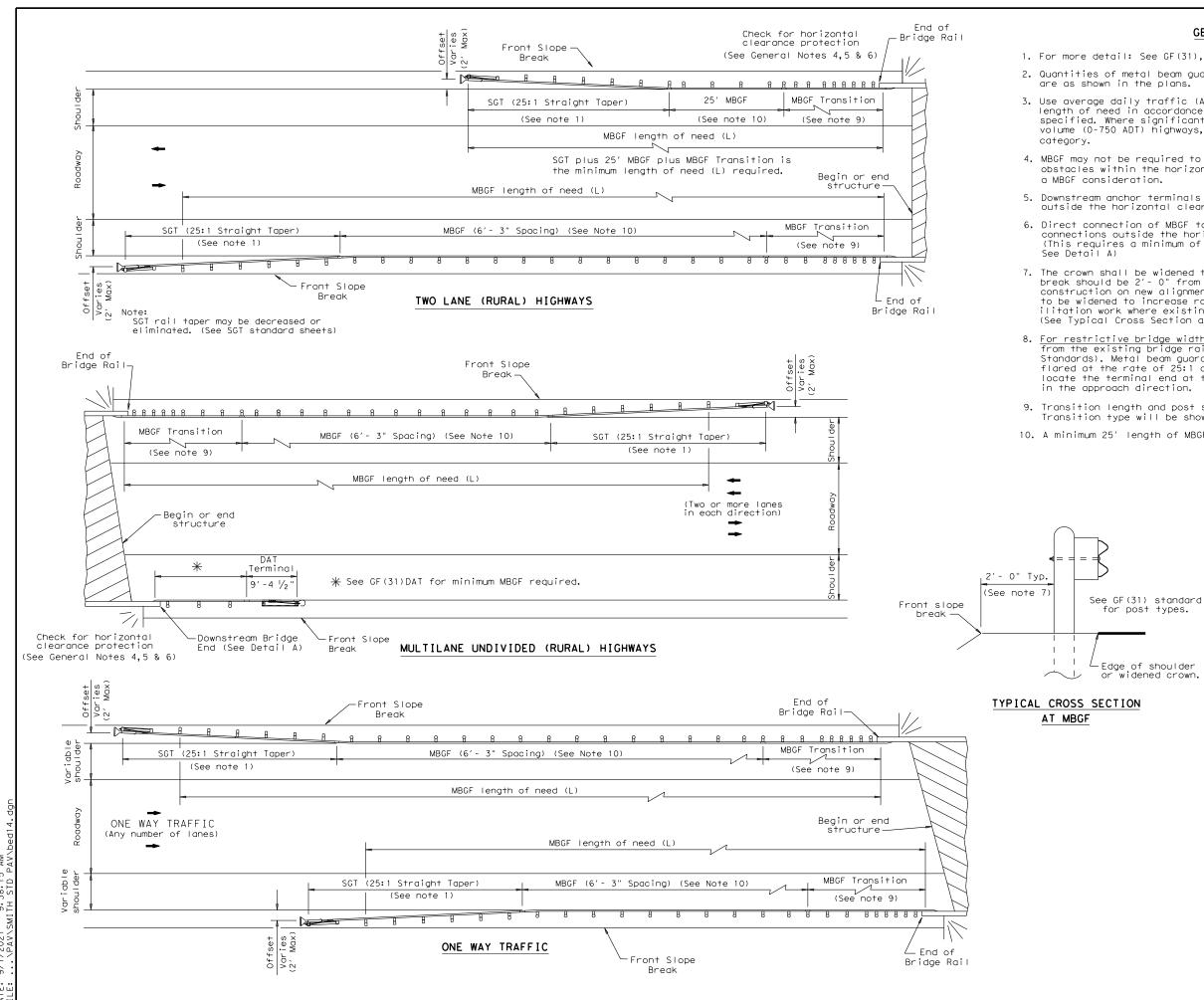
11. SPECIAL FABRICATION WILL BE REQUIRED AT INSTALLATION LOCATIONS HAVING A CURVATURE OF LESS


12. UNLESS OTHERWISE SHOWN IN THE PLANS, A COMPOSITE MATERIAL BLOCK THAT MEETS THE REQUIREMENTS OF DMS-7210, "COMPOSITE MATERIAL POSTS AND BLOCKS FOR METAL BEAM GUARD FENCE" MAY BE SUBSTITUTED FOR BLOCKS OF SIMILAR DIMENSIONS. THE CONSTRUCTION DIVISION, TXDOT MAINTAINS A MATERIAL PRODUCER LIST (MPL) FOR PRODUCERS OF MATERIALS CONFORMING TO DMS-7210 ONLY PRODUCERS

13. FOR THE LOW FILL CULVERT OPTION, POSTS LOCATED PARTIALLY OR WHOLLY BETWEEN PRECAST BOX CULVERT UNITS, THE USE OF A CAST-IN-PLACE CONCRETE CLOSURE BETWEEN BOXES IS REQUIRED. THE LENGTH OF THE CAST-IN-PLACE CONCRETE CLOSURE SHALL ACCOMMODATE THE PLACEMENT OF THE LOW FILL CULVERT OPTION.


1" X 1 1/2" 14. GUARDRAIL HEIGHT MEASUREMENT: WHEN THE GUARDRAIL IS LOCATED ABOVE PAVEMENT, MEASURE THE HEIGHT LOTTED HOLES FROM THE PAVEMENT TO THE TOP OF THE W-BEAM RAIL. WHEN THE GUARDRAIL IS LOCATED UP TO 2 FT. OFF OF THE EDGE OF PAVEMENT OR FOR A PAVEMENT OVERLAY, USE A 10-FOOT STRAIGHTEDGE TO EXTEND THE PAVEMENT/SHOULDER SLOPE TO THE BACK OF RAIL, MEASURE FROM THE BOTTOM OF STRAIGHTEDGE TO THE TOP OF RAIL. FOR GUARDRAIL LOCATED DOWN A 10:1 SLOPE, MEASURE FROM THE NOMINAL TERRAIN.

> NOTE: TRANSISTIONS TO BRIDGE RAILS OR TRAFFIC BARRIERS. SEE GF (31) TL3 TR STANDARD FOR HIGH-SPEED TL-3 TRANSITIONS. SEE GF (31) TL2 TR STANDARD FOR LOW-SPEED TL-2 TRANSITIONS.


AN 38:00 ы Б 9/7/2021

9/7/202 DATE:

for the proper installation of metal guard fence and

xture Note 8)									
inforced Concrete Mow Strip	Texas Department	of Tra	nspo	ortation	D	esign ivision tandard			
	METAL BEAN				FΕ	NCE			
	(MOW STRIP)								
	TL-3 MASH COMPLIANT								
in	GF (3	1)	MS	5-19)				
	FILE: gf31ms19.dgn	dn:T×[тос	ск: КМ	DW:VP	CK:CGL/AG			
	CTxDOT: NOVEMBER 2019	CONT	SECT	JOB		HIGHWAY			
	REVISIONS	0910	16	147,ET(С ₩НІТ	TLE ST,ETC			
		DIST		COUNTY		SHEET NO.			
		TYL		SMITH		43			

what its any purpose w esulting from for T×DOT ζρ made sults res res kind rect incor anty of or for i warr nats No form Engineering Practice Act". of this standard to other "Texas ersion the con this standard is governed by es no responsibility for the DISCLAIMER: The use of † TxDOT assume

> 9:38:15 TH CTN N 9/7/2021 التا

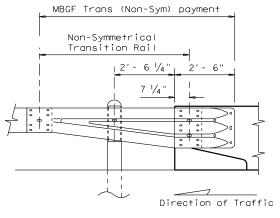
GENERAL NOTES

1. For more detail: See GF(31), SGT()31, GF(31)TR, and GF(31)TL2 standard sheets. 2. Quantities of metal beam guard fence (MBGF) at individual bridge ends

3. Use average daily traffic (ADT) for the current year to determine MBGF length of need in accordance with the Roadway Design Manual unless otherwise specified. Where significant traffic volume growth is anticipated on low volume (0-750 ADT) highways, use length determinations for the higher volume

4. MBGF may not be required to shield departure end of bridge unless other obstacles within the horizontal clearance limits or opposing traffic indicate

5. Downstream anchor terminals (DAT) are only for downstream end anchorage use, outside the horizontal clearance area of opposing traffic.

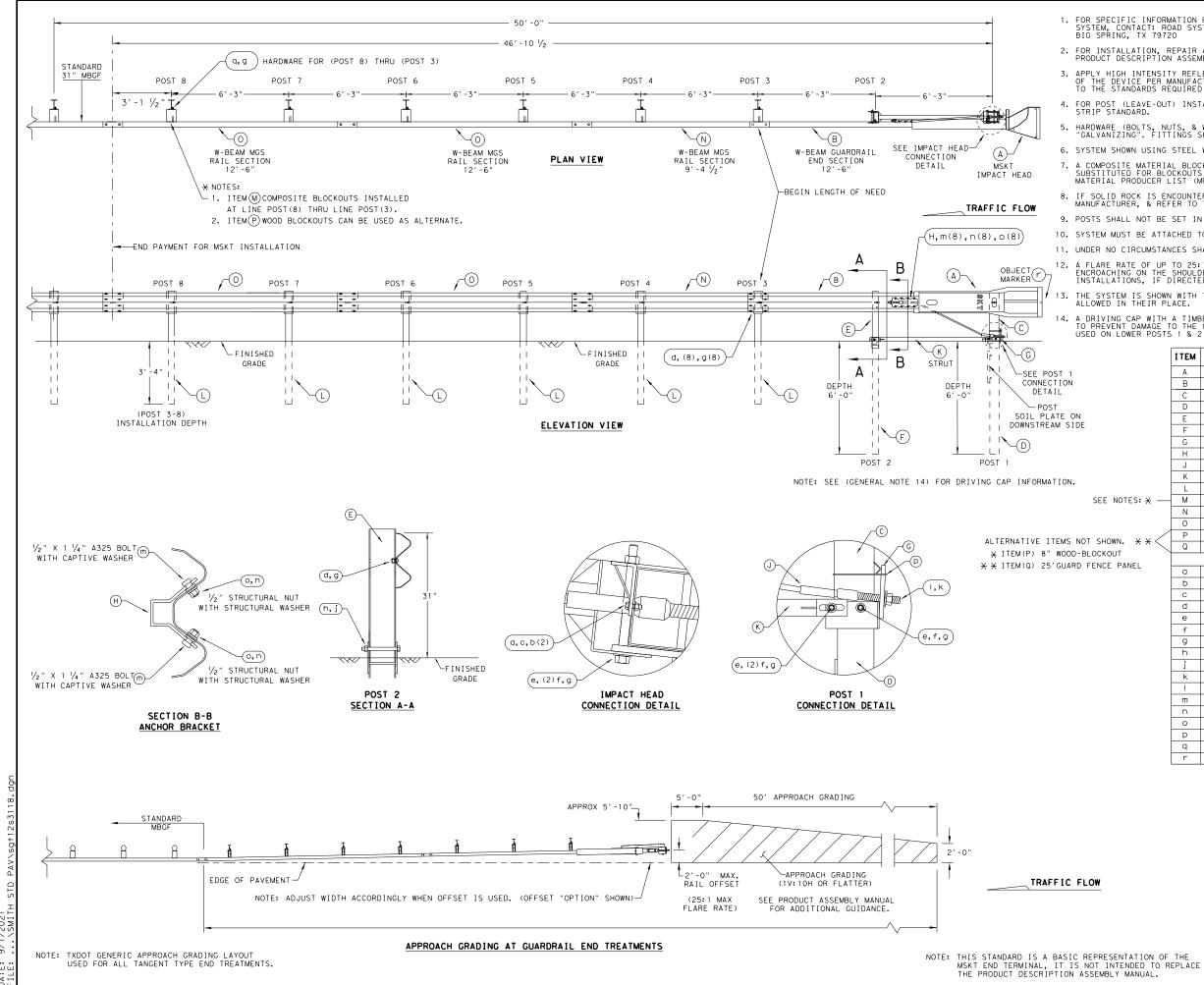

6. Direct connection of MBGF to concrete rails are only for downstream rail connections outside the horizontal clearance area of opposing traffic. (This requires a minimum of three standard line posts plus the DAT terminal,

 The crown shall be widened to accommodate MBGF. Typically the "front slope" break should be 2'- 0" from the back of the MBGF post. This applies to new construction on new alignment or where existing roadway cross section is to be widened to increase roadway width. This does not apply to rehab-ilitation work where existing roadway crown width is to be retained (See Typical Cross Section at MBGF).

8. <u>For restrictive bridge widths:</u> The MBGF should be properly transitioned from the existing bridge rail to the adjoining MBGF (See MBGF Transition Standards). Metal beam guard fence at these bridge location(s) shall be flared at the rate of 25:1 or flatter, and be of the length necessary to locate the terminal end at the 2 ft. "maximum" offset from the shoulder edge

9. Transition length and post spacing will vary depending on the transition type. Transition type will be shown elsewhere in the plans.

10. A minimum 25' length of MBGF will be required.


Edge of shoulder or widened crown.

Note: All rail elements shall be lapped in the direction of adjacent traffic.

DETAIL A

Showing Downstream Rail Attachment

Texas Department of Transportation								
BRIDGE END DETAILS (METAL BEAM GUARD FENCE								
APPLICATIONS TO RIGID RAILS)								
				-				
В	BED-1	14		-				
FILE: bed14.dgn	BED-1		DW: BD/VF	CK: CGL				
	DN: TxDOT		DW: BD/VF	CK: CGL HIGHWAY				
FILE: bed14.dgn	DN: TxDOT	CK: AM						
FILE: bed14.dgn CTxDOT: December 2011 REVISIONS	DN: TXDOT CONT SE	CK: AM		HIGHWAY				

WHATSOE ITS USE. FOR ANY PURPOSE RESULTING FROM MADE BY TXDOT TS OR DAMAGES OF ANY KIND IS INCORRECT RESUL . NO WARRANTY FORMATS OR FOR THE "TEXAS ENGINEERING PRACTICE ACT" CONVERSIONOF THIS STANDARD TO OTHER DISCLAIMER: THE USE OF THIS STANDARD IS COVERNED BY TXDOT ASSUMES NO RESPONSIBILITY FOR THE

> 202 1/6 DATE:

GENERAL NOTES

1. FOR SPECIFIC INFORMATION REGARDING INSTALLATION AND TECHNICAL GUIDANCE OF THE SYSTEM, CONTACT: ROAD SYSTEMS, INC. (432)263-2435. 3616 OLD HOWARD COUNTY AIRPORT, BIG SPRING, TX 79720

2. FOR INSTALLATION, REPAIR AND MAINTENANCE REFER TO THE; MSKT END TERMINAL, PRODUCT DESCRIPTION ASSEMBLY MANUAL (PUBLICATION~062717).

3. APPLY HIGH INTENSITY REFLECTIVE SHEETING, "OBJECT MARKER" ON THE FRONT FACE OF THE DEVICE PER MANUFACTURER'S RECOMMENDATIONS. OBJECT MARKER SHALL CONFORM TO THE STANDARDS REQUIRED IN TEXAS MUTCD.

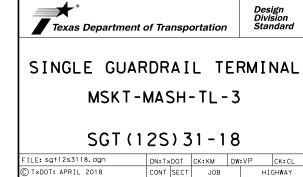
4. FOR POST (LEAVE-OUT) INSTALLATION AND GUIDANCE SEE TXDOT'S LATEST ROADWAY MOW STRIP STANDARD.

5. HARDWARE (BOLTS, NUTS, & WASHERS) SHALL BE GALVANIZED IN ACCORDANCE WITH ITEM 445, "GALVANIZING". FITTINGS SHALL BE SUBSIDIARY TO THE BID ITEM. 6. SYSTEM SHOWN USING STEEL WIDE FLANGE POSTS WITH COMPOSITE BLOCKOUTS.

7. A COMPOSITE MATERIAL BLOCKOUTS THAT MEETS THE REQUIREMENTS OF DMS-7210, MAY BE SUBSTITUTED FOR BLOCKOUTS OF SIMILAR DIMENSIONS. SEE CONSTRUCTION DIVISION MATERIAL PRODUCER LIST (MPL) FOR CERTIFIED PRODUCERS.

8. IF SOLID ROCK IS ENCOUNTERED IN THE AREA OF (POST 1) AND / OR (POST 2) CONTACT THE MANUFACTURER, & REFER TO THE LATEST ROADWAY MBGF STANDARD FOR INSTALLATION GUIDANCE 9. POSTS SHALL NOT BE SET IN CONCRETE.

10. SYSTEM MUST BE ATTACHED TO STANDARD 31" MBGF.


11. UNDER NO CIRCUMSTANCES SHALL THE GUARDRAIL WITHIN THE MSKT SYSTEM BE CURVED.

12. A FLARE RATE OF UP TO 25:1 MAY BE USED TO PREVENT THE TERMINAL HEAD FROM ENCROACHING ON THE SHOULDER. THE FLARE MAY BE DECREASED OR ELIMINATED FOR SPECIFIC INSTALLATIONS, IF DIRECTED BY THE ENGINEER.

13. THE SYSTEM IS SHOWN WITH TWO 12'-6" MBGF PANELS, ONE 25'-0" MBGF PANEL IS ALSO ALLOWED IN THEIR PLACE.

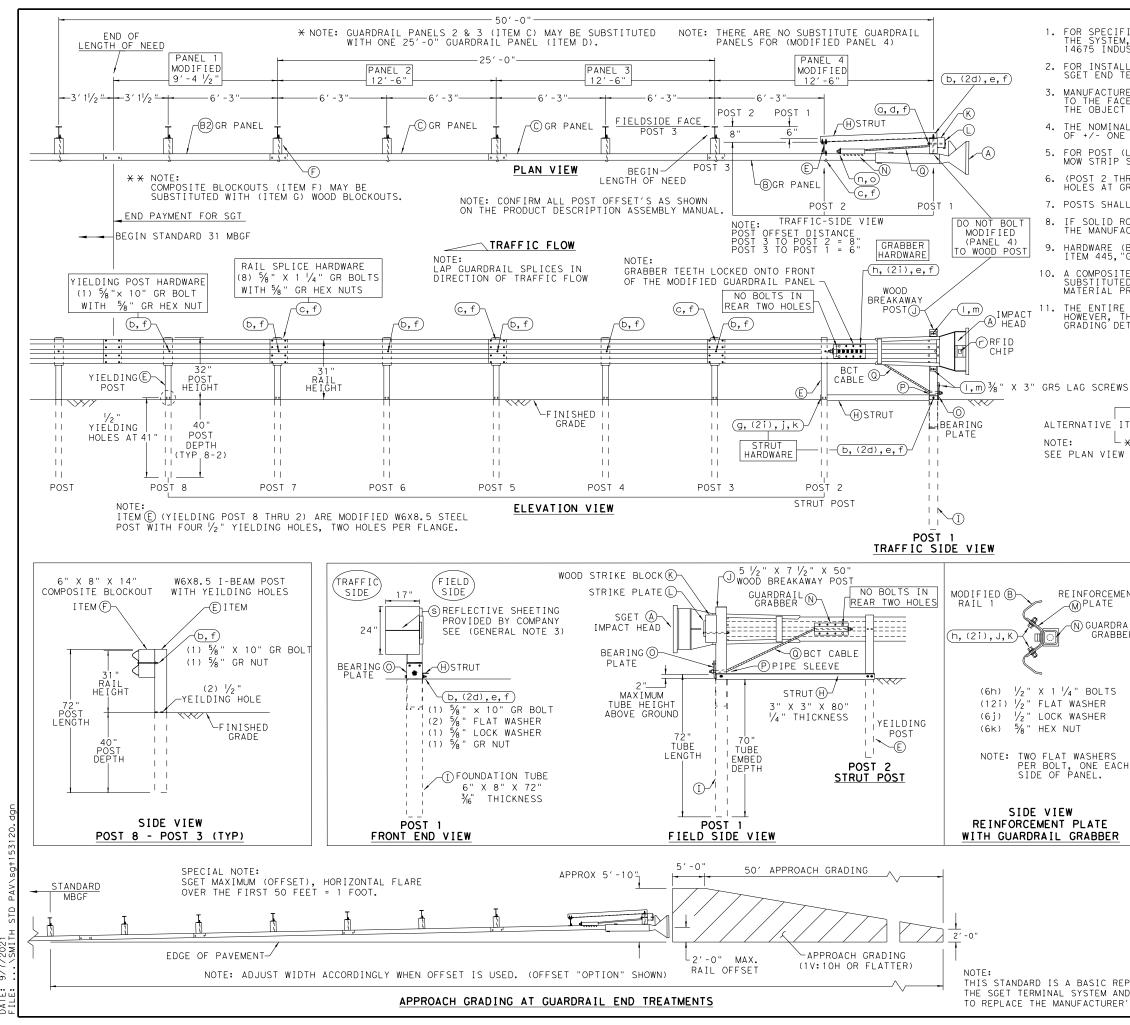
A DRIVING CAP WITH A TIMBER OR PLASTIC INSERT SHALL BE USED WHEN DRIVING POSTS 3-8 TO PREVENT DAMAGE TO THE GALVANIZING ON TOP OF THE POST. SPECIAL DRIVING CAP TO BE USED ON LOWER POSTS 1 & 2 TO PREVENT DAMAGE TO THE WELDED PLATES.

	ITEM	QTY	MAIN SYSTEM COMPONENTS	I TEM NUMBERS					
	А	1	MSKT IMPACT HEAD	MS3000					
	В	1	W-BEAM GUARDRAIL END SECTION, 12 Go.	SF1303					
	С	1	POST 1 - TOP (6" X 6" X <mark>1/</mark> 8" TUBE)	MTPHP1A					
	D	1	POST 1 - BOTTOM (6' W6X15)	MTPHP1B					
	E	1	POST 2 - ASSEMBLY TOP	UHP2A					
	F	1	POST 2 - ASSEMBLY BOTTOM (6' W6X9)	HP2B					
	G	1	BEARING PLATE	E750					
	Н	1	CABLE ANCHOR BOX	S760					
	J	1	BCT CABLE ANCHOR ASSEMBLY	E770					
	К	1	GROUND STRUT	MS785					
	L	6	W6×9 OR W6×8.5 STEEL POST	P621					
: * —	М	6	COMPOSITE BLOCKOUTS	CBSP-14					
	N	1	W-BEAM MGS RAIL SECTION (9'-4 1/2")	G12025					
	0	2	W-BEAM MGS RAIL SECTION (12'-6")	G1203A					
/	Р	6	WOOD BLOCKOUT 6" X 8" X 14"	P675					
÷ * <	Q	1	W-BEAM MGS RAIL SECTION (25'-0")	G1209					
	SMALL HARDWARE								
-	a	2	5%6 " × 1" HEX BOLT (GRD 5)	B5160104A					
	b	4	5%6 " WASHER	W0516					
	С	2	5/6 " HEX NUT	N0516					
	d	25	5%8" Dia. × 1 ¼" SPLICE BOLT (POST 2)	B580122					
	е	2	5%∥ Dia. × 9″ HEX BOLT (GRD A449)	B580904A					
	f	3	5%/s" WASHER	W050					
	g	33	5%∥ Dia. H.G.R NUT	N050					
	h	1	3/4" Dia. x 8 1/2" HEX BOLT (GRD A449)	B340854A					
	i	1	¾" Dia. HEX NUT	N030					
	k	2	1 ANCHOR CABLE HEX NUT	N100					
	1	2	1 ANCHOR CABLE WASHER	W100					
	m	8	1/2" × 1 1/4" A325 BOLT WITH CAPTIVE WASHER	SB12A					
	n	8	1/2 " STRUCTURAL NUTS	N012A					
	0	8	1 1/16 " O.D. × %6 " I.D. STRUCTURAL WASHERS	W012A					
	P	1	BEARING PLATE RETAINER TIE	CT-100ST					
	q	6	5%" × 10" H.G.R. BOLT	B581002					
	r	1	OBJECT MARKER 18" X 18"	E3151					

DIST

ΤYI

0910 16 147,ETC WHITTLE ST,E


SHEET NO

45

COUNTY

SMITH

REVISIONS

/2021 6/1 DATE:

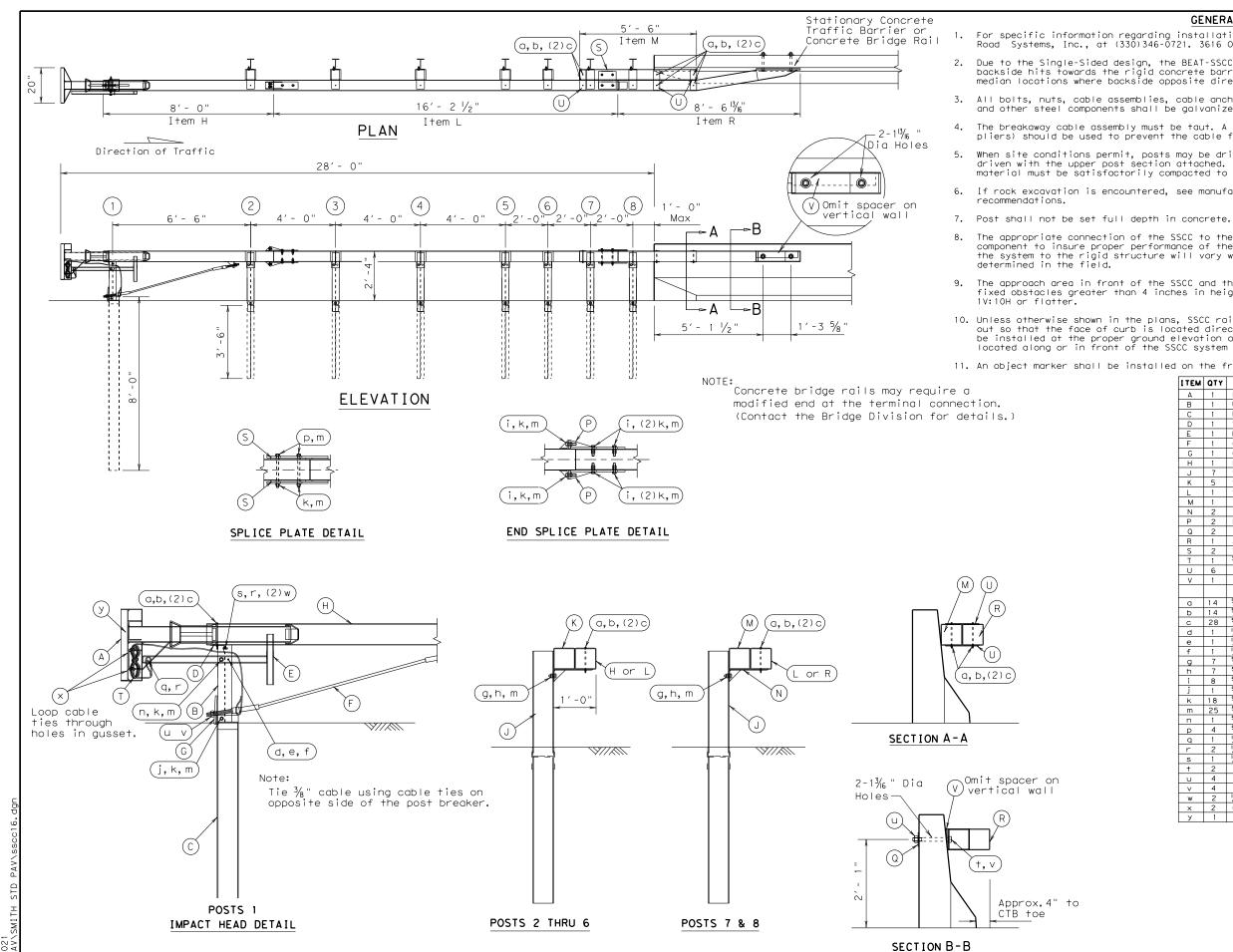
GENERAL NOTES

1. FOR SPECIFIC INFORMATION REGARDING INSTALLATION AND TECHNICAL GUIDANCE OF THE SYSTEM, CONTACT: SPIG INDUSTRY, INC. AT 1(267) 644-9510. 14675 INDUSTRIAL PARK RD; BRISTOL, VA 24202

2. FOR INSTALLATION, REPAIR AND MAINTENANCE REFER TO THE MANUFACTURER'S; SGET END TERMINAL, PRODUCT DESCRIPTION ASSEMBLY MANUAL.

3. MANUFACTURER WILL APPLY HIGH INTENSITY REFLECTIVE SHEETING, "OBJECT MARKER' TO THE FACE PLATE OF THE DEVICE PER MANUFACTURER'S RECOMMENDATIONS. THE OBJECT MARKER SHALL CONFORM TO THE STANDARDS REQUIRED IN TEXAS MUTCD. 4. THE NOMINAL HEIGHT OF THE GUARDRAIL BEAM IS 31 INCHES WITH A TOLERANCE OF +/- ONE INCH.

5. FOR POST (LEAVE-OUT) INSTALLATION AND GUIDANCE SEE TXDOT'S LATEST ROADWAY MOW STRIP STANDARD.


6. (POST 2 THROUGH POST 8) ARE MODIFIED STEEL-YIELDING POSTS WITH YIELDING HOLES AT GROUND LEVEL. THERE ARE NO SUBSTITUTE POSTS. 7. POSTS SHALL NOT BE SET IN CONCRETE.

8. IF SOLID ROCK IS ENCOUNTERED FOR ANY OF THE POSTS IN THE SYSTEM, CONTACT THE MANUFACTURER FOR SPECIFIC INSTALLATION GUIDANCE.

HARDWARE (BOLTS, NUTS, & WASHERS) SHALL BE GALVANIZED IN ACCORDANCE WITH ITEM 445,"GALVANIZING". FITTINGS SHALL BE SUBSIDIARY TO THE BID ITEM. A COMPOSITE MATERIAL BLOCKOUT THAT MEETS DMS-7210 REQUIREMENTS MAY BE SUBSTITUTED FOR AN APPROVED WOOD BLOCKOUT. SEE CONSTRUCTION DIVISION MATERIAL PRODUCER LIST (MPL) FOR CERTIFIED PRODUCERS.

THE ENTIRE SYSTEM MUST BE INSTALLED IN A STRAIGHT LINE WITHOUT ANY CURVE. HOWEVER, THE SYSTEM CAN BE OFFSET BY TWO FEET AS SHOWN ON THE APPROACH GRADING DETAIL TO HELP OFF-SET THE IMPACT HEAD FROM SHOULDER OF THE ROAD.

ITE	ЕМ	QTY	MAIN SYSTEM COMPONENTS	ITEM #
A		1	SGET IMPACT HEAD	SIH1A
В	}	1	MODIFIED GUARDRAIL PANEL 12'-6" 12GA	126SPZGP
В	2	1	MODIFIED GUARDRAIL PANEL 9'-4 1/2" 12GA	GP94
С		2	STANDARD GUARDRAIL PANEL 12'-6" 12GA	GP126
- D	1	1	STANDARD GUARDRAIL PANEL 25'-0" 12GA	GP25
_ E		7	MODIFIED YIELDING I-BEAM POST W6×8.5	YP6MOD
S F	•	6	COMPOSITE BLOCKOUT 6" X 8" X 14"	CBO8
- G	i	6	WOOD BLOCKOUT 6" X 8" X 14"	WBO8
Н		1	STRUT 3" X 3" X 80" x 1/4" A36 ANGLE	STR80
I		1	FOUNDATION TUBE 6" X 8" X 72" × 3/6 "	FNDT6
J		1	WOOD BREAKAWAY POST 5 $\frac{1}{2}$ " x 7 $\frac{1}{2}$ " x 50"	WBRK50
K		1	WOOD STRIKE BLOCK	WSBLK14
L		1	STRIKE PLATE 1/4" A36 BENT PLATE	SPLT8
М	1	1	REINFORCEMENT PLATE 12 GA. GR55	REPLT17
N		1	GUARDRAIL GRABBER 2 1/2" X 2 1/2" X 16 1/2"	GGR17
0		1	BEARING PLATE 8" X 8 $\frac{5}{8}$ " X $\frac{5}{8}$ " A36 PIPE SLEEVE 4 $\frac{1}{4}$ " X 2 $\frac{3}{8}$ " O.D. (2 $\frac{1}{8}$ " I.D.)	BPLT8
P		1	PIPE SLEEVE 4 $\frac{1}{4}$ × 2 $\frac{3}{6}$ ° O D (2 $\frac{1}{6}$ ° I D)	PSLV4
l Q		1	BCT CABLE 3/4" X 81" LENGTH	CBL81
			SMALL HARDWARE	CDEOT
		1		1.0000 T
b		7		12GRBLT
				10GRBLT
C		33	5/8" X 1 1/4" GR SPLICE BOLTS 307A HDG	1 GRBL T
d		3	5% " FLAT WASHER F436 A325 HDG	58FW436
e		1	5% " LOCK WASHER HDG	58LW
f		39	5/8 " GUARDRAIL HEX NUT HDG	58HN563
g		2	1/2" X 2" STRUT BOLT A325 HDG	2BLT
h		6	1/2" X 1 1/4" PLATE BOLT A325 HDG	125BLT
i		16	1/2" FLAT WASHER F436 A325 HDG	12FWF436
j		8	1/2" LOCK WASHER HDG	12LW
k		8	1/2" HEX NUT A563 HDG	12HN563
		4	3/8 " X 3" HEX LAG SCREW GR5 HDG	38LS
m		4	⅓ " FLAT WASHER F436 A325 HDG	38FW844
n		2	1" FLAT WASHER F436 A325 HDG	1FWF436
0		2	1" HEX NUT A563DH HDG	1HN563
P		1	18" TO 24" LONG ZIP TIE RATED 175-200LB	ZPT18
P		1	1 ¹ / ₂ " X 4" SCH-40 PVC PIPE	PSPCR4
r		1	RFID CHIP RATED MIL-STD-810F	RFID810F
S		1	IMPACT HEAD REFLECTIVE SHEETING	RS30M
			Texas Department of Transportation	Design Division Standard
			SPIG INDUSTRY, LI	
			SINGLE GUARDRAIL TER	
			SGET - TL-3 - MAS	
			SGT (15) 31 - 20	
			FILE: sgt153120. dgn DN: TxDOT CK: KM DW:	
		ON O	FILE: sg+153120. dgn DN: TXDOT CK: KM DW:\ C TXDOT: APRIL 2020 CONT SECT JOB REVISIONS 0010 16 147 ETC	PCK:VP
5 NO.	ΤI	NTEN	FILE: sg+153120. dgn DN: TXDOT CK: KM DW:\ C TXDOT: APRIL 2020 CONT SECT JOB REVISIONS 0010 16 147 ETC	/Р СК: VP

soeve use. for any purpose what s resulting from its T×DOT ζρ made sults res res any kind incorrect r Engineering Practice Act". No warranty of of this standard to other formats or for i "Texas ersion the this standard is governed by es no responsibility for the DISCLAIMER: The use of t TxDOT assume

> 9/7/2021 DATE:

GENERAL NOTES

1. For specific information regarding installation and technical guidance of the system, contact: Road Systems, Inc., at (330)346-0721. 3616 Old Howard County Airport. Big Springs, TX 79720

2. Due to the Single-Sided design, the BEAT-SSCC is not appropriate for use at locations where backside hits towards the rigid concrete barrier are possible, e.g. In gore areas, or in narrow median locations where backside opposite direction hits are likely.

All bolts, nuts, cable assemblies, cable anchors, bearing plate, tubing, post, impact heads, and other steel components shall be galvanized, unless otherwise noted.

The breakaway cable assembly must be taut. A locking device, (vice grips or channel lock pliers) should be used to prevent the cable from twisting when tightening the nuts.

When site conditions permit, posts may be driven. The lower section of post #1 should not be driven with the upper post section attached. If posts are placed in a drilled hole, the backfill material must be satisfactorily compacted to prevent settlement.

6. If rock excavation is encountered, see manufacturer's installation booklet for installation

The appropriate connection of the SSCC to the stationary rigid structure is a critical component to insure proper performance of the system. The length of the 1" bolts used to attach the system to the rigid structure will vary with the wall thickness and will need to be

The approach area in front of the SSCC and the area within the system itself shall be free of fixed obstacles greater than 4 inches in height and have a fill slope or a cut slope of

10. Unless otherwise shown in the plans, SSCC rail placed in the vicinity of curbs shall be blocked out so that the face of curb is located directly below the face of rail. The steel posts shall be installed at the proper ground elevation above the gutter pan or roadway surface. Curbs located along or in front of the SSCC system shall not be greater than 4 inches in height.

11. An object marker shall be installed on the front of the impact head as detailed on D & OM(VIA).

ITEM	QTY	DESCRIPTION
А	1	Box-Beam Impact Head
В	1	Upper End Post (A1) W6 x 9 x 1'-9 $\frac{1}{2}$ " LG.
С	1	Lower End Post (A4) W6 x 15 x 8'-0" LG.
D	1	Support Bracket (B1) L4 x 2 x 4" LG.
E	1	Post Breaker (A2) Welded TS2 x 2 x $\frac{1}{4}$ "
F	1	Cable Anchor Assembly
G	1	Cable Anchor Bearing Plate
Н	1	End Tube Rail (A5) x 8′-0″ LG.
J	7	Steel Breakaway Post W6 x 9 x 6′-0" LG.
К	5	Support Bracket w/ Blockout (A9) TS6 x 6 w/ Bent PL.
L	1	Second Rail (A11) x 16′-2 ½" LG.
м	1	Transition Blockout (A6) x 5′-6" LG.
Ν	2	Trans, Support Bracket (A10) ¾ "Bent PL, w/ Gusset
Ρ	2	End Section Splice Plate (A3) - Detail Below
Q	2	1" Square Washer (B10) PL 4 \times 4 \times $\frac{1}{4}$ "
R	1	Anchor Rail (A13) x 8'-6 13% "LG.
S	2	Splice Plate (A12) PL 10 x 10 x 3/8" Detail Below
Т	1	3/8" GALV. Cable x 20'-0" (A14)
U	6	Tie Plate (C10) PL 11 1/2 × 3 1/2 × 3/6 "
V	1	Spacer (D10) (OMIT ON VERTICAL WALL)
		HARDWARE
a	14	5/ ₁₆ " × 7 ½" Hex Bolt (A449)
Ь	14	5/6 " Hex Nut
С	28	⅓ "Washer
d	1	1/4" x 3" Hex Bolt (A449)
е	1	1/4" Hex Nut
f	1	1/4" Washer
g	7	5/8" x 1 1/2" Bolt (A307)
h	7	5∥" Recess Nut
<u>.</u>	8	5/8" x 2" Hex Bolt (A325 or A449)
j	1	5/8" x 8" Hex Bolt (A325 or A449)
k	18	5/8" Hex Nut
m	25	5/8" Washer
n	1	5/8" x 3" Hex Bolt (A325 or A449)
p	4	5/8 × 9" Hex Bolt (A325 or A449)
q	1	1/2" x 5" Hex Bolt (A325 or A449)
r	2	<pre>/2" Hex Nut /2" x 2" Hex Bolt (A307, A325 or A449)</pre>
s	1	
+	2	1" x 10"Hex Bolt(A325 or A449)(Length Varies w/Wall Sect)
u	4	1" Hex Nut (2H Heavy Hex Nut)
 w	4	1" Washer Structural Washer 1/2" Washer
	2	72 Washer Cable Tie
× y	1	Object Marker
J		

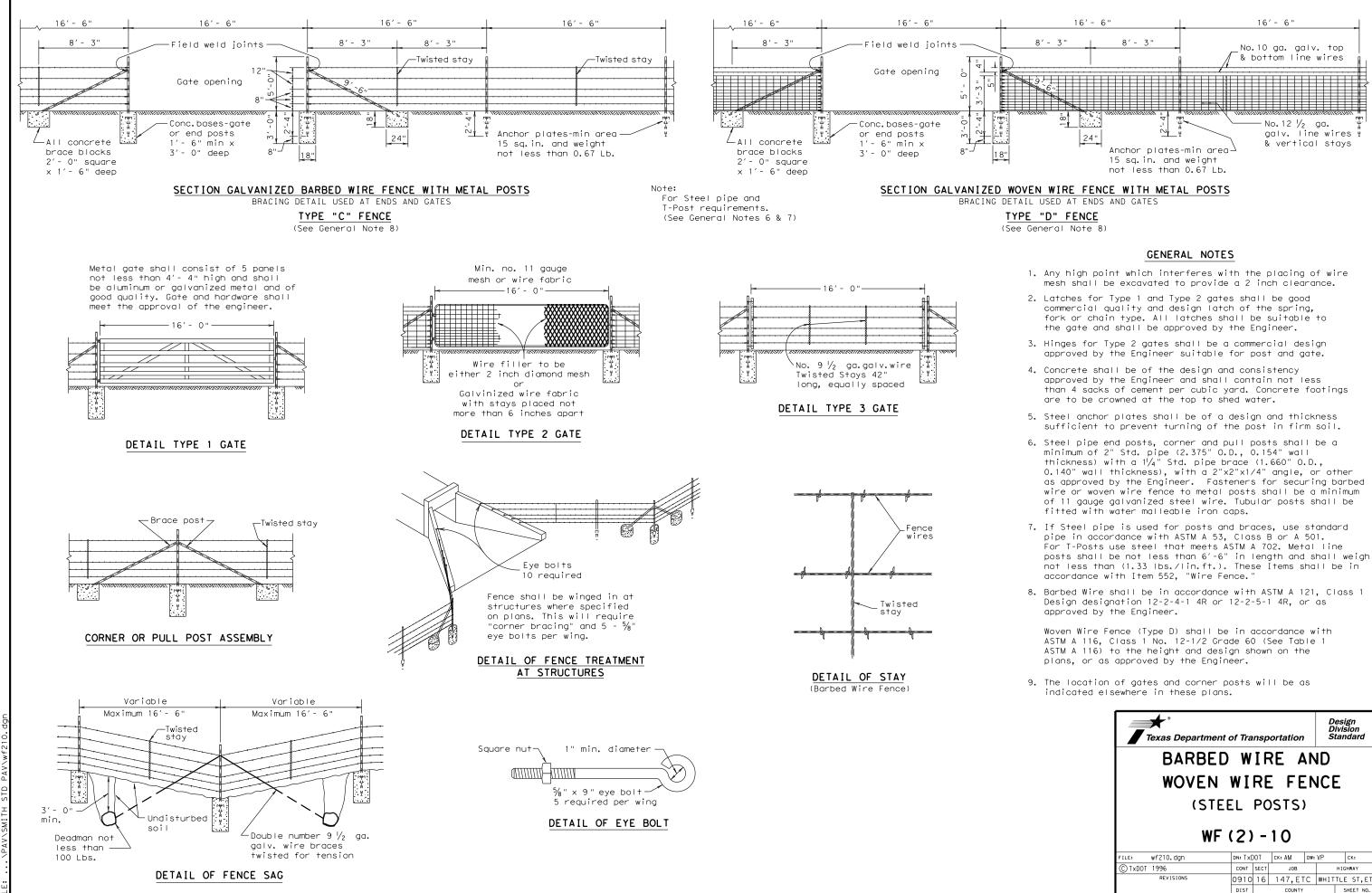
Design Division Standard										
ROAD SYSTEMS INC										
CRASH CUSHION										
()	(BEAT)									
SS	C() –	16							
FILE: SSCC16.dgn	dn: Tx[DOT	ск: КМ	DW:	BD		ск∶VР			
© TxDOT April 2003	CONT	SECT	JOB			НIG	HWAY			
REVISIONS	0910	16	147,ET	С	WHIT	TLE	E ST,ETC			
REVISED 03,2016 (VP)	DIST		COUNTY			s	HEET NO.			
	TYL		SMITH	-			47			

	TOD	PLAN			TECT	DIRECTION	FOUNDA	FOUNDATION PAD	BACKUP SUPPO	BACKUP SUPPORT		
_OC NO.	TCP PHASE	SHEET NUMBER	LOCATION	STA	TEST LEVEL	TRAFFIC (UNI/BI)	PROPOSED MATERIAL	PROPOSED THICKNESS	DESCRIPTION	WIDTH	HEIGHT	AVAILAE SITE LENGT
1	N/A	39	CR 2110 BRIDGE WINGWALL	13+44 LT	TL-3	UNI	N/A	N/A	T223 BRIDGE RAIL	24"	2'-4''	28'
2	N/A	39	CR 2110 BRIDGE WINGWALL	13+44 RT	TL-3	UNI	N/A	N/A	T223 BRIDGE RAIL	24"	2'-4''	28'
_												
-												
												_
												_
												TOTAL

LEGEND:

L=LOW MAINTENANCE R=REUSABLE S=SACRIFICIAL N=NARROW W=WIDE

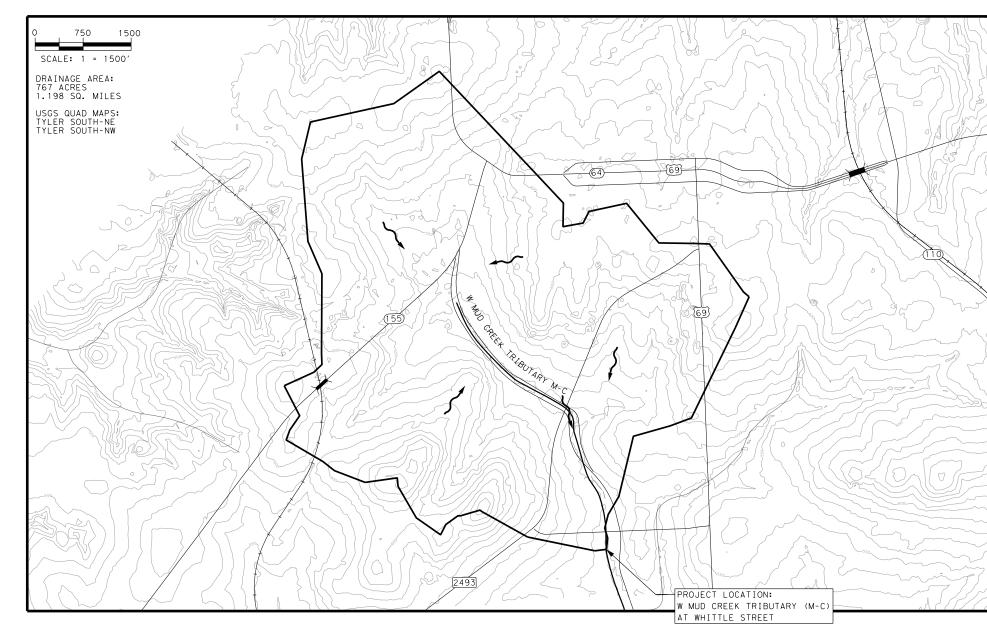
FOR DEFINITIONS SEE THE "CRASH CUSHION CATEGORIZATION CHART.PDF" AT THE DESIGN DIVISION (ROADWAY STANDARDS) WEBSITE. USE QUICK LINKS TO ACCESS ATTENUATORS / CRASH CUSHIONS SECTION.


http://www.dot.state.tx.us/insdtdot/orgchart/cmd/cserve/standard/rdwylse.htm

			CR	ASH CUSHI	[ON					
BLE			MOVE /	RESET	L	L	R	R	s	s
н	INSTALL	REMOVE	MOVE/ RESET	FROM LOC.#	N	w	N	w	N	w
	х								x	
	Х								х	
S										

CRASH CUSHION SUMMARY SHEET

FILE: CCSS.dgn	DN: T×D	тс	СК	:	СК:
© T×DOT	CONT SEC		СТ	JOB	HIGHWAY
REVISIONS	0910 16		6	147,ETC	CR 2110
	DIST		0	COUNTY	
	TYL		SMITH		
	FEDERA	AL A	ΙD	PROJECT	SHEET NO.
					48



9/7/2021 DATE:

Texas Departme	nt of Tra	nsp	ortation		D	esign ivision tandard
BARBE	D W	ΙF	RE A		ID	
WOVEN	wī	RF	F F F	ĪN		-
				-		-
(5)	EEL	PC	1212)		
w w	- (2)	_	10			
	(2)					
FILE: wf210.dgn	dn: Tx[TOC	ск: АМ	DW:	٧P	CK:
© TxDOT 1996	CONT	SECT	JOB			HIGHWAY
REVISIONS	0910	16 147,ETC			WHIT	TLE ST,ETC
			COUNTY			SHEET NO.
	DIST		COUNTY			SHEET NO.

	HYDROLOGIC COMPUTATIONS																			
	DRAINAGE AREA DATA TR-55														REGIONAL REGRESSION					
DESIGN YEAR	AREA (SF)	AREA (ACRE)	AREA (SQ. MI)	L (MI)	DELTA ELEV (FT)	SL (FT/MI)	RAINFALL TYPE	SOIL GROUP	CURVE NUMBER	Tc (HR)	P (IN)	TR-55 Q (CFS)	a	b	с	d	е	*	REGRESSION Q (CFS)	
2	33425330	767	1.20	0.95	30.0	31.58	III	D	85	0.5	4.14	1300	50.98	-50.30	1.40	0.27	0.78	-0.006	300	
5	33425330	767	1.20	0.95	30.0	31.58	III	D	85	0.5	5.26	1800	16.62	-15.32	1.31	0.37	0.89	-0.022	500	
10	33425330	767	1.20	0.95	30.0	31.58	III	D	85	0.5	6.26	2100	13.62	-11.97	1.20	0.40	0.92	-0.029	600	
25	33425330	767	1.20	0.95	30.0	31.58	III	D	85	0.5	7.73	2900	11.79	-9.82	1.14	0.45	0.95	-0.037	900	
50	33425330	767	1.20	0.95	30.0	31.58	III	D	85	0.5	8.93	3400	11.17	-9.00	1.11	0.48	0.96	-0.042	1000	
100	33425330	767	1,20	0.95	30.0	31.58	III	D	85	0.5	10.30	4100	10.82	-8.45	1.07	0.51	0.97	-0.047	1900	
500	33425330	767	1.20	0.95	30.0	31.58	III	D	85	0.5	14.00	5700	10.40	-7.61	0.99	0.57	0.98	-0.055	2800	

DRAINAGE AREA MAP

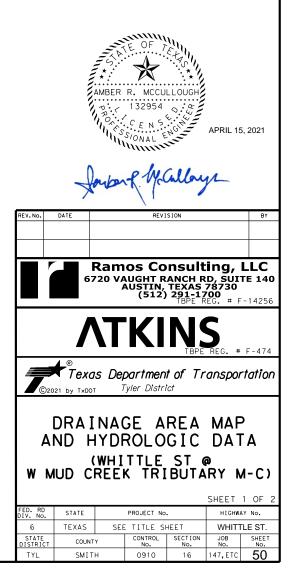
IOO% SUBMITTAL DATE: 4/15/2021 TIME: 5:09

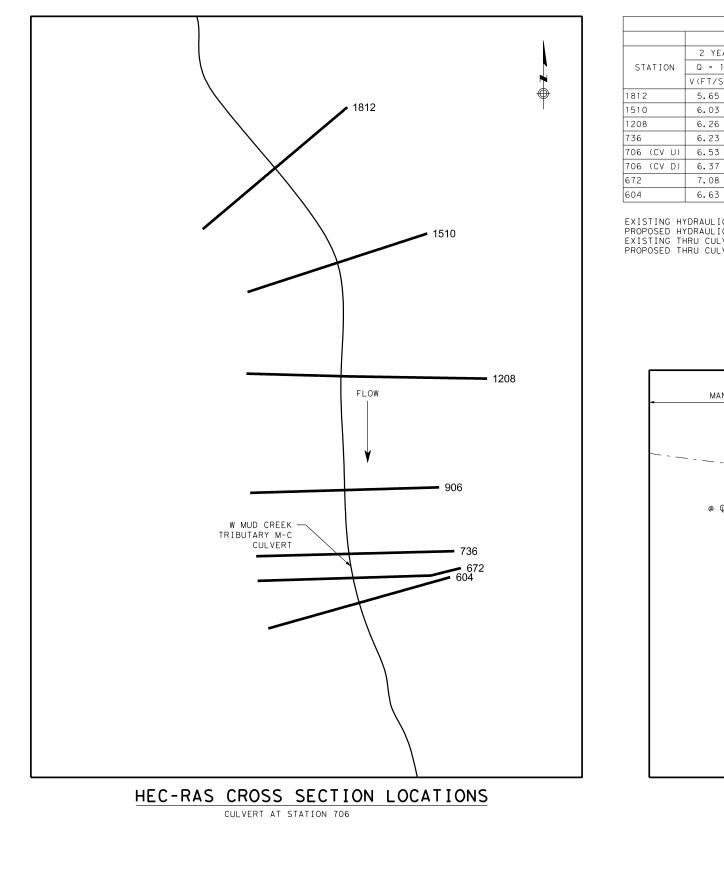
-9 +

USED IN MODEL
FIS REPORT (CFS)
1 300
1800
2000
2300
2600
2800
3400

NOTES:

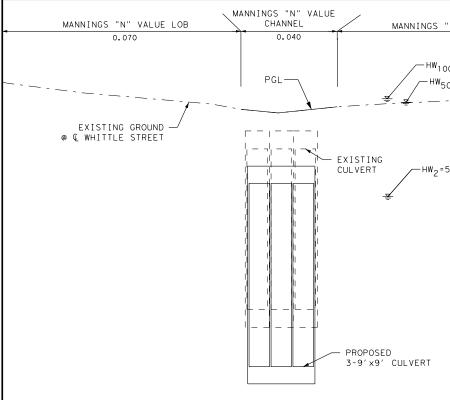
1. WEST MUD CREEK TRIBUTARY M-C AT WHITTLE STREET IS A FEMA MAPPED ZONE AE SPECIAL FLOOD HAZARD AREA (SFHA) AS SHOWN ON FEMA PANEL 48423C0360D, EFFECTIVE DATE APRIL 16, 2014.


2. RATIONAL METHOD NOT COMPUTED BECAUSE DRAINAGE AREA > 200 ACRES.


3. OMEGA EM REGIONAL REGRESSION EQUATIONS FROM TXDOT HYDRAULIC DESIGN MANUAL, SEPTEMBER 2019.

4. WIN TR-55 VERSION 1.00.10 USED.

5. FIS REPORT 48423CV001B FLOW VALUES USED TO MATCH TYLER MASTER DRAINAGE PLAN.



	HYDRAULIC ANALYSIS															
	PROPOSED MODEL							EXISTING MODEL								
	2 YEAR FLOW		50 YEAR FLOW		100 YE.	100 YEAR FLOW		2 YEAR FLOW		50 YEAR FLOW		AR FLOW				
STATION	Q = 1300 CFS		Q = 2600 CFS		Q = 2800 CFS		Q = 1300 CFS		Q = 2600 CFS		Q = 2800 CFS					
	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL (FT				
1812	5.65	509.44	9.04	511.05	9.39	511.27	5.57	509.52	8.97	511.09	9.36	511.29				
1510	6.03	508.82	8.96	510.18	9.34	510.36	5.80	508.97	8.75	510.29	9.19	510.43				
1208	6.26	508.01	6.07	510.05	6.05	510.32	4.94	508.58	5.75	510.23	5.87	510.42				
736	6.23	504.68	7.82	507.50	8.34	507.60	4.07	508.10	6.47	509.12	6.90	509.17				
706 (CV U)	6.53	504.68	10.80	507.50	10.84	507.60	5.82	508.10	4.40	509.12	4.17	509.17				
706 (CV D)	6.37	504.34	10.80	506.15	10.84	506.36	6.76	504.34	4.40	506.15	4.17	506.36				
672	7.08	504.34	10.07	506.15	10.45	506.36	7.08	504.34	10.07	506.15	10.45	506.36				
604	6.63	504.18	9.98	505.86	10.49	506.03	6.63	504.18	9.98	505.86	10.49	506.03				

EXISTING HYDRAULIC OPENING AT W MUD CREEK TRIBUTARY (M-C) PROPOSED HYDRAULIC OPENING AT W MUD CREEK TRIBUTARY (M-C): EXISTING THRU CULVERT VELOCITY AT W MUD CREEK TRIBUTARY (M-C): PROPOSED THRU CULVERT VELOCITY AT W MUD CREEK TRIBUTARY (M-C): 189.00 SF 243.00 SF 5.82 FT/SEC (2 YR) 6.53 FT/SEC (2 YR)

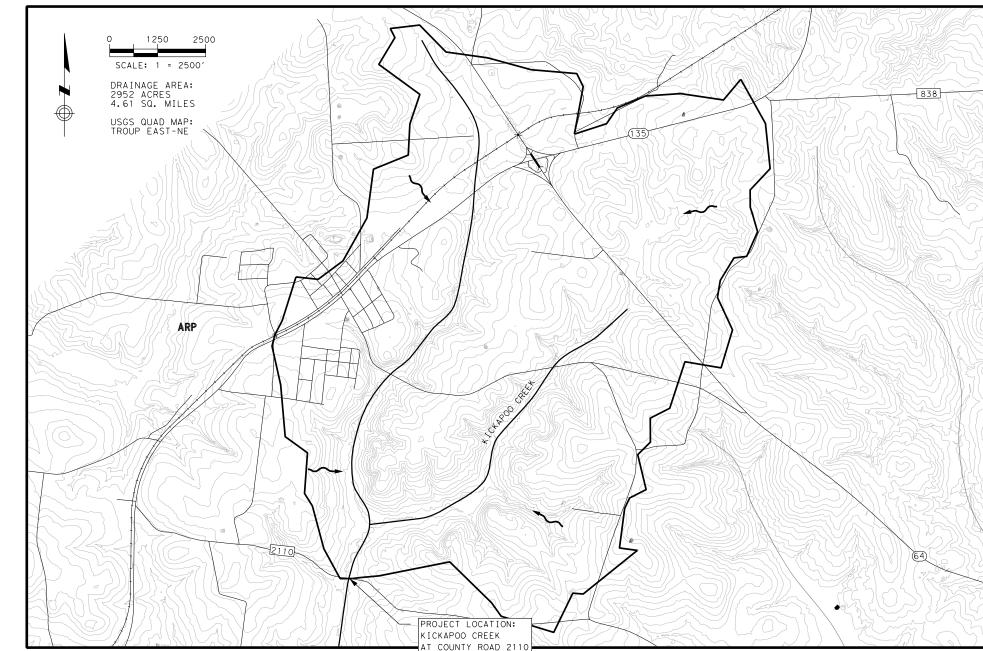
PROPOSED WHITTLE STREET PROFILE

NOTES:

1. ELEVATIONS SHOWN ARE BASED ON NAVD 88.

2. CRITICAL DEPTH COMPUTATION USED FOR DOWNSTREAM BOUNDARY CONDITION, SLOPE = 0.005981 FOR BOTH EXISTING AND PROPOSED MODELS.

3. THE MANNING'S N VALUES WERE DETERMINED BY IMAGING, AVAILABLE MAPPING, AND FIS REPORT 48423CV001B. THE CHANNEL IS LINED WITH CONCRETE, AND THE OVERBANKS ARE MOSTLY SHORT GRASS, WITH TREES NEAR WHITTLE ST.


4. GEO HEC-RAS VER 4.1.0 USED FOR ANALYSIS AND DESIGN.

5. HYDROLOGY AND HYDRAULICS FILES WERE SENT TO THE LOCAL FLOODPLAIN ADMINISTRATOR DOUG NICHOLSON ON SEPTEMBER 17TH, 2020.

00 = 507.60	
50=507.50	
	RIL 15, 2021
	loys
REV. NO. DATE REVISION	BY
Ramos Consulting 6720 VAUGHT RANCH RD, S AUSTIN, TEXAS 787 (512) 291-1700 TBPE REG.	g, LLC SUITE 140 '30 # F-14256
	G. # F-474
© Texas Department of Trans	sportation
HYDRAULIC DATA SHEET	7
(WHITTLE ST @ W MUD CREEK TRIBUTARY	(M-C)
	ET 2 OF 2
UIV. NO.	IGHWAY No.
STATE CONTROL SECTION JC	HITTLE ST.
DISTRICT COUNTY No. No. No.	ETC. 51

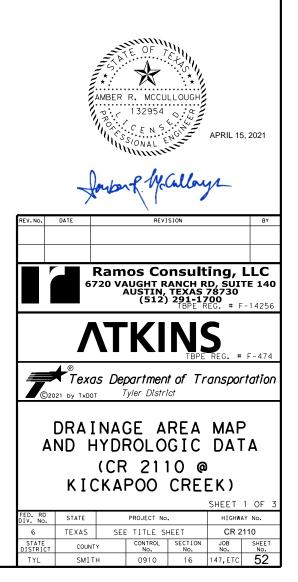
HYDROLOGIC COMPUTATIONS DRAINAGE AREA DATA TR-55 REGIONAL REGRESSION DELTA ELEV (FT) REGRESSION DESIGN YEAR AREA (SF) SL (FT/MI RAINFALL TYPE SOIL GROUP AREA AREA CURVE TR-55 Τc а Ь С d е × Q (CFS) (ACRE) (SQ. MI) (MI) NUMBER (HR) (IN) Q (CFS) 2 128589120 2952 4.61 2.92 120.0 41.10 ΙΙΙ С 89 1.5 4.13 3100 50.98 -50.30 1.40 0.27 0.78 -0.006 750 5 128589120 2952 4.61 2.92 120.0 41.10 ΙΙΙ С 89 1.5 5.27 4200 16.62 15.32 1.31 0.37 0.89 -0.022 1500 10 128589120 2952 4.61 2.92 120.0 41.10 ΙΙΙ С 89 1.5 6.31 5200 13.62 -11.97 1.20 0.40 0.92 -0.029 2050 25 128589120 2952 4.61 2.92 120.0 41.10 ΙΙΙ С 89 1.5 7.85 6600 11.79 -9.82 1.14 0.45 0.95 -0.037 2950 50 128589120 2952 4.61 2.92 120.0 41.10 ΙΙΙ С 89 1.5 9.15 7700 11.17 -9.00 1.11 0.48 0.96 -0.042 3700 100 128589120 2952 4.61 2.92 120.0 41.10 ΙΙΙ С 89 1.5 10.60 9000 10.82 -8.45 1.07 0.51 0.97 -0.047 4600 500 128589120 2952 4.61 2.92 120.0 41.10 ΙΙΙ С 89 1.5 14.70 12500 10.40 -7.61 0.99 0.57 0.98 -0.055 7100

DRAINAGE AREA MAP

IOO% SUBMITTAL DATE: 4/15/2021 TIME: 5:1

PLOT DRIVER: RD_11x17_PDF.pl+ PEN TABLE: Tyler BRG Replacements_transportation.tbl File: Tap Tv1 swith CP3110 DAM door

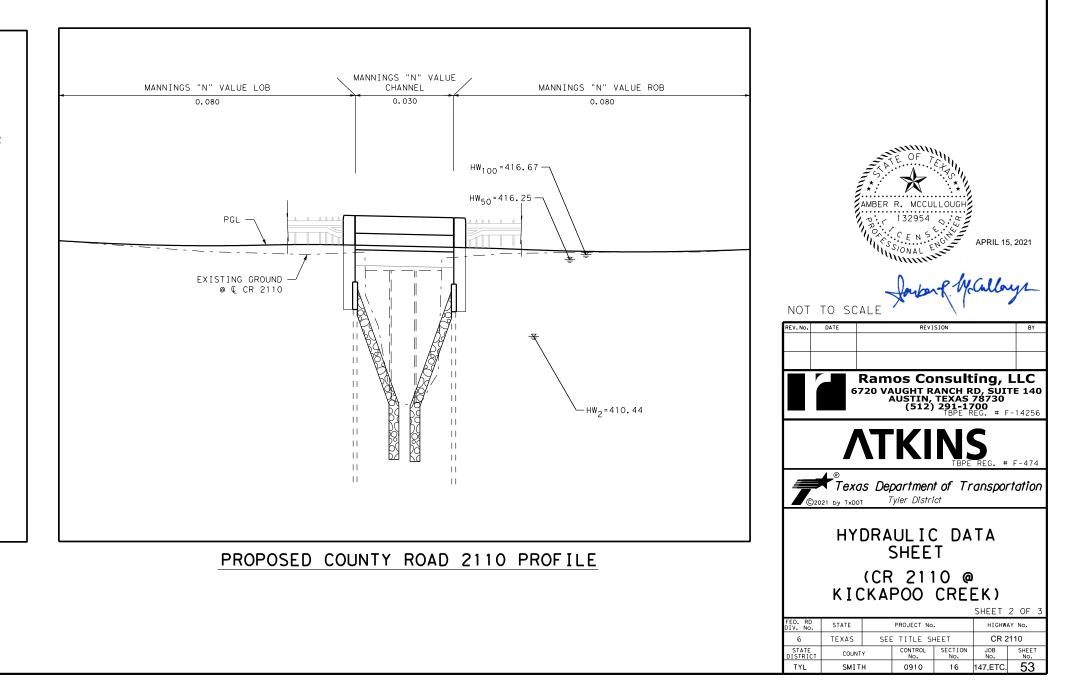
USED IN MODEL REGRESSION Q (CFS)	
REGRESSION Q	
750	
1500	
2050	
2950	
3700	
4600	
7100	

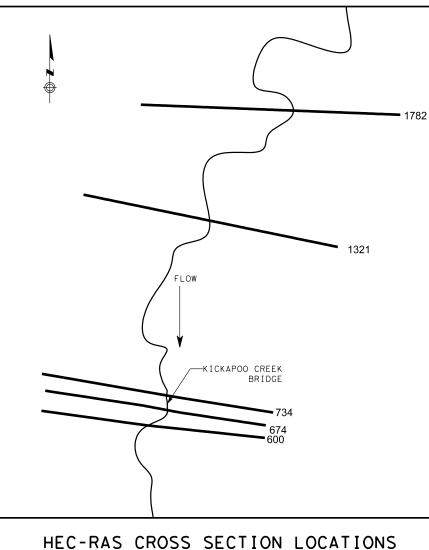

NOTES:

I. KICKAPOO CREEK AT COUNTY ROAD 2110 IS A FEMA MAPPED ZONE A SPECIAL FLOOD HAZARD AREA (SFHA) AS SHOWN ON FEMA PANEL 48442C0550C, EFFECTIVE DATE SEPTEMBER 26, 2008.

2. RATIONAL METHOD NOT COMPUTED BECAUSE DRAINAGE AREA > 200 ACRES.

3. OMEGA EM REGIONAL REGRESSION EQUATIONS FROM TXDOT HYDRAULIC DESIGN MANUAL, SEPTEMBER 2019.


4. WIN TR-55 VERSION 1.00.10 USED.



	HYDRAULIC ANALYSIS												
			PROPOSE	D MODEL		EXISTING MODEL							
	2 YEA	R FLOW	50 YEA	R FLOW	100 YE	100 YEAR FLOW		2 YEAR FLOW		R FLOW	100 YEAR FLO		
STATION	Q = 750 CFS		S Q = 3700 CFS		Q = 4600 CFS		Q = 750 CFS		Q = 3700 CFS		Q = 4600 CFS		
	V(FT/S)	WSEL (FT)	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL(FT	
1782	4.53	416.28	8.28	419.92	8.59	420.71	4.53	416.28	8.17	419.99	7.63	421.22	
1321	4.79	415.04	7.26	418.77	7.10	419.86	4.80	415.04	6.86	419.02	6.00	420.72	
734	5.95	410.43	8.05	417.07	6.78	419.16	4.75	410.66	6.55	418.08	5.12	420.48	
709 (BR U)	5.68	410.44	10.01	416.25	12.44	416.76	5.17	410.56	10.50	416.62	12.33	417.80	
709 (BR D)	6.05	410.19	10.07	415.97	12.44	416.03	6.47	410.15	12.99	415.09	15.67	415.32	
674	10.34	408.70	12.48	414.81	12.48	415.82	10.34	408.70	12.48	414.81	12.48	415.82	
600	2.85	408.07	4.66	414.50	4,98	415.63	2.94	407.93	5.12	413.79	5.51	414.86	

EXISTING HYDRAULIC OPENING AT KICKAPOO CREEK: PROPOSED HYDRAULIC OPENING AT KICKAPOO CREEK: EXISTING THRU VELOCITY AT KICKAPOO CREEK: PROPOSED THRU VELOCITY AT KICKAPOO CREEK: 320.00 SF 369.18 SF 5.17 FT/SEC (2 YR) 5.68 FT/SEC (2 YR)

BRIDGE AT STATION 709

IOO% SUBMITTAL DATE: 4/15/2021 TIME: 5:10

PLOT DRIVER: RD_11×17_PDF.p!+ PEN TABLE: Tyler BRG Replacements_transportation.tb! FILE: TBR_TYL_SMITH_CR2110_HDS.dan

NOTES:

1. ELEVATIONS SHOWN ARE BASED ON NAVD 88.

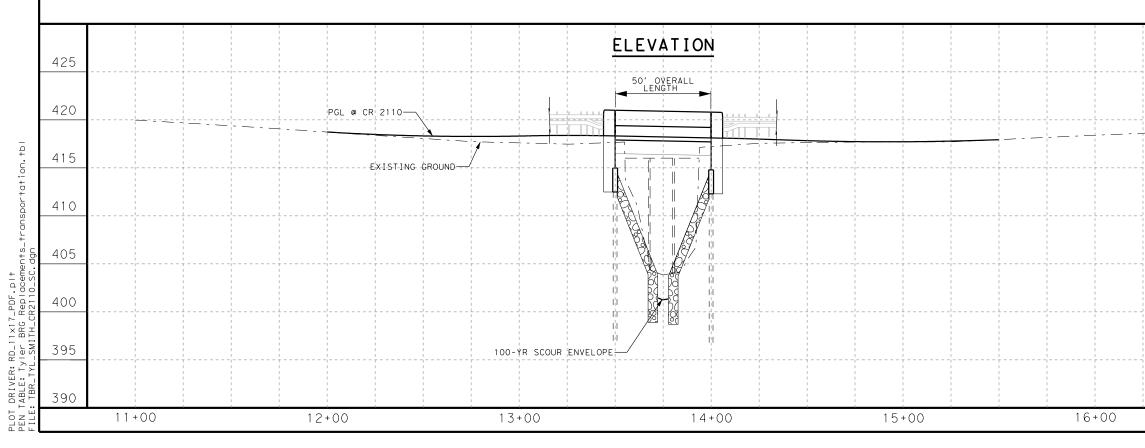
2. CRITICAL DEPTH COMPUTATION USED FOR DOWNSTREAM BOUNDARY CONDITION, SLOPE = 0.007772 FOR BOTH EXISTING AND PROPOSED MODELS.

3. THE MANNING'S N VALUES WERE DETERMINED BY IMAGING, AVAILABLE MAPPING, AND FIS REPORT 48423CV001B. THE CHANNEL IS A NATURAL WINDING STREAM WITH SOME WEEDS AND STONES, AND THE OVERBANKS ARE MOSTLY GRASS AND TREES.

4. GEO HEC-RAS VER 4.1.0 USED FOR ANALYSIS AND DESIGN.

5. HYDROLOGY AND HYDRAULICS FILES WERE SENT TO THE LOCAL FLOODPLAIN ADMINISTRATOR DOUG NICHOLSON ON SEPTEMBER 17TH, 2020. CRITICAL VELOCITY VARIABLES

INPUT	
UPSTREAM DEPTH OF FLOW (FT)	У
AVERAGE GRAIN SIZE (FT)	D50
COEFFICIENT	Ku
UPSTREAM VELOCITY (FT/S)	V
RESULT	
CRITICAL VELOCITY (FT/S)	Vc
CLEAR WATER IF Vc $>$ V , LIVE BED IF Vc $<$ V	


CRITICAL VELOCITY CALCULATIONS

INPUT					RESULT		
FREQ	У	D50	Ku	V	Vc	SCOUR	TYPE
2 YR	2.47	0.000656	11.17	4.79	1.13	LIVE	BED
5 YR	3.09	0.000656	11.17	5.74	1.17	LIVE	BED
10 YR	3.24	0.000656	11.17	6.17	1.18	LIVE	BED
25 YR	3.79	0.000656	11.17	6.84	1.21	LIVE	BED
50 YR	4.47	0.000656	11.17	7.26	1.25	LIVE	BED
100 YR	5.56	0.000656	11.17	7.10	1.29	LIVE	BED

LIVE-BED CONTRACTION SCOUR CALCULATIONS

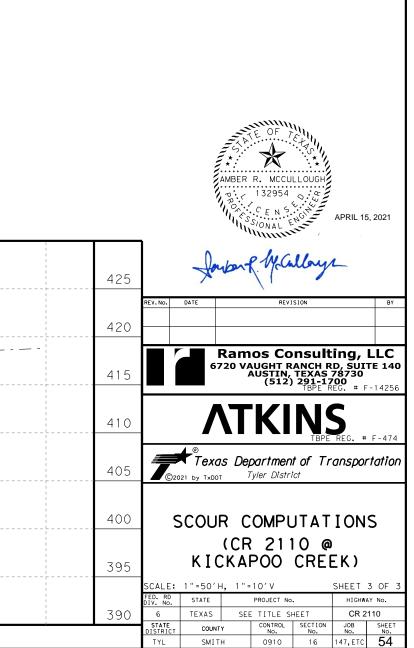
LIVE-BED CONTRACTION SCOUR VARIABLES INPUT UPSTREAM DEPTH OF FLOW (FT) у1 BRIDGE DEPTH OF FLOW BEFORE SCOUR(FT) yО UPSTREAM FLOW (CFS) Q1 Q2 BRIDGE FLOW (CFS) UPSTREAM WIDTH W 1 BRIDGE WIDTH W2 UPSTREAM SHEAR VELOCITY (G*Y1*S1)1/2 (FT/S) ٧× SLOPE OF ENERGY GRADE LINE S1 FALL VELOCITY OF BED MATERIAL (FPS) w RATIO USED TO DETERMINE K1 V*/w COEFFICIENT k1 <u>RESULT</u> BRIDGE DEPTH OF FLOW AFTER SCOUR (FT) у2 AVERAGE CONTRACTION SCOUR DEPTH (FT) уs

INPUT												RESULT	
FREQ	y1	у0	Q1	Q2	W 1	W2	٧*	S1	w	V*/w	k1	y2	Γ
2 YR	2.47	4.06	750	750	63.68	32.71	0.48	0.002838	0.0892	5.3812	0.69	3.91	Г
5 YR	3.09	5.33	1500	1500	83.27	42.21	0.55	0.003017	0.0892	6.1659	0.69	4.95	Γ
10 YR	3.24	5.98	2050	2050	102.84	47.07	0.58	0.003268	0.0892	6.5022	0.69	5.56	
25 YR	3.79	7.43	2950	2950	113.31	47.50	0.63	0.003264	0.0892	7.0628	0.69	6.90	
50 YR	4.47	7.38	3700	3700	113.31	50.00	0.65	0.002954	0.0892	7.2870	0.69	7.86	Г
100 YR	5.56	7.38	4500	4600	113.31	50.00	0.61	0.002107	0.0892	6.8386	0.69	9.96	

NOTES:

1. SCOUR COMPUTATIONS PERFORMED ACCORDING TO FHWA HEC-18 PROCEDURES (APRIL 2012).

2. SECTION AT RIVER STATION 1321 USED AS UPSTREAM SECTION.

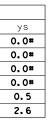

3. ABUTMENTS WILL BE PROTECTED AGAINST SCOUR WITH RIPRAP - ABUTMENT SCOUR WAS NOT CALCULATED PER T×DOT GEOTECHNICAL MANUAL (03/2018).

4. LEFT AND RIGHT OUTERBANK SCOUR WAS NOT CALCULATED BECAUSE BRIDGE DOES NOT SPAN LEFT OR RIGHT OUTERBANKS.

5. BRIDGE FOUNDATION DESIGNED TO WITHSTAND 100-YEAR FLOOD.

6. D50 LIMITED TO 0.000656 FT FOR COHESIVE MATERIALS PER TXDOT GEOTECHNICAL MANUAL (03/2018).

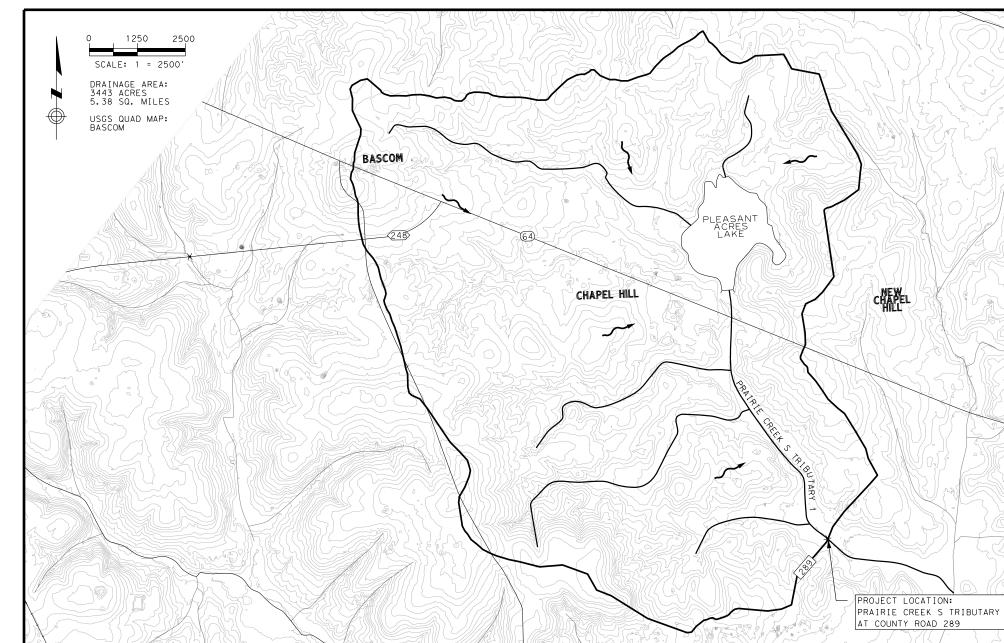
CALCULATED CONTRACTION SCOUR IS NEGATIVE.


ΤYI

SMITH

0910

16


147,ETC

SUBMITTAL 100%

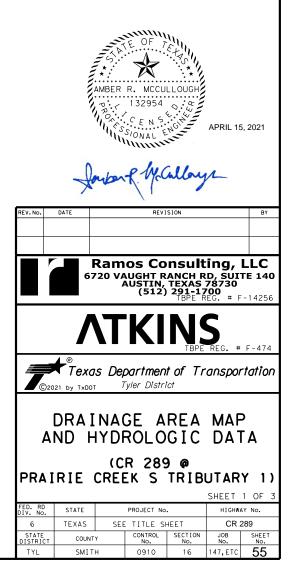
								HYD	ROLOGIC	COMPUTAT	IONS								
	DRAINAGE AREA DATA TR-55										REGIONAL REGRESSION								
DESIGN YEAR	AREA (SF)	AREA (ACRE)	AREA (SQ. MI)	(MI)	DELTA ELEV (FT)	SL (FT/MI)	RAINFAL L TYPE	SOIL GROUP	CURVE NUMBER	Tc (HR)	P (IN)	TR-55 Q (CFS)	a	b	с	d	e	*	REGRESSION Q (CFS)
2	149977080	3443	5.38	3.35	150.0	44.79	III	В	64	1.7	4.14	1023	50.98	-50.30	1.40	0.27	0.78	-0.006	800
5	132174979	3443	5.38	3.35	150.0	44.79	III	В	64	1.7	5.26	1821	16.62	-15.32	1.31	0.37	0.89	-0.022	1600
10	132174979	3443	5.38	3.35	150.0	44.79	III	В	64	1.7	6.28	2630	13.62	-11.97	1.20	0.40	0.92	-0.029	2200
25	132174979	3443	5.38	3.35	150.0	44.79	III	В	64	1.7	7.78	3903	11.79	-9.82	1.14	0.45	0.95	-0.037	3150
50	132174979	3443	5.38	3.35	150.0	44.79	III	В	64	1.7	9.02	5012	11.17	-9.00	1.11	0.48	0.96	-0.042	4000
100	132174979	3443	5.38	3.35	150.0	44.79	III	В	64	1.7	10.40	6325	10.82	-8.45	1.07	0.51	0.97	-0.047	5000
500	132174979	3443	5.38	3.35	150.0	44.79	III	В	64	1.7	14.30	9984	10.40	-7.61	0.99	0.57	0.98	-0.055	7800

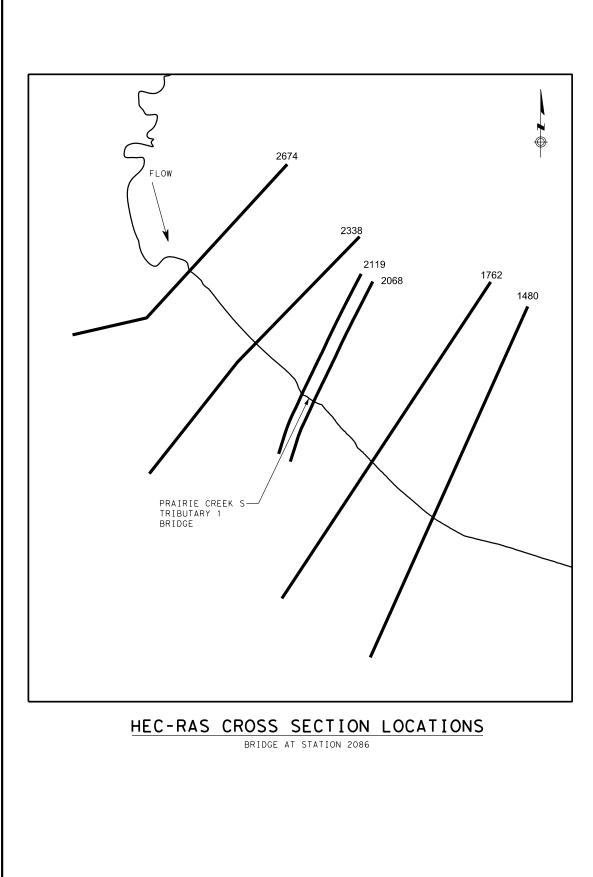
DRAINAGE AREA MAP

-q+ tation. 5 ents_tr PLOT DRIVER: RD_11×17_PDF.pl+ PEN TABLE: Tyler BRG Replacem FILE: TAR TYL SMITH CR289 DAM

USED IN MODEL
REGRESSION Q (CFS)
800
1600
2200
3150
4000
5000
7800

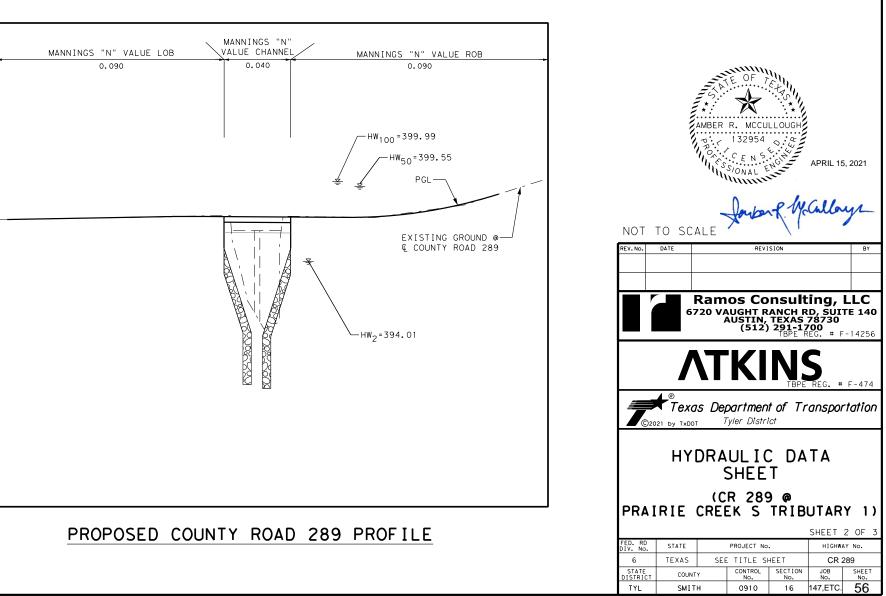
NOTES:


1. PRAIRIE CREEK S TRIBUTARY 1 AT COUNTY ROAD 289 IS A FEMA MAPPED ZONE AE SPECIAL FLOOD HAZARD AREA (SFHA) AS SHOWN ON FEMA PANEL 48422C0395D, EFFECTIVE DATE APRIL 16, 2014.


2. RATIONAL METHOD NOT COMPUTED BECAUSE DRAINAGE AREA > 200 ACRES.

3. OMEGA EM REGIONAL REGRESSION EQUATIONS FROM TXDOT HYDRAULIC DESIGN MANUAL, SEPTEMBER 2019.

4. WIN TR-55 VERSION 1.00.10 USED.



					HYDRAUL I	C ANALYS	SIS					
			PROPOSE	D MODEL		EXISTING MODEL						
	2 YEA	R FLOW	50 YEA	R FLOW	100 YE	AR FLOW	2 YEAF	R FLOW	50 YEA	R FLOW	100 YE	AR FLOW
STATION	Q = 8	00 CFS	Q = 40	00 CFS	Q = 50	00 CFS	Q = 80	DO CFS	Q = 40	00 CFS	Q = 50	000 CFS
	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL(FT)	V(FT/S)	WSEL (FT
2674	2.85	396.94	3.88	399.96	4.23	400.46	2.92	396.91	3.78	400.05	4.20	400.50
2338	3.48	394.79	2.60	399.70	2.97	400.18	3.33	394.84	2.54	399.82	2.95	400.22
2119	4.51	394.01	3.83	399.55	4.37	399.99	4.33	394.14	3.71	399.67	4.31	400.04
2086 (BR U)	4.31	393.92	3.33	399.43	3.43	399.84	5.44	393.86	5.31	399.47	5.75	399.82
2086 (BR D)	4.79	393.42	4.93	398.59	7.63	398.31	5.39	393.73	8.52	398.55	9.28	398.80
2068	3.92	393.48	12.43	395.90	10.36	397.37	5.18	393.73	9.99	397.03	10.82	397.44
1762	0.38	392.79	4.16	394.76	4.76	395.17	0.38	392.79	4.16	394.76	4.76	395.17
1480	1.10	391.79	3.13	393.55	3.72	393.91	1.10	391.79	3.13	393.55	3.72	393.91

EXISTING HYDRAULIC OPENING AT PRAIRE CREEK S TRIBUTARY 1: PROPOSED HYDRAULIC OPENING AT PRAIRE CREEK S TRIBUTARY 1: EXISTING THRU VELOCITY AT PRAIRE CREEK S TRIBUTARY 1: PROPOSED THRU VELOCITY AT PRAIRE CREEK S TRIBUTARY 1:

218.32 SF 253.72 SF 5.44 FT/SEC (2 YR)

NOTES:

1. ELEVATIONS SHOWN ARE BASED ON NAVD 88.

2. CRITICAL DEPTH COMPUTATION USED FOR DOWNSTREAM BOUNDARY CONDITION, SLOPE = 0.008483 FOR BOTH EXISTING AND PROPOSED MODELS.

3. THE MANNING'S N VALUES WERE DETERMINED BY IMAGING, AVAILABLE MAPPING, AND FIS REPORT 48423CV001B. THE CHANNEL IS A NATURAL WINDING STREAM WITH SOME WEEDS AND STONES AND POOLS, AND THE OVERBANKS ARE MOSTLY GRASS AND TREES.

4. GEO HEC-RAS VER 4.1.0 USED FOR ANALYSIS AND DESIGN.

5. EXISTING AND PROPOSED ROADWAYS OVERTOPPED IN 50-YEAR AND 100-YEAR EVENTS.

6. HYDROLOGY AND HYDRAULICS FILES WERE SENT TO THE LOCAL FLOODPLAIN ADMINISTRATOR DOUG NICHOLSON ON SEPTEMBER 17TH, 2020.

TTAL

CRITICAL VELOCITY VARIABLES

UPSTREAM DEPTH OF FLOW (FT)

AVERAGE GRAIN SIZE (FT)

UPSTREAM VELOCITY (FT/S)

CRITICAL VELOCITY (FT/S)

INPUT

RESULT

COEFFICIENT

CRITICAL	VELOCITY	CALCULATIONS
0		042002411040

У

D50

Ku

V

Vc

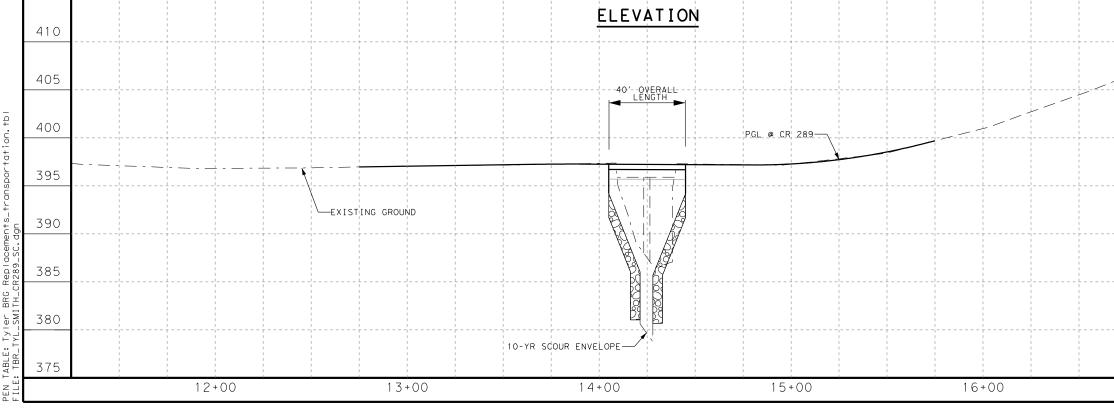
у2

уs

INPUT					RESULT		
FREQ	У	D50	Ku	V	Vc	SCOUR	TYPE
2 YR	2.19	0.000656	11.17	3.48	1.11	LIVE	BED
5 YR	4.00	0.000656	11.17	2.47	1.22	LIVE	BED
10 YR	5.76	0.000656	11.17	1.93	1.30	LIVE	BED
25 YR	6.97	0.000656	11.17	2.11	1.34	LIVE	BED
50 YR	7.11	0.000656	11.17	2.60	1.35	LIVE	BED
100 YR	7.58	0.000656	11.17	2.97	1.36	LIVE	BED

LIVE-BED CONTRACTION SCOUR CALCULATIONS

LIVE-BED CONTRACTION SCOUR VARIABLES INPUT UPSTREAM DEPTH OF FLOW (FT) у1 BRIDGE DEPTH OF FLOW BEFORE SCOUR(FT) уO UPSTREAM FLOW (CFS) Q 1 BRIDGE FLOW (CFS) Q2 UPSTREAM WIDTH W 1 BRIDGE WIDTH W2 UPSTREAM SHEAR VELOCITY (G*Y1*S1)1/2 (FT/S) ٧× SLOPE OF ENERGY GRADE LINE S1 FALL VELOCITY OF BED MATERIAL (FPS) w RATIO USED TO DETERMINE K1 V*/w COEFFICIENT k1 RESULT


BRIDGE DEPTH OF FLOW AFTER SCOUR (FT)

AVERAGE CONTRACTION SCOUR DEPTH (FT)

CLEAR WATER IF Vc > V , LIVE BED IF Vc < V

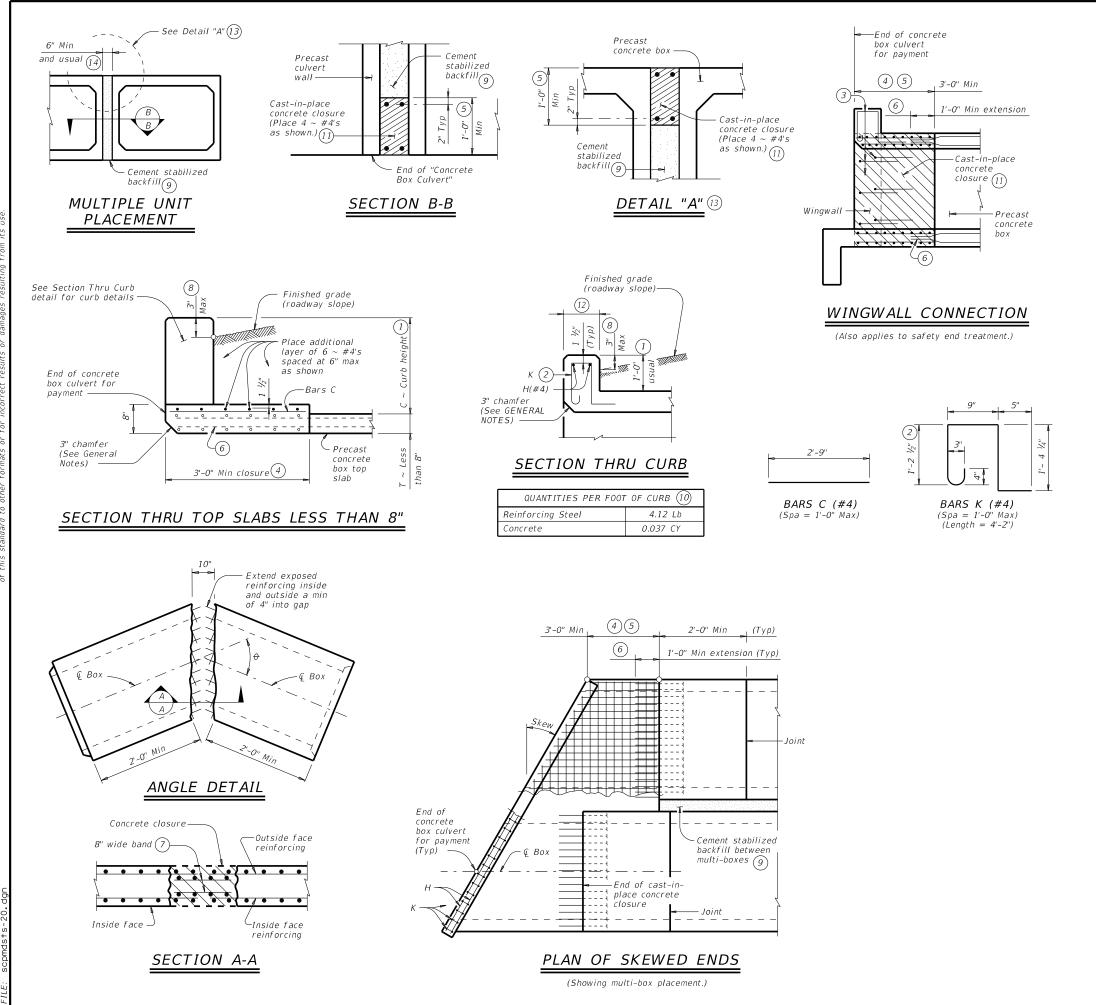
INPUT												RESULT	
FREQ	y1	у0	Q1	Q2	W 1	W2	٧*	S1	w	V*/w	k1	у2	2
2 YR	2.19	4.68	350	800	46.68	38.85	0.48	0.003221	0.0197	24.3655	0.69	5.05	0
5 YR	4.00	6.30	450	1600	46.68	40.00	0.31	0.000728	0.0197	15.7360	0.69	13.19	6
10 YR	5.76	5.29	500	1500	46.48	55.10	0.22	0.000273	0.0197	11.1675	0.69	13.13	7
25 YR	6.97	6.75	700	1000	46.48	55.10	0.24	0.000255	0.0197	12.1827	0.69	8.41	1
50 YR	7.11	6.79	850	1250	46.48	55.10	0.29	0.000374	0.0197	14.7208	0.69	8.80	2
100 YR	7.58	7.21	1050	1350	46.48	55.10	0.33	0.000450	0.0197	16.7513	0.69	8.36	1

NOTES:

1. SCOUR COMPUTATIONS PERFORMED ACCORDING TO FHWA HEC-18 PROCEDURES (APRIL 2012).

2. SECTION AT RIVER STATION 2338 USED AS UPSTREAM SECTION.

3. ABUTMENTS WILL BE PROTECTED AGAINST SCOUR WITH RIPRAP - ABUTMENT SCOUR WAS NOT CALCULATED PER T×DOT GEOTECHNICAL MANUAL (03/2018).


4. LEFT AND RIGHT OUTERBANK SCOUR WAS NOT CALCULATED BECAUSE BRIDGE DOES NOT SPAN LEFT OR RIGHT OUTERBANKS.

5. BRIDGE FOUNDATION DESIGNED TO WITHSTAND 100-YEAR FLOOD.

6. D50 LIMITED TO 0.000656 FT FOR COHESIVE MATERIALS PER TXDOT GEOTECHNICAL MANUAL (03/2018).

		ZACHARY VERMILLION 2. 113558 C. E. N. S. KONAL S. S. NONAL EN MAY 19, 2021
	410	alloy tub
	405	REV. NO. DATE / REVISION BY
	400	Ramos Consulting, LLC 6720 VAUGHT RANCH RD, SUITE 140 AUSTIN, TEXAS 78730 (512) 291-1700 TBPE REO. # F-14256
	395	ATKINS
	390	Texas Department of Transportation
	385	SCOUR COMPUTATIONS
	380	(CR 289 @ PRAIRIE CREEK S TRIBUTARY 1)
	375	SCALE: 1"=50'H, 1"=10'V SHEET 3 OF 3 FED. RD STATE PROJECT NO. HIGHWAY NO. 1000000000000000000000000000000000000
17+00		STATE DISTRICT COUNTY CONTROL No. SECTION No. JOB No. SHEET No. TYL SMITH 0910 16 147, ETC 57

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TXDDT for any purpose whatsoever. TXDDT assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use.

> FE: 5/20/2021 8:53:36 AM F: crowde+c-20 doo

① 0" Min to 5'-0" Max. Estimated curb heights are shown elsewhere in the plans. For structures with pedestrian rail, bicycle rail, or curbs taller than 1'-0, refer to the Extended Curb Details (ECD) standard sheet. For structures with T631 or T631LS bridge rail, refer to the Mounting Details for T631 & T631LS CM) standard sheet. Refer to the Box Culvert Rail Mounting Details (RAC) standard sheet for structures with bridge rail other than T631 or T631LS.

For curbs less than 1'-0" high, tilt Bars K or reduce bar height as necessary to maintain cover. For curbs less than 3" high, Bars K may be omitted.

③ Extend curb, wingwall, or safety end treatment reinforcing into concrete closure. Bend or trim, as necessary, any reinforcing that does not fit into closure area.

Provide a 3'-0" Min cast-in-place concrete closure. Break back boxes in the field or cast boxes short. Provide bands of reinforcing in the closure that are the same size and spacing as in the precast box section. Provide #4 longitudinal reinforcement spaced at 12 inches Max within the closure. Except where shown otherwise, construct the cast-in-place closure flush with the inside and outside faces of the precast box section.

5 For multiple unit placements, adjust the length of the closure for the interior walls as necessary. Provide a 3'-0" Min cast-in-place closure in the top slab, bottom slab, and exterior wall. See Section B-B detail when interior walls are cast full length.

 $\binom{6}{6}$ Extend precast box reinforcing a minimum of 1'-0" into concrete closure (Typ).

Place bands of reinforcing matching the inside and outside face reinforcing in the gaps of the top and bottom slabs. Place a band matching the outside face reinforcing of the wall in the gaps of the walls (placed in the outside face only). Tack weld the bands to the exposed reinforcing at each point of contact.

(8) For vehicle safety, the following requirements must be met:

• For structures without bridge rail, construct curbs no more than 3" above finished grade.

• For structures with bridge rail, construct curbs flush with finished grade. Reduce curb heights, if necessary, to meet the above requirements. No changes will be made in quantities and no additional compensation will be allowed for this work.

(9) Cement stabilized backfill between boxes is considered part of the box culvert for payment.

(10) All curb concrete and reinforcing is considered part of the box culvert for payment.

(1) Any additional concrete and reinforcing required for the closures will be considered subsidiary to the box culvert for payment.

(12) 1'-0" typical. 2'-3" when the Box Culvert Rail Mounting Details (RAC) standard sheet is referred to elsewhere in the plans.

(13) For multiple unit placement with overlay, with 1 to 2 course surface treatment, or with the top slab as the final riding surface, provide wall closure as shown in Detail "A".

(14) This dimension may be increased with approval of the Engineer to allow the precast boxes to be tunneled or jacked in accordance with Item 476, "Jacking, Boring, or Tunneling Pipe or Box". No payment will be made for any additional material in the gap between adjacent boxes.

MATERIAL NOTES:

Provide Grade 60 reinforcing steel.

Provide ASTM A1064 welded wire reinforcement.

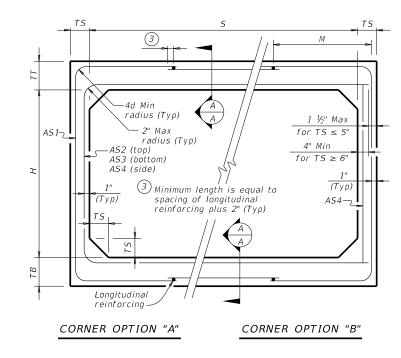
Provide Class C concrete (f'c = 3,600 psi) for the closures.

Provide cement stabilized backfill meeting the requirements of Item 400,

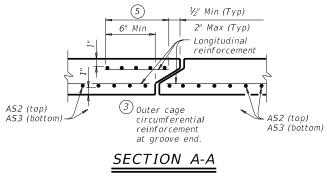
"Excavation and Backfill for Structures."

Any additional concrete required for the closures will be considered subsidiary to the box culvert.

GENERAL NOTES:

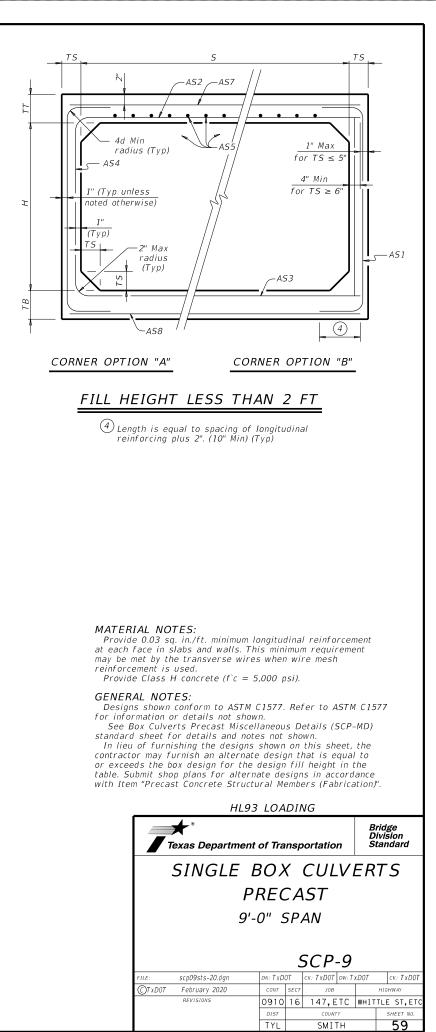

Designed according to AASHTO LRFD Bridge Design Specifications. Refer to the Single Box Culverts Precast (SCP) standard sheets for details and notes not shown.

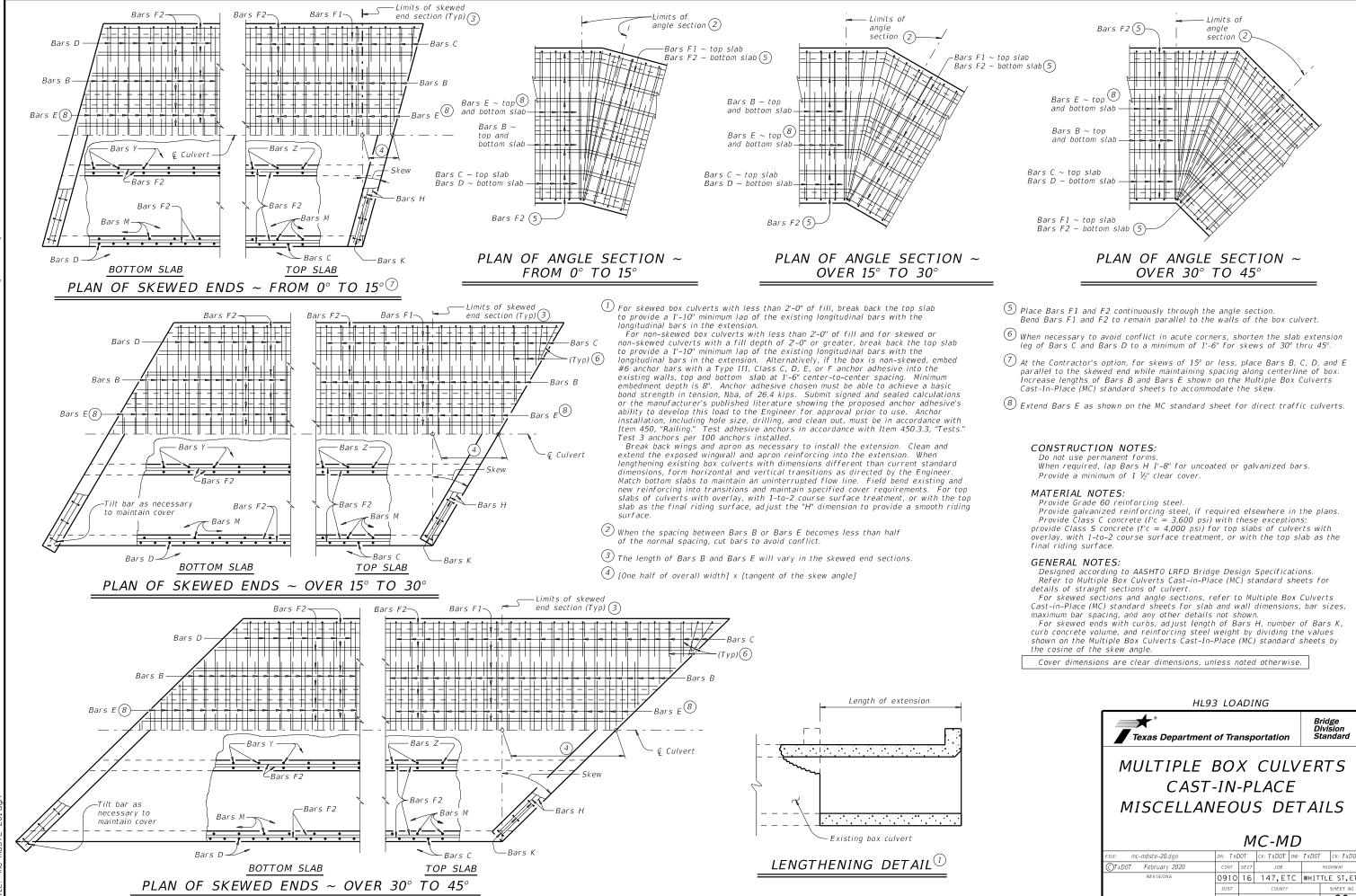
Chamfer the bottom edge of the top slab closure 3 inches at culvert closure ends.


Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing bars dimensions are out-to-out of bars.

	H.	L93 LC	DAD	NIG			
	★* Texas Departmer	nt of Tra	nsp	ortatio	n	D	ridge ivision tandard
	BOX	CU	LV	'ERT	ΓS	,	
	Р	REC	A	ST			
M	ISCELLA	NEC)U	S D	E^{-}	ΤA	ILS
			S	CP-N	1E)	
FILE:	scpmdsts-20.dgn	DN: GAF		ск: LMW	DW: B	NH/Txi	DOT CK: GAF
©TxD0T	February 2020	CONT	SECT	JOB			HIGHWAY
	REVISIONS	0910	16	147,E	TC	WHIT	
	11211310113	0910		, -		-	TLE ST,ETC
		DIST		COUNT		_	TLE ST, ETC SHEET NO.

	SECTIC	N DIME	NSIONS		Fill	м	REINFORCING (sq. in. / ft.)						
S (ft)	Н (ft.)	TT (in)	TB (in)	TS (in)	Height	(Min)	A51	AS2	AS3	AS4	AS5	AS7	AS8
(ft.) 9	4	(in.) 9	(in.) 9	(in.) 9	(ft.) < 2	(in.)	0.30	0.36	0.28	0.22	0.22	0.22	0.22
9	4	9	9	9	2 < 3	- 54	0.35	0.30	0.28	0.22			- 0.22
9	4	9	9	9	3 - 5	50			0.31	0.22	-	-	-
9	4	9	9	9	10	49	0.28	0.27			_		-
9	4	9	9	9			0.31	0.30	0.31	0.22		-	
					15	49	0.40	0.40	0.41	0.22	-	-	-
9	4	9	9	9	20	44	0.52	0.51	0.52	0.22	-	-	-
9	4	9	9	9	25	44	0.65	0.64	0.65	0.22	-	-	-
9	5	9	9	9	< 2	-	0.28	0.38	0.31	0.22	0.22	0.22	0.22
9	5	9	9	9	2 < 3	54	0.32	0.38	0.34	0.22	-	-	-
9	5	9	9	9	3 - 5	49	0.25	0.30	0.30	0.22	-	-	-
9	5	9	9	9	10	49	0.28	0.33	0.34	0.22	-	-	-
9	5	9	9	9	15	44	0.36	0.43	0.45	0.22	-	-	-
9	5	9	9	9	20	44	0.47	0.56	0.57	0.22	-	-	-
9	5	9	9	9	25	44	0.58	0.69	0.71	0.22	-	-	-
9	6	9	9	9	< 2		0.25	0.40	0.74	0.22	0.22	0.22	0.2
9		9		9		-		0.40	0.34	0.22	0.22	0.22	0.22
9	6 6	9	9 9	9	2 < 3 3 - 5	54 49	0.29 0.23	0.41	0.38 0.33	0.22	-	-	-
9	6	9	9	9	10	49	0.25	0.35	0.33	0.22	-	_	-
9	6	9	9	9	15	49	0.20	0.35	0.37	0.22	_	_	-
9	6	9	9	9	20	44	0.42	0.40	0.40	0.22	_	_	-
9	6	9	9	9	25	44	0.42	0.74	0.75	0.22	_	_	-
					25		0.52	0.74	0.75	0.22			
9	7	9	9	9	< 2	-	0.23	0.42	0.36	0.22	0.22	0.22	0.22
9	7	9	9	9	2 < 3	59	0.26	0.44	0.41	0.22	-	-	-
9	7	9	9	9	3 - 5	54	0.22	0.35	0.35	0.22	-	-	-
9	7	9	9	9	10	49	0.24	0.37	0.39	0.22	-	-	-
9	7	9	9	9	15	44	0.31	0.48	0.51	0.22	-	-	-
9	7	9	9	9	20	44	0.39	0.62	0.65	0.22	-	-	-
9	8	9	9	9			0.22	0.42	0.20	0.22	0.22	0.22	0.2
9	8	9	9	9	< 2 2 < 3	- 50		0.43	0.39	0.22	- 0.22	0.22	0.22
9	8	9	9	9		59 59	0.24 0.22	0.46 0.37	0.43	0.22		<u> </u>	
9		9	9	9							-	<u> </u>	-
	8				10	54	0.22	0.39	0.41	0.22	-	-	-
9	8	9	9	9	15	44	0.29	0.50	0.53	0.22	-		
9	8	9	9	9	20	44	0.36	0.64	0.67	0.22	-	-	-
9	9	9	9	9	< 2	-	0.22	0.44	0.42	0.22	0.22	0.22	0.2
9	9	9	9	9	2 < 3	72	0.23	0.49	0.46	0.22	-	-	-
9	9	9	9	9	3 - 5	72	0.22	0.39	0.40	0.22	-	-	-
9	9	9	9	9	10	59	0.22	0.40	0.43	0.22	-	-	-
9	9	9	9	9	15	49	0.27	0.51	0.55	0.22	-	1	

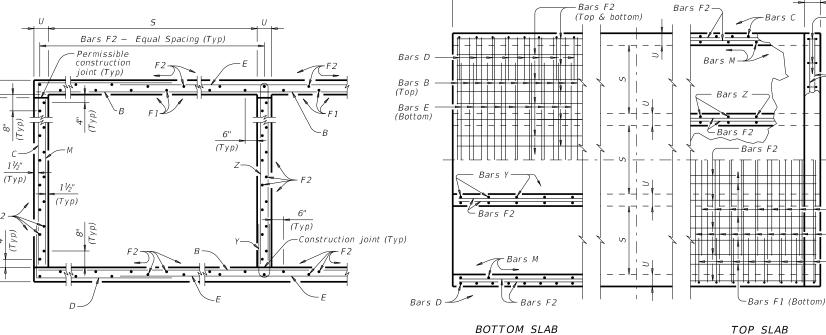

FILL HEIGHT 2 FT AND GREATER



(Showing top and bottom slab joint reinforcement.)

1 For box length = 8'-0''

2 AS1 thru AS4, AS7 and AS8 are minimum required areas of reinforcement per linear foot of box length. AS5 is minimum required area of reinforcement per linear foot of box width.



he he is

AΜ 8:53:52 5/20/

HL9	3 LO.	ADI	NG		
Texas Department	t of Tra	nsp	ortation	D	ridge ivision tandard
MULTIPLE CAST MISCELLAN	-IN	-P	LACE		
		Μ	IC-MD)	
FILE: mc-mdste-20.dgn	DN: TX	DOT	CK: TXDOT DW:	T x D 07	ск: TxD0T
CTxDOT February 2020	CONT	SECT	JOB		HIGHWAY
REVISIONS	0910	16	147,ETC	WHIT	TLE ST,ETC
1	DIST		COUNTY		SHEET NO.
	TYL		SMITH		60

Finished grade

(roadway slope)

TYPICAL SECTION

(4

SECTION THRU CURB

3" chamfer

NOTES.) -

(See CONSTRUCTION

Н

4'-0"

5'-0"

6'-0"

7'-0"

8'-0"

9'-0"

"Y"

BARS D

BARS C

Length of box

Bars F2-

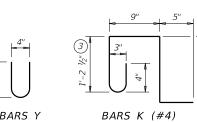
Bars K 3

Bars H

Bars E

-Bars B

(Bottom)


-Bars C

(Top)

тор

BARS Z

TABLE OF

BAR DIMENSIONS

"Y"

5'-5"

5'-5"

5'-5"

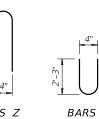
5'-5"

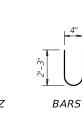
5'-5''

5'-5"

"χ"

4'-7 1/2"


5'-7 1/5"


6'-7 1/3'

7'-7 1/2"

8'-7 ½"

9'-7 ½"

ΑM 8:54:00 5/20/2021 DAT

of any conversio anty the i warr for No act 70 Engi ×D0T by the whatsoev rned Se i gover purpo AIMER: e use of this standard is g i made by TXDOT for any p i made to ther format. he lis l

õ

(1) 0" Min to 5'-0" Max. Estimated curb heights are shown elsewhere in the plans. For structures with pedestrian rail or curbs taller than 1'-0", refer to the Extended Curb Details (ECD) standard sheet. For structures with T631 or T631LS bridge rail, refer to the Mounting Details for T631 & T631LS Rails (T631-CM) standard sheet. Refer to the Rail Anchorage Curb (RAC) standard sheet for structures with bridge rail other than T631 or T631LS.

(2) For vehicle safety, the following requirements must be met:

• For structures without bridge rail, construct curbs no more than 3" above finished grade.

• For structures with bridge rail, construct curbs flush with finished grade. Reduce curb heights, if necessary, to meet the above requirements. No changes will be made in quantities and no additional compensation will be allowed for this work.

(3) For curbs less than 1'-0" high, tilt Bars K or reduce bar height as necessary to maintain cover. For curbs less than 3" high, Bars K may be omitted.

(4) 1'-0" typical. 2'-3" when the Rail Anchorage Curb (RAC) standard sheet is referred to elsewhere in the plans

The Contractor may replace Bars B, C, D, E, F1, F2, M, Y, and/or Z with deformed welded wire reinforcement (WWR) meeting the requirements of ASTM A1064. The area of required reinforcement may be reduced by the ratio of 60 ksi / 70 ksi. Spacing of WWR is limited to 4" Min and 18" Max. When required, provide lap splices in the WWR of the same length required for the equivalent bar size, rounded up for wire sizes between conventional bar sizes. The lap length required for WWR is never less than the lap length required for uncoated #4 bars.

Example conversion: Replacing No. 6 Gr 60 at 6" Spacing with WWR Example conversion: Replacing No. 6 Gr 60 at 6' Spacing With WWR Required WWR = (0.44 sq. in. per 0.5 ft.) x (60 ksi / 70 ksi) = 0.755 sq. in. per ft. If D30.6 wire is used to meet the 0.755 sq. in. per ft. requirement in this example, the required spacing = (0.306 sq. in.) / (0.755 sq. in. per ft.) x (12 in. per ft.) = 4.86" Max spacing. Required lap length for the provided D30.6 wire is 2'-1" (the same minimum lap length required for uncoated #5 bars, as listed under MATERIAL NOTES).

CONSTRUCTION NOTES:

Do not use permanent forms Chamfer the bottom edge of the top slab 3" at the entrance. Optionally, raise construction joints shown at the flow line by a maximum of 6". If this option is taken, Bars M may be cut off or raised, Bars C and D may be reversed, and Bars Y and Z may be reversed.

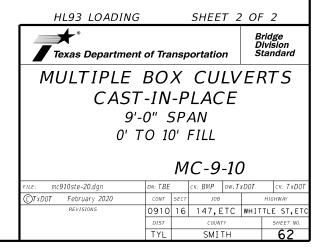
MATERIAL NOTES:

Provide Grade 60 reinforcing steel.

- Provide galvanized reinforcing steel if required elsewhere in the plans. Provide Class C concrete (f'c = 3,600 psi) for culvert barrel and curb, with the following exceptions: provide Class S concrete (f'c = 4,000 psi) for top slabs of:
- culverts with overlay,
- culverts with 1-to-2 course surface treatment, or
 culverts with the top slab as the final riding surface.
- Provide bar laps, where required, as follows:
- Uncoated or galvanized ~ #4 = 1'-8" Min
 Uncoated or galvanized ~ #5 = 2'-1" Min
- Uncoated or galvanized $\sim #6 = 2'-6''$ Min

GENERAL NOTES:

Designed according to AASHTO LRFD Bridge Design Specifications for the range of fill heights shown.


See the Multiple Box Culverts Cast-In-Place Miscellaneous Detail (MC-MD) standard sheet for details pertaining to skewed ends, angle sections, and lengthening.

Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing bar dimensions shown are out-to-out of bar.

HL93 LOADING			SHEET	1 OF	2
Texas Department	t of Tra	nsp	oortation	D	ridge Nvision tandard
MULTIPLE	ВО	Χ	CULV	'Eŀ	RTS
CAST	Γ-IN	-P	LACE		
9'	-0" \$	5P.	AN		
ר יס	0 10)' F	FILL		
	• ••	•			
		Μ	C-9-10)	
FILE: mc910ste-20.dgn	DN: TBE		ск: BMP dw:1	xD0T	ск: ТхD0Т
FILE: mc910ste-20.dgn ©TxDOT February 2020	DN: TBE	SECT	ск: ВМР DW:1 JOB	x DOT	ск: TxD0T ніghway
5			JOB		
©TxDOT February 2020	CONT		JOB		HIGHWAY

F SPANS	ſ	SECT I DIMENS				BILLS OF REINFORCING STEEL (For Box Length = 40 feet)													QUANTITIES			ES																			
SER OF					Б	Bars B		Bars C & D			Bars I	Ē		Bar	s F1 ~	#4	Ba	rs F2	2 ~ #4	4	Bars	М ~	#4		Bars Y	′ & Z	~ #4		Bars H 4 ~ #4	Bars	sκ ^I	Per Foo of Barr	el C	urb	Total						
NUMBER	5	Н	Т	U	ov Size Spa	Lengt	h Wt	: N	Size	Spa	Bars ength	C Wt	Ba Lengt	rsD hW	t N	Size	Len	gth	Wt	No.	Lengt	h Wt	No.	Ed Len	ngth N	Wt N	o Spa	Length	Wt	No.	ed Bar Length		Bars Length		Length Wi	No.	Wt Co		enf Conc .b) (CY)	Renf (Lb)	Conc Reni (CY) (Lb)
2	9' - 0'	' 4' - 0''	9"	7″	162 #6 6"	19' - 6	" 4,74	45 10	08 #6	9" 10	0' - 1''	1,636	8' - 7'	' 1,39	92 16	52 #6	5" 14'-	- 1"	3,427	14 18	"' 39' - 9	" 372	62 1	8" 39'	- 9" 1,	646 10	08 9"	4' - 0''	289	54 9	9'' 4' - 9''	171	9' - 5''	340	19' - 6'' 52	42	117 1.3	356 35	0.5 1.5	169	55.7 14,18
3	9' - 0'	' 4' - 0''	9"	7″	162 #6 6"	29' - 1	" 7,07	77 10	08 #6	9" 10	0' - 1''	1,636	8' - 7	' 1,39	92 16	52 #6	5" 23' -	- 8" _	5,759	21 18	"' 39' - 9	" 558	89 1	8'' 39'	- 9" 2,.	363 10	08 9"	4' - 0''	289	108 9	9" 4' - 9"	343	9' - 5''	679	29' - 1'' 78	62	173 1.9	975 50	2.4 2.2	251	81.2 20,34
4	9' - 0'	' 4' - 0''	9"	7"	162 #6 6"	38' - 8	" 9,40	09 10	08 #6	9" 10	0' - 1''	1,636	8' - 7'	' 1,39	92 16	52 #6	5" 33'-	- 3'' 8	8,091	28 18	"' 39' - 9	" 743	116 1	8'' 39'	- 9" 3,0	080 10	08 9"	4' - 0''	289	162 9	9" 4' - 9"	514	9' - 5''	1,019	38' - 8'' 10.	3 80 2	223 2.5	594 65	4.3 2.9	326	106.6 26,49
5	9' - 0'	4' - 0''	9"	7″	162 #6 6"	48' - 3	" 11,74	40 10	08 #6	9" 10	0' - 1''	1,636	8' - 7	' 1,39	92 16	52 #6	5" 42' -	- 10" 10	0,422	35 18	"' 39' - 9	" 929	143 1	8'' 39'	- 9" 3,	797 10	08 9"	4' - 0''	289	216 9	9" 4' - 9"	685	9' - 5''	1,359	48' - 3'' 12:	9 100 2	278 3.2	213 80	6.2 3.6	407	132.1 32,65
6	9' - 0'	' 4' - 0''	9"	7″	162 #6 6"	57' - 1	0" 14,07	72 10	08 #6	9" 10	0' - 1''	1,636	8' - 7	' 1,39	92 16	52 #6	6" 52'-	- 5" 12	2,754	42 18	"' 39' - 9	" 1,115	170 1	8'' 39'	- 9" 4,.	514 10	08 9"	4' - 0''	289	270 9	9'' 4' - 9''	857	9' - 5''	1,698	57' - 10" 15.	5 118 3	328 3.8	832 95	8.2 4.3	483	157.6 38,81
2	9' - 0'	5' - 0''	9"	7″	162 #6 6"	19' - 6	" 4,74	45 10	08 #6	9" 11	1' - 1''	1,798	8' - 7	' 1,39	92 16	52 #6	5" 14' -	- 1" 3	3,427	14 18	"' 39' - 9	" <i>372</i>	68 1	8'' 39'	- 9" 1,	806 10	08 9"	5' - 0''	361	54 9	9'' 4' - 9''	171	11' - 5''	412	19' - 6'' 52	42	117 1.4	421 36	2.1 1.5	169	58.3 14,65
3	9' - 0'	' 5' - 0''	9"	7″	162 #6 6"	29' - 1	" 7,07	77 10	08 #6	9" 11	1' - 1''	1,798	8' - 7	' 1,39	92 16	52 #6	5" 23'-	- 8" _	5,759	21 18	"' 39' - 9	" 558	97 1	8'' 39'	- 9" 2,.	576 10	08 9"	5' - 0''	361	108 9	9" 4' - 9"	343	11' - 5''	824	29' - 1'' 78	62	173 2.0	062 51	7.2 2.2	251	84.6 20,93
4	9' - 0'	' 5' - 0''	9"	7″	162 #6 6"	38' - 8	" 9,40	09 10	08 #6	9" 11	1' - 1''	1,798	8' - 7	' 1,39	92 16	52 #6	5" 33'-	- 3'' 8	8,091	28 18	"' 39' - 9	743	126 1	8'' 39'	- 9" 3,.	346 10	08 9"	5' - 0''	361	162 9	9" 4' - 9"	514	11' - 5''	1,235	38' - 8'' 10.	3 80 2	223 2.7	702 67	2.2 2.9	326	111.0 27,21
5	9' - 0'	' 5' - 0''	9"	7″	162 #6 6"	48' - 3	" 11,74	40 10	08 #6	9" 11	1' - 1''	1,798	8' - 7	' 1,39	92 16	52 #6	5" 42' -	- 10" 10	0,422	35 18	"' 39' - 9	" 929	155 1	8'' 39'	- 9" 4,	116 10	08 9"	5' - 0''	361	216 9	9" 4' - 9"	685	11' - 5''	1,647	48' - 3'' 12:	9 100 2	278 3.3	343 82	7.3 3.6	407	137.3 33,49
6	9' - 0'	' 5' - 0''	9"	7″	162 #6 6"	57' - 1	0" 14,07	72 10	08 #6	9" 11	1' - 1''	1,798	8' - 7	' 1,39	92 16	52 #6	5" 52' -	- 5" 12	2,754	42 18	"' 39' - 9	" 1,115	184 1	8'' 39'	- 9" 4,0	886 10	08 9"	5' - 0''	361	270 9	9'' 4' - 9''	857	11' - 5''	2,059	57' - 10'' 15.	5 118 3	328 3.9	983 98	32.4 4.3	483	163.6 39,77
2	9' - 0'	6' - 0''	9"	7″	162 #6 6"	19' - 6	" 4,74	45 10	08 #6	9" 12	2' - 1''	1,960	8' - 7	' 1,39	92 16	52 #6	5" 14' -	- 1" 3	3,427	14 18	"' 39' - 9	" 37 <i>2</i>	74 1	8'' 39'	- 9" 1,	965 10	08 9"	6' - 0''	433	54 9	9'' 4' - 9''	171	13' - 5''	484	19' - 6'' 52	42	117 1.4	486 37	3.7 1.5	169	60.9 15,11
3	9' - 0'	6' - 0''	9"	7″	162 #6 6"	29' - 1	" 7,07	77 10	08 #6	9" 12	2' - 1''	1,960	8' - 7	' 1,39	92 16	52 #6	5" 23' -	- 8" _	5,759	21 18	"' 39' - 9	" 558	105 1	8'' 39'	- 9" 2,	788 10	08 9"	6' - 0''	433	108 9	9'' 4' - 9''	343	13' - 5''	968	29' - 1'' 78	62	173 2.1	148 53	2.0 2.2	251	88.1 21,52
4	9' - 0'	6' - 0''	9"	7″	162 #6 6"	38' - 8	" 9,40	09 10	08 #6	9" 12	2' - 1''	1,960	8' - 7'	' 1,39	92 16	52 #6	5" 33'-	- 3'' 8	8,091	28 18	"' 39' - 9	" 743	136 1	8'' 39'	- 9" 3,0	611 10	08 9"	6' - 0''	433	162 9	9'' 4' - 9''	514	13' - 5''	1,452	38' - 8'' 10.	3 80 2	223 2.8	810 69	0.1 2.9	326	115.3 27,93
5	9' - 0'	6' - 0''	9"	7″	162 #6 6"	48' - 3	" 11,74	40 10	08 #6	9" 12	2' - 1''	1,960	8' - 7'	' 1,39	92 16	52 #6	5" 42' -	- 10" 10	0,422	35 18	"' 39' - 9	" 929	167 1	8'' 39'	- 9" 4,	434 10	08 9"	6' - 0''	433	216 9	9'' 4' - 9''	685	13' - 5''	1,936	48' - 3'' 12:	9 100 2	278 3.4	472 84	8.3 3.6	407	142.5 34,33
6	9' - 0'	6' - 0''	9"	7″	162 #6 6"	57' - 1	0" 14,07	72 10	08 #6	9" 12	2' - 1"	1,960	8' - 7'	' 1,39	92 16	52 #6	5" 52' -	- 5" 12	2,754	42 18	"' 39' - 9	" 1,115	198 1	8'' 39'	- 9" 5,.	257 10	08 9"	6' - 0''	433	270 9	9'' 4' - 9''	857	13' - 5''	2,420	57' - 10" 15.	5 118 3	328 4.3	134 1,00	6.5 4.3	483	169.6 40,74
2	9' - 0'	' 7' - 0''	9"	7″	162 #6 6"	19' - 6		45 10	08 #6	9" 13	3' - 1''	2,122	8' - 7'	' 1,39	92 16	52 #6	5" 14' -	- 1" 🛛 3	3,427	14 18	"' 39' - 9	" 372	74 1	8'' 39'	- 9" 1,	965 10	08 9"	7' - 0''	505	54 9	9" 4' - 9"	171	15' - 5''	556	19' - 6'' 52	42	117 1.5	551 38	81.4 1.5	169	63.5 15,42
3	9' - 0'	' 7' - 0''	9"	7″	162 #6 6"	29' - 1	" 7,07	77 10	08 #6	9" 13	3' - 1''	2,122	8' - 7	' 1,39	92 16	52 #6	5" 23' -	- 8" _!	5,759	21 18	"' 39' - 9	" 558	105 1	8'' 39'	- 9" 2,	788 10	08 9"	7' - 0''	505	108 9	9" 4' - 9"	343	15' - 5''	1,112	29' - 1'' 78	62	173 2.2	235 54	1.4 2.2	251	91.6 21,90
4	9' - 0'	' 7' - 0"	9"	7″	162 #6 6"	38' - 8	" 9,40	09 10	08 #6	9" 13	3' - 1"	2,122	8' - 7'	' 1,39	92 16	52 #6	5" 33'-	- 3'' - 8	8,091	28 18	"' 39' - 9	" 743	136 1	8'' 39'	- 9" 3,0	611 10	08 9"	7' - 0''	505	162 9	9'' 4' - 9''	514	15' - 5''	1,668	38' - 8'' 10.	3 80 2	223 2.9	918 70	1.4 2.9	326	119.6 28,38
5	9' - 0'	' 7' - 0"	9"	7″	162 #6 6"	48' - 3	" 11,74	40 10	08 #6	9" 13	3' - 1"	2,122	8' - 7'	' 1,39	92 16	52 #6	5" 42' -	- 10" 10	0,422	35 18	"' 39' - 9	" 929	167 1	8'' 39'	- 9" 4,-	434 10	08 9"	7' - 0''	505	216	9'' 4' - 9''	685	15' - 5''	2,224	48' - 3'' 12:	9 100 2	278 3.6	602 86	1.3 3.6	407	147.7 34,86
6	9' - 0'	' 7' - 0''	9"	7″	162 #6 6"	57' - 1	0" 14,07	72 10	08 #6	9" 13	3' - 1''	2,122	8' - 7	' 1,39	92 16	52 #6	5" 5 <i>2</i> ' -	- 5" 12	2,754	42 18	"' 39' - 9	" 1,115	198 1	8'' 39'	- 9" 5,.	257 10	08 9"	7' - 0''			9" 4' - 9"	857	15' - 5"	2,781	57' - 10'' 15.	5 118 3	328 4.2	285 1,02	21.4 4.3	483	175.7 41,33
2	9' - 0'	' 8' - 0''	9"	7″	162 #6 6"	19' - 6	" 4,74	45 10	08 #6	9" 14	4' - 1''	2,285	8' - 7'	' 1,39	92 16	52 #6	5" 14'-				"' 39' - 9		80 1	8'' 39'	- 9" 2,	124 10	08 9"	8' - 0''			9" 4' - 9"		17' - 5"	628	19' - 6'' 52	42	117 1.6		3.0 1.5		66.1 15,89
3	9' - 0'	' 8' - 0''	9"	7"	162 #6 6"	29' - 1	" 7,07	77 10	98 #6	9" 14	4' - 1''	2,285	8' - 7'	- ,			5" 23'-	- 8" _			"' 39' - 9		113 1	8'' 39'	- 9" 3,0	000 10	08 9"	8' - 0''	577	108 9	9" 4' - 9"	343	17' - 5"	1,257	29' - 1'' 78	62			6.2 2.2		95.0 22,49
4	9' - 0'	' 8' - 0''	9"	7″	162 #6 6"	38' - 8	" 9,40	09 10	08 #6	9" 14		2,285	8' - 7	' 1,39	92 16	52 #6	5" 33'-	- 3" 8			"' 39' - 9		146 1	8'' 39'	- 9" 3,	877 10	08 9"	8' - 0''	577	162 9	9" 4' - 9"		17' - 5"	1,885	38' - 8'' 10.	3 80 2	223 3.0		9.3 2.9		123.9 29,09
5	9' - 0'	' 8' - 0''	9"		162 #6 6"	_	" 11,74	40 10	98 #6	9" 14		2,285	8' - 7'	' 1,39	92 16	52 #6	5" 42' -	- 10" 10	0,422	35 18	"' 39' - 9	" 929	179 1	8'' 39'	- 9" 4,1	753 10	08 9"	8' - 0''	577	216	9" 4' - 9"	685	17' - 5"	2,513	48' - 3'' 12	9 100 2	278 3.7	731 88	2.4 3.6		152.8 35,70
6	9' - 0'	' 8' - 0''	9"	7″	162 #6 6"	57' - 1	0" 14,07		98 #6			2,285	8' - 7	' 1,39	92 16	52 #6	5" 52'-	- 5" 12	2,754	42 18	"' 39' - 9		212 1				08 9"	8' - 0''	577	270 9	9" 4' - 9"	857	17' - 5''	3,141	57' - 10" 15.	5 118 3	328 4.4	437 1,04	5.6 4.3	483	181.8 42,30
2	9' - 0'	' 9' - 0''	9"		162 #6 6"	_			98 #6			2,447	8' - 7'			52 #6	5" 14'-				"' 39' - 9		86 1	8'' 39'	- 9" 2,.	284 10	08 9"	9' - 0''	649		9" 4' - 9"	171	19' - 5''	700	19' - 6'' 52				4.7 1.5	169	68.7 16,35
3	9' - 0'	' 9' - 0''	9"	7″	162 #6 6"	29' - 1	" 7,07	77 10	98 #6	9" 15	5' - 1''	2,447	8' - 7	' 1,39	92 16	52 #6	5" 23'-	- 8'' _	5,759	21 18	"' 39' - 9	" 558	121 1	8'' 39'	- 9" 3,.	213 10	08 9"	9' - 0''	649	108 9	9" 4' - 9"	343	19' - 5''	1,401	29' - 1'' 78	62	173 2.4	407 57	1.0 2.2	251	98.4 23,09
4	9' - 0'	' 9' - 0''	9"	7″	162 #6 6"	38' - 8	" 9,40		98 #6		5' - 1''	2,447	8' - 7	' 1,39	92 16	52 #6	5" 33'-	- 3'' - 8	8,091	28 18	"' 39' - 9	" 743	156 1	8'' 39'	- 9" 4,	142 10	08 9"	9' - 0''	649	162 9	9" 4' - 9"	514	19' - 5''	2,101	38' - 8'' 10.	3 80 2	223 3.1	134 73	7.2 2.9		
5	9' - 0'	' 9' - 0''	9"		162 #6 6"				98 #6			2,447	8' - 7	_	_	52 #6		- 10" 10			"' 39' - 9		191 1				08 9"				9" 4' - 9"			2,802		9 100 2			3.5 3.6		158.0 36,54
6	9' - 0'	9' - 0''	9"	7″	162 #6 6"	57' - 1	0" 14,07	72 10	98 #6	9" 15	5' - 1''	2,447	8' - 7	' 1,39	92 16	52 #6	6" 52' -	- 5" 12	2,754	42 18	"' 39' - 9	" 1,115	226 1	8'' 39'	- 9" 6,	001 10	08 9"	9' - 0''	649	270 9	9'' 4' - 9''	857	19' - 5''	3,502	57' - 10'' 15.	5 118 3	328 4.5	588 [1,06	9.7 4.3	483	187.8 43,27

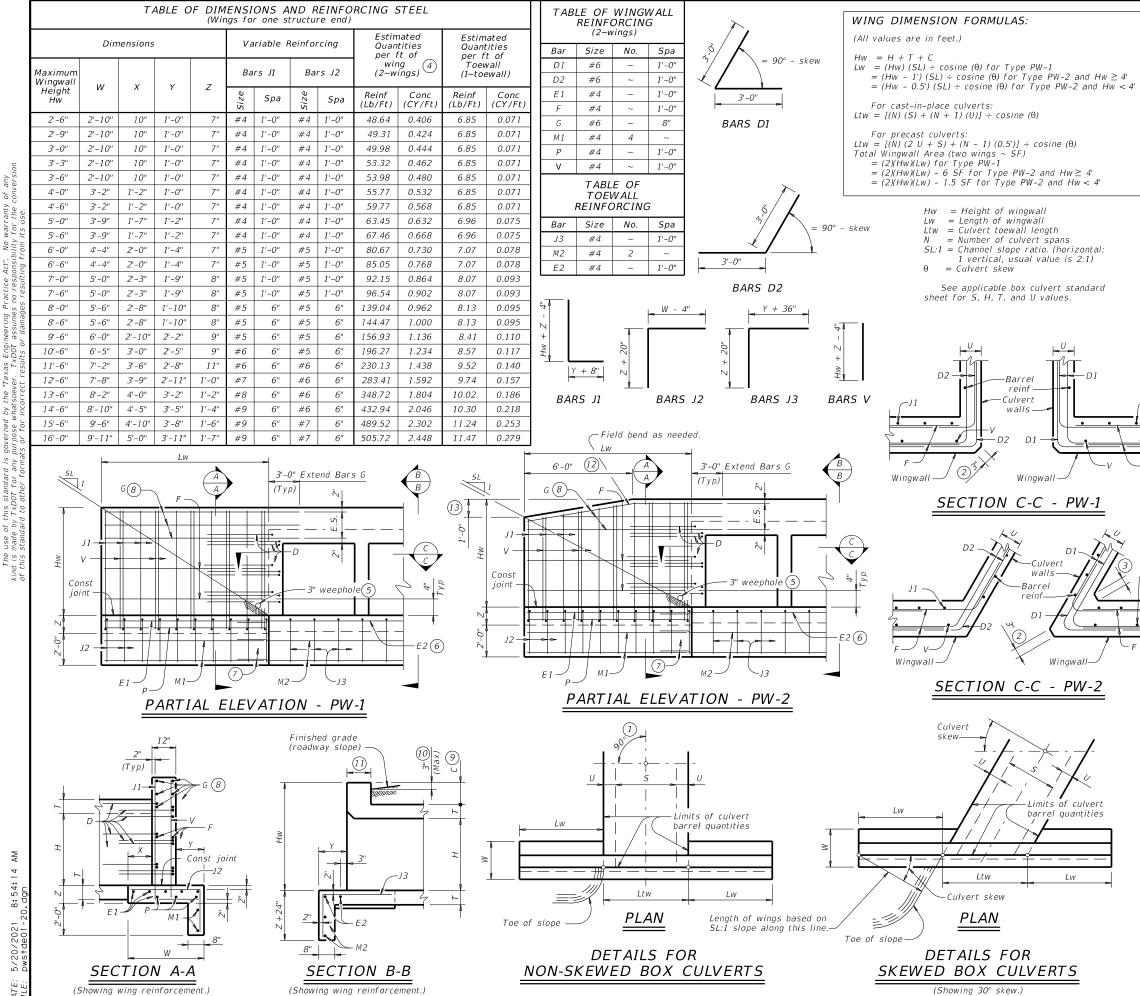
DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any kind is made by TXDOT for any purpose whatsoever. TXDOT assumes no responsibility for the conversion of this standard to other formats or for incorrect results or damages resulting from its use.

Culvert Station and/or Creek Name followed by applicable end (Lt, Rt or Both)	Description of Box Culvert No. Spans ~ Span X Height	Max Fill Height (Ft)	Applicable Box Culvert Standard 4	Applicable Wingwall or End Treatment Standard	Skew Angle (0°,15°, 30° or 45°)	Side Slope or Channel Slope Ratio (SL:1)	T Culvert Top Slab Thickness (In)	U Culvert Wall Thickness (In)	C Estimated Curb Height (Ft)	Hw (1) Height of Wingwall (Ft)	A Curb to End of Wingwall (Ft)	B Offset of End of Wingwall (Ft)	Lw Length of Longest Wingwall (Ft)	Ltw Culvert Toewall Length (Ft)	Atw Anchor Toewall Length (Ft)	Riprap Apron (CY)	Class ⁽²⁾ "C" Conc (Curb) (CY)	Class ⁽³⁾ "C" Conc (Wingwall) (CY)	Total Wingwall Area (SF)
W. MUD CREEK @ WHITTLE STREET CIP (LT)	3 ~ 9' x 9'	10'	MC-9-10	PW-1	0°	1:1	9"	7"	1.708'	11.458'	N/A	N/A	11.500'	29.333'	N/A	0.0	1.8	21.4	264
W. MUD CREEK @ WHITTLE STREET CIP (RT)	3 ~ 9' x 9'	10'	MC-9-10	PW-1	0°	1:1	9"	7"	1.708'	11.458'	N/A	N/A	11.500'	29.333'	N/A	0.0	1.8	21.4	264
W. MUD CREEK @ WHITTLE STREET PRECAST (LT)	3 ~ 9' x 9'	10'	SCP-9	PW-1	0°	1:1	9"	7"	1.708'	11.458'	N/A	N/A	11.500'	32.500'	N/A	0.0	2.0	22.0	264
W. MUD CREEK @ WHITTLE STREET PRECAST (RT)	3 ~ 9' x 9'	10'	SCP-9	PW-1	0°	1:1	9"	7"	1.708'	11.458'	N/A	N/A	11.500'	32.500'	N/A	0.0	2.0	22.0	264

NOTES:

- Skew = 0° on SW-0, FW-0, SETB-CD, SETB-SW-0, and SETB-FW-0 standard sheets; 30° maximum for safety end treatment
- SL:1 = Horizontal : 1 Vertical
 - Side slope at culvert for flared or straight wingwalls.
 - Channel slope for parallel wingwalls.
 Slope must be 3:1 or flatter for safety end treatments.
- T = Box culvert top slab thickness. Dimension can be found on the applicable box culvert standard sheet.
- U = Box culvert wall thickness. Dimension can be found on the applicable box culvert standard sheet.
- C = Curb height
- See applicable wing or end treatment standard sheets for calculations of Hw, A, B, Lw, Ltw, Atw, and Total Wingwall Area.
- Hw = Height of wingwall
- A = Distance from face of curb to end of wingwall (not applicable to parallel or straight wingwalls)
- B = Offset of end of wingwall (not applicable to parallel or straight wingwalls)
- Lw = Length of longest wingwall.
- Ltw = Length of culvert toewall (not applicable when using riprap apron)

Atw = Length of anchor toewall (applicable to safety end treatment only)Total Wingwall Area = Wingwall area in sq. ft. for two wingwalls (one structure end) if Lt or Rt.Area for four wingwalls (two structure ends) if Both.


1) Round the wall heights shown to the nearest foot for bidding purposes.

- 2 Concrete volume shown is for box culvert curb only. For curbs using the Box Culvert Rail Mounting Details (RAC) standard sheet quantities shown must be increased by a factor of 2.25. If Class S concrete is required for the top slab of the culvert, also provide Class S concrete for the curb. Curb concrete is considered part of the Box Culvert for payment.
- (3) Concrete volume shown is total of wings, footings, culvert toewall (if any), anchor toewalls (if any) and wingwall toewalls. Riprap aprons, culverts, and curb quantities are not included.
- (4) Regardless of the type of culvert shown on this sheet, the Contractor has the option of furnishing cast-in-place or precast culverts unless otherwise shown elsewhere on the plans. If the Contractor elects to provide culverts of a different type than those shown on this sheet, it is the Contractor's responsibility to make the necessary adjustments to the dimensions and quantities shown.

Wissional Engrades 5/20 5/20/2021 J. Bryan Hodges Bridge Division Standard ***** Texas Department of Transportation BOX CULVERT SUPPLEMENT WINGS AND END TREATMENTS BCS DN: TXDOT CK: TXDOT DW: TXDOT CK: TXDOT bcsstde1-20.dgn TxDOT February 2020 CONT SECT JOB HIGHWAY REVISIONS 0910 16 147, ETC WHITTLE ST SMITH 63 ΤΥΙ

J. BRYAN HODGES

68013

ŝŚ of this stan e by TxDOT 1 he he is

> 8:54:14 5/20/2021

(1) Skew = 0°

2 At discharge end, chamfer may be $\frac{3}{4}$ " minimum.

(3) For 15° skew ~ 1" For 30° skew ~ 2" For 45° skew ~ 3"

- (4) Quantities shown are for two Type PW-1 wings. Adjust concrete volume for Type PW-2 wings. To determine estimated quantities for two wings, multiply the tabulated values by Lw. Quantities shown do not include weight of Bars D.
- (5) Provide weepholes for Hw = 5'-0'' and greater. Fill around weepholes with coarse gravel.
- (6) Extend Bars E2 1'-6" minimum into the wingwall footing.
- Zap Bars M1 1'-6" minimum with Bars M2.
- $^{(8)}$ Place Bars G as shown, equally spaced at 8" maximum. Provide at least two pairs of Bars G per wing.

(9) O" Min to 5'-O" Max. Estimated curb heights are shown elsewhere in the plans. For structures with pedestrian rail or curbs taller than 1'-O, refer to the Extended Curb Details (ECD) standard sheet. For structures with TG31 or TG31LS bridge rail, refer to the Mounting Details for TG31 & TG31LS Rails (TG31-CM) standard sheet. Refer to the Box Culvert Rail Mounting Details (RAC) standard sheet for structures with bridge rail other than T631 or T631LS.

- For vehicle safety, the following requirements must be met:
 For structures without bridge rail, construct curbs no more
 - than 3" above finished grade.
 - For structures with bridge rail, construct curbs flush with finished grade.

Reduce curb heights, if necessary, to meet the above requirements. No changes will be made in quantities and no additional compensation will be allowed for this work.

(1) 1'-0" typical. 2'-3" when the Box Culvert Rail Mounting Details (RAC) standard sheet is referred to elswhere in the plans

(12) 3'-0'' for Hw < 4'.

 $(13)_{6''} for Hw < 4'.$

DESIGNER NOTES:

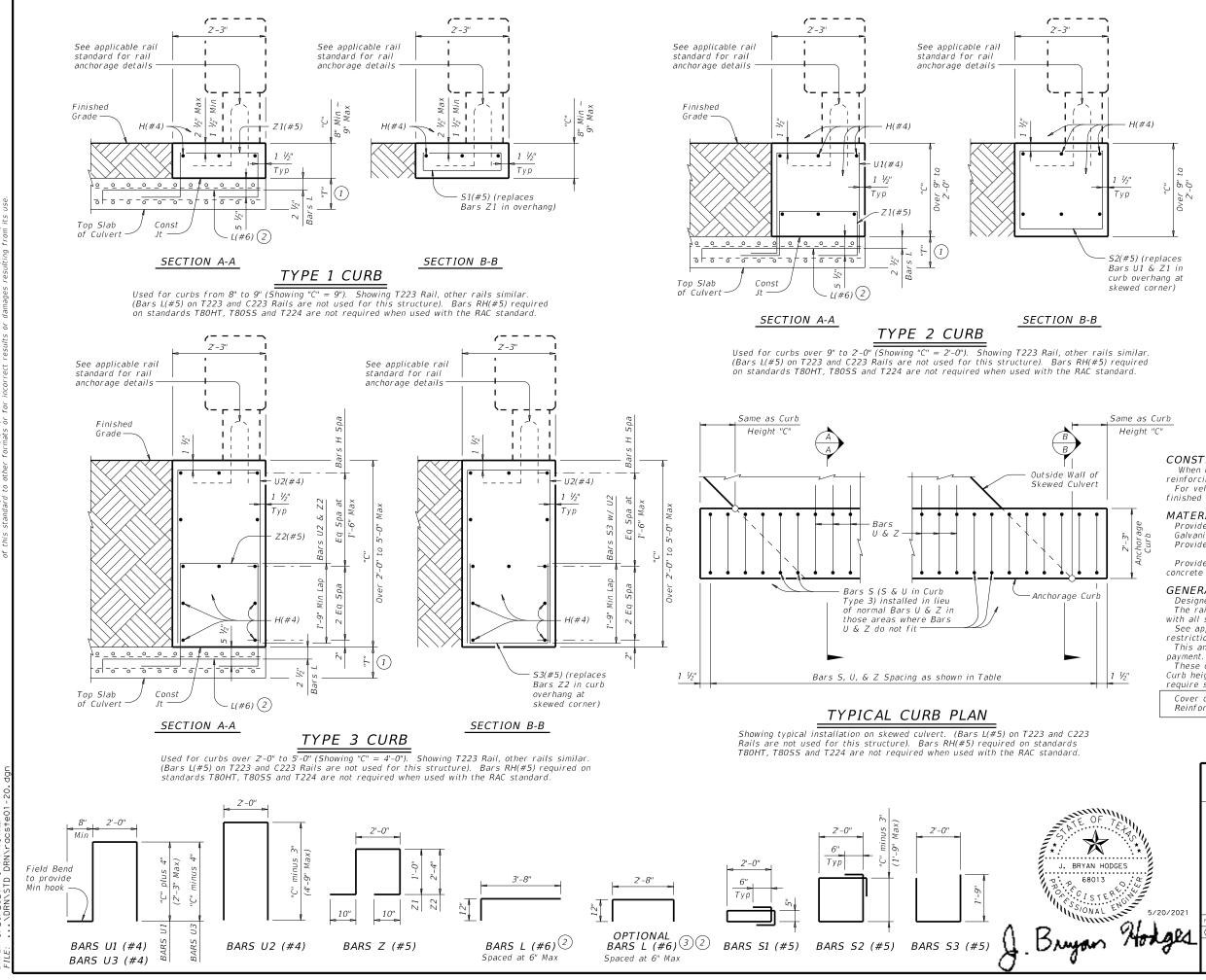
Type PW-1 can be used for all applications and must be used if railing is to be mounted to the wingwall. Type PW-2 can only be used for applications without a railing mounted to the wingwall.

MATERIAL NOTES:

Provide Class C concrete (f'c=3,600 psi). Provide Grade 60 reinforcing steel. Provide galvanized reinforing steel if required elsewhere in the plans.

GENERAL NOTES:

Designed in accordance with AASHTO LRFD Bridge Design Specifications.


Depth of toewalls for wingwalls and culverts may be reduced or eliminated when founded on solid rock, when directed by the Engineer.

See Box Culvert Supplement (BCS) standard sheet for wingwall type and additional dimensions and information. Quantities for concrete and reinforcing steel

resulting from the formulas given on this sheet are for the Contractor's information only.

Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing dimensions are out-to-out of bars.

Texas Department of Transportation											
CONCRETE WINGWALLS											
WITH PARALLEL WINGS FOR											
BOX CULVERTS TYPES PW-1 AND PW-2											
				~		,					
				P	W						
FILE: pwstdel	01-20.dgn	DN: GAI	-	ск: САТ	DW:	TxDOT	ск: ТхD0Т				
CTxDOT Februa	ary 2020	CONT	SECT	JOB		f	HIGHWAY				
REVISI	0N5	0910	16	147,E1	ГC	WHITT	LE ST,ETC				
							SHEET NO.				
		TYL		SMIT	н		64				

T ABLE REINFORCINO		G
Curb Height	Section	Bars

S, U,

"C"	Туре	& Z Spa
8" to 9"	1	12"
Over 9" to 2'-0"	2	9"
Over 2'-0" to 3'-0"	3	7"
Over 3'-0" to 5'-0"	3	5"

TABLE OF ESTIMATED QUANTITIES (4)

Curb Height "C"	Section Type	Reinf Steel (Lb/LF)	Class "C" Concrete (CY/LF)
8"	1	21.5	0.056
9"	1	21.5	0.063
1'-0"	2	29.7	0.083
1'-6"	2	30.6	0.125
2'-0"	2	31.5	0.167
3'-0''	3	44.6	0.250
4'-0''	3	56.8	0.333
5'-0''	3	60.0	0.417

 $\begin{pmatrix} 1 \end{pmatrix}$ "T" is equal to the culvert top slab thickness. For Precast Boxes with slabs less than 8" thick, see SCP-MD Standard for additional details.

(2) Tilt Bars L hook as necessary to maintain cover.

3 Optional Bars L are to be used only for Precast Box Culverts with 3'-0" closure pours.

(4) Quantities shown are for Contractor's information only. Quantities are per Linear Foot of curb length. The values for each section type in table can be interpolated for intermediate values of Curb Height, "C".

CONSTRUCTION NOTES:

When using this anchorage curb, omit normal culvert curb reinforcing bars K and H shown on the culvert standard sheets. For vehicle safety, the top of the curb must be flush with the finished grade.

MATERIAL NOTES: Provide Grade 60 reinforcing steel. Galvanize all reinforcing steel if required elsewhere.

Provide bar laps, where required, as follows:

Uncoated or galvanized ~ #4 = 1'-11" Provide Class "C" concrete (f'c=3,600 psi). Provide Class "C" (HPC) concrete if shown elsewhere in the plans.

GENERAL NOTES:

Designed according to AASHTO LRFD Bridge Design Specifications. The rail anchorage curb details have sufficient strength for use with all standard rail types.

See appropriate rail standard for approved design speed restrictions, notes and details not shown.

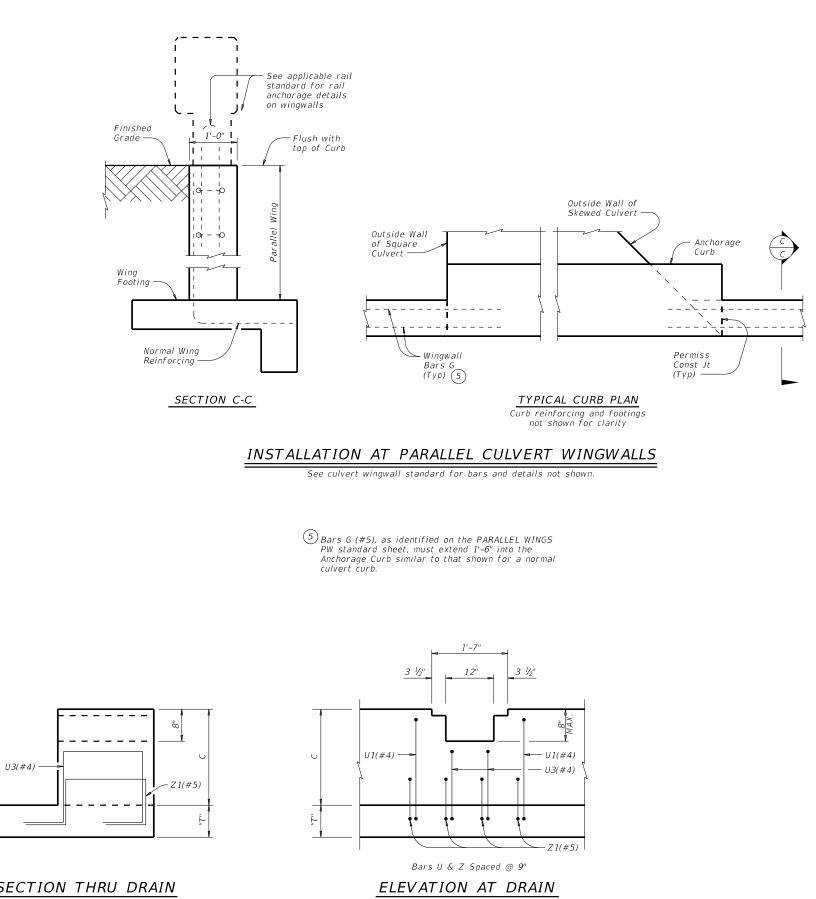
This anchorage curb is considered part of the Box Culvert for payment. These details are for use with curbs that are 8" to 5'-0" tall only.

Curb heights that are less than or greater than those shown will require special design.

Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing bar dimensions shown are out-to-out of bar.

Texas Department of Transportatio	Bridge Division n Standard
RAIL ANCHORAGE	E CURB
BOX CULVERT	
RAIL MOUNTING DE	TAILS
(CURBS 8" TO 5'-0" TALL	ONLY)
RA	C (MOD)
FILE: racste01-20.dgn DN: GAF CK: TxD01	Г DW: TXDOT СК: GAF

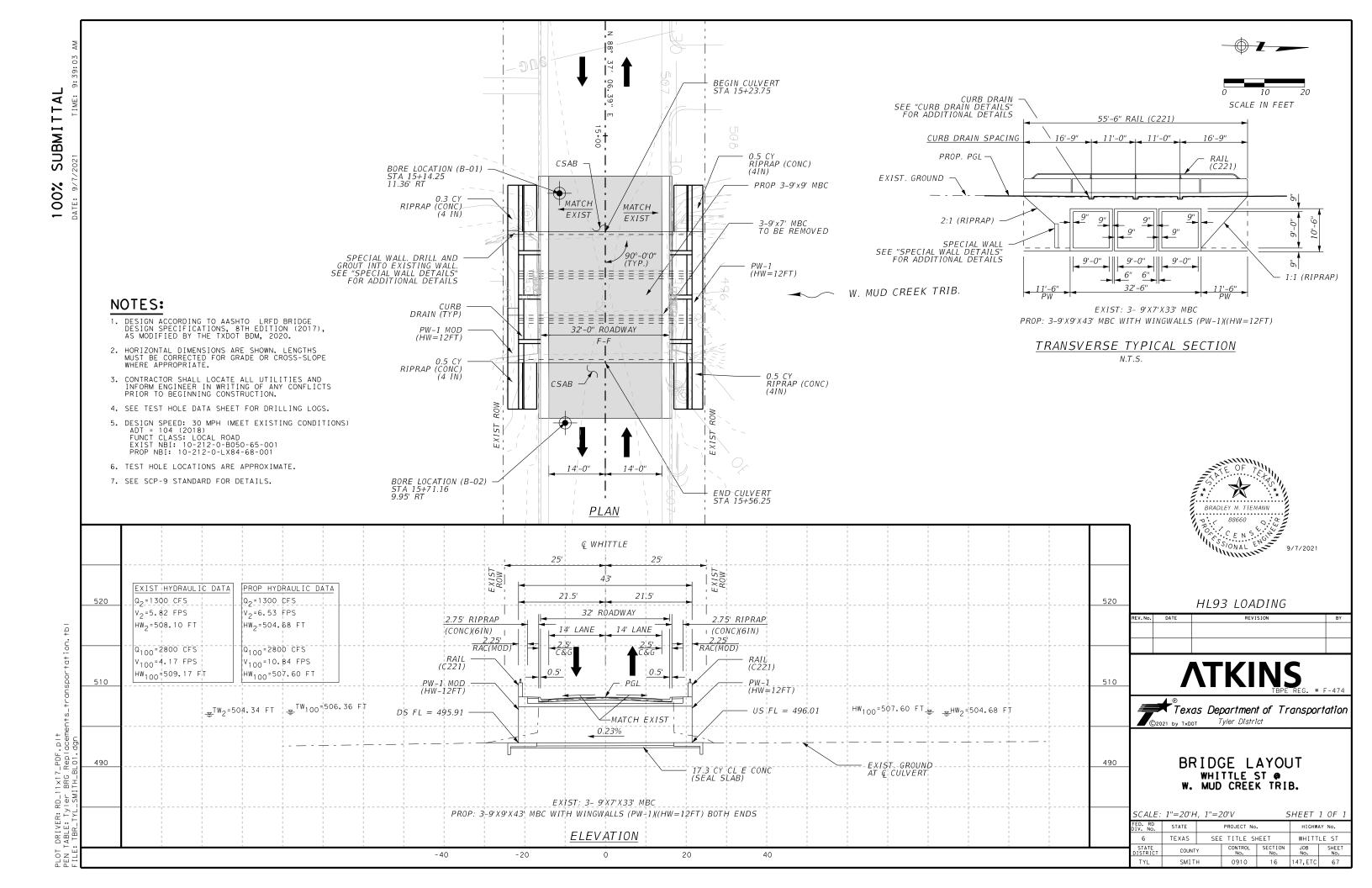
SHEET 1 OF 2

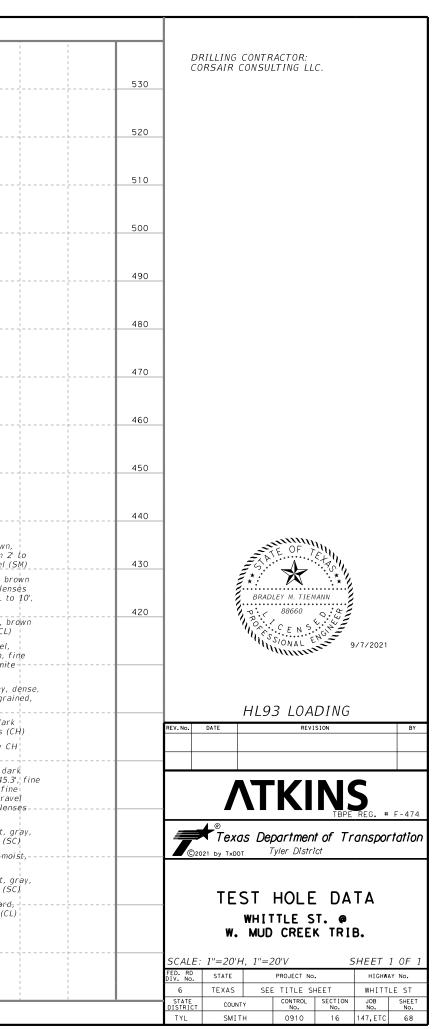

				RAC	2	(N	1($\mathcal{D}\mathcal{L}$))
	FILE: racste01-20.dgn	DN: GA	F	ск: ТхD0Т	DW:	TxDOT		ск: G	AF
	CTxDOT February 2020	CONT	SECT	JOB			HIG	HWAY	
•	REVISIONS	0910	16	147,E1	ГС	WHI	ΤI	ĽΕ	ST
	12/20 JBH - DRAIN DETAILS AND REINF.	DIST		COUNTY				SHEET	NO.
		TVI		SMIT				65	

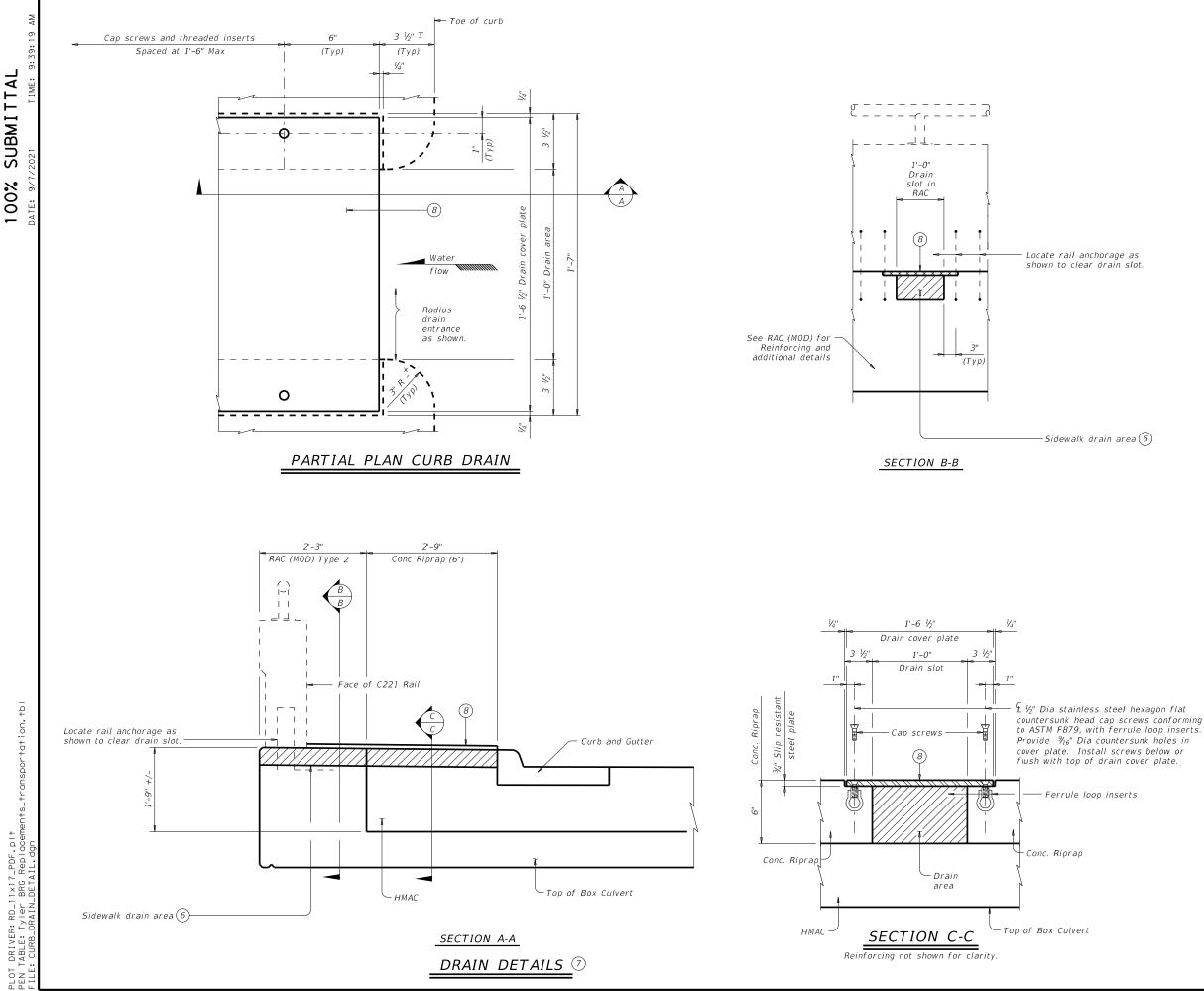
SMITH

65

TYL


ing Practice Act". No warranty of any umes no responsibility for the conversion DISCLAIMER: The use of this standard is governed by the "Texas Engineer wind is made by TJOT for any purpose whatsover. TXDDT ass of this standard to other formats or for incorrect results or d


SECTION THRU DRAIN

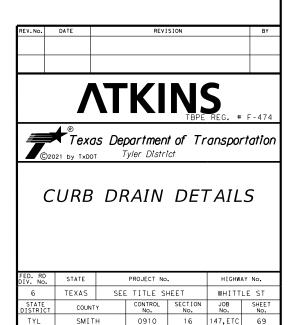

J. BRYAN J. BRYAN 100, 00 1 5 55/014 Bryon

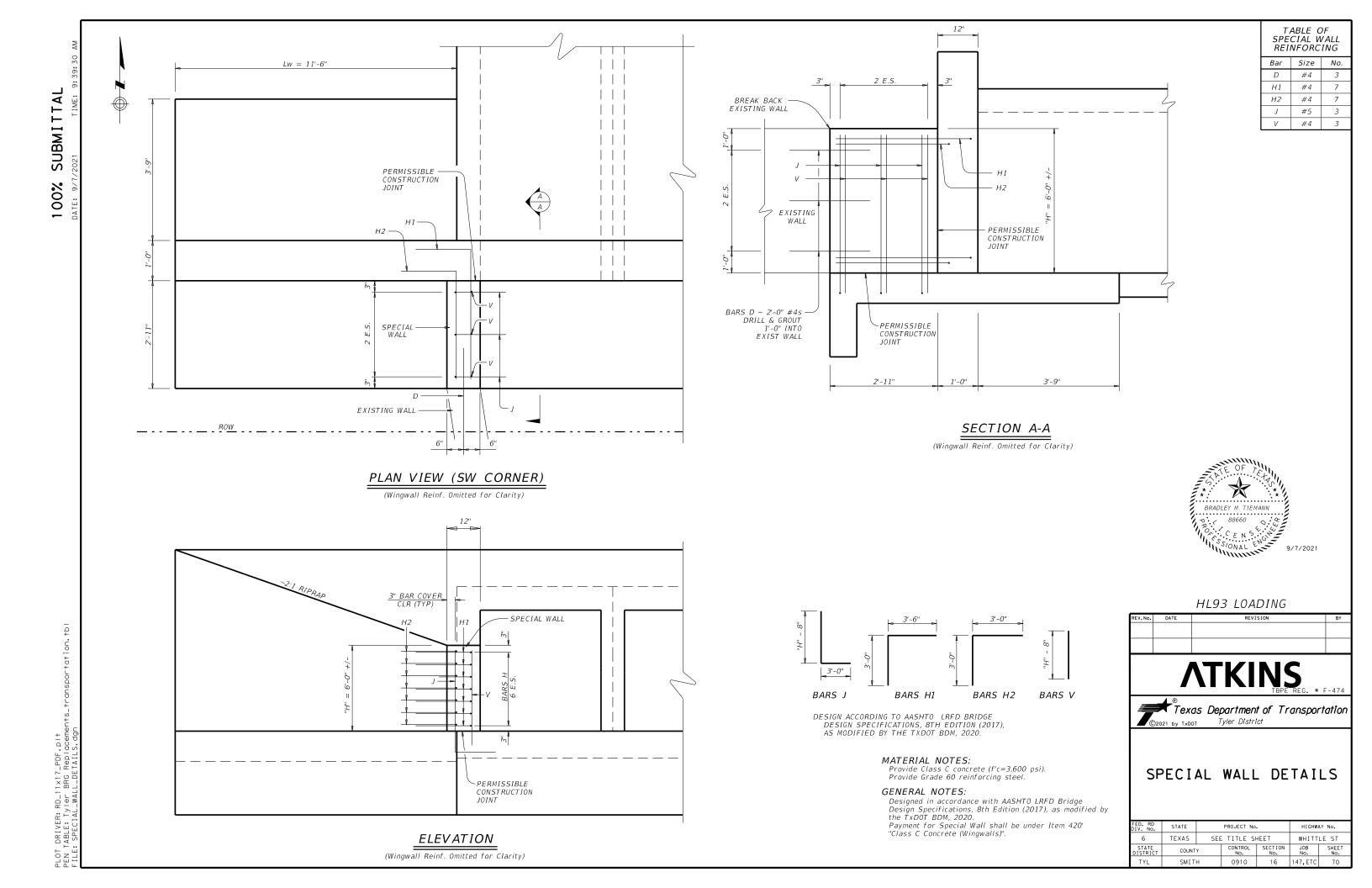
	SHE	ET 2	OF 2								
	Texas Department	of Tran	sportation	Bridge Division Standard							
OF 750	RAIL ANC	НОІ	RAGE C	CURB							
			LVERT								
N HODGES	RAIL MOUNTING DETAILS										
3013	(CURBS 8" 1	-0 5'-0	O" TALL ON	LY)							
STER. (N) 22 NAL EN 5/20/2021			RAC	(MOD)							
minit	FILE: racste01-20.dgn	DN: GAF	CK: TXDOT DW:	ТхDOT ск: GAF							
Value all	©TxDOT February 2020	CONT 5	ECT JOB	HIGHWAY							
n Total	REVISIONS 12/20 JBH - DRAIN DETAILS	09101	16 147,ETC	WHITTLE ST							
v	AND REINF.	DIST	COUNTY	SHEET NO.							
		TYL	SMITH	66							

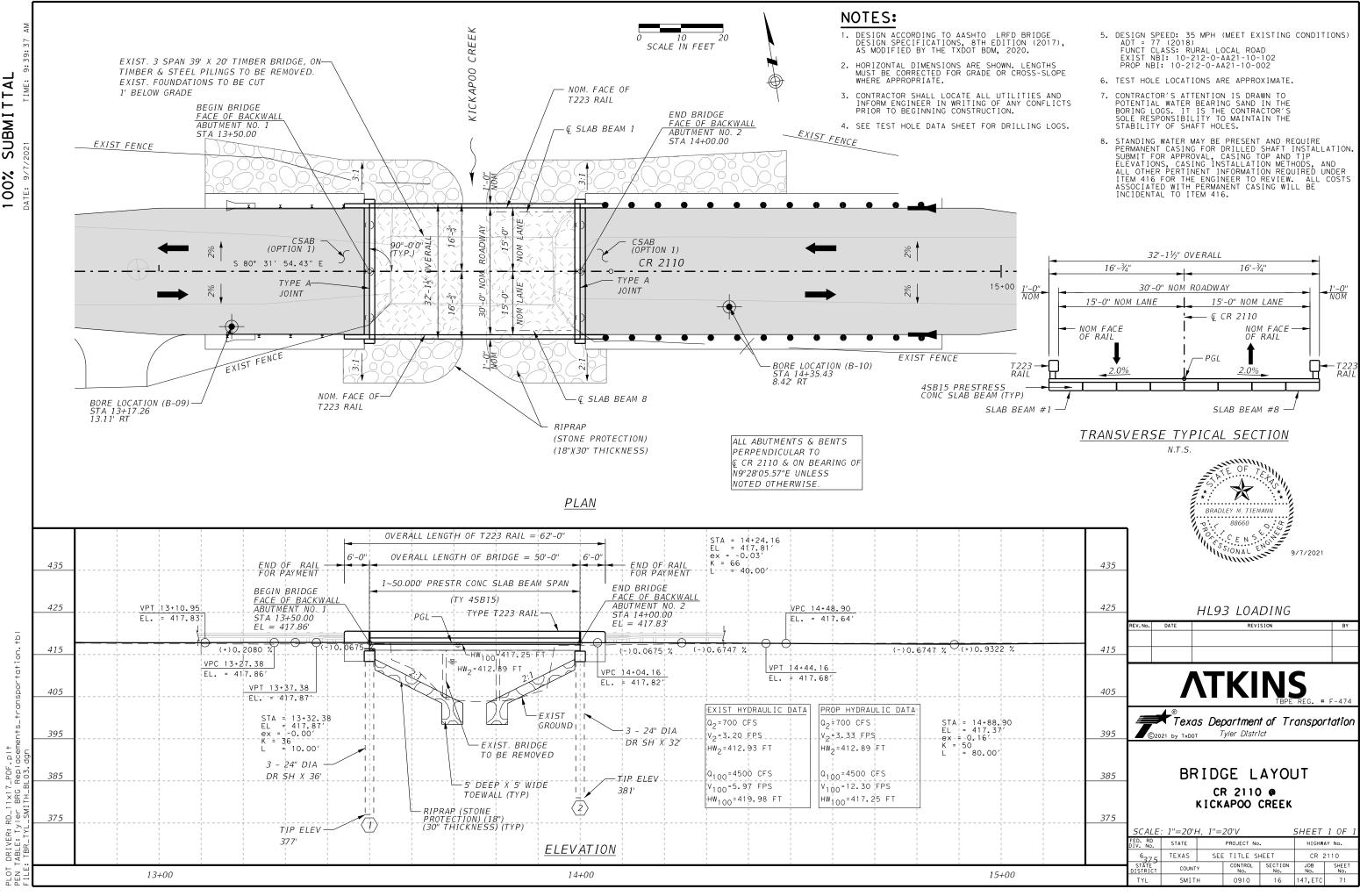
530											·		
520				TEST HOLE STA 15+14. ELEV = 506	25	·····				TEST HOLE	6		
500				5(6) 6(6						<u> </u>			
				15(6) 1						17(6) 26(6)			
490				<u>22(6)_1</u>	8(6)	(4)		·	4	5(6)_13(6)		 	
				<u>16(6)</u> 2					5	15(6) 33(6)	. I		
480			-i	23(6) 3					6	26(6) 50(5)			
470				<u>50(2)</u> 50(2) 5					(7)	50(2) 50(1) 50(5) 50(2)			
				50(3) 5		·		·	8	- <u>50(3)_50(2)</u> - - 50(1) 50(.5)		 I I I	
460				50(1.5)						50(1) 50(1)		i I I	
				50(.5)	50(.125)	9			(9)	50(1) 50(.5)	· I I I I		
450				<u>50(2)_</u> 5	O(1)			·		50(2)_50(1)			
	(1)	ASPHALT (5.75 IN.)		50(1) 5	0(.125)				(11)	50(1.5) 50(1.5			
440	(2)-	SAND, Silty, loose, n	iqīst, brown,) <u>50(.75)</u>			·	(12)	50(1.5) 50(.2		1) ASPHALT	- (4.0 IN.)
		fine grained, trace and deposits, trace to 5', gray and bro	Gravel from 34	50(2.25) 50(.75)					50(1.5) 50(.5)	I.	\leq	ilty, loose, moist, l ained, brown SC f
430	3	7.5' (SM) SAND, Clayey, slight gray and brown, fi	ly compact, hoist	,	<u>50(1.125)</u>			· · · · · · · · · · · · · · · · · · ·	(13)	50(1)_50(.5)		<u>3', fine</u>	e grained, trace Gr layey, compact, mo ay, fine grained, S
420	(4)	ferrous staining (S SAND, Clayey, slight	(ć)	50(2) 5		(15) /H = -80			B/H	= -80	- I I I	below i	ay, fine grained, S 11.4', brown Sandy ferrous deposits (S
420		SAND, Silty, compact	ne grained (SC) -					·			(4 CLAY, Sal	ndy Lean, soft, mo ay, some SC lense
		fine to cparse gra (SM)	ined, few Gravel								(compac	ilty, Clayey with Gi t, wet, reddish br
	6	SAND, Poorly Gradeo dense, wet, brown, 27.9', fine to coars 30.5', few Gravel a	fine grained to	sits							(deposit	se-grained, trace ts (\$C-SM) porly Graded with
		below 30.5' (SP-SM	<u>)</u>			·		·	·			trace G	own, fine to coars Gravel (SP-SC) t, very hard, moist
	$\overset{\smile}{(8)}$	SAND, Clayey, very c brown, fine grained										brown,	some lignite depo very soft, black,
	(9)	SAND, Silty, very de				·	 	·	· + +		·	9) SAND, Si	to 35.9' ilty,¦very dense, w
	(10)	fine grained (SM) SAND, Silty, very de	nse, wet, gray,									to med	to 40.7', gray belo ium grained to 45. d below 50.2', trac
		fine_grained, few_l below 50,6 (SM)										4. ¦(SM)	5.3'- to 45.9',- few -9
	(11)	SAND, Silty, very de fine grained, few (-CLAY,-Sandy-Lean,-ve	CL lenses (SM)									fine gr	layey, very dense, rained, few CL lens ndyl Lean,-veryl hal
	(13)	Gray, few SM lense CLAY, Sandy Lean, ve	eş (CL)									brown,	few SM lenses (Ci ayey, very dense,
	(14)-	gray, few SM lense	e\$ (CL)									fine gr	ayey, very dense, ained, few CL lens an with Sand, very
	(15)	moist, gray, few S CLAY, Sandy Lean, ve	M lenses (CL)									moist,	gray, few SM lens
		gray (CL)							·				

MATERIAL NOTES: Provide Class S concrete. f'c = 4,000 psi Provide hot-dip galvanize slip resistant steel plate after fabrication in accordance with Item 445, "Galvanizing". Chamfer or round edges approximately $\mathcal{V}_{16}"$ prior to galvanizing.

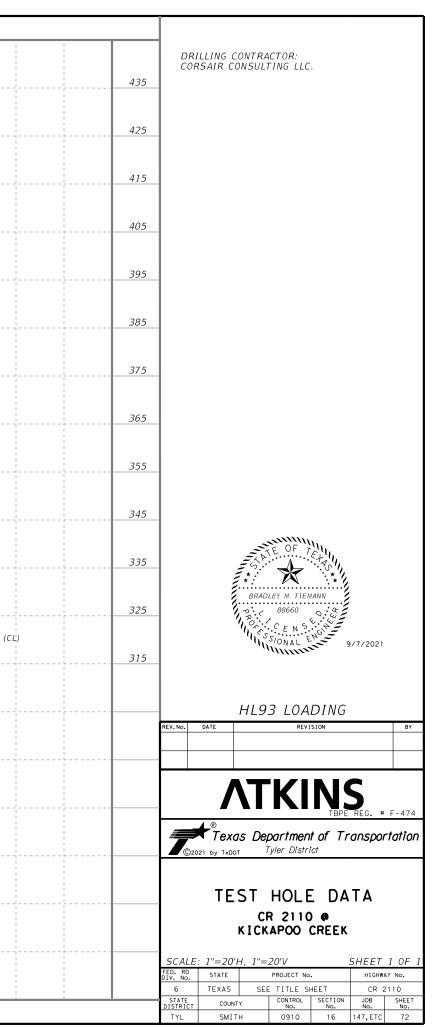
GENERAL NOTES: Designed according to AASHTO LRFD Bridge Design Specifications, 8th Edition (2017), as modified by the TxDOT BDM, 2020.


Submittal and approval of drain cover plate shop drawings is not required if fabrication is accordance with these details. Payment for drain cover plates will be by the pound of "Structural Steel (Misc Non-Bridge)" as per Item 442, "Metal for Structures". Weight of one drain cover plate is 48 plf.


APPROVED SLIP	RESISTANT PLATE					
Product	Manufacturer Website					
Algrip™, Steel	www.algrip.com					
Mebac® #3, Steel	www.harscoikg.com					
SlipNOT [®] Grade 2, Steel	www.slipnot.com					
	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

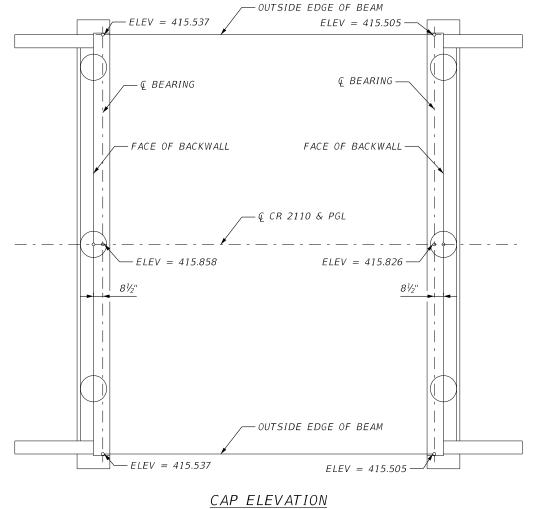

Provide drain cover plates fabricated with a product from this list. No exceptions are permitted.

- 1) Provide broom finish to top of bridge slab where raised sidewalk or raised median area is defined.
- (4) 3'-O" Min at deck expansion joints, deck construction joints or controlled joints, rail intermediate wall joints or from face of substructure.
- (6) Steel trowel top surface of RAC (MOD) in drain locations.
- Provide drains where shown elsewhere on the plans or as directed by the Engineer. Place drain and cover plate perpendicular to toe of rail.
- (8) Drain cover plate (PL $\frac{3}{4}$ x 18 $\frac{1}{2}$ slip resistant steel plate). Install flush with top of RAC/Riprap/Curb.

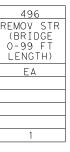


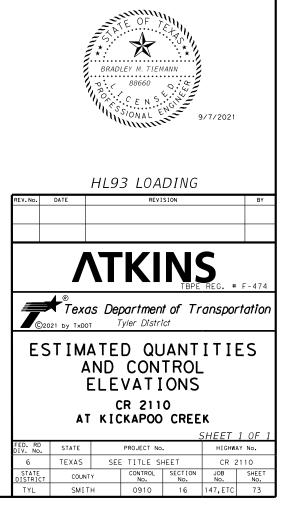
◄ ⊢ \vdash SUBMI 200%

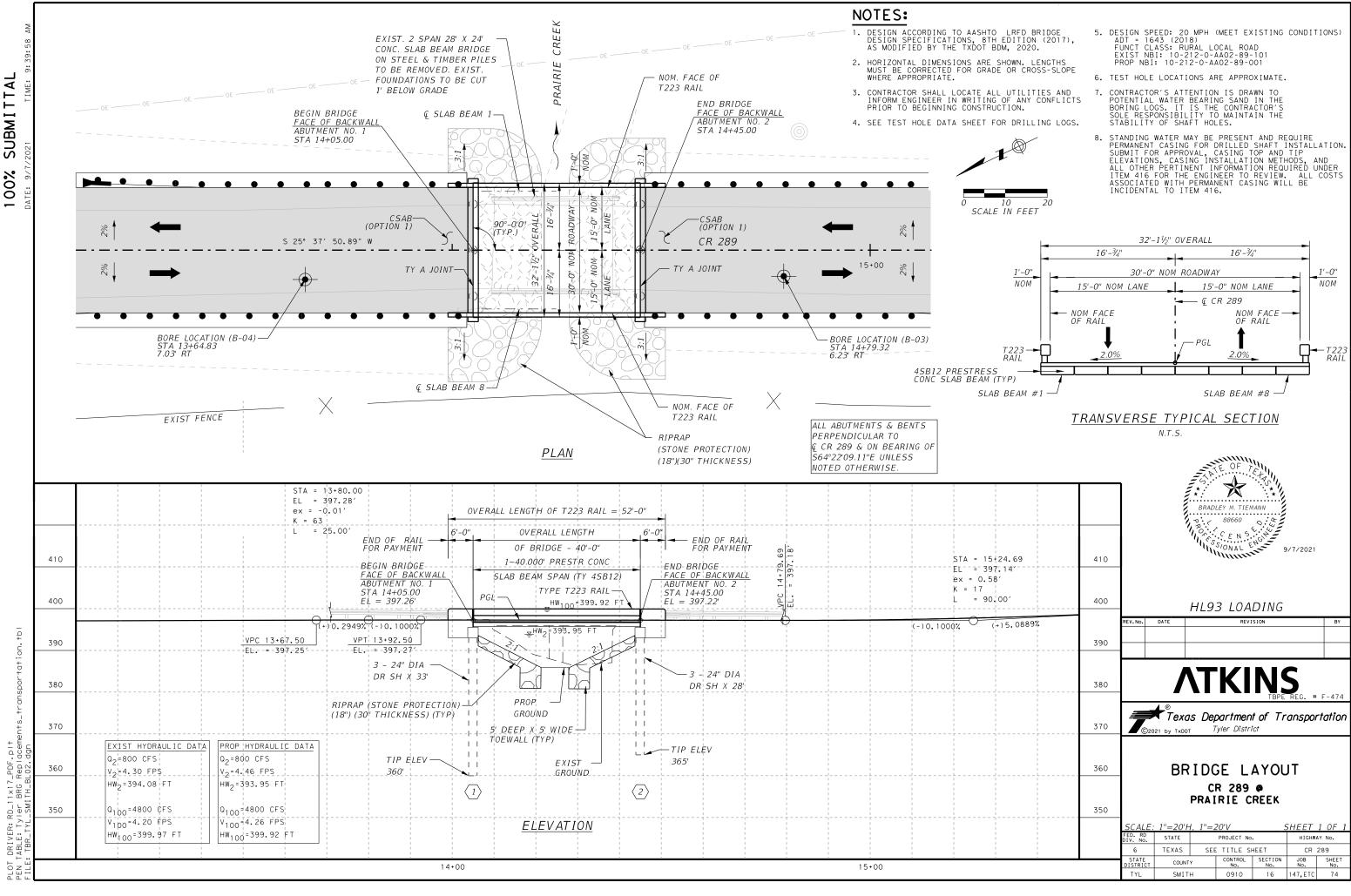
> d. _PDF Repl BRG F ler Ier DRIV TABLE


425	TEST HOLE NO. B-09 STA 13+17.26 ELEV -= - 416.62		TEST HOLE NO. B-1 STA 14+35.43 ELEV- = 416.78-
415			
405	0(6) 1(6)		(2) 5(6) 6(6)
	$\frac{2(6)\ 2(6)}{3(6)\ 5(6)}$		3 4(6) 5(6) 5(6) 4(6)
	<u>15(6) 16(6)</u> 31(6) 36(6) 5		(4) 21(6) 29(6) 36(6) 50(5)
385	50(4.5) 50(2)		5 - <u>36(6)</u> 50(5) 50(2.5) 50(3)
375	50(3) 50(2) (7)		6 50(3.5) 50(2) 7 5023 504 5
	<u>50(4.5) 50(3)</u> 50(3.5) 50(3)		8 50(3) 50(1.5) 50(5) 50(1)
365	50(3.5) 50(1.5)		9
355			$(10) \qquad \qquad$
	50(1.5) 50(1)		$\begin{array}{c} 50(1.5) & 50(1.5) \\ \hline 11 & 50(2) & 50(1.5) \\ \hline \end{array}$
345	$\frac{(11)}{(12)}$		(12) $50(1.5)$ $50(1)$ (12) $50(1.75)$ $50(1.25)$
335	<u>50(2.5) 50(1.5)</u> <u>50(1.5) 50(1)</u>		B/H = -80
325	B/H = -85.3 (1) SAND, Clayey, moist, brown brown, fine grained, trace: and CH lense\$ (SC)	:o dark 5 Gravel	CLAY, Sandy Lean, very soft, moist, brown, trace roots to 2' (CL)
	 CLAY, Lean with Sand, soft, dark brown (CL) SAND, Poorly Graded, Silty, 		(2) CLAY, Sandy Lean, soft, moist, brown few CH lenses, trace ferrous staining SM to 9', fine grained, wet, few SC le
315	loose, wet, brown, fine gra SC-SM to 8" (SP-SM)	ained	(3) SAND, Clayey, loose, moist, gray to 18, brown below 21.5, fine-grained, trace ferrous staining to 18' (SC)
	(4) SAND, Clayey, very loose, m brown to 13.5, gray and b 16,5' to 18', drown below, z fine grained, trace Gravel	vist to wet, grayish own from '1.5', below 21.5' (SC)	(4) CLAY, Fat, very stiff, moist, gray (CH)
	5 CLAY, Fat, stiff, moist, dark few SC lenses (CH)	gray,	dark gray, little SC lenses (CH) 6 CLAY, Fat, hard, moist, dark gray (CH)
	gray, SC with gravel to 32 fine to coarse grained (Ch	φ ()	(7) GRAVEL, Clayey with Sand, dense, wet, brown, fine to coarse grained, gray SC to 41.1', fine grained few CL lenses (GC)
	(7) CLAY, Fat, hard, moist, dark 8 SAND, Clayey, dense, wet, bl gray, fine grained (SC)		 SAND, Clayey, very dense, moist, gray, Fine-grained, few. CL-lenses. (SC) SAND, Clayey, dense, moist, gray to
	Image: Sanb, Clayey, dense, wet, bl Image: Sanb, clayey, dense, clayey, dense, bl Image: Sanb, clayey, dense, clayey,	ueish Ienses (ŞC)	9 SAND, Clayey, dense, moist, gray to 50.7', dark gray below 55.5', fine grained (SC)
	(10) CLAY, Sandy Lean, hard, moi brown, few SC lenses (CL) (11) SAND, Clayey, very dense, m	noist, dark	gray, fine grained (SC) (11) CLAY, Lean with Sand, very hard, moist, brown, few SC lehses (CL)
	gray, fine grained, trace c 		(12)SAND,-Clayey, very-dense, wet, brown,- fine grained (SC)
	(13) SAND, Clayey, very dense, m brown, fine grained (SC)	oist,	

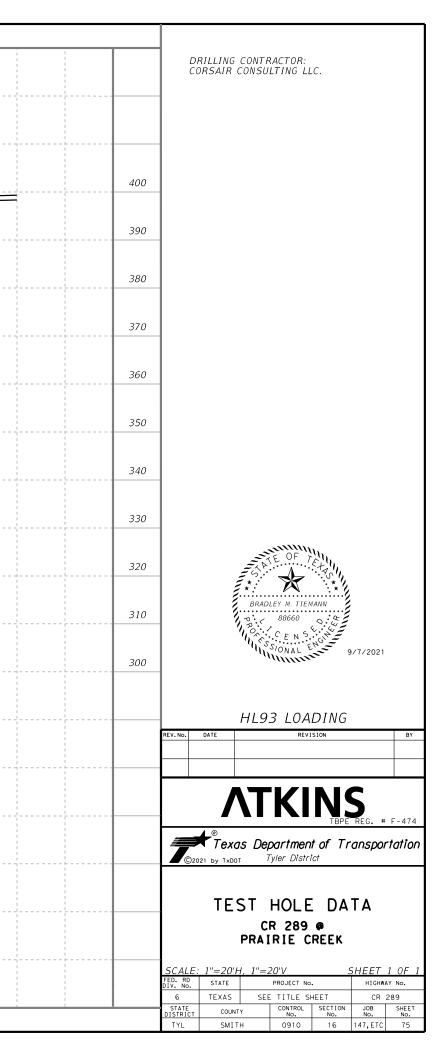
13+00

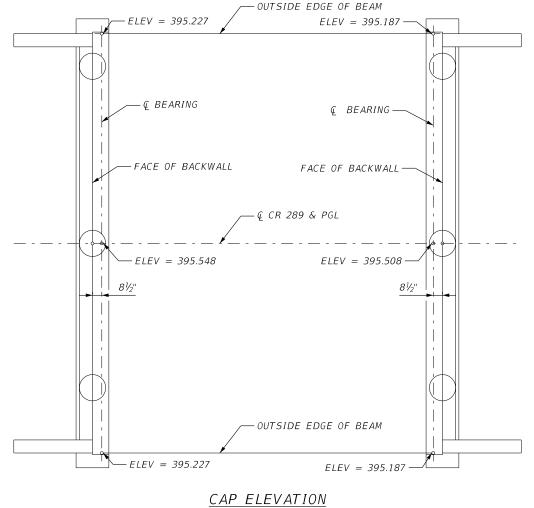



BID ITEM	400	416	420	422	425	432	450	
BID ITEM DESCRIPTION BRIDGE ELEMENT	CEM STABIL BKFL	DRILL Shaft (24 IN)	CL C CONC (ABUT)	REINF CONC SLAB (SLAB BEAM)	PRESTR CONC SLAB BEAM (4SB15)	RIPRAP (STONE PROTECTION) (18 IN)	RAIL (TY 223)	RE (C
	CY	LF	CY	SF	LF	CY	LF	
2 - ABUTMENTS	33.4	204	24.0			390	24.0	
1 - 50' PRESTR CONC SLAB BEAM UNIT				1606	396.00		100.0	
TOTAL	33.4	204	24.0	1606	396.00	390	124.0	

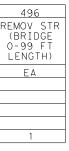

SUMMARY OF ESTIMATED QUANTITIES

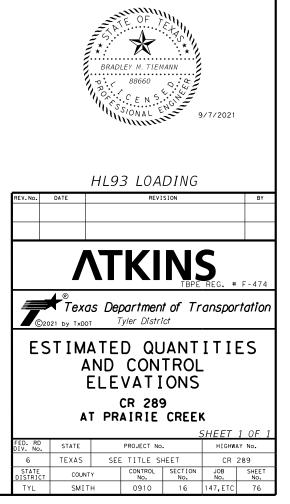
SEE APSB-30 STANDARD FOR CAP ELEVATION LOCATIONS AT OUTSIDE EDGE OF BEAM

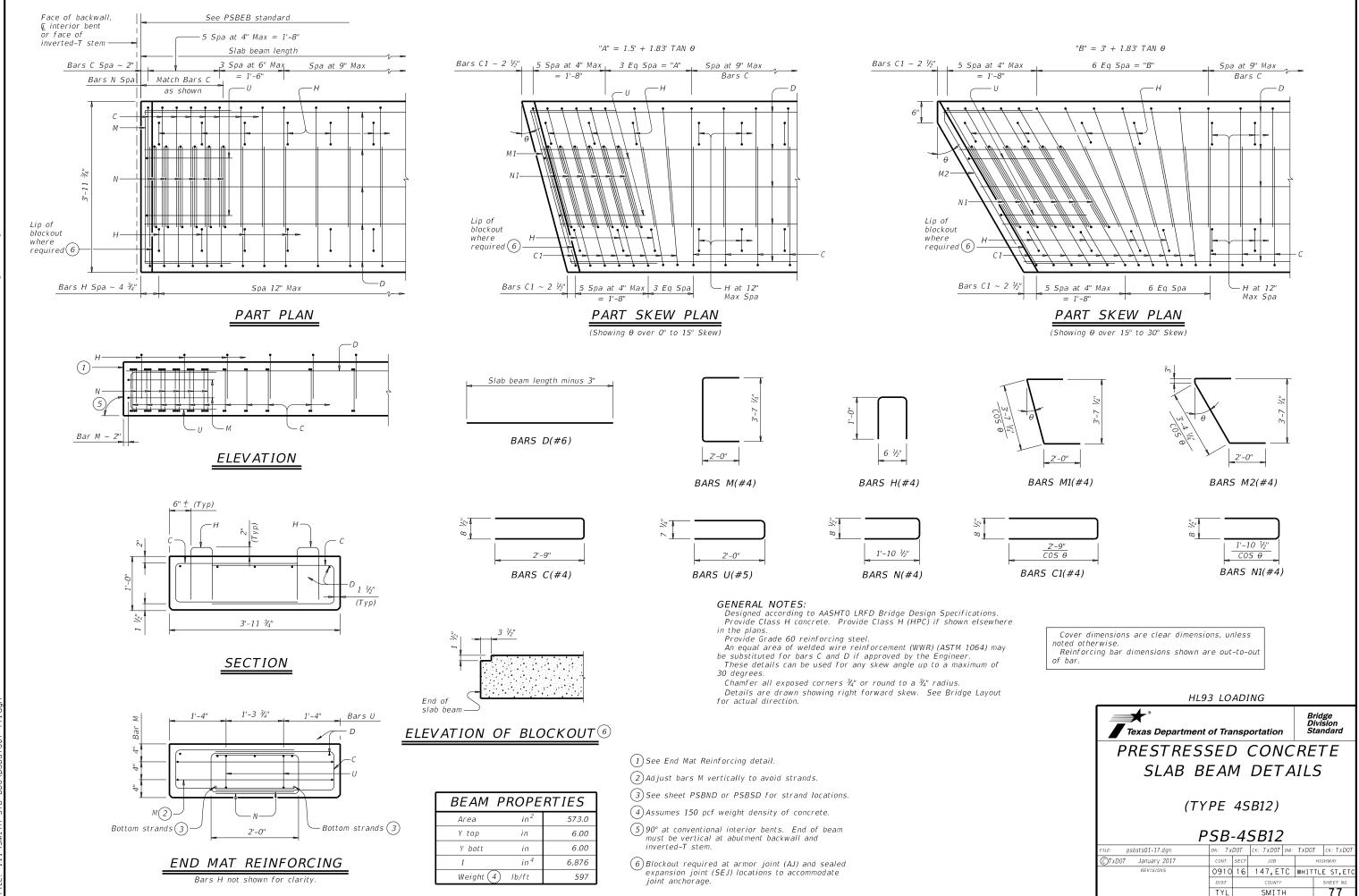


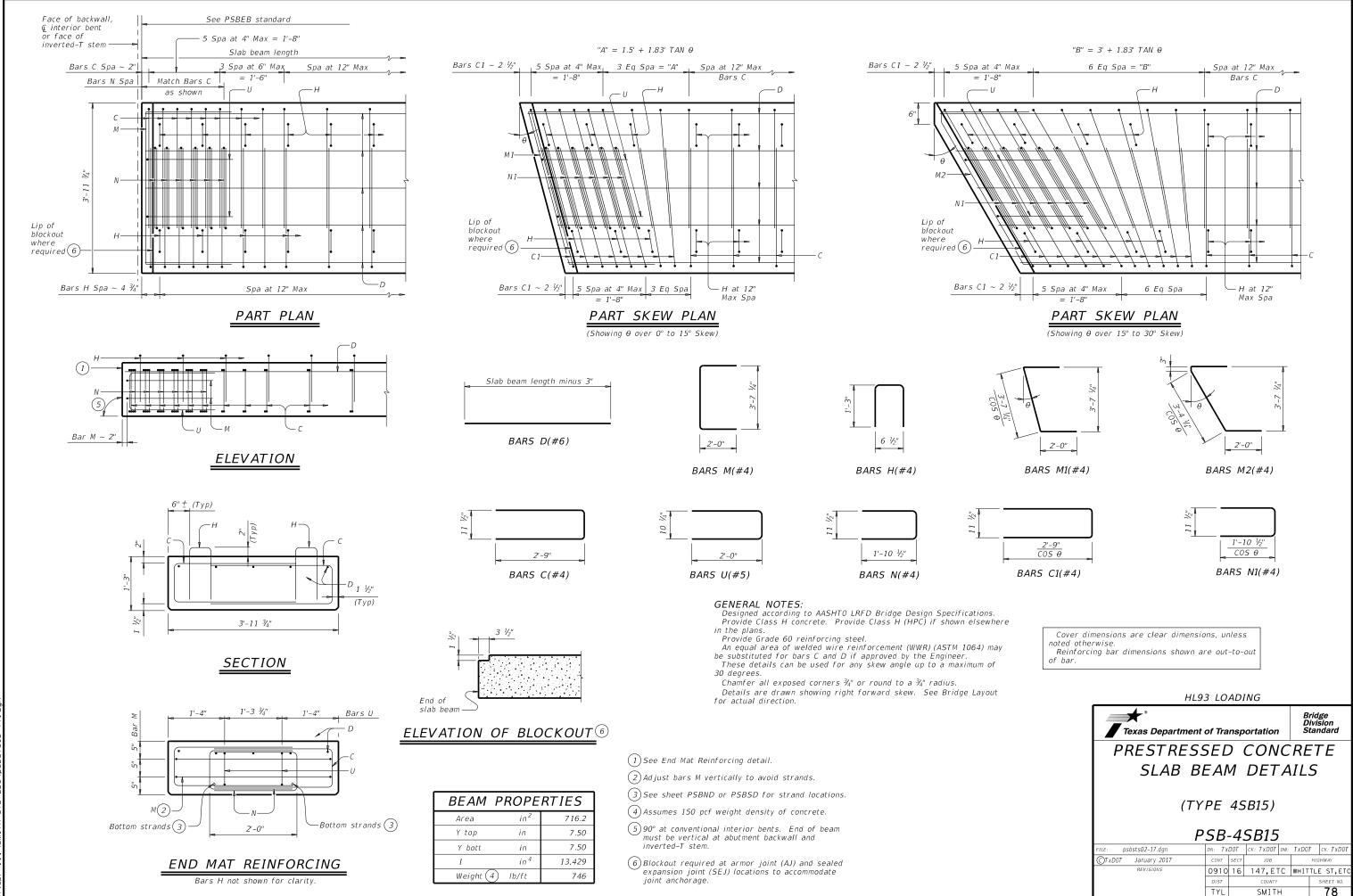

аğ _PDF Rep1 1×17. BRG ler Ier DRIVE TABLE: ac-

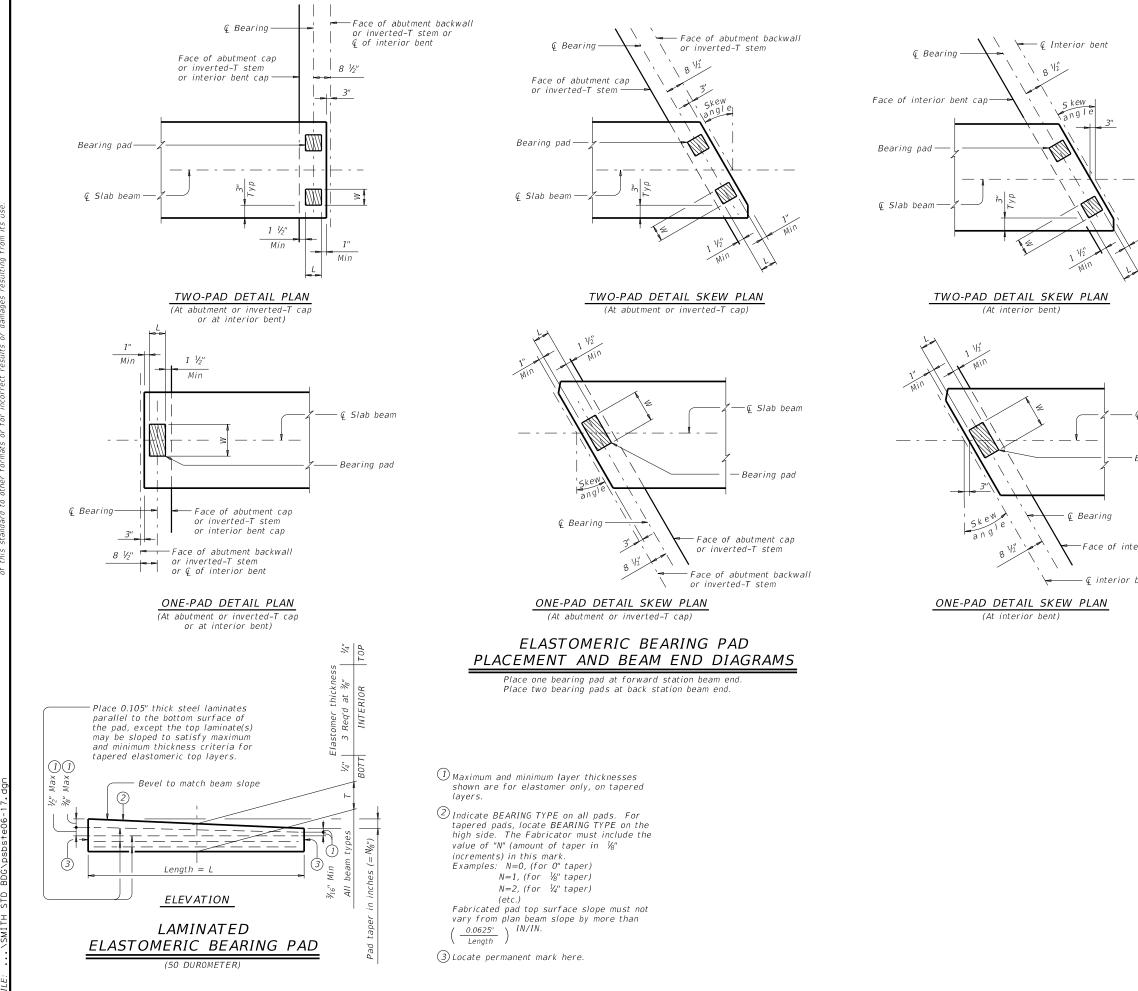
400	-TEST-HOLE NOB-04 STA 13+64.83 ELEV = 397,05							TEST HOLE NO. B-03 STA 14+79.32 ELEV = 396.88
								0(6) 0(6)
390	<u>8(6)</u> 3(6)						2	4 1(6) 2(6)
	<u>0(6)</u> 0(6)						4	7(6) 8(6)
380	<u>0(6) 0(6)</u>				Da	 -	5	
	7(6) 7(6)						6	9(6) 12(6)
370	<u>9(6) 4(6)</u>	(5)		(11)		(121)		45(6) 50(3)
	50(2) 50(1)	6					(8)	50(1.25) 50(.75)
360	<u>50(5.5)</u> 50(3.5)					_	(9)	50(5.5) 50(4.25)
	<u>35(6)</u> 40(6)							50(5) 50(3)
350	50(5.25) 50(4.25)	(8)					(10)	50(3) 50(2)
	50(4.5) 50(4)	(9)				ġ;; ↓ ↓ ↓ ↓	(11)	50(5) 50(3)
340	<u>50(1.5)</u> 50(1)						Ŭ	50(.75) 50(.5)
	50(.5) 50(.5)							50(1.25) 50(.5)
330	50(.25) 50(.25)						(12)	50(.5) 50(.5)
	50(.5) 50(.5)					1 1 1 1 1		50(.5) 50(.5)
220	50(1.5) 50(.5)							50(1) 50(.5)
320	50(.5) 50(.5)				 	 		50(2) 50(.75)
210		B/H = -80					B/H	<i>+</i> −80
310			ASPHALT (7.25 TN)		 			ASPHALT (8.0 IN.)
		2	FILL: CLAY, Sandy Lean, mois brown to 3', yellowish brow	n and i i			2	LLL: CLAY, Sandy Lean, moist, yellowish brown and reddish brown, trace Gravel
300		(3)	reddish brown Sandy CH b CLAY, Şandy Lean, soft, mois	elow 3' (CL)	 	1 1 1 4		SLAY,-Lean-with-Sand-to Sandy-Lean, very soft, moist, gray, trace ferfous
		\rightarrow	brown to dark brown (CL)			I I I I I I I I	(4)	SAND, Silty, very loose, wet, light
			SAND, Clayey, very loose, we brown, fine grained, traces and terrous staining below		 	1 1 1 1 1	4	brown, fine grained, some SC lenses
		5	SAND, Silty, loose, wet, light to 23', light brown, reddish	brown		I I I I I I I I	5	LAY, Sandy Silty, soft, moist, light brown, trace Sand lenses (CL-ML)
		 	and light gray below 26.5', Gravel and few ferrous sta	traces	 	 	6	SAND, Silty, slighty compact, wet, light bi
		6	26.5'; fine grained (SM) SAND, Silty, very dense, wet	light			7	SAND, Silty, dense, wet, light brown, 'fine grained, trace CL lenses, 4"
		$\overset{\circ}{\leftarrow}$	brown and light gray (SM) CLAY, Sandy Lean, hard, mois		 			'Ine graned, trace CL tenses, 4 'gray CH with Sand seam at 27' (SM) SAND, 'STITy, 'very hard, wet, Tight '
)	and grayish brown (CL) CLAY, Fat with Sand, very st					brown (SM)
		\bigcirc	and grayish brown, trace S -CLAY, Sandy Lean, hard, -mois	and lenses (CH)				SAND, Clayey, dense, wet, light brown and grayish brown, fine to medium grained (SC)
			and grayish brown, traces and SC lenses (CL)	CH lenses			\sim	CLAY, Sandy Lean, hard, moist, light brown, grayish brown, and gray, few
		10	SAND, Poorly Graded with Si dense, moist, light brown,	lt, very fine grained			(11)	CLAY, Sandy-Lean, hard, moist, light
			(SP-SM)					brown, grayish brown, and gray (CL)
							(12)	SAND, Poorly Graded with Silt, very dense, wet, light brown, fine grained (SP-SM)




	100	44.6	100	100	405	470	45.0	Τ
BID ITEM	400	416	420	422	425	432	450	
BID ITEM DESCRIPTION BRIDGE ELEMENT	CEM STABIL BKFL	DRILL Shaft (24 IN)	CL C CONC (ABUT)	REINF CONC SLAB (SLAB BEAM)	PRESTR CONC SLAB BEAM (4SB12)	RIPRAP (STONE PROTECTION) (18 IN)	RAIL (TY 223)	RE (O L
	CY	LF	CY	SF	LF	CY	LF	
2 - ABUTMENTS	30.3	183	23.2			254	24.0	
1 - 40' PRESTR CONC SLAB BEAM UNIT				1285	316.00		80.0	
TOTAL	30.3	183	23.2	1285	316.00	254	104.0	


SUMMARY OF ESTIMATED QUANTITIES


SEE APSB-30 STANDARD FOR CAP ELEVATION LOCATIONS AT OUTSIDE EDGE OF BEAM



DISCLAIMER. The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any cind is made by TXDDT for any purpose whatsoever. TXDDT assumes no responsibility for the conversio of this standard to other formats or for incorrect results or damages resulting from its use.

No warranty of any lity for the conversion Act" ing Practice , mes no resp Fexas Engir rned by the ose whatsoev gov Pur of this standard is by TxDOT for any he he is DISC

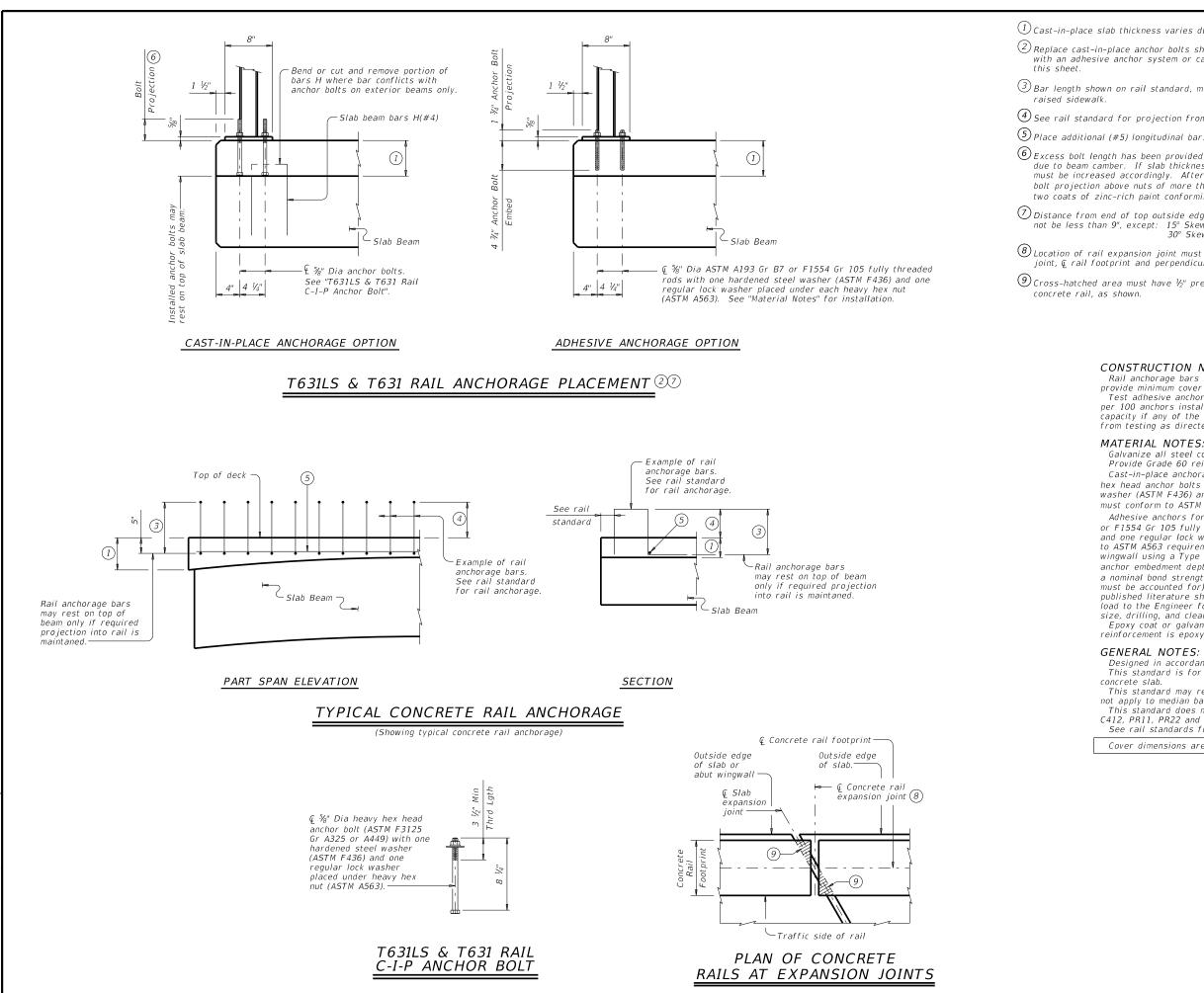

> AM 8: 56: 28 / STD BDG/D6 5/20/2021 ш DAT

			TABLE			-
	ALL P	EARIN RESTR	G PAD	DIMEN SLAB	ISION BM T	S YPES)
	One-Pad		<u> </u>	Two-Pa		
	W	L	Т	W	L	Т
	14"	7"	2"	7"	7"	2"
		es showr ng conditi	n are appli ons:	cable for	the	
	wl nc sp	here the ht less th han is not	o and three minimum s an 25' and t more thau than or ea	pan lengt the maxi n 50'.	h is imum	
n'' Min						
⊈ Slab beam						
Bearing pad						
erior bent cap bent	GENERAL N These details up to 30°. Shop drawing A bearing lay and orientatior developed by t Permanently m accordance wit of the bearing the Engineer. Cost of furm bearings must "Prestressed C	s accomm yout whic n of all b he bearir ark each h the bea layout is ishing an be incluo	proval are h identifie earings mu g fabricat bearing in aring layou to be pro d installing ed in unit	required s locatior ist be or. t. A copy vided to g elastom price bid	v eric	
	*	HI	L93 LOAI	DING		Bridge
	Texas D	epartme	nt of Trans	sportatio	n i	Bridge Division Standard
	-	STO	MERI	C BE	ARI	
	PREST	R CO	NCRET			EAM
	FILE: psbste06-17. CTxD0T January REVISION	2017	DN: TxD0 CONT SE 0910 1 DIST TY1	CT JOB	T DW: TxD	OT CK: TXDOT HIGHWAY TTLE ST,ETC SHEET NO.

TYL

SMITH

79

AM 8:56:38 STD_BDG\D 5/20/2021 DAT

(1) Cast-in-place slab thickness varies due to beam camber (5" minimum).

(2) Replace cast-in-place anchor bolts shown on T631LS and T631 Rail standard with an adhesive anchor system or cast-in-place anchor bolts shown on

3 Bar length shown on rail standard, minus 1 ¼". Adjust bar length for a

(4) See rail standard for projection from finished grade or top of sidewalk.

6 Excess bolt length has been provided to accommodate a variable slab thickness due to beam camber. If slab thickness on span details exceed 7", bolt length must be increased accordingly. After posts have been set and bolts tightened, bolt projection above nuts of more than 1/2" must be cut off and painted with two coats of zinc-rich paint conforming to the Item 445 "Galvanizing".

Distance from end of top outside edge of slab to center of first bolt group can not be less than 9", except: 15° Skew: 1'-0" (acute corner only) 30° Skew: 1'-3" (acute corner only)

(a) Location of rail expansion joint must be at the intersection of (slab expansion joint, (rail footprint and perpendicular to slab outside edge.

(9)Cross-hatched area must have $\frac{1}{2}$ " preformed bitumuminous fiber material under

CONSTRUCTION NOTES:

Rail anchorage bars may be field bent as required to clear rail reinforcing or provide minimum cover shown on standard rail detail sheets. Test adhesive anchors in accordance with Item 450.3.3, "Tests". Test 3 anchors per 100 anchors installed. Perform corrective measures to provide adequate capacity if any of the tests do not meet the required test load. Repair damage from testing as directed.

MATERIAL NOTES:

Galvanize all steel components of steel rail system.

Provide Grade 60 reinforcing steel.

Cast-in-place anchorage system for T631LS and T631 Rail must be 5%" Dia heavy hex head anchor bolts (ASTM F3125 Gr 325 or A449) with one hardened steel washer (ASTM F436) and one regular lock washer placed under heavy hex nut. Nuts must conform to ASTM A563 requirements. Embed anchor bolts 4 1/2" minimum.

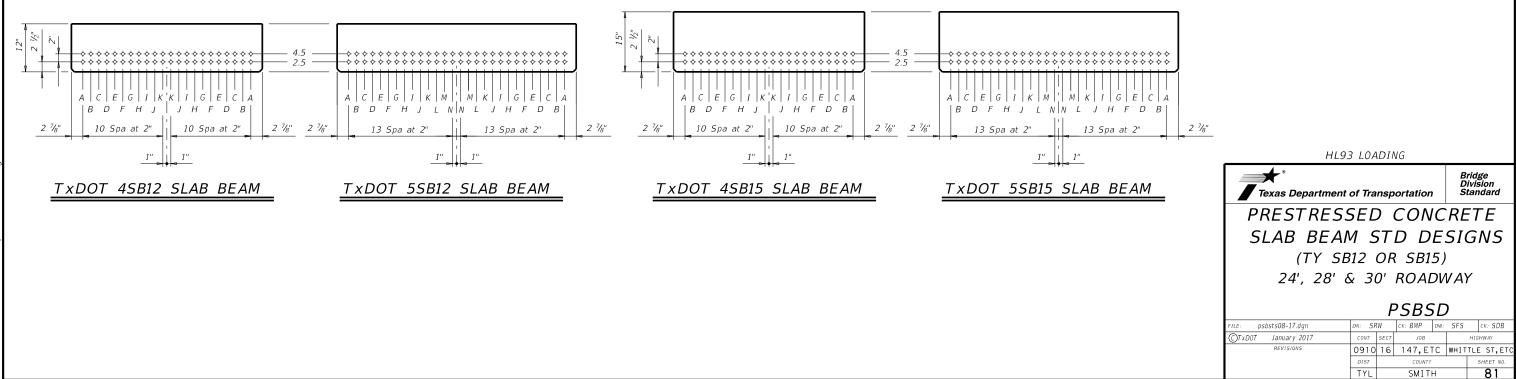
Adhesive anchors for T631LS and T631 Rail must be $\frac{5}{4}$ " Dia ASTM A193 Gr B7 or F1554 Gr 105 fully threaded rods with one hardened steel washer (ASTM F436) and one regular lock washer placed under each heavy hex nut. Nuts must conform to ASTM A563 requirements. Embed fully threaded rod into slab and/or abutment wingwall using a Type III, Class C, D, E, or F anchor adhesive. Minimum adhesive anchor embedment depth is 4 $\frac{3}{4}$ ". Anchor adhesive chosen must be able to achieve a nominal bond strength in tension of a single anchor, Na, of 8 kips (edge distance must be accounted for). Submit signed and sealed calculations or the manufacturer's published literature showing the proposed anchor adhesive's ability to develop this load to the Engineer for approval prior to use. Anchor installation, including hole size, drilling, and clean out, must be in accordance with Item 450, "Railing." Epoxy coat or galvanize reinforcing steel shown on this standard if rail

reinforcement is epoxy coated or galvanized.

GENERAL NOTES:

Designed in accordance with AASHTO LRFD Bridge Design Specifications. This standard is for use with structures with a 5" minimum cast-in-place concrete slab.

This standard may require modification for interior rails. This standard does not apply to median barriers.


This standard does not provide details for Type T221P, T224, T80HT, T80SS, C412, PR11, PR22 and PR3 rails on slab beam bridges. See rail standards for approved speed restrictions, notes and details not shown.

Cover dimensions are clear dimensions, unless noted otherwise.

Texas Department of Transportation									
RAIL ANCHORAGE									
Г) FT A	ALIS							
D		AILJ							
PRESTR CONCRETE SLAB BEAMS									
PRESTR CONC	CRET	E SLAE	B BE	AMS					
PRESTR CONC	CRET	E SLAE		AMS					
PRESTR CONC	CRET	PSBR,		EAMS					
	DN: TXD01	PSBR,	A						
FILE: psbste07-18.dgn	DN: TXD01 CONT SE		A w: JTR	ск: ЈМН					
FILE: psbste07-18.dgn ©TxD0T January 2017	DN: TXD01 CONT SE	РЅВЯ т ск: тхдот с ест јов	A w: JTR	ck: JMH highway					

					l	DESIG	NED E	BEAMS	(STRAIG	SHT S	STRAND.	S)										OPTION	AL DESIG	N	
					ŀ	PRESTRI	ESSING :	STRANDS	1	1		DEB	ONDED ST				TOAN		CONC		DESIGN LOAD	DESIGN LOAD	REQUIRED MINIMUM		E LOAD RIBUTION
STRUCTURE	SPAN LENGTH	BEAM NO.	BEAM TYPE	NON- STD STRAND	TOTAL NO.	SIZE	STRGTH	"e" Q	"e" END	TOT NO. DEB	DIST FROM BOTTOM		D. OF RANDS	N	DEI	R OF S BONDE from	D TO		RELEASE STRGTH	MINIMUM 28 DAY COMP STRGTH	COMP STRESS (TOP Q)	TENSILE STRESS (BOTT Q)	ULTIMATE MOMENT CAPACITY	F.A	actor 2
	(ft)			PATTERN		(in)	fpu (ksi)	(in)	(in)		(in)	TOTAL	DE- BONDED	3	6	9	12	15	f'ci (ksi)	f'c (ksi)	(SERVICĒ I) fct (ksi)	(SERVICE III) fcb (ksi)	(STRENGTH I) (kip-ft)	Moment	Ŭ
24' ROADWAY SB12 BEAM	25 30 35 40	ALL ALL ALL ALL	5SB12 5SB12 5SB12 5SB12 5SB12		8 10 14 18	0.6 0.6 0.6 0.6	270 270 270 270 270	3 . 50 3 . 50 3 . 50 3 . 50 3 . 50	3 . 50 3 . 50 3 . 50 3 . 50 3 . 50	0 0 0 0	2 . 50 2 . 50 2 . 50 2 . 50 2 . 50	8 10 14 18	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	4.000 4.000 4.000 4.000	5.000 5.000 5.000 5.000 5.000	0.914 1.292 1.730 2.218	- 1.217 - 1.685 - 2.219 - 2.796	448 530 675 820	0.450 0.450 0.450 0.450 0.440	0.450 0.450 0.450 0.440
24' ROADWAY SB15 BEAM	25 30 35 40 45 50	ALL ALL ALL ALL ALL ALL	55815 55815 55815 55815 55815 55815 55815		8 8 10 14 18 24	0.6 0.6 0.6 0.6 0.6 0.6 0.6	270 270 270 270 270 270 270	5.00 5.00 5.00 5.00 5.00 5.00 5.00	5.00 5.00 5.00 5.00 5.00 5.00 5.00	0 0 0 2 8	2.50 2.50 2.50 2.50 2.50 2.50 2.50	8 8 10 14 18 24	0 0 0 2 8	0 0 0 2 4	0 0 0 0 0 4	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	4.000 4.000 4.000 4.000 4.000 4.000 4.000	5.000 5.000 5.000 5.000 5.000 5.000 5.000	0.725 1.020 1.361 1.739 2.179 2.680	- 0 . 897 - 1 . 244 - 1 . 640 - 2 . 068 - 2 . 574 - 3 . 153	551 574 708 864 1054 1276	0.450 0.450 0.450 0.440 0.440 0.440 0.440	0.450 0.450 0.450 0.440 0.440 0.440 0.440
28' ROADWAY SB12 BEAM	25 30 35 40	ALL ALL ALL ALL	5SB12 5SB12 5SB12 5SB12 5SB12		8 10 12 18	0.6 0.6 0.6 0.6	270 270 270 270 270	3.50 3.50 3.50 3.50 3.50	3.50 3.50 3.50 3.50 3.50	0 0 0 0	2.50 2.50 2.50 2.50 2.50	8 10 12 18	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	4.000 4.000 4.000 4.000 4.000	5.000 5.000 5.000 5.000 5.000	0.903 1.276 1.708 2.200	- 1 . 184 - 1 . 639 - 2 . 159 - 2 . 744	444 508 647 799	0.430 0.430 0.430 0.430 0.430	0.430 0.430 0.430 0.430 0.430
28' ROADWAY SB15 BEAM	25 30 35 40 45 50	ALL ALL ALL ALL ALL ALL	5SB15 5SB15 5SB15 5SB15 5SB15 5SB15 5SB15		8 8 10 14 18 22	0.6 0.6 0.6 0.6 0.6 0.6 0.6	270 270 270 270 270 270 270	5.00 5.00 5.00 5.00 5.00 5.00 5.00	5.00 5.00 5.00 5.00 5.00 5.00 5.00	0 0 0 2 6	2 . 50 2 . 50 2 . 50 2 . 50 2 . 50 2 . 50 2 . 50	8 8 10 14 18 22	0 0 0 2 6	0 0 0 2 4	0 0 0 0 2	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	4.000 4.000 4.000 4.000 4.000 4.000 4.000	5.000 5.000 5.000 5.000 5.000 5.000 5.000	0.716 1.007 1.343 1.725 2.149 2.643	- 0 . 874 - 1 . 212 - 1 . 598 - 2 . 032 - 2 . 508 - 3 . 073	529 570 680 842 1013 1227	0.430 0.430 0.430 0.430 0.420 0.420 0.420	0.430 0.430 0.430 0.430 0.430 0.420 0.420
30' ROADWAY SB12 BEAM	25 30 35 40	ALL ALL ALL ALL	4SB12 4SB12 4SB12 4SB12 4SB12		6 8 10 14	0.6 0.6 0.6 0.6	270 270 270 270 270	3.50 3.50 3.50 3.50 3.50	3.50 3.50 3.50 3.50 3.50	0 0 0 0	2.50 2.50 2.50 2.50 2.50	6 8 10 14	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	4.000 4.000 4.000 4.000 4.000	5.000 5.000 5.000 5.000 5.000	0.904 1.277 1.711 2.205	- 1 . 187 - 1 . 646 - 2 . 169 - 2 . 758	341 407 518 640	0.340 0.340 0.340 0.340 0.340	0.340 0.340 0.340 0.340 0.340
30' ROADWAY SB15 BEAM	25 30 35 40 45 50	ALL ALL ALL ALL ALL ALL	4SB15 4SB15 4SB15 4SB15 4SB15 4SB15		6 6 8 12 14 18	0.6 0.6 0.6 0.6 0.6 0.6	270 270 270 270 270 270 270	5.00 5.00 5.00 5.00 5.00 5.00	5.00 5.00 5.00 5.00 5.00 5.00 5.00	0 0 0 0 2 4	2.50 2.50 2.50 2.50 2.50 2.50 2.50	6 6 8 12 14 18	0 0 0 0 2 4	0 0 0 2 2	0 0 0 0 2	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	4.000 4.000 4.000 4.000 4.000 4.000	5.000 5.000 5.000 5.000 5.000 5.000 5.000	0.723 1.017 1.346 1.729 2.166 2.665	-0.888 -1.231 -1.605 -2.043 -2.542 -3.115	431 438 545 675 823 998	0.350 0.350 0.340 0.340 0.340 0.340 0.340	0.350 0.350 0.340 0.340 0.340 0.340 0.340

DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any cind is made by TXDOT for any purpose whatsoever. TXDOT assumes no responsibility for the conversion of the sumanase resulting from its use.

AA 8:56:45 STD_BDG\D: 5/20/2021 ...\SMITH $\stackrel{1}{\longrightarrow}$ Based on the following allowable stresses (ksi):

Compression = 0.65 f'ci

Tension =
$$0.24 \sqrt{f'ci}$$

Optional designs must likewise conform.

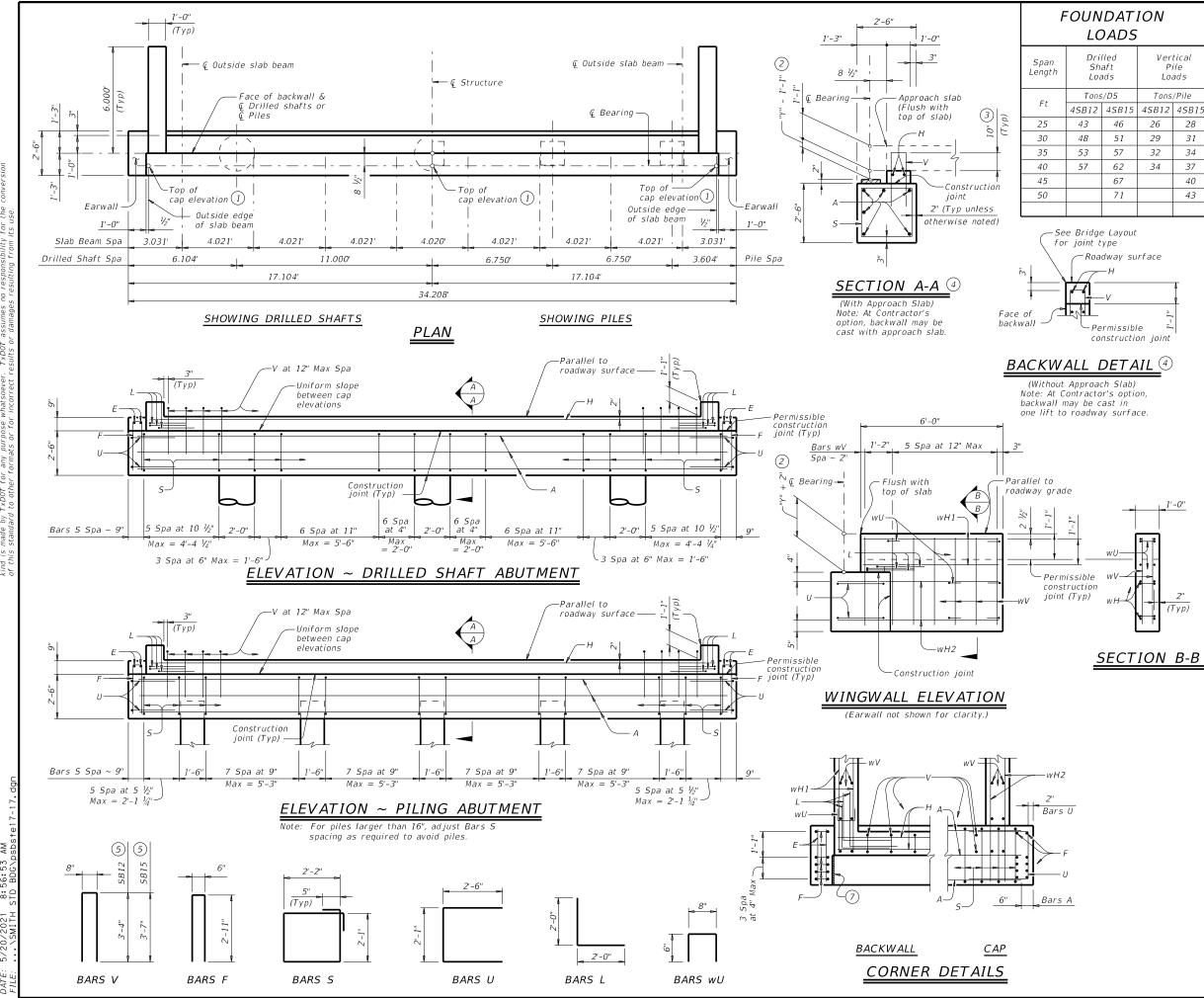
2) Portion of full HL93.

DESIGN NOTES:

Designed according to AASHTO LRFD Bridge Design Specifications. Prestress losses for the designed beams have been calculated for a relative humidity of 60 percent. Optional designs must likewise conform.

FABRICATION NOTES:

Provide Class H concrete.


Provide Grade 60 reinforcing steel. Use low relaxation strands, each pretensioned to 75 percent of fpu. Full-length debonded strands are not permitted in positions "A" and "B". Strand debonding must comply with Item 424.4.2.2.2.4.

When shown on this sheet, the Fabricator has the option of furnishing either the designed beam or an approved optional beam design. All optional design submittals and shop drawings must be signed, sealed and dated by a Professional Engineer registered in the State of Texas. Locate strands for the designed beam as low as possible on the 2" grid system unless a non-standard strand pattern is indicated. Fill row "2.5",

then row "4.5". Place strands within a row as follows:

Locate a strand in each "A" position.
 Place strand symmetrically about vertical centerline of beam.

3) Space strands as equally as possible across the entire width. Do not debond strands in position "A". Distribute debonded strands symmetrically about the vertical centerline. Increase debonded lengths working outward, with debonding staggered in each row.

ranty of any the conversic No warr by hat se l his star TxDOT he he is

> AM 8:56:53 TD BDCV 5/20/2021 \SMITH

405							
ed t s	Vertical Pile Loads						
75	Tons	/Pile					
<i>ISB15</i>	4SB12	4SB15					
46	26	28					
51	29	31					
57	32	34					
62	34	37					
67		40					
71		43					

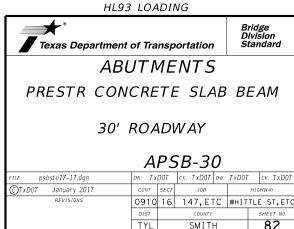
TABLE OF ESTIMATED6 QUANTITIES

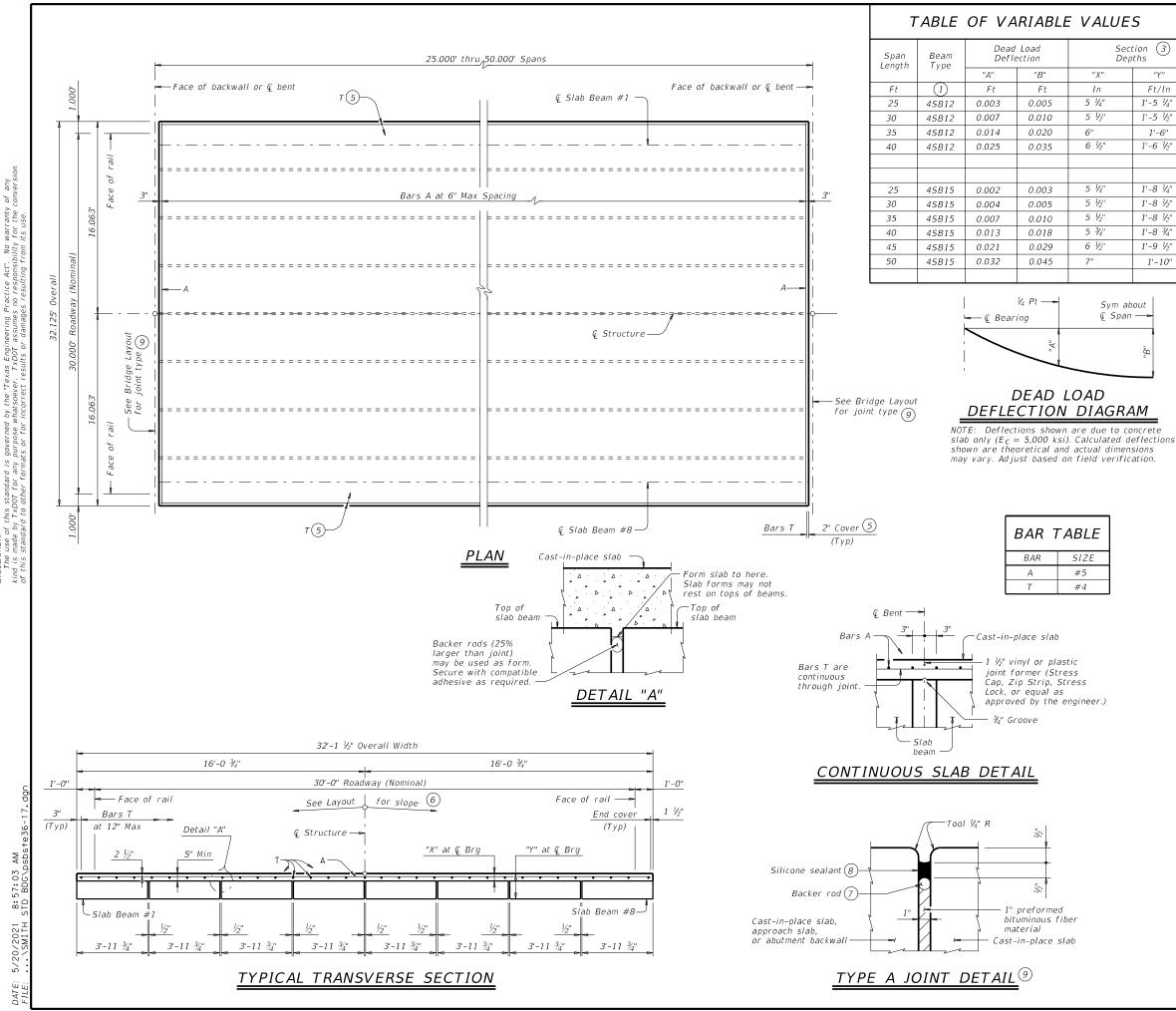
			-				
Bar	No.	Size	Lengtl	ı (5)	Weigh	nt (5)
Ddi	NO.	5120	4SB12	45	B15	4SB12	4SB15
Α	6	#11	33'-3"	3	3'-3"	1,060	1,060
Е	4	#4	2'-2"		2'-2"	6	6
F	10	#4	6'-4''		6'-4"	43	43
Н	2	#5	31'-10"	31	'-10''	66	66
L	6	#6	4'-0''		4'-0''	36	36
5	44	#4	9'-4''		9'-4''	275	275
U	4	#6	7'-1"		7'-1"	43	43
V	31	#5	7'-4''	7	'-10''	237	253
wH1	8	#6	5'-8"		5'-8"	68	68
wH2	8	#6	6'-11''	6	'-11''	83	83
wU	12	#4	1'-8''		1'-8"	14	14
wV	28	#5	3'-10''		4'-1"	112	119
Reinfo	rcing Si	teel			Lb	2,043	2,066
CI "C"	Conc (A	but)			СҮ	10.4	10.8

(1) Top of cap elevations are based on section depths shown on Span Details.

(2) See Span Details for "Y".

- (3) Increase as required to maintain 3" from finished grade.
- (4) See Bridge Layout to determine if approach slab is present.
- 5 See Bridge Layout for beam type used in the superstructure.
- (6) Quantities shown are for one abutment only (with approach slab). Without approach slab, add 1.2 CY Class "C" concrete and 66 Lb reinforcing steel for 2 additional Bars H.
- (7) $\frac{1}{2}$ " preformed bituminous fiber material between slab beam and earwall. Bond to earwall with an approved adhesive. Cast inside face of earwall perpendicular to cap. (Typ)


GENERAL NOTES:


Designed according to AASHTO LRFD Bridge Design Specifications

- Designed for a normal embankment header slope of 3:1 and a maximum span length of 50 feet. See Bridge Layout for header slope and foundation type, size, and length.
- See Common Foundation Details (FD) standard sheet for all foundation details and notes.
- See Concrete Riprap (CRR) standard sheet or Stone Riprap (SRR) standard sheet for riprap attachment
- details, if applicable. See applicable rail details for rail anchorage in
- wingwalls. These abutment details may be used with standard SPSB-30 only.

Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing bar dimensions shown are out-to-out of bar

MATERIAL NOTES: Provide Class C concrete (f'c = 3,600 psi). Provide Class C (HPC) concrete if shown elsewhere in the plans. Provide Grade 60 reinforcing steel.

xas Engii TxD0T by the whatsoe rnec Se gove. purpc CLAIMER: The use of this standard is g is made by T×DOT for any p '---' to other format:

	ths
	"Y"
	Ft/In
	1'-5 ¼"
	1'-5 ½"
	1'-6"
	1'-6 ½"
	1'-8 ¼"
	1'-8 ½"
	1'-8 1/2"
	1'-8 ¾"
	1'-9 1⁄2"
	1'-10"
1	

SPAN	REINF CONCRETE SLAB		PRESTR CC SLAB BEA B12 OR 49	M (1)	TOTAL 2 REINE
LENGTH	(SLAB (SLAB BEAM)	ABUT TO INT BT	INT BT TO INT BT	ABUT TO ABUT	STEEL
Ft	SF	LF (4)	LF (4)	LF (4)	Lb
25	803	196.00	196.00	196.00	2,250
30	964	236.00	236.00	236.00	2,700
35	1,124	276.00	276.00	276.00	3,150
40	1,285	316.00	316.00	316.00	3,600
45	1,446	356.00	356.00	356.00	4,050
50	1,606	396.00	396.00	396.00	4,500

- (1) See Bridge Layout for beam type used in the superstructure. These standards do not provide for the use of both SB12 and SB15 beams within the same structure.
- (2) Reinforcing steel weight is calculated using an approximate factor of 2.8 Lbs/SF.
- (3) Based on theoretical beam camber, dead load deflections of 5" cast-in-place concrete slab and a constant grade. The Contractor will adjust these values for any vertical curve.
- (4) Fabricator will adjust beam lengths for beam slopes as required
- (5) Where slab is continuous over Interior Bents, Bars T are continuous through Joint. See "Continuous Slab Detail".
- (6) This standard does not provide for changes in roadway cross-slopes within the structure.
- (7) 1 $\frac{1}{4}$ " backer rod must be compatible with joint sealant. Use of multiple pieces to create a backer rod cross section is not permitted. Top of backer rod must be convex as shown.
- $\overset{\textcircled{\mbox{(8)}}}{\longrightarrow}$ Class 7 silicone sealant that conforms to DMS-6310. Install when ambient temperature is between 55°F and 85°F and rising. Engineer to determine allowable hours for sealant application.
- (9) See Bridge Layout for expansion joint locations. If using Type A expansion joints, the maximum distance between joints is 100 feet. Type A joints are subsidiary to Item 422, "Concrete Superstructures".

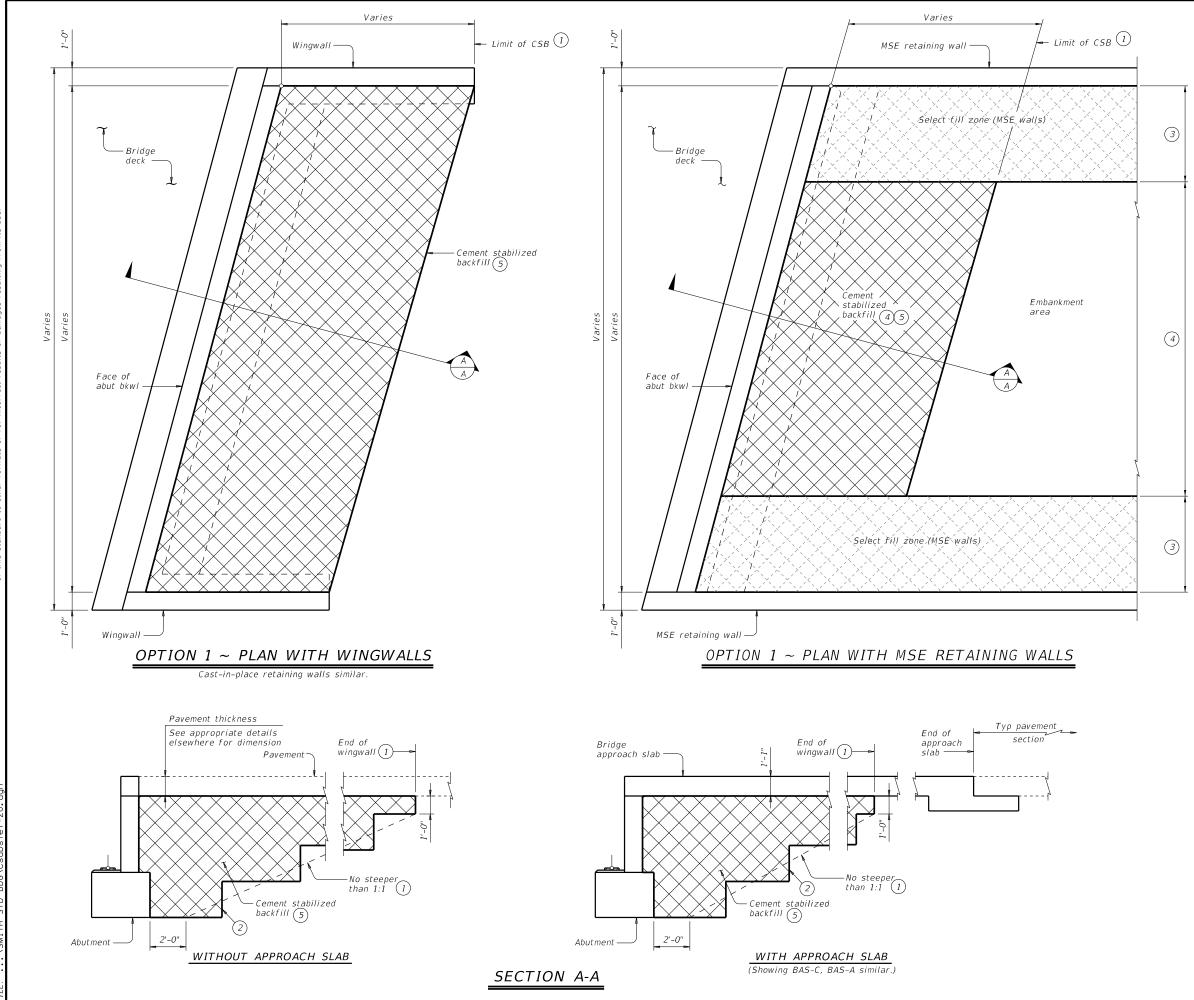
GENERAL NOTES:

Designed according to AASHTO LRFD Bridge Design Specifications. Two- or three-span units, with slab continuous over interior bents. may be formed with the details shown on this sheet. See applicable rail details for rail anchorage in slab.

This standard does not support the use of transition bents.

Cover dimensions are clear dimensions, unless noted otherwise.

MATERIAL NOTES:


Provide Class S concrete (f'c = 4,000 psi). Provide Class S (HPC) concrete if shown elsewhere in the plans. Provide Grade 60 reinforcing steel. Provide bar laps, where required, as follows: $Uncoated \sim #4 = 1'-7''$

 $\sim #5 = 2'-0''$ Epoxy coated $\sim #4 = 2'-5''$

 $\sim #5 = 3' - 0'$

Deformed welded wire reinforcement (WWR) (ASTM A1064) of equal size and spacing may be substituted for Bars A or T unless noted otherwise.

HL93	B LO	4DI	NG							
Image: Standard Bridge Division Image: Standard Standard										
PRESTRESS SLAB B (TY SB1 30' I	EAI !2	M OF	SPAN R SB1	IS	ΤE					
	5	PS	5B-30							
FILE: psbste36-17.dgn	DN: TX	DOT	CK: TXDOT DW:	T x D 07	ск: ТхДОТ					
CTxDOT January 2017	CONT	SECT	JOB		HIGHWAY					
REVISIONS	0910	16	147,ETC	WHIT	TLE ST,ETC					
	DIST		COUNTY		SHEET NO.					
	TYL		SMITH		83					

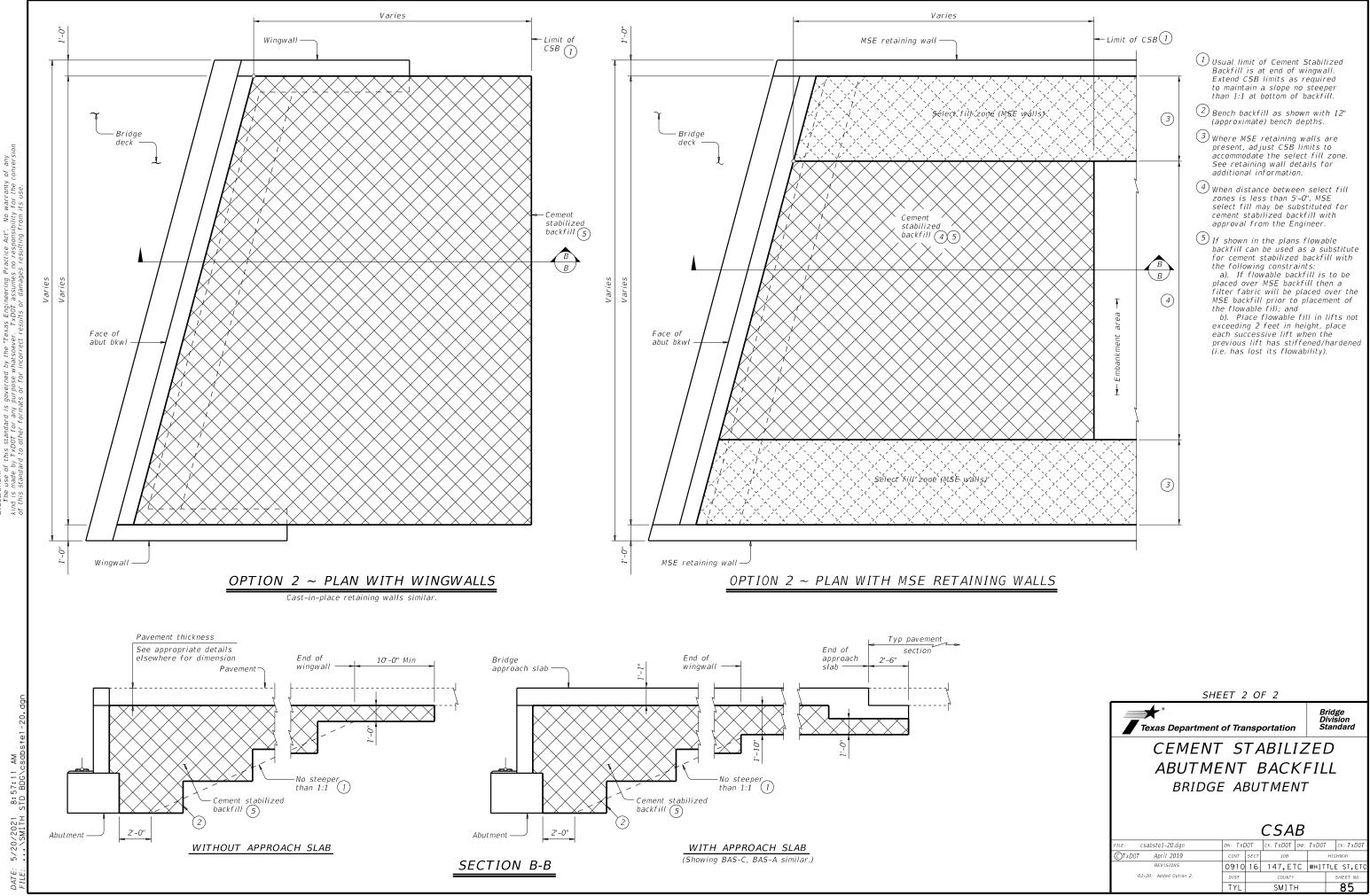
DISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty cind is made by TXDOT for any purpose whatsoever. TXDOT assumes no responsibility for the of this standard to other formats or for incorrect results or damages resulting from its use.

of any conversio

> 4TE: 5/20/2021 8:57:11 AM 1LE: ...\SMITH STD BDG\csabste1-20.d

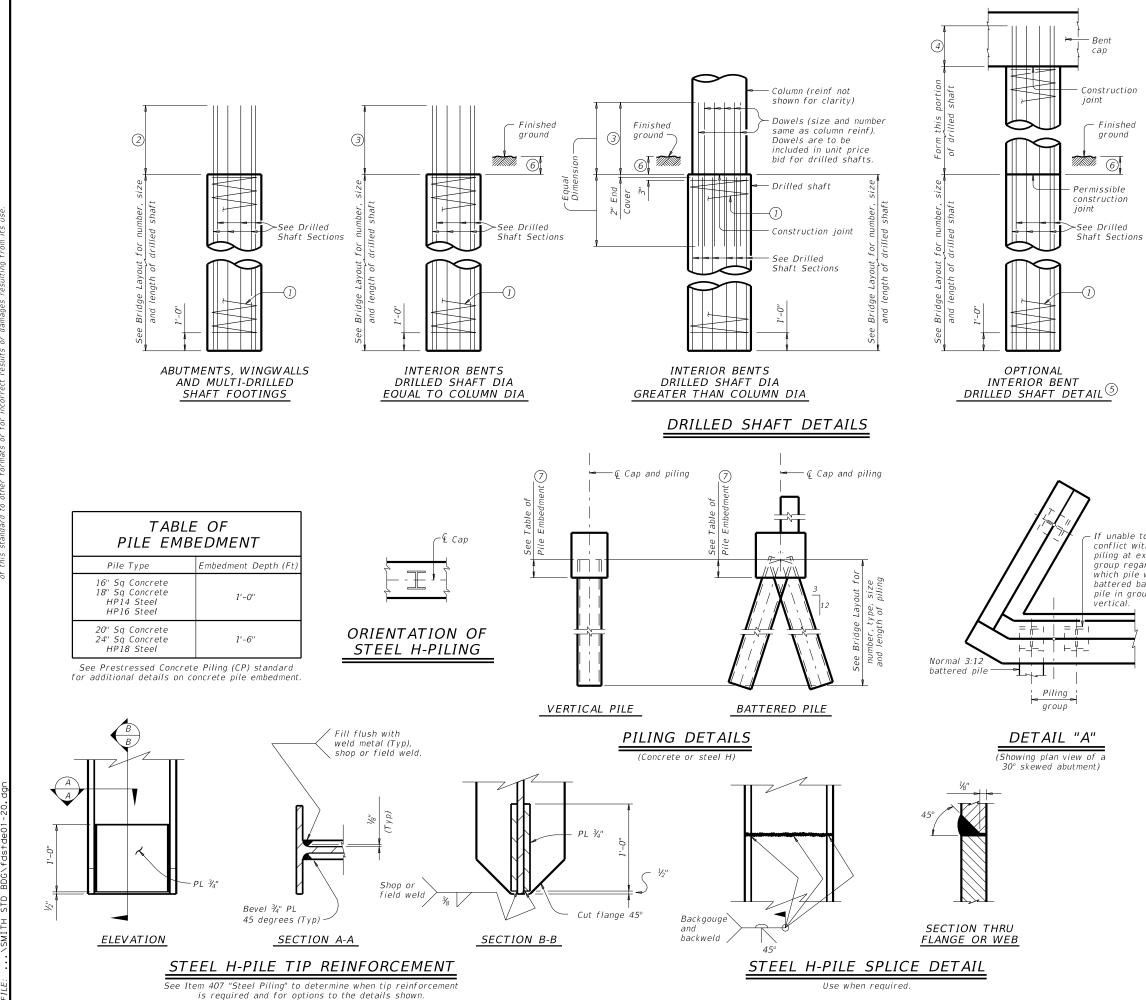
- (1) Usual limit of Cement Stabilized Backfill is at end of wingwall. Extend CSB limits as required to maintain a slope no steeper than 1:1 at bottom of backfill.
- Bench backfill as shown with 12" (approximate) bench depths.
- (3) Where MSE retaining walls are present, adjust CSB limits to accommodate the select fill zone. See retaining wall details for additional information.
- When distance between select fill zones is less than 5'-0", MSE select fill may be substituted for cement stabilized backfill with approval from the Engineer.
- 5 If shown in the plans flowable backfill can be used as a substitute for cement stabilized backfill with the following constraints:

constraints: a). If flowable backfill is to be placed over MSE backfill then a filter fabric will be placed over the MSE backfill prior to placement of the flowable fill; and b). Place flowable fill in lifts not exceeding 2 feet in height, place each successive lift when the previous lift has stiffened/hardened (i.e. has lost its flowability).

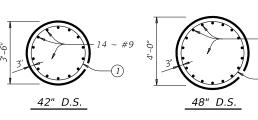

GENERAL NOTES:

See the Bridge Layout for selected Option. Option 2 is intended for new construction requiring high plasticity embankment fill with a plasticity index (PI) greater than 30 or pavement built in poor native soil. Poor soils are defined as high plasticity clays or expansive clays. Option 1 is intended for construction only requiring PI controlled embankment fill or excavation in competent soils/rocks in order to construct the abutment. Provide Cement Stabilized Backfill (CSB) meeting the requirements of Item 400, "Excavation and Backfill for Structures", to the limits shown at bridge abutments.

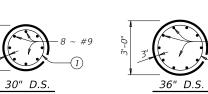
Structures", to the limits shown at bridge abutments. If required elsewhere in the plans, provide Flowable Backfill meeting the requirements of Item 401, "Flowable Backfill", to the limits shown at bridge abutments. Details are drawn showing left forward skew. See

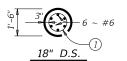

Bridge Layout for actual skew direction. These details do not apply when Concrete Block retaining walls are used in lieu of wingwalls.

SHEET 1 OF 2							
Texas Department	of Tra	nsp	ortation	D	Pridge Division Standard		
CEMENT	- 5	T,	ABILI	ΖΕ	D		
ABUTME	NT		ЗАСК	FIL	L		
BRIDGE ABUTMENT							
			CSAE	3			
FILE: csabste1-20.dgn	DN: TX	DOT	CK: TXDOT D	w: TxDO	ск: TxD0T		
CTxDOT April 2019	CONT	SECT	JOB		HIGHWAY		
REVISIONS	0910	16	147,ETC	WHIT	TLE ST,ETC		
02-20: Added Option 2.	DIST		COUNTY		SHEET NO.		
	TYL		SMITH		84		


anty the warr for No TXDOT ass by hat se l of this stan = by TxDOT I he he is DISC

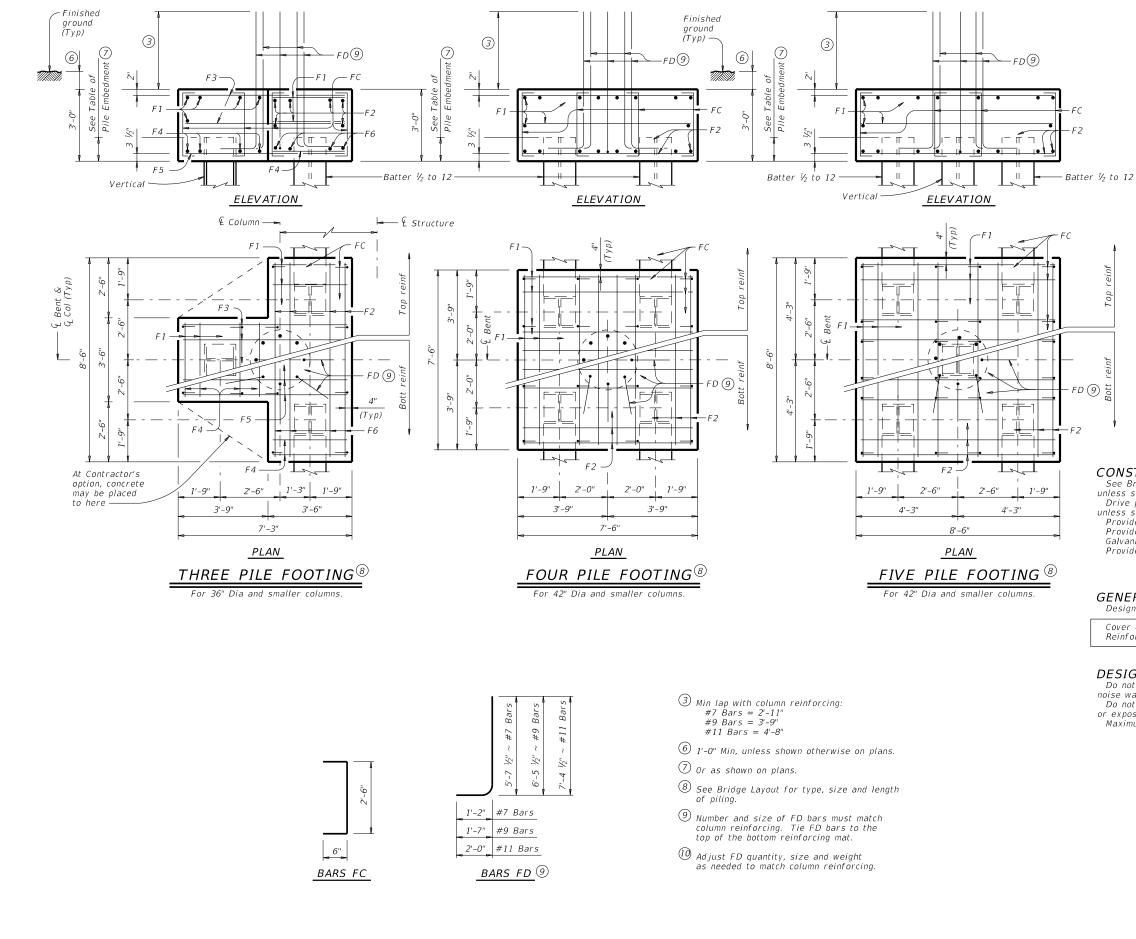
> AM 8:57:11 STD BDG\C 5/20/2021




No warranty of any lity for the conversion ing Practice umes no resp Texas Engir er. TxDOT + rocults or d by the whatsoev governed purpose w DISCLAIMER: The use of this standard is kind is made by TxDOT for any

> AM 8:57:17 / STD_BDG\f6 5/20/2021 DAT

DRILLED SHAFT SECTIONS


 $18 \sim \#9$

10 ~ #9

If unable to avoid conflict with wingwall piling at exterior pile group regardless of which pile would be battered back, one pile in group may be

- (1) #3 spiral at 6" pitch (one and a half flat turns top and bottom).
- ② Min extension into supported element: #6 Bars = 1'-11" #7 Bars = 2'-0" #9 Bars = 2'-3"
- ③ Min lap with column reinf: #7 Bars = 2'-11" #9 Bars = 3'-9" #11 Bars = 4'-8"
- (4) Min extension into supported element: #6 Bars = 1'-11" #7 Bars = 2'-3" #9 Bars = 2'-9''
- 5 Drilled shafts may extend to the bottom of bent caps for "H" heights of 6 ft and less (as shown on the Bridge Layout), if approved. This option can only be used when the drilled shaft diameter equals the column diameter. Obtain approval of the forming method above the ground line prior to construction. No adjustments in payment will be made if this option is used.
- ⑥ 1'-0" Min, unless shown otherwise on plans.
- \bigcirc Or as shown on plans.

SHE	ET 1	0	- 2			
Texas Department	of Tra	nsp	ortation		D	ridge ivision tandard
COMMON D	F ET			47	ΓΙΟ	ON
			I	FL	D	
FILE: fdstde01-20.dgn	DN: TXD	DOT	ск: ТхD0Т	DW:	T x D 07	ск: ТхДОТ
CTxDOT April 2019	CONT	SECT	JOB			HIGHWAY
REVISIONS	0910	16	147,E1	ΓC	WHIT	TLE ST,ETC
01-20: Added #11 bars to the FD bars.	DIST		COUNTY			SHEET NO.
	TYL		SMIT	н		86

No warranty of any lity for the conversion Practice is no resp exas Engir r. TxDOT I by the whatsoev governed purpose v DISCLAIMER: The use of this standard is kind is made by TxDOT for any

> 8:57:18 AM STD BDG\fds⁻ 5/20/2021 DAT

TABLE OF FOOTING
QUANTITIES FOR
<i>30" COLUMNS</i>

		ONE 3	PILE FOOT	ING	
Bar	No.	Size	Lengti		Weight
F1	11	#4	3'- 2	23	
F2	6	#4	8'- 2		33
F3	6	#4	6'- 11		28
F4	8	#9	3'- 2		86
F5	4	#9	6'- 11		94
F6	4	#9	8'- 2		111
FC	12	#4	3'- 6		28
FD (10)	8	#9	8'-1		220
-	orcing		<u> </u>	Lb	623
		ncrete		CY	4.8
0,455			PILE FOOT		
Bar	No.	Size	Lengti		Weight
F 1	20	#4	7'- 2		96
F2	16	#8	7'- 2		306
FC	16	#4	3'- 6	"	37
FD (10)	8	#9	8'- 1	"	220
Reinf	orcing	Steel		Lb	659
Class	"C" Cc	ncrete		СҮ	6.3
		ONE 5	PILE FOOT	ING	
Bar	No.	Size	Lengti	h	Weight
F 1	20	#4	8'- 2	"	109
F2	16	#9	8'- 2	"	444
FC	24	#4	3'- 6	"	56
F D 10	8	#9	8'- 1	"	220
Reinf	orcing	Steel		Lb	829
Class	"С" Сс	oncrete		СҮ	8.0

CONSTRUCTION NOTES:

See Bridge Layout for foundation type required. Use these foundation details unless shown otherwise.

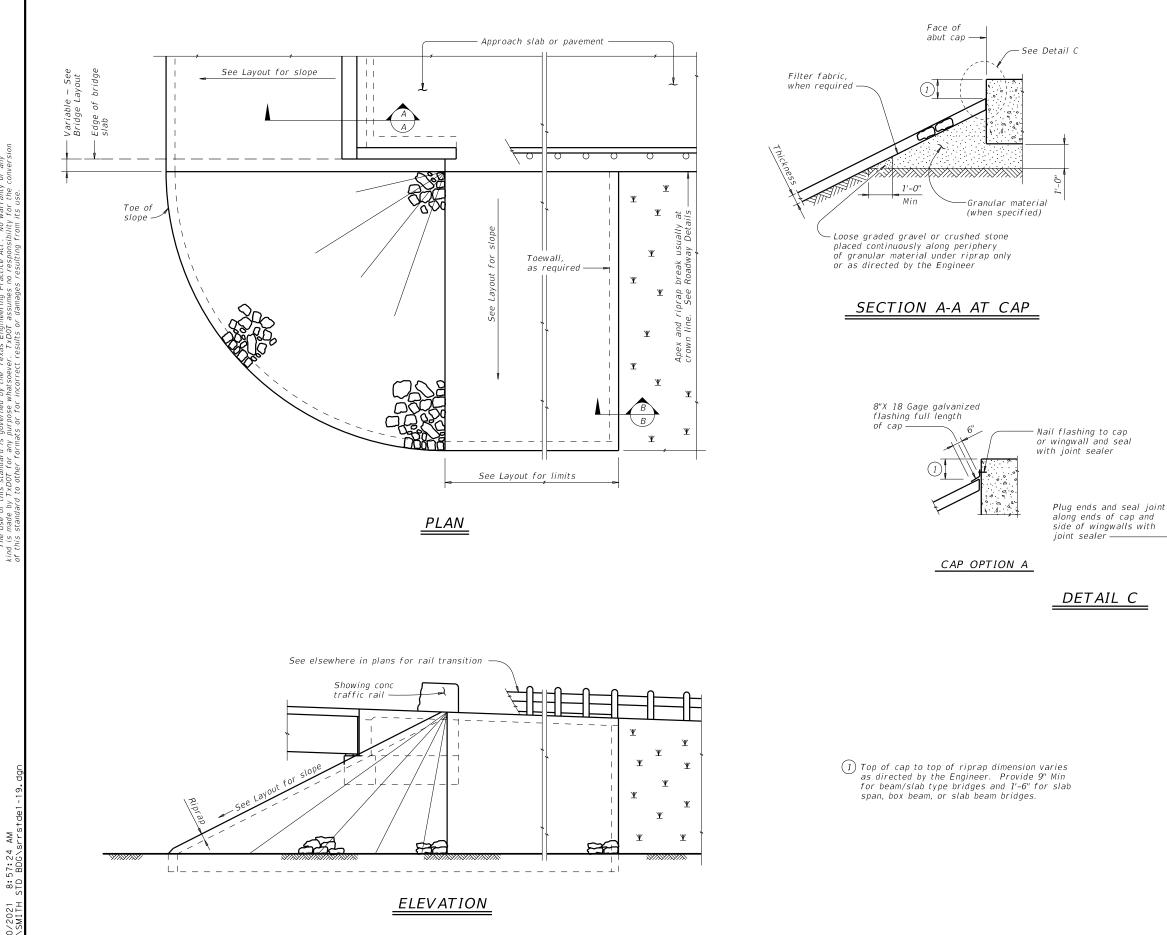
Drive piling under abutment wingwalls to a minimum resistance of 10 Tons/Pile unless shown otherwise.

Provide Class C Concrete (f'c = 3,600 psi), unless shown otherwise. Provide Grade 60 reinforcing steel. Galvanize reinforcing if shown elsewhere in the plans.

Provide bar laps for drilled shaft reinforcing, where required, as follows: Uncoated or galvanized (#6) ~ 2'-6" Uncoated or galvanized (#7) ~ 2'-11" Uncoated or galvanized (#9) ~ 3'-9"

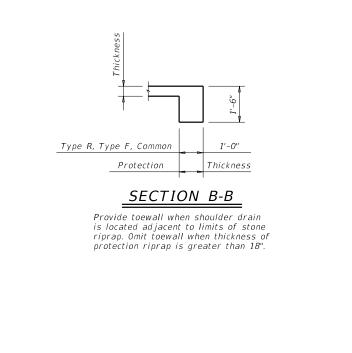
GENERAL NOTES: Designed according to AASHTO LRFD Bridge Design Specifications.

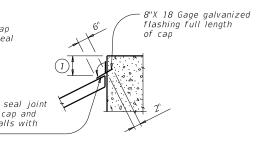
Cover dimensions are clear dimensions, unless noted otherwise. Reinforcing bar dimensions shown are out-to-out of bar.


DESIGNER NOTES: Do not use the drilled shaft details shown on this standard for retaining wall,

Do not use the footings shown on this standard in direct contact with salt water or exposed to salt water spray.

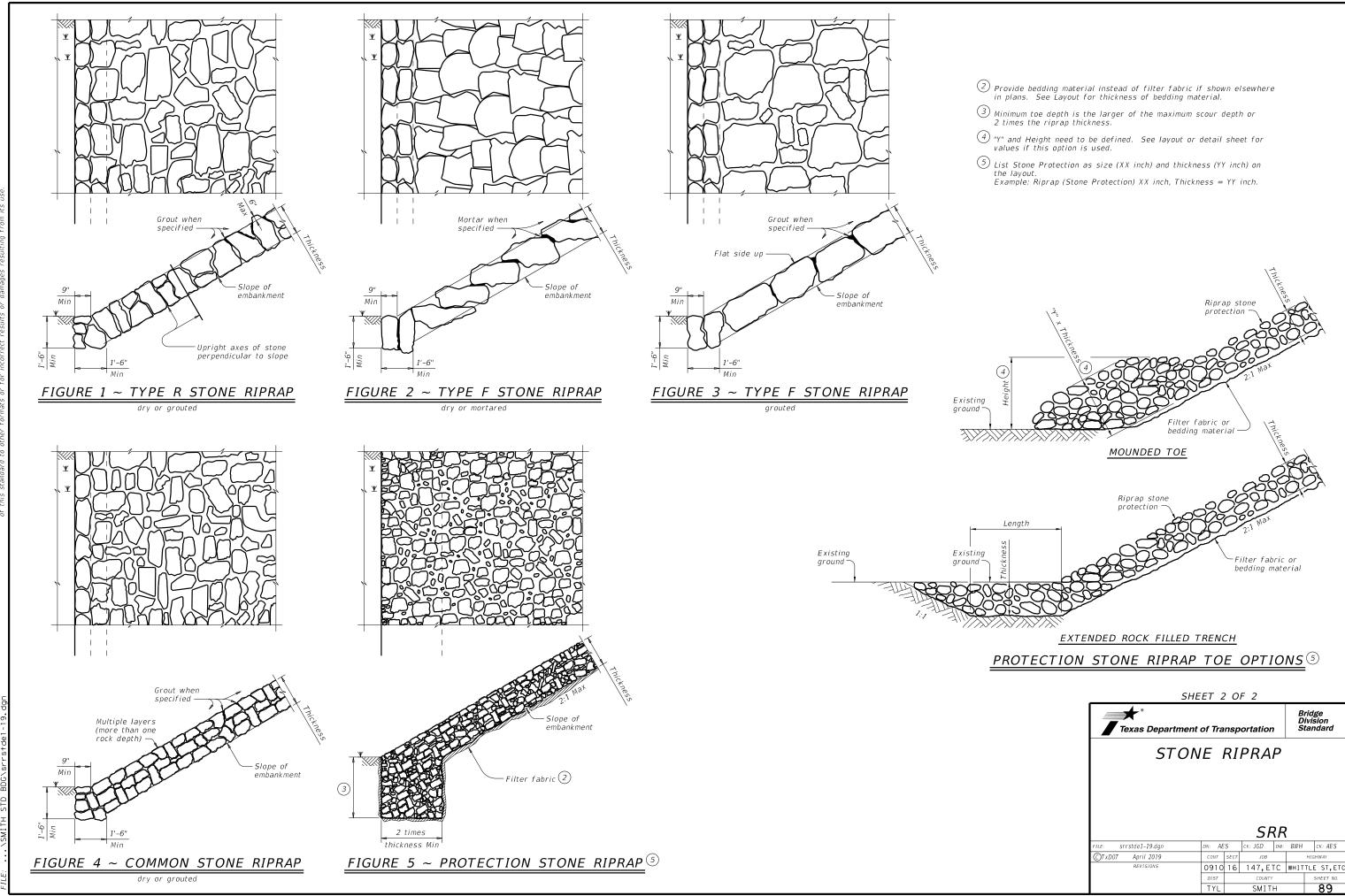
Maximum allowable pile loads for the footings shown are:

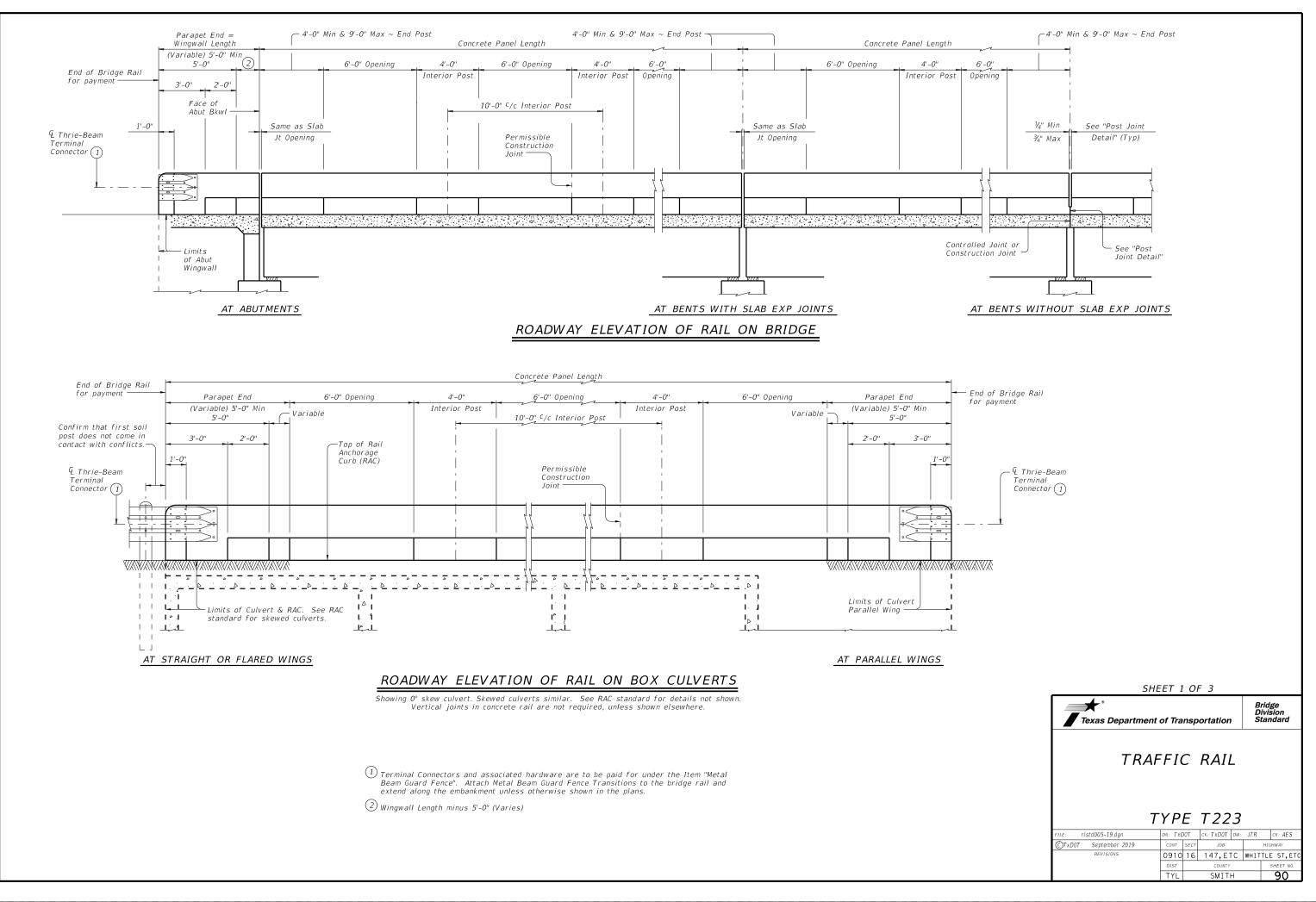

Shown are.				
72 Tons/Pile	with	24"	Dia	Columns
80 Tons/Pile	with	30"	Dia	Columns
100 Tons/Pile	with	36"	Dia	Columns
120 Tons/Pile	with	42"	Dia	Columns

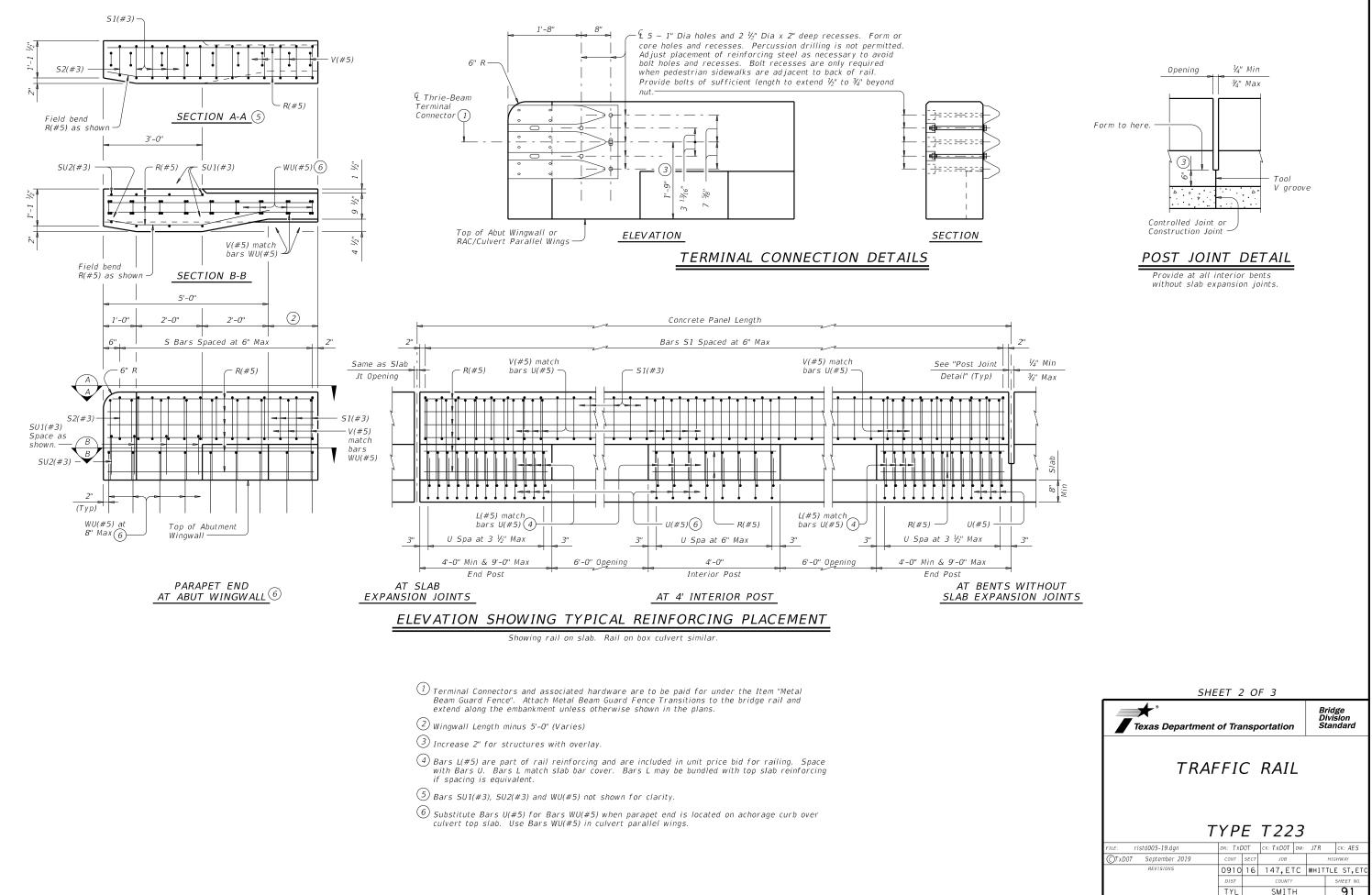

SHE	ET 2	2 0	F 2			
Texas Department	of Tra	nsp	ortation	,	D	ridge ivision tandard
COMMON D	F ET		LS	_		ON.
				FL	-	
FILE: fdstde01-20.dgn	DN: TXE			DW:	TxD0T	
©TxDOT April 2019	CONT	SECT	JOB			HIGHWAY
REVISIONS	0910	16	147,EI	٢C	WHIT	TLE ST,ETC
01-20: Added #11 bars to the FD bars.	DIST		COUNTY			SHEET NO.
	TYL					

ing Practice Act". No warranty of any mes no responsibility for the conversion DISCLAIMER: The use of this standard is governed by the "Texas Enginee that is made by TXDDT for any purpose whatsoever. TXDDT ass or this erandard to other formars or for incorrect results or de

> 5/20/2021 DATE:

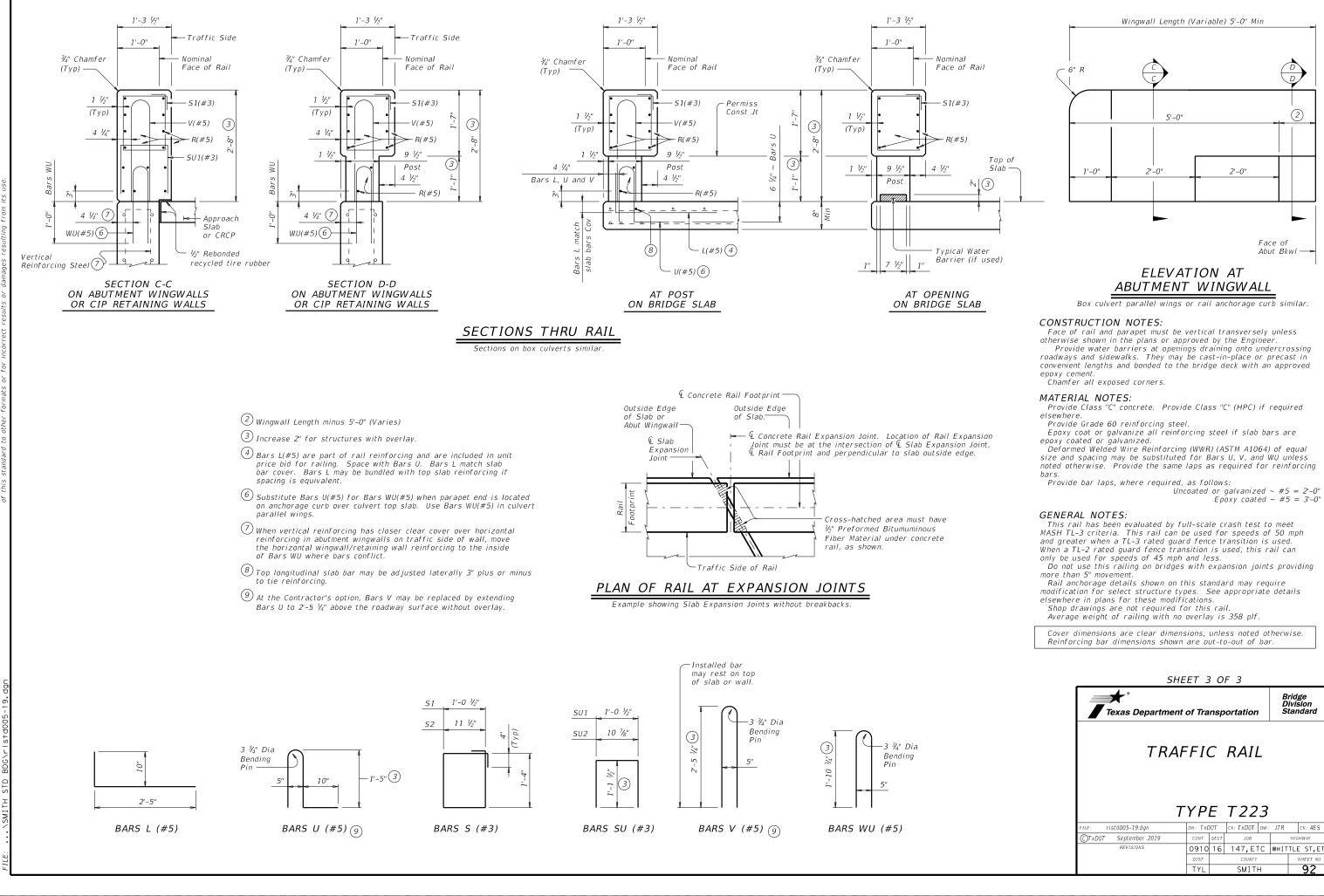



GENERAL NOTES: Refer to Item 432, "Riprap" for stone size and gradation, and construction details. See Layout for limits and thickness of riprap specified. See elsewhere in plans for locations and details of shoulder drains.


SHE	ET 1	0	F 2					
Texas Department	of Tra	nsp	ortation	1	D	ridge ivision tandard		
STONE RIPRAP								
			SF	R	2			
FILE: srrstde1-19.dgn	DN: AE	5	ск: JGD	DW:	BWH	CK: AES		
CTxDOT April 2019	CONT	SECT	JOB			HIGHWAY		
REVISIONS	0910	16	147,EI	ΓC	WHIT	TLE ST,E	TC	
	DIST		COUNTY			SHEET NO).	
	TYL		SMIT	Н		88		

of any conversior anty the i warr for ŝŚ by hat rne 55e 20V this star y TxDOT DISCLAIMER: The use of kind is made

> AM 8:57:25 STD_BDG\SI 5/20/2021 DAT

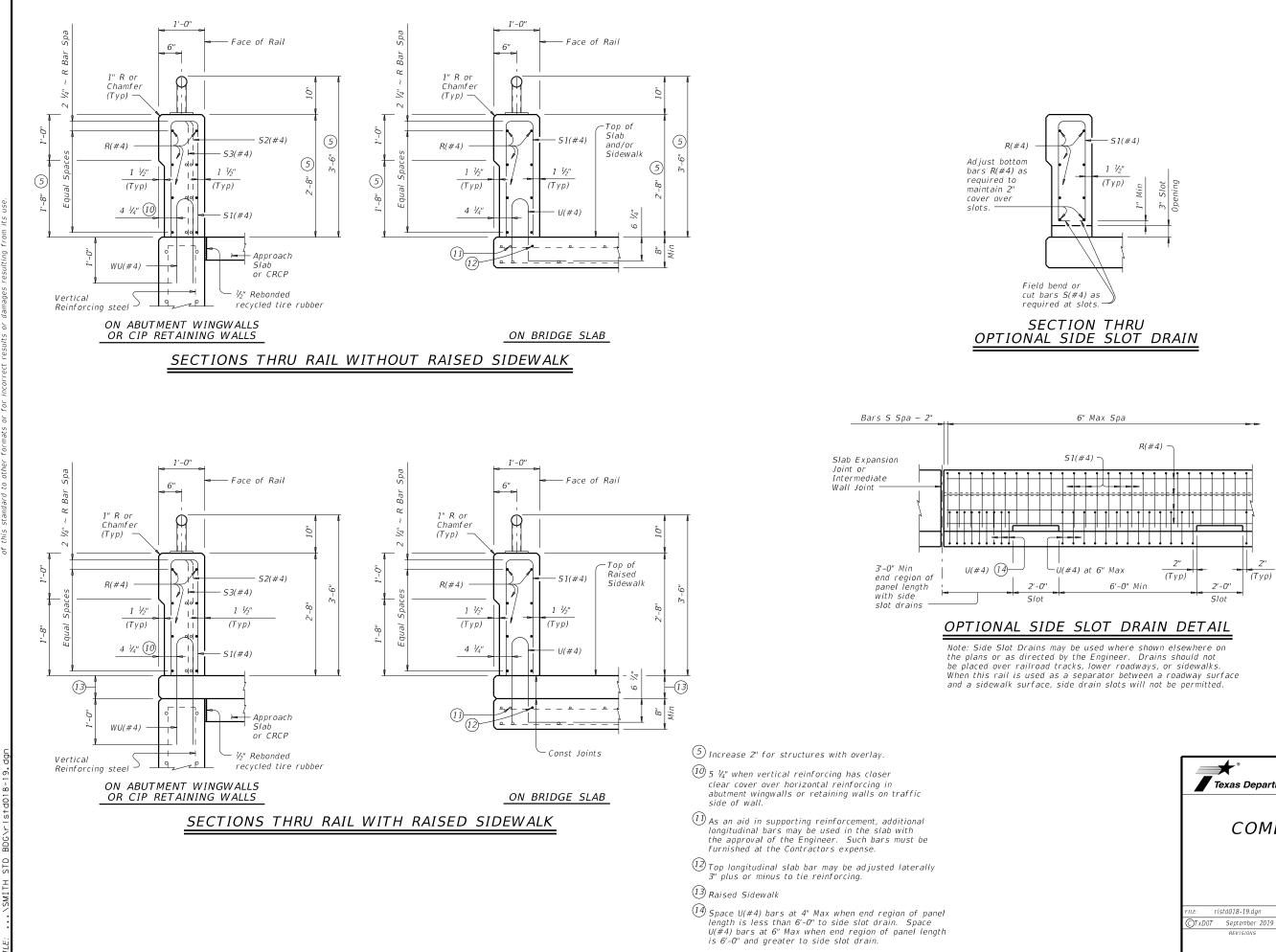


8:57:31 STD RDCV 5/20/2021

AM

No warranty of any lity for the conversion act 70 Engi (D0T by hat DISCLAIMER: The use of this standar kind is made by TxDOT for

warranty of any y for the conversion No aci by the "Texas Engi whatsoever. TxDOT rned 156 1 for gover purpo LAIMER: he use of this standard is is made by TxDOT for any is created to other formy


> AM 8:57:31 STD RDCV-5/20/2021

SI	неет з О	VF 3	
Texas Departme	nt of Transp	oortation	Bridge Division Standard
TRA	AFFIC	RAIL	
	TYPF	т 223	
ғны: rístd005-19.dqn	TYPE	T223	JTR Γκ: ΑΕ5
		CK: TXDOT DW:	
FILE: ristd005-19.dgn	DN: TXDOT	CK: TXDOT DW:	JTR CK: AES
FILE: rlstd005-19.dgn ©TxD0T September 2019	DN: TXDOT	CK: TXDOT DW:	JTR CK: AES HIGHWAY

uISCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". No warranty of any ind is made by TXDOT for any purpose whatsoever. TXDOT assumes no responsibility for the conversior f this standard to other formats or for incorrect results or damages resulting from its use.

> DATE: 5/20/2021 8:57:37 AM FILE: ...\SMITH STD BDG\rlstd018-19.dgr

No warranty of any lity for the conversion neering Practice Act". assumes no responsi governed by the "Texas Engir purpose whatsoever. TxDOT DISCLAIMER: The use of this standard is kind is made by TxDOT for any

> AM 8:57:38 / STD BDG\r 5/20/2021 ...\SMITH ш DAT

SHE	ET 2	? 0	F 3		
Texas Department	of Tra	nsp	ortation	D	ridge ivision tandard
COMBIN			DN RA C221	IL	
FILE: ristd018-19.dgn	DN: TX[CK: TXDOT DW:	JTR	ск: ЈМН
©TxDOT September 2019	CONT	SECT	JOB		HIGHWAY
REVISIONS	0910	16	147,ETC	WHIT	TLE ST,ETC
	DIST		COUNTY		SHEET NO.
	TYL		SMITH		94

RADIUS TO FACE OF RAIL	MAX CHORD LENGTH	CONSTRUCT		\sim	side		
2000	LENGTH	OR FABRICATE					
Dver 2800 Dver 1400' thru 2800'	29'-0" 14'-6"	Straight rail panels		<u>ا</u> ر ک	2" Dia Bending		
Over 700' thru 1400'		To required radius or to chords shown		Installed WWR	Pin (15)		
hru 700'	Zero	To required radius	1	Installed WWR may rest on top	7 1/2"		
				may rest on top of slab or wall	h h		
Â	HS	SS Rail (7)					
9" A 9"		Members 8		<u>¶</u> ¶ ∛4" Min ~ 1 ½" Max			
Sleeve					(16)		
Member (8)-					TIONAL WELDED WIRI INFORCEMENT (WWR)		
	/		-				
1/4" Dia F	 Pin			DESCRIPTION	LONGITUDINAL WIRES	VERTICAL WIRES	
2" (Driving or welde	Fit)	l 4" Dia Pin		Minimum (Cumulative Total) Wire Area	1.067 Sq In.	0.267 Sq In. per Ft	
(Typ)	(E	n welded lug	-		No. of Wires	Spacing	
		-		Minimum Maximum	8 10	4" 8"	
AT SPLICE OR EXP JT	<u>-</u> S	SECTION A-A	<u>a</u>	Maximum Wire	The smaller wire mus	t have an area	
PIPF	SPLICE D	ETAILS	l	Size Differential	of 40% or more of th	ie larger WIFe.	
	п	Installed Bars S may rest on top S					
3 ¾" Dia Bending Pin 4 ¾" 8" 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	n o 3 ¾" Dia Bending Pin	may rest on top 5 of slab or wall 5 (5) 5 5 5 5 5 7 9 7 7 9 7 7 7 9 7 7 7 7 9 7 7 7 7	si 5) 51 7 ¹ / ₂ " B	2" Dia bolt or t Sending one hard pin washer (placed u hex nut (One addi must be tack weld threaded		uiw "Z p-141 Tack Weld IN-PLACE OLT OPTIONS (18)	

15

of any conversi

anty the i

warr for

No lity

act 70

445 "Galvanizing" 1/16" exist.

tments).

TERIAL NOTES:

rovide Class "C" concrete. Povide Class "C" (HPC) if required elsewhere. rovide Grade 60 reinforcing steel. poxy coat or galvanize all reinforcing steel if slab bars are epoxy coated or galvanized. ovide ASTM A1085 or A500 Gr B or A53 Gr B for all HSS. alvanize all metal components of steel rail system. Apply additional coatings when shown ewhere on the plans. When plans require paint over gavanizing, follow the requirements for ting galvanized steel in Item 445, "Galvanizing" and when field painting, Item 446, "Field ning and Painting Steel". Sleeve members and anchor bolts must receive galvanization prior nstallation and only field paint after installation unless directed otherwise by Engineer eformed Welded Wire Reinforcement (WWR) (ASTM A1064) of equal size and spacing may be stituted for Bars U and WU unless noted otherwise. Deformed WWR (ASTM 1064) may be stituted for Bars R and S, as shown. Combinations of reinforcing steel and WWR or figurations of WWR other that shown are permitted if conditions in the table are satisfied. vide the same laps as required for reinforcing bars. nchor bolts must be $5\!\!\!/_8$ " Dia ASTM A307 Gr A fully threaded rods with one hex nut and one dened steel washer (ASTM F436) each. Nuts must conform to ASTM A563 requirements. Embed

lina".

NERAL NOTES:

ineer for approval.

Example showing Slab Expansion Joints without breakbacks.

RAIL DATA FOR HORIZONTAL CURVES

NSTRUCTION NOTES:

nis railing may be constructed by the slipform process when approved by the Engineer, with ipment approved by the Engineer and when adhesive anchor bolts are used. Slipforming parapet ot allowed if anchor bolts are cast with parapet wall. Provide sensor control for both line and de. Tack welding to provide bracing for slipform operations is acceptable. Welding may be formed at a minimum spacing of 3 ft between the cage and the anchorage. It is permissible to d to bars U, WU and S at any location on the cage. If increased bracing is needed, provide itional anchorage devices and weld in the upper two thirds of the cage. Paint welded areas poxy coated and/or galvanized reinforcing with an organic zinc rich paint in accordance with

rail is slipformed, apply an heavy epoxy bead 1" behind toe of traffic side of rail to concrete just prior to slip forming. Provide a \mathscr{H}_{0}^{*} width x \mathscr{V}_{4}^{*} tall heavy epoxy bead with Type III, ss C or a Type V epoxy. est adhesive anchors in accordance with Item 450.3.3, "Tests". Test 3 anchors per 100 anchors

alled. Perform corrective measures to provide adequate capacity if any of the tests do not the required test load. Repair damage from testing as directed.

the Contractor's option anchor bolts may be cast with the parapet. See "Material Notes". ace of rail, parapet must be plumb unless otherwise approved by the Engineer. HSS rail posts be square to the top of parapet. Use epoxy mortar under post base plates if gaps larger

ound or chamfer exposed edges of HSS rail and HSS rail posts to approximately $arVert_{16}$ " by

SS $\check{\mathsf{rail}}$ sections must not include less than two posts, and no more than four (except at

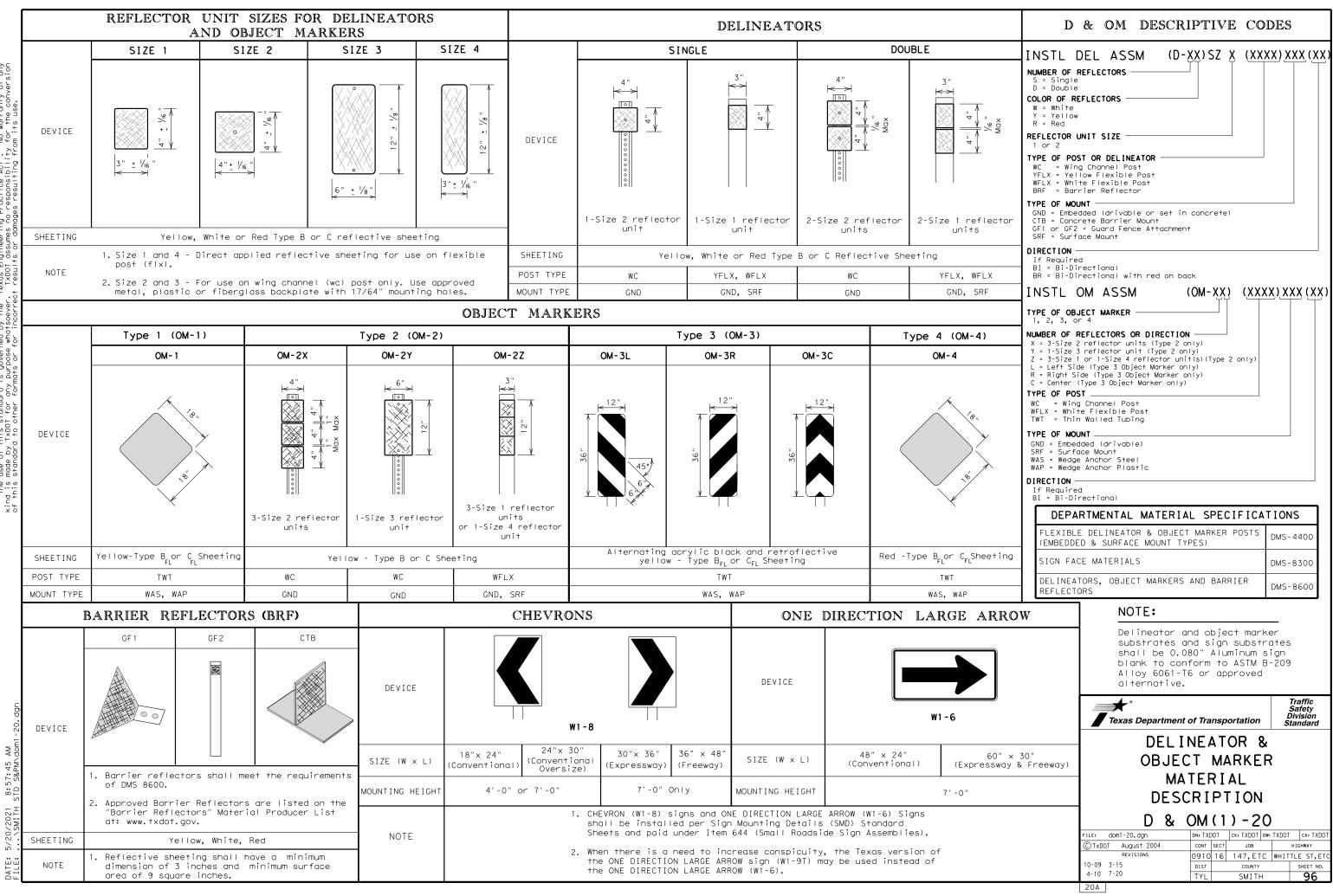
hamfer all parapet exposed corners.

threaded rods into parapet wall with a Type III, Class C, D, E, or F anchor adhesive. Minimu esive anchor embedment depth is 3". Anchor adhesive chosen must be able to achieve a ninal bond strength in tension of a single anchor, Na, of 5 kips (edge distance must be accounted). Submit signed and sealed calculations or the manufacturer's published literature showing the posed anchor adhesive's ability to develop this load to the Engineer for approval prior to use. hor installation, including hole size, drilling, and clean out, must be in accordance with Item 450,

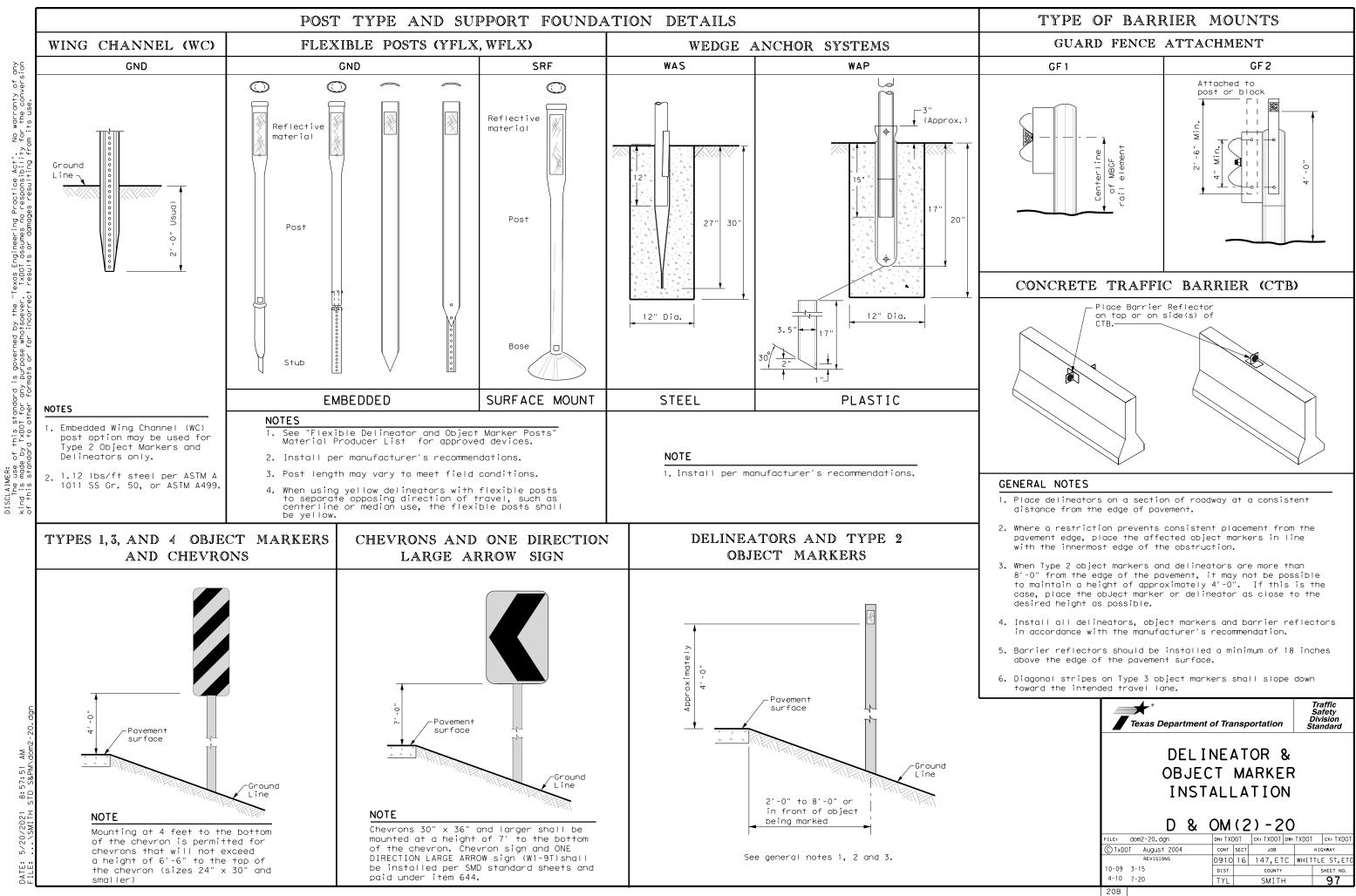
ptional cast-in-place anchor bolts must be %" Dia ASTM A307 Gr A bolts (or threaded rods with tack welded hex nut each) with one hex nut and one hardened steel washer (ASTM F436) at each Nuts must conform to ASTM A563 requirements. rovide bar laps, where required, as follows: Uncoated or galvanized $\sim #4 = 1'-7''$

Epoxy coated $\sim #4 = 2'-5''$

his rail has been evaluated and accepted to be of equal strength to railings with like geometry, ch have been crash tested to meet MASH TL-3 criteria. This rail can be used for speeds of nph and greater when a TL-3 rated quard fence transition is used. When a TL-2 rated quard ce transition is used, this rail can only be used for speeds of 45 mph and less.


not use this railing on bridges with expansion joint's providing more than 5" movement. ail anchorage details shown on this standard may require modification for select structure types. appropriate details elsewhere in plans for these modifications.

ibmit erection drawings showing panel lengths, rail post spacing, and anchor bolt setting to the


verage weight of railing with no overlay: 380 plf (total) 370 plf (Conc) 10 plf (Steel)

over dimensions are clear dimensions, unless noted otherwise. pinforcing har dimensions shown are out-to-out of har

SHL	EET 3	OF 3	
Texas Department	of Tran	nsportation	Bridge Division Standard
COMBIN		ION RA E C221	
FILE: ristd018-19.dgn	DN: TXDO	ОТ СК: TXDOT DW	: JTR ск: JMH
CTxDOT September 2019	CONT S	SECT JOB	HIGHWAY
REVISIONS	0910	16 147,ETC	WHITTLE ST,ETC
	DIST	COUNTY	SHEET NO.
1	TYL	SMITH	95

No warranty of any for the conversion SCLAIMER: The use of this standard is governed by the "Texas Engineering Practice Act". In dis made by TXDDT for any purpose watsoever. TXDDT assumes no responsibility this standard to other formats or for incorrect results or damanes results for damanes

AΝ 8:57:51 5/20/2021

MINIMUM WARNING DEVICES AT CURVES WITH ADVISORY SPEEDS

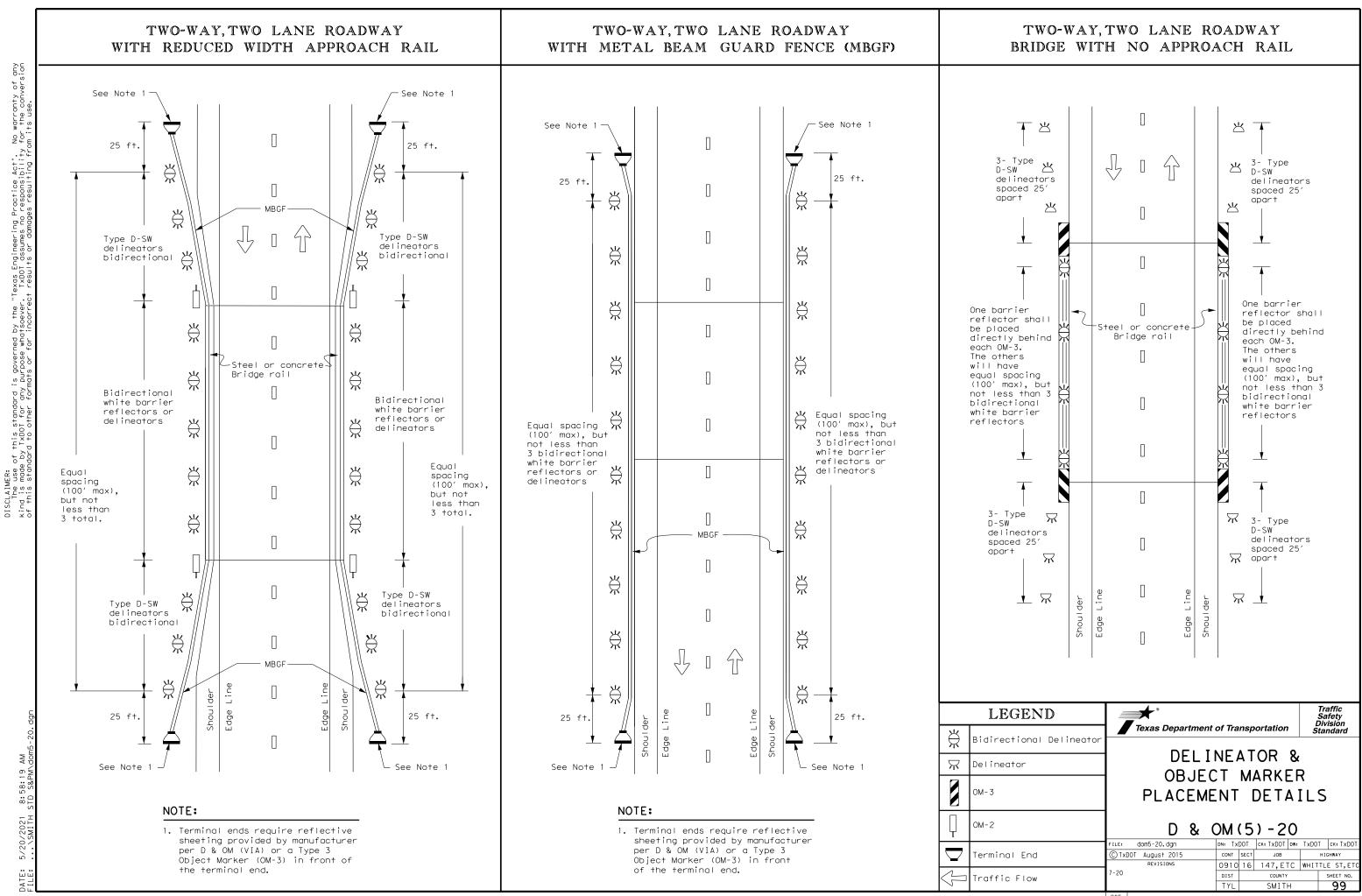
	WITH	ADVISORY	SPEEDS
Amount by which Advisory Speed		Curve Advi	sory Speed
is less than Posted Speed	(30 N	Turn IPH or less)	Curve (35 MPH or more)
5 MPH & 10 MPH	RPMs		RPMs
15 MPH & 20 MPH	 RPMs and Large Ar 	One Direction row sign	 RPMs and Chevrons; or RPMs and One Direction Large Arrow sign where geometric conditions or roadside obstacles prevent the installation of chevrons.
25 MPH & more	 RPMs and Large Arr geometric roadside 	Chevrons; or One Direction row sign where c conditions or obstacles prevent allation of	• RPMs and Chevrons
SUGGEST		ACING FOR RIZONTAL	DELINEATORS CURVES
SUGGE	NOTE ONE DIREC should be perpendic centerlin approach STED S	Extension of t centerline of tangent sectic approach lane	the on of (W1-6) sign (W1-6) s
Poin- curve	- of	RIZONTAL (Point of tangent
2		st one chevron po the point of tar	

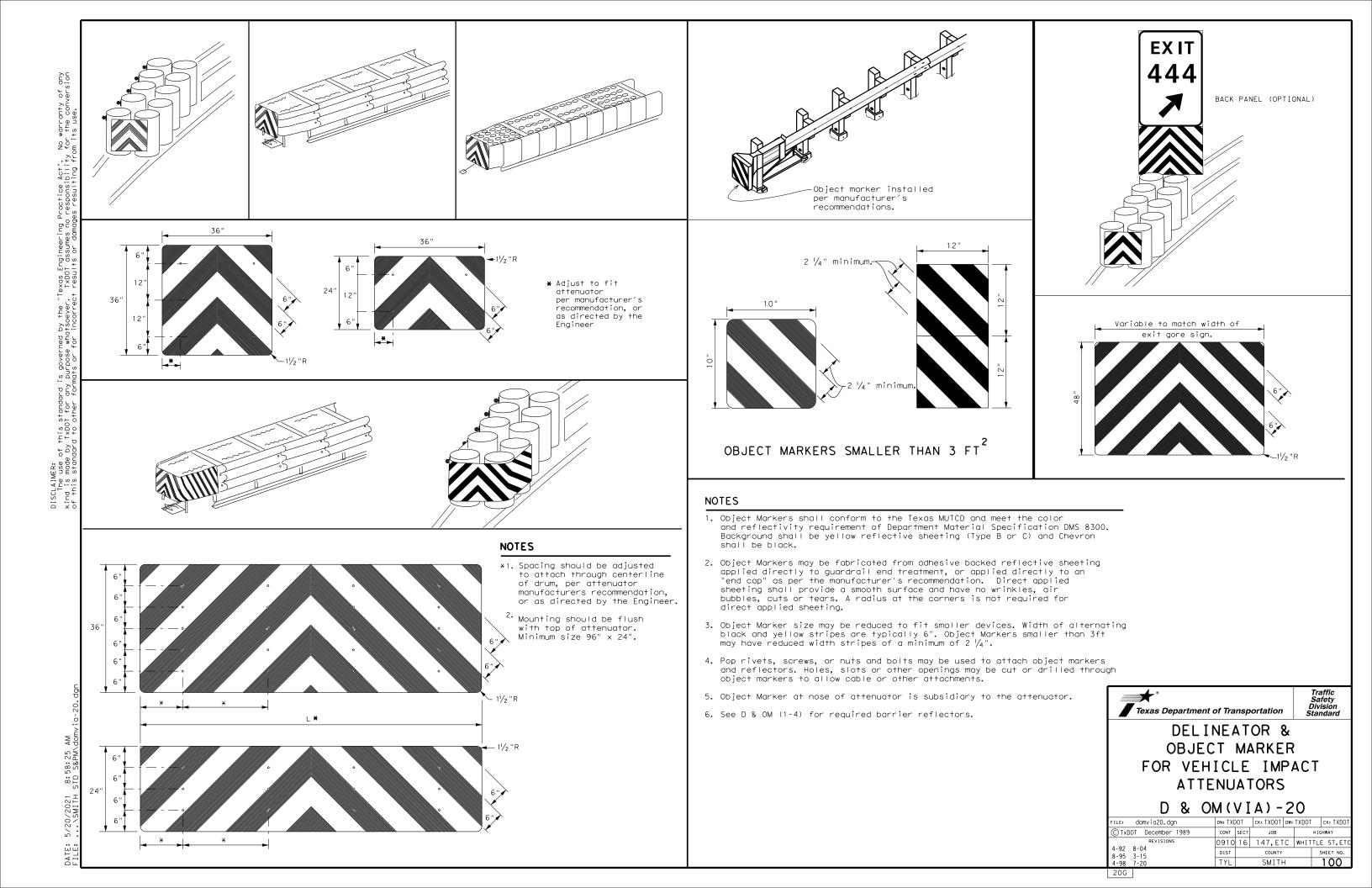
WHEN		TOR A	ND CHEVI	RON	ı
		SPAC			
	I DEGREE	OF CURVE	OR RADIUS IS	5 KNOWN	Frwy./E
		1	FEET		Frwy./E
egree) of	Radius	Spacing	Spacing	Chevron Spacing	
Curve	of	in	in	in	
	Curve	Curve	Straightaway	Curve	Frwy/E>
		Α	2A	В	
1	5730	225	450		
2	2865	160	320		Acceler Lane
3	1910	130	260	200	
4	1433	110	220	160	Truck (
5	1146	100	200	160	
6	955	90	180	160	Bridae
7	819	85	170	160	concre-
8	716	75	150	160	Beam Gu
9	637	75	150	120	
10	573	70	140	120	Concret
11	521	65	130	120	or Stee
12	478	60	120	120	
13	441	60	120	120	Cable E
14	409	55	110	80	
15	382	55	110	80	
16	358	55 50	110	80	
19 23	302 249	40	100 80	80 80	Guard f Head
23	198	35	70	40	nedd
38	150	30	60	40	11
57	101	20	40	40	
					Bridge
					Bridge Culvert Crossov
17.1					Culver
DF	ELINEA		AND CHEV	RON	Culver Crossov Pavemer (lane r
		SPAC	CING		Culver- Crossov
		SPAC			Culver- Crossov Pavemer (lane r
WHEN D	DEGREE OF	SPAC	CING	IOT KNOWN Chevron	Culver Crossov Pavemer (lane r
WHEN D Advis)EGREE OF ory Spac	SPAC	CING	iot known Chevron Spacing	Culver Crossov Pavemer (lane r
WHEN D	DEGREE OF ory Space	SPAC	CING DR RADIUS IS N Spacing C	NOT KNOWN Chevron Spacing in	Culver Crossov Pavemer (lane r
WHEN C Advise Spee	DEGREE OF ory Space	SPAC	CING DR RADIUS IS N Spacing S in aightaway	NOT KNOWN Chevron Spacing in Curve	Culver Crosso Pavemen (lane r
WHEN D Advis Spee (MPH	DEGREE OF ory Space ad i 1) Cur	SPAC CURVE C cing S n rve Str	CING DR RADIUS IS N Spacing S in aightaway 2xA	NOT KNOWN Chevron Spacing in Curve B	Culver Crossov Pavemer (lane r
WHEN C Advise Spee (MPH	DEGREE OF ory Space d i Cur A 13	SPAC	CING DR RADIUS IS N Spacing S in aightaway 2xA 260	NOT KNOWN Chevron pacing in Curve B 200	Culver Crosso Pavemen (lane r
WHEN C Advise Spee (MPH 65 60	DEGREE OF ory Space (1) Cur (1) A (1) A (1) 11	SPAC curve c coing S n rve Str 0 0	CING DR RADIUS IS N Spacing S aightaway 2xA 260 220	NOT KNOWN Chevron pacing in Curve B 200 160	Culver Crosso Pavemen (lane r
WHEN C Advise Spee (MPH 65 60 55	DEGREE OF ory Space d i Cur A 13 11 11 10	SPAC CURVE C cing S n rve Str 0 0 0 0	CING DR RADIUS IS N Spacing in aightaway 2xA 260 220 200	NOT KNOWN Pacing in Curve B 200 160 160	Culver Crosso Pavemen (lane r
WHEN C Spee (MP) 65 60 55 50	DEGREE OF ed i H) Cur 13 13 11 10 8	SPAC CURVE C cing S n rve Str 0 0 0 5	CING DR RADIUS IS N Spacing in aightaway 2xA 260 220 200 170	NOT KNOWN Spacing in Curve B 200 160 160 160	Culver Crosso Pavemen (lane r
WHEN C Spee (MPF 65 60 55 50 45	DEGREE OF ed i H) Cur A 13 11 10 8 7	SPAC CURVE C cing S n rve Str 0 0 0 5 5 5	CING DR RADIUS IS N Spacing in aightaway 2xA 260 220 200 170 150	NOT KNOWN Chevron pacing in Curve B 200 160 160 160 160 120	Culver Crosso Pavemen (lane r
WHEN C Spee (MPF 65 60 55 50 45 40	DEGREE OF ed i 1) Cur 10 10 10 10 8 7 7	SPAC curve curve curve curve n curve rve curve 0 curve 0 curve 5 curve 0 curve	CING DR RADIUS IS N Spacing S aightaway 2xA 260 220 200 170 150 140	IOT KNOWN Spacing in Curve B 200 160 160 160 120 120	Culver Crosso Pavemen (lane r
WHEN C Spee (MPF 655 600 555 500 45 40 35	DEGREE OF ed i 1) Cur 1) A 130 110 100 88 77 70 77 6	SPAC curve curve curve curve <td>CING DR RADIUS IS N Spacing in aightaway 2xA 260 220 200 170 150 140 120</td> <td>IOT KNOWN Devron pacing in Curve B 200 160 160 160 120 120 120</td> <td>Culver Crossov Pavemer (lane r</td>	CING DR RADIUS IS N Spacing in aightaway 2xA 260 220 200 170 150 140 120	IOT KNOWN Devron pacing in Curve B 200 160 160 160 120 120 120	Culver Crossov Pavemer (lane r
WHEN C Spee (MPF 655 600 555 500 455 400 355 300	DEGREE OF ed i 1) Cur 1) A 130 110 100 80 70 70 70 70 70 70 70 70 70 70 70 70 70	SPAC curve curve curve curve Str o o o 0 o o 5 o o 5 o o 5 o o 5 curve str	CING DR RADIUS IS N Spacing in aightaway 2xA 260 220 200 170 150 140 120 110	IOT KNOWN Chevron pacing in Curve B 200 160 160 160 120 120 120 80	Culver Crosso Pavemen (lane r
WHEN C Spee (MPF 655 600 555 500 455 400 355 300 25	DEGREE OF or y Space id i Cur A 130 110 100 88 77 66 55 55	SPAC curve curve curve curve curve	CING DR RADIUS IS N Spacing in aightaway 2xA 260 220 200 170 150 140 120 110 100	IOT KNOWN Chevron pacing in Curve B 200 160 160 160 120 120 120 80 80	Culver Crossov Pavemer (lane r
WHEN C Spee (MPF 655 600 555 500 455 400 355 300	DEGREE OF ory Space id (Cur A 13) A 13) 110 100 8 7 7 6 7 7 6 6 5 5 5 5	SPAC curve curve curve curve Str o o o 0 o o 5 o o 5 o o 5 o o 0 o o 0 o o 0 o o 0 o o 0 o o 0 o o 0 o o 0 o o 0 o o 0 o o	CING DR RADIUS IS N Spacing in aightaway 2xA 260 220 200 170 150 140 120 110	IOT KNOWN Chevron pacing in Curve B 200 160 160 160 120 120 120 80	Culver Crossov Pavemer (lane r

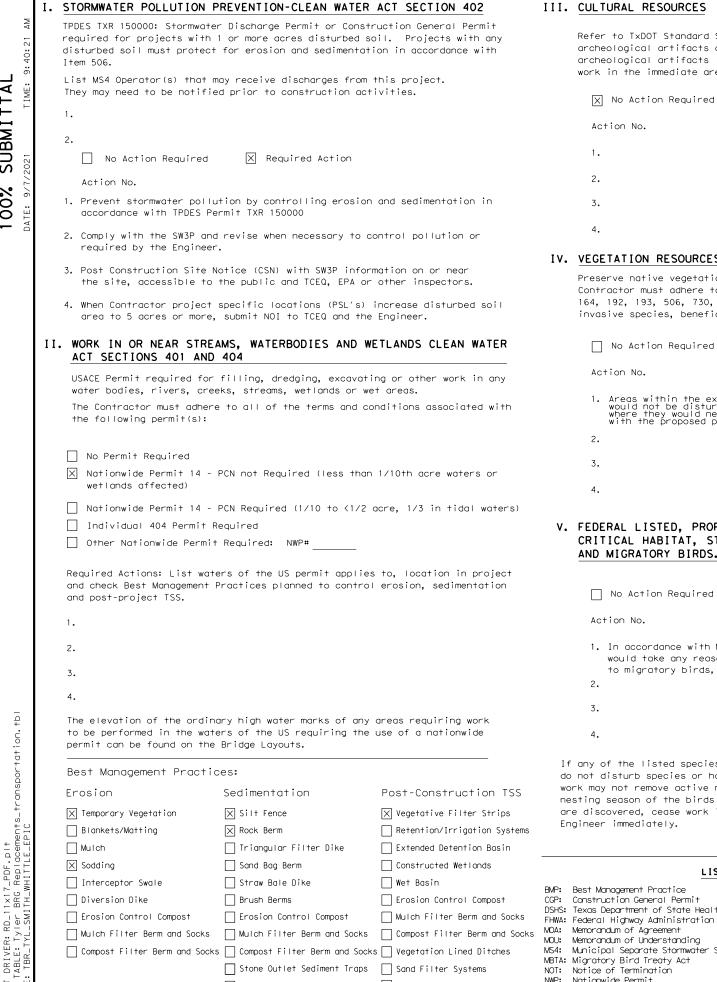
CONDITION	REQUIRED TREATMENT	MINIMUM SPACING		
Frwy./Exp. Tangent	RPMs	See PM-series and FPM-series standard sheets		
Frwy./Exp. Curve	Single delineators on right side	See delineator spacing table		
Frwy/Exp.Ramp	Single delineators on at least one side of ramp (should be on outside of curves) (see Detail 3 on D&OM(4))	100 feet on ramp tangents Use delineator spacing table for ramp curves ("straightway spacing" does not apply to ramp curves)		
Acceleration/Deceleration Lane	Double delineators (see Detail 3 on D&OM(4))	100 feet (See Detail 3 on D & OM (4))		
Truck Escape Ramp	Single red delineators on both sides	50 feet		
Bridge Rail (steel or concrete)and Metal Beam Guard Fence	Bi-Directional Delineators when undivided with one lane each direction Single Delineators when multiple	Equal spacing (100'max) but not less than 3 delineators		
	lanes each direction			
Concrete Traffic Barrier (CTB) or Steel Traffic Barrier	Barrier reflectors matching the color of the edge line	Equal spacing 100′ max		
Cable Barrier	Reflectors matching the color of the edge line	Every 5th cable barrier post (up to 100'max)		
Guard Rail Terminus/Impact Head	Divided highway - Object marker on approach end Undivided 2-lane highways - Object marker on approach and	Requires reflective sheeting provided by manufacturer per D & OM (VIA) or a Type 3 Object Marker (OM-3) in front of the terminal end		
	departure end	See D & OM (5) and D & OM (6)		
Bridges with no Approach Rail	Type 3 Object Marker (OM-3) at end of rail and 3 single delineators approaching rail	See D & OM(5)		
Reduced Width Approaches to Bridge Rail	Type 2 and Type 3 Object Markers (OM-3) and 3 single delineators approaching bridge	Requires reflective sheeting provided by manufacturer per D & OM (VIA) or a Type 3 Object Marker (OM-3) in front of the terminal end		
		See D & OM (5)		
Culverts without MBGF	Type 2 Object Markers	See Detail 2 on D & OM(4)		
Crossovers	Double yellow delineators and RPMs	See Detail 1 on D & OM (4)		
Pavement Narrowing (lane merge) on Freeways/Expressway	Single delineators adjacent to affected lane for full length of transition	100 feet		
NOTES				

NOTES

- or barrier reflectors are placed.
- 3. Single red delineators may be mounted on the back side of delineator posts for wrong way driver applications


	LEGEND
Ř	Bi-directio Delineator
\overline{X}	Delineator
-	Sign


DELINEATOR AND OBJECT MARKER APPLICATION AND SPACING


1. Unless indicated otherwise, the delineator or barrier reflector color shall conform to the color of the pavement edge line on the side of the road where the delineators

2. Barrier reflectors may be used to replace required delineators.

	Texas Department of Transportation	Traffic Safety Division Standard				
onal	OBJECT MARKER	DELINEATOR & OBJECT MARKER PLACEMENT DETAILS				
	D & OM(3)-20)				
	FILE: dom3-20.dgn DN: TXDOT CK: TXDOT D	N: TXDOT CK: TXDOT				
	C TXDOT AUGUST 2004 CONT SECT JOB	HIGHWAY				
	REVISIONS 0910 16 147, ETC	WHITTLE ST, ETC				
	3-15 8-15 DIST COUNTY	SHEET NO.				
	8-15 7-20 TYL SMITH	98				
	200					

Stone Outlet Sediment Traps Sand Filter Systems

Grassy Swales

Sediment Basins

III. CULTURAL RESOURCES

Refer to TxDOT Standard Specifications in the event historical issues or archeological artifacts are found during construction. Upon discovery of archeological artifacts (bones, burnt rock, flint, pottery, etc.) cease work in the immediate area and contact the Engineer immediately.

Required Action

2.			
3.			
4.			

IV. VEGETATION RESOURCES

Preserve native vegetation to the extent practical.

Contractor must adhere to Construction Specification Requirements Specs 162, 164, 192, 193, 506, 730, 751, 752 in order to comply with requirements for invasive species, beneficial landscaping, and tree/brush removal commitments.

Areas within the existing ROW, but outside the limits of construction, would not be disturbed. Every effort would be made to preserve trees where they would neither compromise safety nor substantially interfere with the proposed project.

2.				
3.				

4.				

V. FEDERAL LISTED, PROPOSED THREATENED, ENDANGERED SPECIES, CRITICAL HABITAT, STATE LISTED SPECIES, CANDIDATE SPECIES

		Action No.
	No Action Required 🛛 🔀 Required Action	1.
Ac	tion No.	2.
1.	In accordance with Migratory Birds Treaty Act (MBTA), TxDOT would take any reasonable and practical measures to avoid impacts	3.
2.	to migratory birds, ground nesting birds, their nests or their young. VII.	(includes
3.		🗙 No Act
4.		Action No.
		1

If any of the listed species are observed, cease work in the immediate area, do not disturb species or habitat and contact the Engineer immediately. The work may not remove active nests from bridges and other structures during nesting season of the birds associated with the nests. If caves or sinkholes are discovered, cease work in the immediate area, and contact the

LIST OF ABBREVIATIONS

BMP:	Best Management Practice	SPCC:	Spill Prevention Control and Countermeasure
CGP:	Construction General Permit	SW3P:	Storm Water Pollution Prevention Plan
DSHS:	Texas Department of State Health Services	PCN:	Pre-Construction Notification
FHWA:	Federal Highway Administration	PSL:	Project Specific Location
MOA:	Memorandum of Agreement	TCEQ:	Texas Commission on Environmental Quality
MOU:	Memorandum of Understanding	TPDES:	Texas Pollutant Discharge Elimination System
MS4:	Municipal Separate Stormwater Sewer System	TPWD:	Texas Parks and Wildlife Department
MBTA:	Migratory Bird Treaty Act	TxDOT:	Texas Department of Transportation
NOT:	Notice of Termination	T&E:	Threatened and Endangered Species
NWP:	Nationwide Permit		U.S. Army Corps of Engineers
NOI:	Notice of Intent	USFWS:	U.S. Fish and Wildlife Service

200

ф Тр tati B . pl+ acem ER: RD_11×17_PDF : Tyler BRG Rep1 Tv: SMITU WUITT

Ā ⊢ ⊢ SUBMI

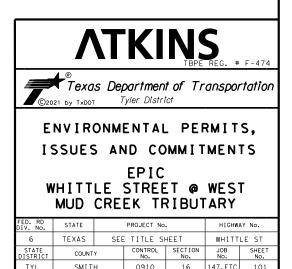
VI. HAZARDOUS MATERIALS OR CONTAMINATION ISSUES

2.

3.

General (applies to all projects):
Comply with the Hazard Communication Act (the Act) for personnel who will be working with hazardous materials by conducting safety meetings prior to beginning construction and
making workers aware of potential hazards in the workplace. Ensure that all workers are provided with personal protective equipment appropriate for any hazardous materials used.
Obtain and keep on-site Material Safety Data Sheets (MSDS) for all hazardous products used on the project, which may include, but are not limited to the following categories: Paints, acids, solvents, asphalt products, chemical additives, fuels and concrete curing compounds or additives. Provide protected storage, off bare ground and covered, for products which may be hazardous. Maintain product labelling as required by the Act.
Maintain an adequate supply of on-site spill response materials, as indicated in the MSDS. In the event of a spill, take actions to mitigate the spill as indicated in the MSDS, in accordance with safe work practices, and contact the District Spill Coordinator immediately. The Contractor shall be responsible for the proper containment and cleanup of all product spills.
Contact the Engineer if any of the following are detected: * Dead or distressed vegetation (not identified as normal) * Trash piles, drums, canister, barrels, etc. * Undesirable smells or odors * Evidence of leaching or seepage of substances
Does the project involve any bridge class structure rehabilitation or replacements (bridge class structures not including box culverts)? X Yes INO
If "No", then no further action is required. If "Yes", then TxDOT is responsible for completing asbestos assessment/inspection.
Are the results of the asbestos inspection positive (is asbestos present)?
If "Yes", then TxDOT must retain a DSHS licensed asbestos consultant to assist with the notification, develop abatement/mitigation procedures, and perform management activities as necessary. The notification form to DSHS must be postmarked at least 15 working days prior to scheduled demolition.
If "No", then TxDOT is still required to notify DSHS 15 working days prior to any scheduled demolition.
In either case, the Contractor is responsible for providing the date(s) for abatement activities and/or demolition with careful coordination between the Engineer and asbestos consultant in order to minimize construction delays and subsequent claims.

Any other evidence indicating possible hazardous materials or contamination discovered on site. Hazardous Materials or Contamination Issues Specific to this Project:


X No Action Required Required Action

THER ENVIRONMENTAL ISSUES

ncludes	regional	issues	such	as	Edwards	Aquifer	District,	etc.)
101000	regronar	100000	00011	00	Edinal do	Aquiror	01011101,	0101/

No Action Required

Required Action

A. GENERAL SITE DATA	B. EROSION AND SEDIMENT CONTROLS	<u>c. o</u>
1: PROJECT LIMITS: THIS PROJECT IS IN THE CITY OF TYLER ON WHITTLE STREET AT WEST MUD CREEK PROJECT LENGTH = 60 FT. = 0.011 MILES	1. <u>SOIL STABILIZATION PRACTICES:</u> TEMPORARY SEEDING PERMANENT PLANTING, SODDING, OR SEEDING MULCHING SOIL RETENTION BLANKET	1. <u>MAINTENANCE</u> : MAINTENANC MAINTENANC
PROJECT COORDINATES: BEG LATITUDE: +32.315486 BEG LONGITUDE: -95.306075 END LATITUDE: +32.315486 END LONGITUDE: -95.305878	BUFFER ZONES PRESERVATION OF NATURAL RESOURCES OTHER:	2. <u>INSPECTION:</u> INSPECTION MAINTENANC
 PROJECT SITE MAPS: * PROJECT LOCATION MAP: TITLE SHEET * DRAINAGE PATTERNS: DRAINAGE AREA MAP * SLOPES ANTICIPATED AFTER MAJOR GRADINGS OR AREAS OF SOIL DISTURBANCE: EXISTING AND PROPOSED TYPICAL SECTIONS * LOCATION OF EROSION AND SEDIMENT CONTROLS: SW3P LAYOUTS * SURFACE WATERS AND DISCHARGE LOCATIONS: BRIDGE LAYOUT * PROJECT SPECIFIC LOCATIONS: TO BE SPECIFIED BY THE PROJECT FIELD OFFICE DURING CONSTRUCTION AND LOCATED IN THE PROJECT SW3P FILE. REFERENCE ITEM #10 BELOW 3. PROJECT DESCRIPTION: FOR THE CONSTRUCTION OF THE REPLACEMENT OF EXISTING BRIDGE FACILITY CONSISTING OF REPLACING BRIDGE AND APPROACHES, GRADING, ACP BASE & SURFACE, AND CURB & GUTTER. MAJOR SOIL DISTURBING ACTIVITIES: TOPSOIL REMOVAL, STRUCTURE WORK, AND TOPSOIL WORK FOR SEEDING. EXISTING CONDITION OF SOIL & VEGETATIVE COVER AND % OF EXISTING VEGETATIVE COVER: THE EXISTING SOILS ARE SILTY LOOSE SAND AND ARE COVERED BO TO 85 PERCENT WITH VARIOUS GRASSES AND TREES. TOTAL PROJECT AREA: 0.023 ACRES 7.TOTAL AREA TO BE DISTURBED: 0.015 ACRES (63%) 	 2. <u>SIRUCTURAL PRACTICES:</u> X SILT FENCES ROCK FILTER DAMS DIVERSION, INTERCEPTOR, OR PERIMETER DIKES DIVERSION, INTERCEPTOR, OR PERIMETER SWALES PIPE SLOPE DRAINS PAVED FLUMES ROCK BEDDING AT CONSTRUCTION EXIT CHANNEL LINERS SEDIMENT TRAPS SEDIMENT TRAPS SEDIMENT TRAPS SEDIMENT BASINS STORM OUTLET SERUCTURES X CURBS AND GUTTERS STORM SEWERS VELOCITY CONTROL DEVICES OTHER: 3. <u>STORM WATER MANAGEMENT:</u> STORM WATER DRAINAGE WILL BE PROVIDED BY DITCHES AND CURB & GUTTER THIS SYSTEM WILL CARRY THE DRAINAGE WITHIN THE RIGHT-OF-WAY TO LOWS WITHIN THE ROADWAY AND PROJECT SITE WHICH DRAINS TO NATURAL 	 WASTE MATERIA ALL WASTE DISPOSED C MANNER. NC ON SITE. HAZARDOUS WAS AT A MINIM CONSIDERED MASONRY SL CHEMICAL A CURING COM WHICH MAY CONTACTED SANITARY WAST ALL SANITA PORTABLE L LOCAL REGL MANAGEMENT
8. WEIGHTED RUNOFF COEFFICIENT BEFORE CONSTRUCTION: 0.70 AFTER CONSTRUCTION: 0.71	LOWS WITHIN THE ROADWAY AND PROJECT SITE WHICH DRAINS TO NATURAL FACILITIES.	_X EXCESS _X STABIL
 9. NAME OF RECEIVING WATERS: (SEGMENT NUMBER OF RECEIVING WATERS) WEST MUD CREEK, SEGMENT 0611D, WHICH FLOWS INTO THE ANGELINA RIVER, SEGMENT 0611 10. PROJECT SW3P FILE: FOR PROJECTS DISTURBING ONE ACRE OR MORE, TXDOT WILL MAINTAIN AN SW3P FILE WITH ALL 	 STORM WATER MANAGEMENT ACTIVITIES: (SEQUENCE OF CONSTRUCTION) INSTALL SW3P DEVICES AS SHOWN ON SW3P LAYOUT SHEETS. PERFORM ALL EXCAVATION, EMBANKMENT, BASE, AND STRUCTURE REPLACEMENT. PLACE HMA OVERLAY. WHEN ALL CONSTRUCTION ACTIVITIES ARE COMPLETE AND THE SITE IS 	OTHER: REMARKS: DISPOS ROADS MANNER CONTRO RECEIV SHALL WATERB CONSTR VEHICL BE CON
PERTINENT ENVIRONMENTAL DOCUMENTS, CORRESPONDENCE, ETC. AT THE PROJECT FIELD OFFICE. IF NO FIELD OFFICE IS AVAILABLE THEN THE SW3P FILE SHALL BE KEPT IN THE INSPECTOR'S TRUCK.	 STABILIZED AND APPROVED BY THE ENGINEER, REMOVE ALL TEMPORARY SEDIMENT CONTROLS AND RE-SOD ANY DISTURBED AREAS. 5. NON-STORM WATER DISCHARGES: FILTER NON-STORM WATER DISCHARGES, OR HOLD RETENTION BASINS, BEFORE BEING ALLOWED TO MIX WITH STORM WATER. THESE DISCHARGES CONSIST OF NON-POLLUTED GROUND WATER, SPRING WATER, FOUNDATION AND/OR FOOTING DRAIN WATER; AND WATER USED FOR DUST CONTROL, PAVEMENT WASHING AND VEHICLE WASHWATER CONTAINING NO DETERGENTS. 	RUNOFF

OTHER REQUIREMENTS & PRACTICES

NCE WILL BE PERFORMED AS INDICATED ON FIELD INSPECTION AND NCE REPORT FORM 2118.

ON WILL BE PERFORMED AS INDICATED ON FIELD INSPECTION AND NCE REPORT FORM 2118.

IALS:

MATERIALS WILL BE COLLECTED, STORED AND OF IN A LIDDED DUMPSTER IN A LEGAL AND PROPER NO CONSTRUCTION WASTE MATERIAL WILL BE BURIED

ASTE (INCLUDING SPILL REPORTING): IMUM, ANY PRODUCTS IN THE FOLLOWING CATEGORIES ARE ED TO BE HAZARDOUS. PAINTS, ACIDS FOR CLEANING SURFACES, CLEANING SOLVENTS, ASPHALT PRODUCTS, ADDITIVES FOR SOIL STABILIZATION, OR CONCRETE OMPOUNDS AND ADDITIVES. IN THE EVENT OF A SPILL BE HAZARDOUS, THE SPILL COORDINATOR MUST BE IMMEDIATELY.

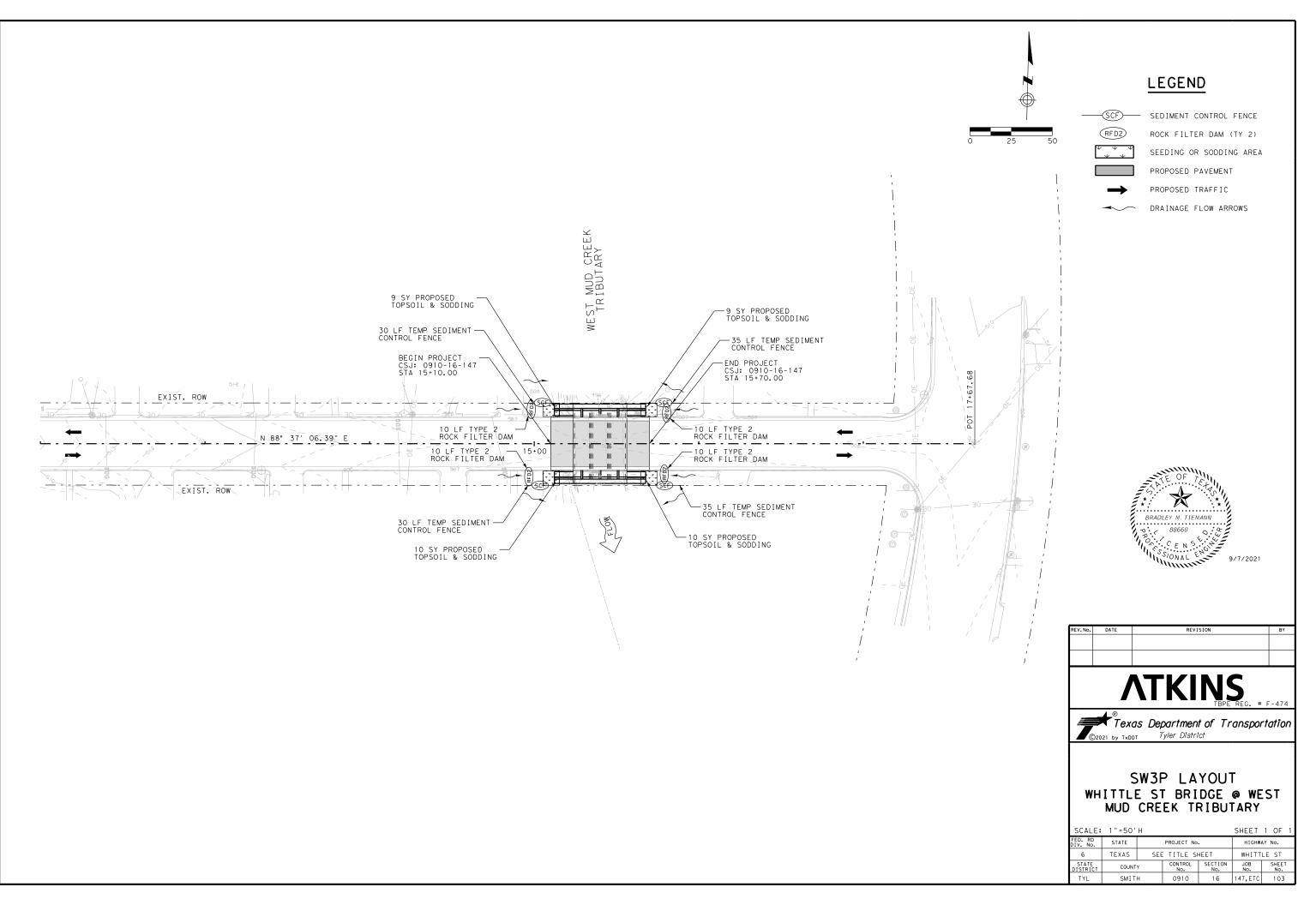
<u>STE:</u> TARY WASTE WILL BE COLLECTED FROM THE UNITS AS NECESSARY OR AS REQUIRED BY GULATION BY A LICENSED SANITARY WASTE NT CONTRACTOR.

TRACKING:

ROADS DAMPENED FOR DUST CONTROL ED HAUL TRUCKS TO BE COVERED WITH TARPAULIN SS DIRT ON ROAD REMOVED DAILY ILIZED CONSTRUCTION ENTRANCE

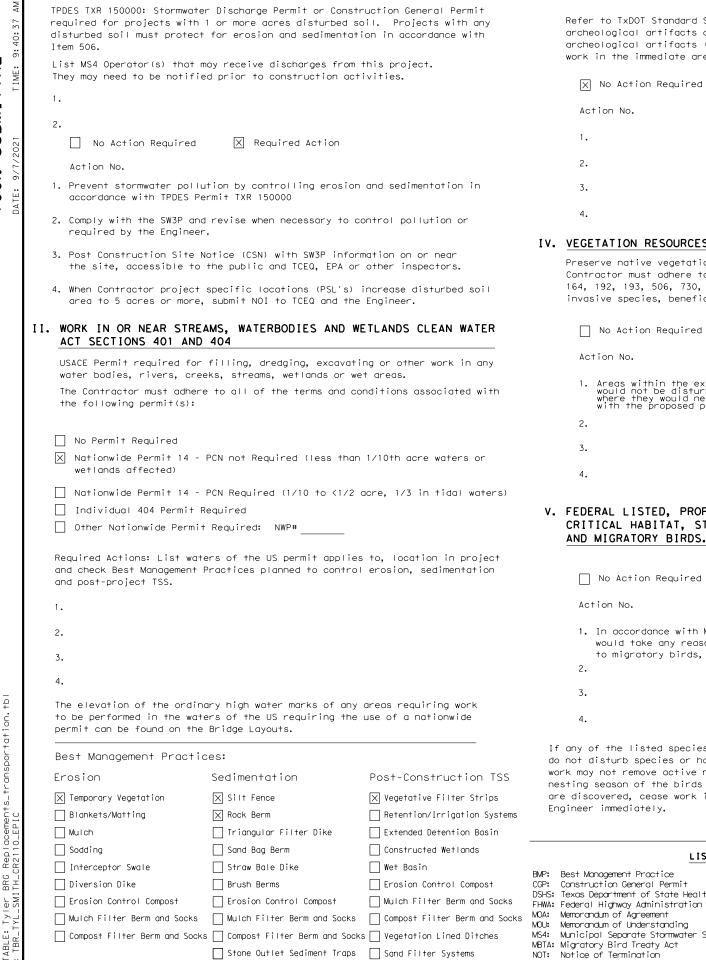
DSAL AREAS, STOCKPILES AND HAUL S SHALL BE CONSTRUCTED IN A ER THAT WILL MINIMIZE AND ROL SEDIMENT FROM ENTERING IVING WATERS. DISPOSAL AREAS NOT BE LOCATED IN ANY RBODY OR STREAMBED.

FRUCTION STAGING AREAS AND CLE MAINTENANCE AREAS SHALL ONSTRUCTED TO MINIMIZE THE F OF POLLUTANTS.



WHITTLE ST STORM WATER POLLUTION PREVENTION PLAN (SW3P)

Texas Department of Transportation SHEET 1 OF 1						
CONT	SECT	JOB		HIGHWAY		
0910	16	147,ETC	WHI	TTLE	ST	
DIST		COUNTY			NO.	
TYL		SMITH		10	2	


©2021

PLOT DRIVER: RD_11x17_PDF.plt PEN TABLE: Tyler BRC Replocements_transportation. Eric: Tyler Tyle SWIID Components_transportation.

-0+

Sediment Basins

Grassy Swales

STORMWATER POLLUTION PREVENTION-CLEAN WATER ACT SECTION 402

III. CULTURAL RESOURCES

Refer to TxDOT Standard Specifications in the event historical issues or archeological artifacts are found during construction. Upon discovery of archeological artifacts (bones, burnt rock, flint, pottery, etc.) cease work in the immediate area and contact the Engineer immediately. Required Action X No Action Required

1.			
2.			
3.			

IV. VEGETATION RESOURCES

Preserve native vegetation to the extent practical.

Contractor must adhere to Construction Specification Requirements Specs 162, 164, 192, 193, 506, 730, 751, 752 in order to comply with requirements for invasive species, beneficial landscaping, and tree/brush removal commitments.

No Action Required	🗙 Required Action
--------------------	-------------------

Areas within the existing ROW, but outside the limits of construction, would not be disturbed. Every effort would be made to preserve trees where they would neither compromise safety nor substantially interfere with the proposed project.

2.				
з.				

V. FEDERAL LISTED, PROPOSED THREATENED, ENDANGERED SPECIES, CRITICAL HABITAT, STATE LISTED SPECIES, CANDIDATE SPECIES

No Action Required	X Required Action
Action No.	
 In accordance with Migratory would take any reasonable and 	

1.	In accordance with Migratory Birds Treaty Act (MBTA), TxDOT
	would take any reasonable and practical measures to avoid impacts
	to migratory birds, ground nesting birds, their nests or their young.
2.	

3.			
4.			

If any of the listed species are observed, cease work in the immediate area, do not disturb species or habitat and contact the Engineer immediately. The work may not remove active nests from bridges and other structures during nesting season of the birds associated with the nests. If caves or sinkholes are discovered, cease work in the immediate area, and contact the Engineer immediately.

LIST OF ABBREVIATIONS

CGP: DSHS: FHWA: MOA: MOU: MS4: MBTA: NOT:	Federal Highway Administration Memorandum of Agreement Memorandum of Understanding Municipal Separate Stormwater Sever System Migratory Bird Treaty Act Notice of Termination	SW3P: PCN: PSL: TCEQ: TPDES: TPWD: TxDOT: T&E:	Pre-Construction Notification Project Specific Location Texas Carmission on Environmental Quality Texas Pollutant Discharge Elimination System Texas Parks and Wildlife Department Texas Department of Transportation Threatened and Endangered Species
	Nationwide Permit		U.S. Army Corps of Engineers
NOI:	Notice of Intent		U.S. Fish and Wildlife Service

VI. HAZARDOUS MATERIALS OR CONTAMINATION ISSUES

Ā ⊢ ⊢ SUBMI 200 General (applies to all projects):

Comply with the Hazard Communication Act (the Act) for personnel who will be working with hazardous materials by conducting safety meetings prior to beginning construction and making workers aware of potential hazards in the workplace. Ensure that all workers are provided with personal protective equipment appropriate for any hazardous materials used. Obtain and keep on-site Material Safety Data Sheets (MSDS) for all hazardous products used on the project, which may include, but are not limited to the following categories: Paints, acids, solvents, asphalt products, chemical additives, fuels and concrete curing compounds or additives. Provide protected storage, off bare ground and covered, for products which may be hazardous. Maintain product labelling as required by the Act. Maintain an adequate supply of on-site spill response materials, as indicated in the MSDS. In the event of a spill, take actions to mitigate the spill as indicated in the MSDS, in accordance with safe work practices, and contact the District Spill Coordinator immediately. The Contractor shall be responsible for the proper containment and cleanup of all product spills.

Contact the Engineer if any of the following are detected: * Dead or distressed vegetation (not identified as normal) * Trash piles, drums, canister, barrels, etc. * Undesirable smells or odors

* Evidence of leaching or seepage of substances

Does the project involve any bridge class structure rehabilitation or

replacements (bridge class structures not including box culverts)?

No No

X Yes

 \square Yes

Action No.

Action No.

2.

3.

2.

If "No", then no further action is required. If "Yes", then TxDOT is responsible for completing asbestos assessment/inspection.

Are the results of the asbestos inspection positive (is asbestos present)?

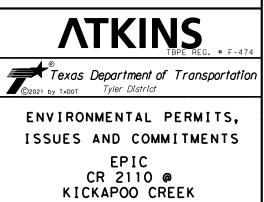
X No

If "Yes", then TxDOT must retain a DSHS licensed asbestos consultant to assist with the notification, develop abatement/mitigation procedures, and perform management activities as necessary. The notification form to DSHS must be postmarked at least 15 working days prior to scheduled demolition.

If "No", then TxDOT is still required to notify DSHS 15 working days prior to any scheduled demolition.

In either case, the Contractor is responsible for providing the date(s) for abatement activities and/or demolition with careful coordination between the Engineer and asbestos consultant in order to minimize construction delays and subsequent claims.

Any other evidence indicating possible hazardous materials or contamination discovered on site. Hazardous Materials or Contamination Issues Specific to this Project:


X No Action Required Required Action

VII. OTHER ENVIRONMENTAL ISSUES

(includes regional issues such as Edwards Aquifer District, etc.)

X No Action Required

Required Action

FED. RD DIV. No.	STATE	PROJECT No.			H I GHW	AY No.
6	TEXAS	SEE TITLE SHEET			CR 2	2110
STATE DISTRICT	COUNT	Y	CONTROL No.	SECTION No.	JOB No.	SHEET No.
TYL	SMIT	SMITH		16	147,ETC	104

A. GENERAL SITE DATA	B. EROSION AND SEDIMENT CONTROLS	<u>C.</u> C
1: PROJECT LIMITS: THIS PROJECT IS IN SOUTH EAST SMITH COUNTY ON CR 2110 AT KICKAPOO CREEK PROJECT LENGTH = 310 FT. = 0.059 MILES	1. <u>SOIL STABILIZATION PRACTICES</u> : <u>X</u> TEMPORARY SEEDING <u>X</u> PERMANENT PLANTING, SODDING, OR SEEDING <u>MULCHING</u> SOIL RETENTION BLANKET	1. <u>MAINTENANCE:</u> MAINTENAN MAINTENAN
PROJECT COORDINATES: BEG LATITUDE: +32.205397 BEG LONGITUDE: -95.060122 END LATITUDE: +32.205225 END LONGITUDE: -95.059111	BUFFER ZONES PRESERVATION OF NATURAL RESOURCES OTHER:	2. <u>INSPECTION:</u> INSPECTIO MAINTENAN
 AREAS OF SOIL DISTURBANCE: EXISTING AND PROPOSED TYPICAL SECTIONS * LOCATION OF EROSION AND SEDIMENT CONTROLS: SW3P LAYOUTS * SURFACE WATERS AND DISCHARGE LOCATIONS: BRIDGE LAYOUT * PROJECT SPECIFIC LOCATIONS: TO BE SPECIFIED BY THE PROJECT FIELD OFFICE DURING CONSTRUCTION AND LOCATED IN THE PROJECT SW3P FILE. REFERENCE ITEM #10 BELOW 3. PROJECT DESCRIPTION: FOR THE CONSTRUCTION OF THE REPLACEMENT OF EXISTING BRIDGE FACILITY CONSISTING OF REPLACING BRIDGE AND APPROACHES, GRADING, ACP BASE & SURFACE, AND MBGF. 4. MAJOR SOIL DISTURBING ACTIVITIES: TOPSOIL REMOVAL, STRUCTURE WORK, AND TOPSOIL WORK FOR SEEDING. 5. EXISTING CONDITION OF SOIL & VEGETATIVE COVER AND % OF EXISTING VEGETATIVE COVER: THE EXISTING SOILS ARE SANDY LEAN CLAY AND ARE COVERED 80 TO 85 PERCENT WITH VARIOUS GRASSES AND TREES. 	2. STRUCTURAL PRACTICES: * SILT FENCES * ROCK FILTER DAMS DIVERSION, INTERCEPTOR, OR PERIMETER DIKES DIVERSION, INTERCEPTOR, OR PERIMETER SWALES PAVED FLUMES ROCK BEDDING AT CONSTRUCTION EXIT TIMBER MATTING AT CONSTRUCTION EXIT CHANNEL LINERS SEDIMENT TRAPS SEDIMENT TRAPS SEDIMENT TRAPS STORM OUTLET STRUCTURES CHES AND GUTTERS STORE OUTLET STRUCTURES CUBS AND GUTTERS STORM SEWERS VELOCITY CONTROL DEVICES OTHER: 3. STORM WATER DRAINAGE WILL BE PROVIDED BY DITCHES THIS SYSTEM WILL CARRY THE DRAINAGE WITHIN THE RIGHT-OF-WAY TO LOWS WITHIN THE ROADWAY AND PROJECT SITE WHICH DRAINS TO NATURAL FACILITIES.	 3. WASTE MATERI. ALL WASTE DISPOSED O MANNER. NO ON SITE. 4. HAZARDOUS WAA AT A MINII CONSIDEREI MASONRY SU CHEMICAL CURING COU WHICH MAY CONTACTED 5. SANITARY WAS ALL SANIT PORTABLE I LOCAL REGI MANAGEMEN OFFSITE VEHICLE X HAUL X LOADE X EXCES X STABI OTHER:
 9. NAME OF RECEIVING WATERS: (SEGMENT NUMBER OF RECEIVING WATERS) KICKAPOO CREEK IN SMITH COUNTY, SEGMENT O611S THEN INTO MUD CREEK, SEGMENT O611C, WHICH FLOWS INTO THE ANGELINA RIVER, SEGMENT O611 10. PROJECT SW3P FILE: FOR PROJECTS DISTURBING ONE ACRE OR MORE, TXDOT WILL MAINTAIN AN SW3P FILE WITH ALL PERTINENT ENVIRONMENTAL DOCUMENTS, CORRESPONDENCE, ETC. AT THE PROJECT FIELD OFFICE. IF NO FIELE OFFICE IS AVAILABLE THEN THE SW3P FILE SHALL BE KEPT IN THE INSPECTOR'S TRUCK. 	 4. STORM WATER MANAGEMENT ACTIVITIES: (SEQUENCE OF CONSTRUCTION) 1. INSTALL SW3P DEVICES AS SHOWN ON SW3P LAYOUT SHEETS. 2. PERFORM ALL EXCAVATION, EMBANKMENT, BASE, AND STRUCTURE REPLACEMENT. 3. PLACE HMA SURFACE. 4. WHEN ALL CONSTRUCTION ACTIVITIES ARE COMPLETE AND THE SITE IS STABILIZED AND APPROVED BY THE ENGINEER, REMOVE ALL TEMPORARY SEDIMENT CONTROLS AND RESEED ANY DISTURBED AREAS. 	REMARKS: DISPOS ROADS MANNEF CONTR RECEIN SHALL WATER CONSTF VEHICL BE CON RUNOFF
	5. NON-STORM WATER DISCHARGES: FILTER NON-STORM WATER DISCHARGES, OR HOLD RETENTION BASINS, BEFORE BEING ALLOWED TO MIX WITH STORM WATER. THESE DISCHARGES CONSIST OF NON-POLLUTED GROUND WATER, SPRING WATER, FOUNDATION AND/OR FOOTING DRAIN WATER; AND WATER USED FOR DUST CONTROL, PAVEMENT WASHING AND VEHICLE WASHWATER CONTAINING NO DETERGENTS.	

OTHER REQUIREMENTS & PRACTICES

ANCE WILL BE PERFORMED AS INDICATED ON FIELD INSPECTION AND ANCE REPORT FORM 2118.

ION WILL BE PERFORMED AS INDICATED ON FIELD INSPECTION AND ANCE REPORT FORM 2118.

RIALS:

TE MATERIALS WILL BE COLLECTED, STORED AND OF IN A LIDDED DUMPSTER IN A LEGAL AND PROPER NO CONSTRUCTION WASTE MATERIAL WILL BE BURIED

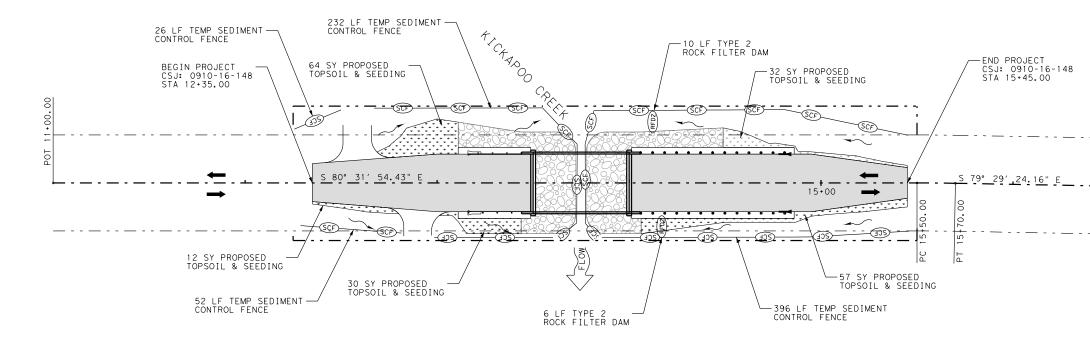
ASTE (INCLUDING SPILL REPORTING): NIMUM, ANY PRODUCTS IN THE FOLLOWING CATEGORIES ARE RED TO BE HAZARDOUS. PAINTS, ACIDS FOR CLEANING SURFACES, CLEANING SOLVENTS, ASPHALT PRODUCTS, ADDITIVES FOR SOIL STABILIZATION, OR CONCRETE COMPOUNDS AND ADDITIVES. IN THE EVENT OF A SPILL AY BE HAZARDOUS, THE SPILL COORDINATOR MUST BE ED IMMEDIATELY.

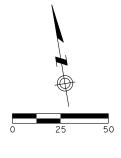
STE: TARY WASTE WILL BE COLLECTED FROM THE UNITS AS NECESSARY OR AS REQUIRED BY EGULATION BY A LICENSED SANITARY WASTE ENT CONTRACTOR.

E TRACKING:

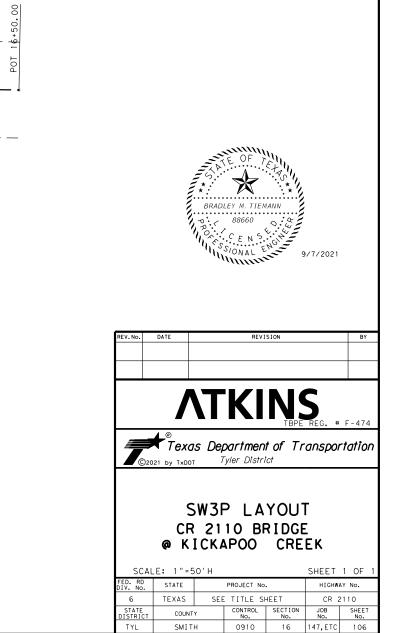
ROADS DAMPENED FOR DUST CONTROL DED HAUL TRUCKS TO BE COVERED WITH TARPAULIN ESS DIRT ON ROAD REMOVED DAILY BILIZED CONSTRUCTION ENTRANCE

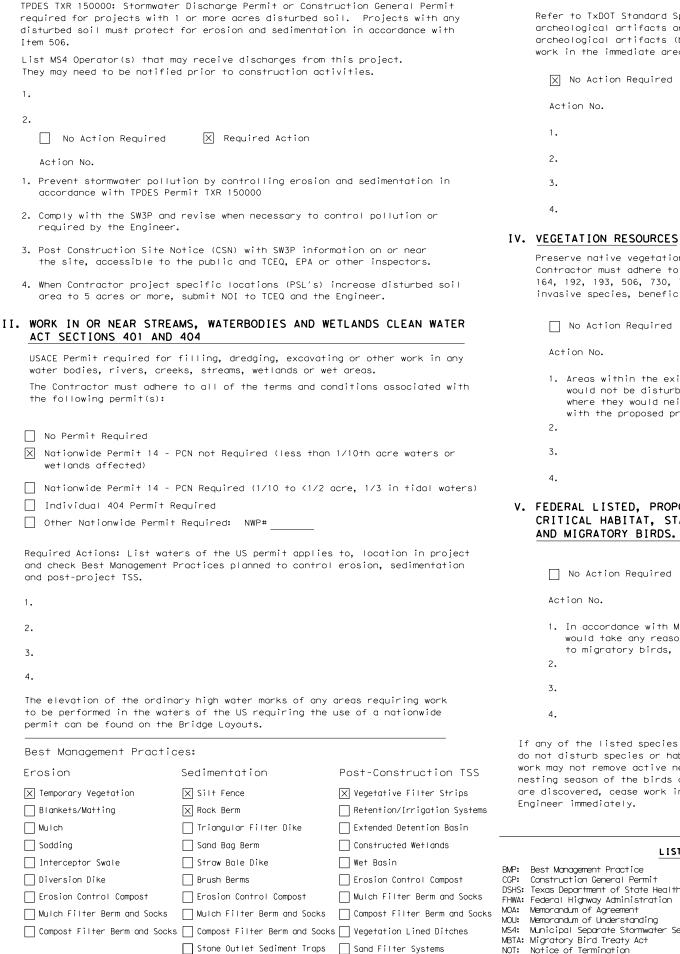
POSAL AREAS, STOCKPILES AND HAUL DS SHALL BE CONSTRUCTED IN A ER THAT WILL MINIMIZE AND ROL SEDIMENT FROM ENTERING IVING WATERS. DISPOSAL AREAS L NOT BE LOCATED IN ANY RBODY OR STREAMBED.


STRUCTION STAGING AREAS AND CLE MAINTENANCE AREAS SHALL ONSTRUCTED TO MINIMIZE THE OFF OF POLLUTANTS.


CR 2110 STORM WATER POLLUTION PREVENTION PLAN (SW3P)

Texas Department of Transportation SHEET 1 OF 1							
CONT	SECT	JOB		HIGHWAY			
0910	16	147,ETC	CF	R 2110			
DIST		COUNTY		SHEET NO.			
TYL		SMITH		105			




LEGEND

-(SCF)-

(RFD2)

SEDIMENT CONTROL FENCE ROCK FILTER DAM (TY 2) SEEDING AREA PROPOSED PAVEMENT PROPOSED TRAFFIC DRAINAGE FLOW ARROWS

Grassy Swales

Sediment Basins

STORMWATER POLLUTION PREVENTION-CLEAN WATER ACT SECTION 402

III. CULTURAL RESOURCES Refer to TxDOT Standard Specifications in the event historical issues or archeological artifacts are found during construction. Upon discovery of archeological artifacts (bones, burnt rock, flint, pottery, etc.) cease work in the immediate area and contact the Engineer immediately. Required Action X No Action Required of all product spills. Preserve native vegetation to the extent practical. Contractor must adhere to Construction Specification Requirements Specs 162, 164, 192, 193, 506, 730, 751, 752 in order to comply with requirements for 🗙 Yes invasive species, beneficial landscaping, and tree/brush removal commitments. X Required Action □ No Action Required 🗌 Yes 1. Areas within the existing ROW, but outside the limits of construction, would not be disturbed. Every effort would be made to preserve trees where they would neither compromise safety nor substantially interfere with the proposed project.

V. FEDERAL LISTED, PROPOSED THREATENED, ENDANGERED SPECIES, CRITICAL HABITAT, STATE LISTED SPECIES, CANDIDATE SPECIES AND MIGRATORY BIRDS.

	No Action Required	X	Required Action
Ac	tion No.		
1.	3	d pr	ds Treaty Act (MBTA), TxDOT actical measures to avoid impacts ng birds, their nests or their young.
2.			

2.			
3.			

If any of the listed species are observed, cease work in the immediate area, do not disturb species or habitat and contact the Engineer immediately. The work may not remove active nests from bridges and other structures during nesting season of the birds associated with the nests. If caves or sinkholes are discovered, cease work in the immediate area, and contact the Engineer immediately.

LIST OF ABBREVIATIONS BMP: Best Management Practice SPCC: Spill Prevention Control and Countermeasure CGP: Construction General Permit SW3P: Storm Water Pollution Prevention Plan DSHS: Texas Department of State Health Services PCN: Pre-Construction Notification FHWA: Federal Highway Administration PSI: Project Specific Location Texas Commission on Environmental Quality TCFO: MOU: Memorandum of Understanding TPDES: Texas Pollutant Discharge Elimination System MS4: Municipal Separate Stormwater Sewer System TPWD: Texas Parks and Wildlife Department MBTA: Migratory Bird Treaty Act TxDOT: Texas Department of Transportation NOT: Notice of Termination T&E: Threatened and Endangered Species NWP: Nationwide Permit USACE: U.S. Army Corps of Engineers NOI: Notice of Intent USEWS: U.S. Fish and Wildlife Service

2.

VI. HAZARDOUS MATERIALS OR CONTAMINATION ISSUES

Action No.

2.

3.

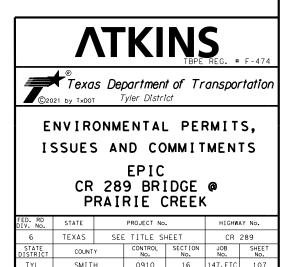
(includes reg
X No Action
Action No.
1.
2.

General (applies to all projects): Comply with the Hazard Communication Act (the Act) for personnel who will be working with hazardous materials by conducting safety meetings prior to beginning construction and making workers aware of potential hazards in the workplace. Ensure that all workers are provided with personal protective equipment appropriate for any hazardous materials used. Obtain and keep on-site Material Safety Data Sheets (MSDS) for all hazardous products used on the project, which may include, but are not limited to the following categories: Paints, acids, solvents, asphalt products, chemical additives, fuels and concrete curing compounds or additives. Provide protected storage, off bare ground and covered, for products which may be hazardous. Maintain product labelling as required by the Act. Maintain an adequate supply of on-site spill response materials, as indicated in the MSDS In the event of a spill, take actions to mitigate the spill as indicated in the MSDS, in accordance with safe work practices, and contact the District Spill Coordinator immediately. The Contractor shall be responsible for the proper containment and cleanup Contact the Engineer if any of the following are detected: * Dead or distressed vegetation (not identified as normal) * Trash piles, drums, canister, barrels, etc. * Undesirable smells or odors * Evidence of leaching or seepage of substances Does the project involve any bridge class structure rehabilitation or replacements (bridge class structures not including box culverts)? No No If "No", then no further action is required. If "Yes", then TxDOT is responsible for completing asbestos assessment/inspection. Are the results of the asbestos inspection positive (is asbestos present)? X No If "Yes", then TxDOT must retain a DSHS licensed asbestos consultant to assist with the notification, develop abatement/mitigation procedures, and perform management activities as necessary. The notification form to DSHS must be postmarked at least 15 working days prior to scheduled demolition. If "No", then TxDOT is still required to notify DSHS 15 working days prior to any scheduled demolition. In either case, the Contractor is responsible for providing the date(s) for abatement

activities and/or demolition with careful coordination between the Engineer and asbestos consultant in order to minimize construction delays and subsequent claims.

Any other evidence indicating possible hazardous materials or contamination discovered on site. Hazardous Materials or Contamination Issues Specific to this Project:

X Required Action No Action Required


1. CR 289 at Prairie Creek (lead-based paint on metal columns).

VII. OTHER ENVIRONMENTAL ISSUES

jional issues such as Edwards Aquifer District, etc.)

Required

Required Action

A. GENERAL SITE DATA	B. EROSION AND SEDIMENT CONTROLS C. O
ON CR 289 AT PRAIRIE CREEK PROJECT LENGTH = 380 FT. = 0.072 MILES <u>X</u>	ABILIZATION PRACTICES: TEMPORARY SEEDING PERMANENT PLANTING, SODDING, OR SEEDING MULCHING SOIL RETENTION BLANKET
PROJECT COORDINATES: BEG LATITUDE: +32.293114 BEG LONGITUDE: -95.177267 END LATITUDE: +32.292156 END LONGITUDE: -95.177861 OTHE	BUFFER ZONES PRESERVATION OF NATURAL RESOURCES 2. INSPECTION: INSPECTION
AREAS OF SOIL DISTURBANCE: EXISTING AND PROPOSED TYPICAL SECTIONS * LOCATION OF EROSION AND SEDIMENT CONTROLS: SW3P LAYOUTS * SURFACE WATERS AND DISCHARGE LOCATIONS: BRIDGE LAYOUT * PROJECT SPECIFIC LOCATIONS: TO BE SPECIFIED BY THE PROJECT FIELD OFFICE DURING CONSTRUCTION AND LOCATED IN THE PROJECT SW3P FILE. REFERENCE ITEM #10 BELOW 3. PROJECT DESCRIPTION: FOR THE CONSTRUCTION OF THE REPLACEMENT OF EXISTING BRIDGE FACILITY CONSISTING OF REPLACING BRIDGE AND APPROACHES, GRADING, ACP BASE & SURFACE, AND MBGF. 4. MAJOR SOIL DISTURBING ACTIVITIES: TOPSOIL REMOVAL, STRUCTURE WORK, AND TOPSOIL WORK FOR SEEDING. 5. EXISTING CONDITION OF SOIL & VEGETATIVE COVER AND % OF EXISTING VEGETATIVE COVER: THE EXISTING SOILS ARE SANDY LEAN TO FAT CLAY AND ARE COVERED 80 TO 85 PERCENT WITH VARIOUS GRASSES AND TREES. 3. STORM M 6. TOTAL PROJECT AREA: 0.43 ACRES 7.TOTAL AREA TO BE DISTURBED: 0.24 ACRES (55%)	RAL_PRACTICES: 3. WASTE MATERIA SILT FENCES ALL WASTE ROCK FILTER DAMS ALL WASTE DIVERSION, INTERCEPTOR, OR PERIMETER DIKES MANNER, NC DIVERSION, INTERCEPTOR, OR PERIMETER SWALES MANNER, NC DIVERSION, INTERCEPTOR, OR PERIMETER SWALES MANNER, NC DIVERSION, DIKE AND SWALE COMBINATIONS PIPE SLOPE DRAINS PAVED FLUMES AT A MINIM ROCK BEDDING AT CONSTRUCTION EXIT CONSIDEREI HANNEL LINERS SEDIMENT TRAPS SEDIMENT BASINS CHEMICAL A CURBS AND GUTTERS CONTROL DEVICES STONE OULLET STRUCTURES CONTACTED CURBS AND GUTTERS SANITARY WAST STORM SEWERS VELOCITY CONTROL DEVICES VELOCITY CONTROL DEVICES S. SANITARY WAST ATER MANAGEMENT: MWATER DRAINAGE WILL BE PROVIDED BY DITCHES MUMATER DRAINAGE WILL DE PROVIDED BY DITCHES OFFSITE VEHICLE SYSTEM WILL CARRY THE DRAINAGE WITHIN THE RIGHT-OF-WAY TO
PRAIRIE CREEK, TO LAKE TYLER, THEN INTO MUD CREEK, SEGMENT 0611C 1. WHICH FLOWS INTO THE ANGELINA RIVER, SEGMENT 0611 1. 2. 3. 10. PROJECT SW3P ELLE: FOR PROJECTS DISTURBING ONE ACRE OR MORE 3.	ATER MANAGEMENT ACTIVITIES: (SEQUENCE OF CONSTRUCTION) INSTALL SW3P DEVICES AS SHOWN ON SW3P LAYOUT SHEETS. PERFORM ALL EXCAVATION, EMBANKMENT, BASE, AND STRUCTURE REPLACEMENT. PLACE HMA SURFACE. WHEN ALL CONSTRUCTION ACTIVITIES ARE COMPLETE AND THE SITE IS STABILIZED AND APPROVED BY THE ENGINEER, REMOVE ALL TEMPORARY SEDIMENT CONTROLS AND RESEED ANY DISTURBED AREAS.
FIL BEFO CON: AND,	RM WATER DISCHARGES: ER NON-STORM WATER DISCHARGES, OR HOLD RETENTION BASINS, RE BEING ALLOWED TO MIX WITH STORM WATER. THESE DISCHARGES IST OF NON-POLLUTED GROUND WATER, SPRING WATER, FOUNDATION OR FOOTING DRAIN WATER; AND WATER USED FOR DUST CONTROL, MENT WASHING AND VEHICLE WASHWATER CONTAINING NO DETERGENTS.

OTHER REQUIREMENTS & PRACTICES

ANCE WILL BE PERFORMED AS INDICATED ON FIELD INSPECTION AND ANCE REPORT FORM 2118.

ION WILL BE PERFORMED AS INDICATED ON FIELD INSPECTION AND ANCE REPORT FORM 2118.

RIALS:

TE MATERIALS WILL BE COLLECTED, STORED AND OF IN A LIDDED DUMPSTER IN A LEGAL AND PROPER NO CONSTRUCTION WASTE MATERIAL WILL BE BURIED

ASTE (INCLUDING SPILL REPORTING): NIMUM, ANY PRODUCTS IN THE FOLLOWING CATEGORIES ARE RED TO BE HAZARDOUS. PAINTS, ACIDS FOR CLEANING SURFACES, CLEANING SOLVENTS, ASPHALT PRODUCTS, ADDITIVES FOR SOIL STABILIZATION, OR CONCRETE COMPOUNDS AND ADDITIVES. IN THE EVENT OF A SPILL AY BE HAZARDOUS, THE SPILL COORDINATOR MUST BE ED IMMEDIATELY.

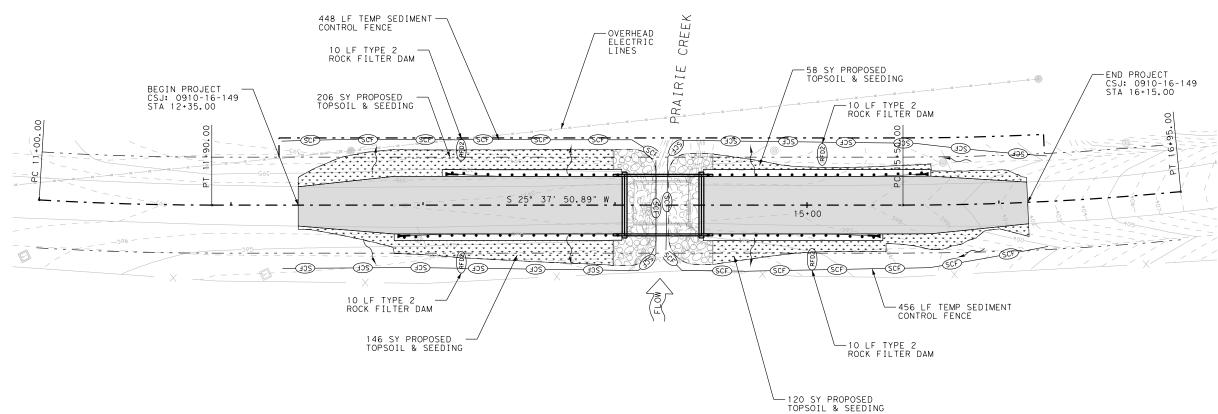
STE: TARY WASTE WILL BE COLLECTED FROM THE UNITS AS NECESSARY OR AS REQUIRED BY EGULATION BY A LICENSED SANITARY WASTE ENT CONTRACTOR.

E TRACKING:

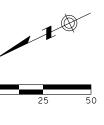
ROADS DAMPENED FOR DUST CONTROL DED HAUL TRUCKS TO BE COVERED WITH TARPAULIN ESS DIRT ON ROAD REMOVED DAILY BILIZED CONSTRUCTION ENTRANCE

POSAL AREAS, STOCKPILES AND HAUL DS SHALL BE CONSTRUCTED IN A ER THAT WILL MINIMIZE AND ROL SEDIMENT FROM ENTERING IVING WATERS. DISPOSAL AREAS L NOT BE LOCATED IN ANY RBODY OR STREAMBED.

STRUCTION STAGING AREAS AND CLE MAINTENANCE AREAS SHALL ONSTRUCTED TO MINIMIZE THE OFF OF POLLUTANTS.



CR 289 STORM WATER POLLUTION PREVENTION PLAN (SW3P)

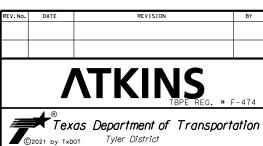

7	Техо	i s Department SHE		ות 1	oF	ntion
CONT	SECT	JOB		нI	GHWAY	
0910	16	147,ETC	C	R	289	
DIST		COUNTY			SHEET	NO.
TYL		SMITH			10	8

©2021

100% SUBMITTAL DATE: 9/7/2021 TIME: 9:41:01

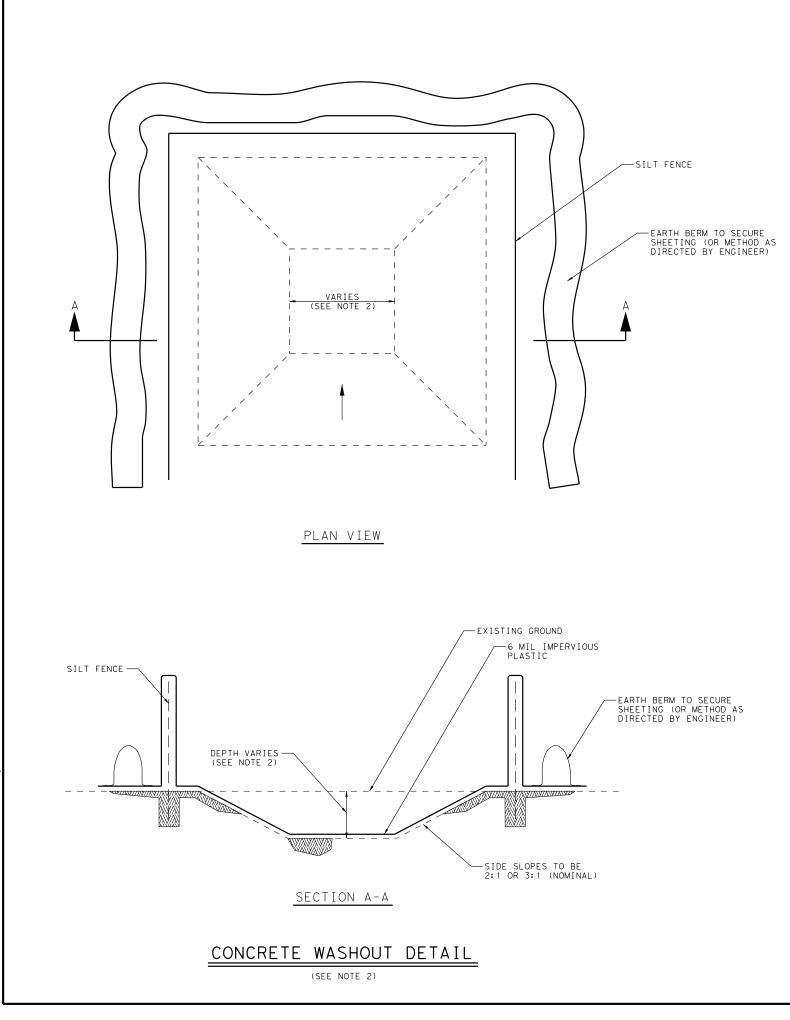
-P

LEGEND


SCF

RFD2

 \rightarrow

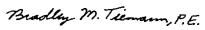

SEDIMENT CONTROL FENCE ROCK FILTER DAM (TY 2) SEEDING AREA PROPOSED PAVEMENT PROPOSED TRAFFIC DRAINAGE FLOW ARROWS

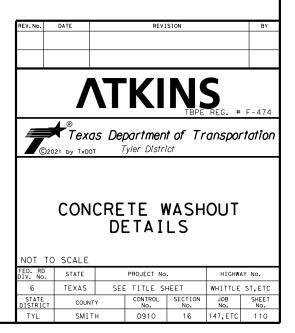
SW3P LAYOUT CR 289 BRIDGE @ PRAIRIE CREEK

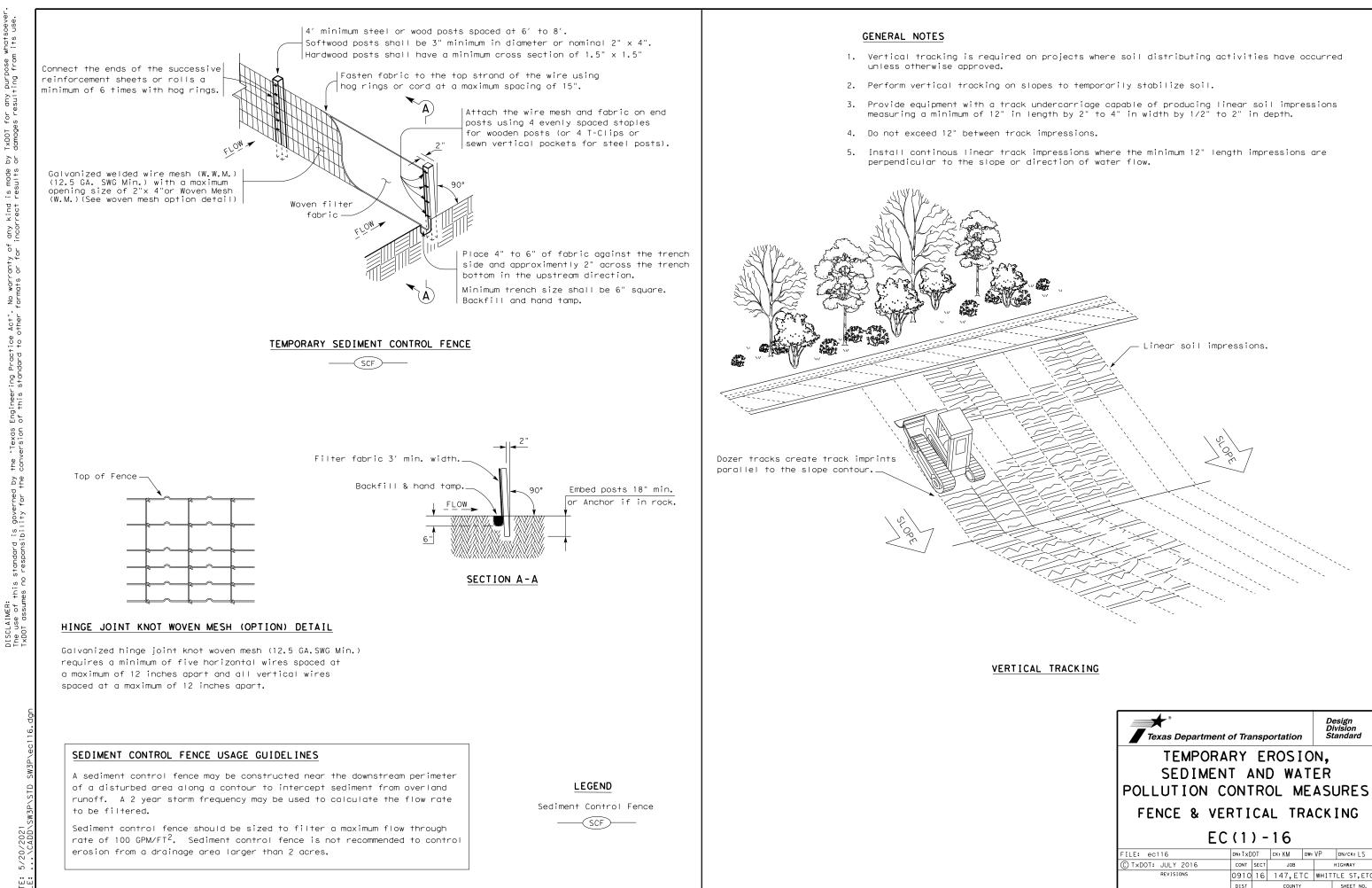
SCAL	E: 1"=50	О′Н			SHEET	1 OF 1
FED. RD DIV. No.	STATE		PROJECT No		HIGHW	AY No.
6	TEXAS	SEE	E TITLE SH	HEET	CR	289
STATE DISTRICT	COUNT	Y	CONTROL No.	SECTION No.	JOB No.	SHEET No.
TYL	SMIT	н	0910	16	147,ETC	109

NOTES:

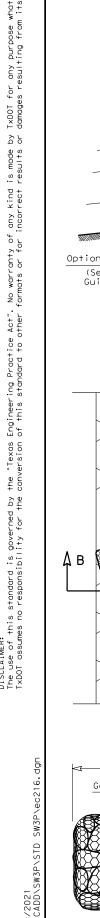
- 1. CONCRETE WASHOUT AREA(S) SHALL BE INSTALLED PRIOR TO CONCRETE PLACEMENT ON SITE. THE CONCRETE WASHOUT AREA SHALL BE ENTIRELY SELF CONTAINED.
- 2. THE CONTRACTOR SHALL SUBMIT THE DESIGN, LOCATION AND SIZING OF THE CONCRETE WASHOUT AREA(S) WITH THE PROJECT'S EROSION AND SEDIMENTATION CONTROL PLAN AND SHALL BE APPROVED BY THE ENGINEER.

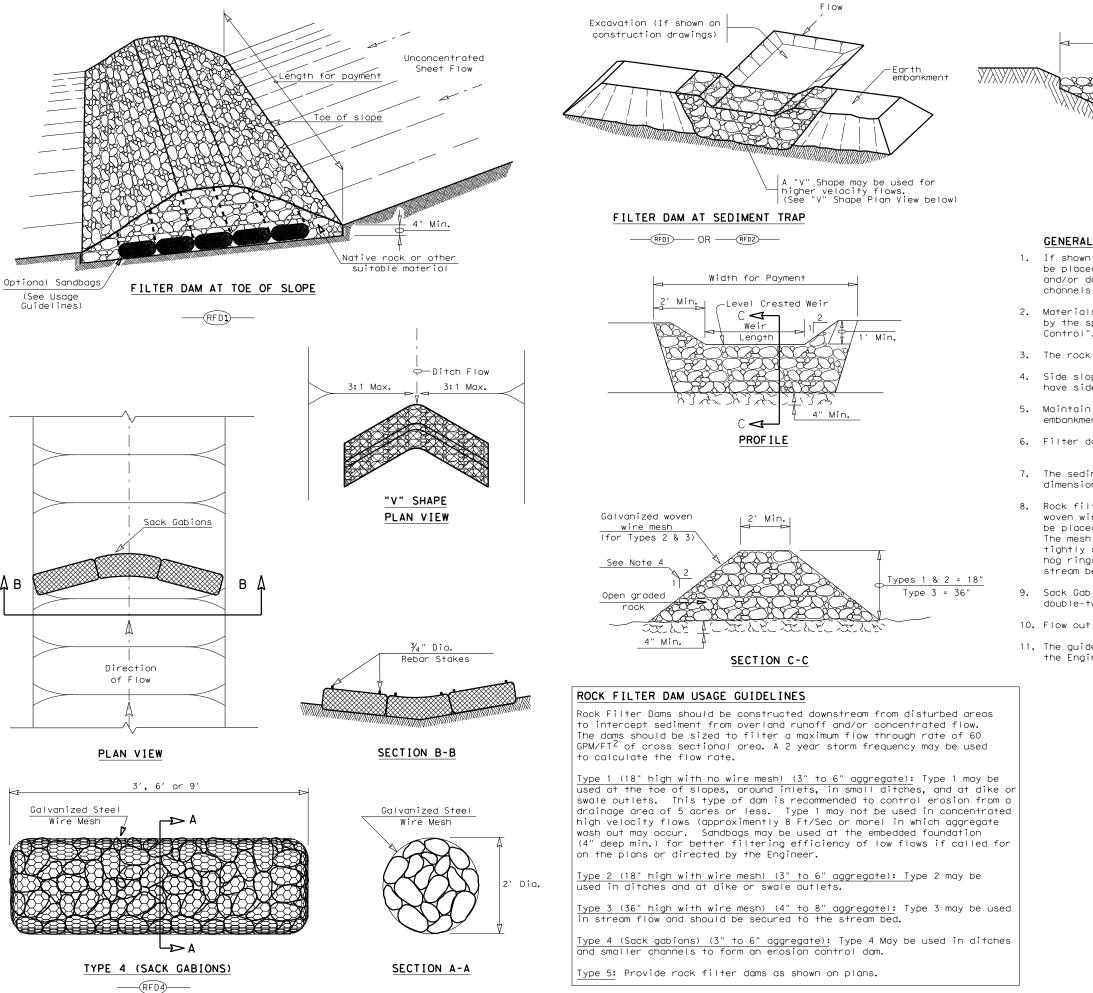

LOCATION: WASHOUT AREA(S) ARE TO BE LOCATED AT LEAST 50 FEET FROM ANY STREAM, WETLAND, STORM DRAINS, OR OTHER SENSITIVE RESOURCE. THE FLOOD CONTINGENCY PLAN MUST ADDRESS THE CONCRETE WASHOUT IF THE WASHOUT IS TO BE LOCATED WITHIN THE FLOOD PLAIN.

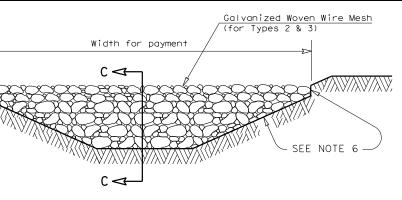

SIZE: THE WASHOUT MUST HAVE SUFFICIENT VOLUME TO CONTAIN ALL LIQUID AND CONCRETE WASTE GENERATED BY WASHOUT OPERATIONS INCLUDING, BUT NOT LIMITED TO, OPERATIONS ASSOCIATED WITH GROUT AND MORTAR.


- 3. SURFACE DISCHARGE IS UNACCEPTABLE, THEREFORE EARTH BERM OR OTHER CONTROL MEASURES, AS APPROVED BY THE ENGINEER, SHOULD BE USED AROUND THE PERIMETER OF THE CONCRETE WASHOUT AREA FOR CONTAINMENT.
- 4. SIGNS SHOULD BE PLACED AT THE CONSTRUCTION ENTRANCE, AT THE CONCRETE AREA(S) AND ELSEWHERE AS NECESSARY TO CLEARLY INDICATE THE LOCATION OF THE CONCRETE WASHOUT TO OPERATORS OF CONCRETE TRUCKS AND PUMP RIGS. WASHOUT AREA(S) SHOULD BE FLAGGED WITH SAFETY FENCING OR OTHER APPROVED METHOD.
- 5. CONCRETE WASHOUT AREA(S) SHALL BE LINED WITH IMPERVIOUS PLASTIC WITH A MINIMUM THICKNESS OF 6 MILS AND BE REPLACED IF DAMAGED DURING CLEAN-OUT OF HARDENED CONCRETE FROM THE WASHOUT AREA.
- 6. WASHOUT AREA(S) ARE TO BE INSPECTED AT LEAST ONCE A WEEK FOR STRUCTURAL INTEGRITY, ADEQUATE HOLDING CAPACITY AND CHECKED FOR LEAKS, TEARS, OR OVERFLOWS. (AS DIRECTED BY THE CONSTRUCTION SITE ENVIRONMENTAL INSPECTION REPORT) WASHOUT AREA(S) SHOULD BE CHECKED AFTER HEAVY RAINS.
- 7. HARDENED CONCRETE WASTE SHOULD BE REMOVED AND DISPOSED OF WHEN THE WASTE HAS ACCUMULATED TO HALF OF THE CONCRETE WASHOUT'S HEIGHT. THE WASTE CAN BE STORED AT AN UPLAND LOCATION, AS APPROVED BY THE ENGINEER. ALL CONCRETE WASTE SHALL BE DISPOSED OF IN A MANNER CONSISTENT WITH ALL APPLICABLE LAWS, REGULATIONS, AND GUIDELINES.
- 8. PAYMENT FOR THIS ITEM IS TO BE INCLUDED UNDER THE GENERAL COST OF THE WORK FOR THE PROJECT, INCLUDING SITE RESTORATION.

ф Тр







Texas Department	of Trans	portation	D	esign ivision tandard
TEMPORA SEDIMEN POLLUTION C	T AN ONTF	ND WA ROL M	TER EAS	URES
FENCE & VE	RTIC	AL TR	ACK	ING
EC	(1)	-16		
FILE: ec116	DN: TxDOT	ск: КМ	Dw∶VP	DN/CK: LS
C TxDOT: JULY 2016	CONT SE	T JOB		HIGHWAY
REVISIONS	0910 1	6 147,ET	C WHIT	TLE ST,ETC
	DIST	COUNTY		SHEET NO.
	TYL	SMITH	1	111

FILTER DAM AT CHANNEL SECTIONS

GENERAL NOTES

 If shown on the plans or directed by the Engineer, filter dams should be placed near the toe of slopes where erosion is anticipated, upstream and/or downstream at drainage structures, and in roadway ditches and channels to collect sediment.

2. Materials (aggregate, wire mesh, sandbags, etc.) shall be as indicated by the specification for "Rock Filter Dams for Erosion and Sedimentation

3. The rock filter dam dimensions shall be as indicated on the SW3P plans.

4. Side slopes should be 2:1 or flatter. Dams within the safety zone shall have sideslopes of 6:1 or flatter.

5. Maintain a minimum of 1' between top of rock filter dam weir and top of embankment for filter dams at sediment traps.

6. Filter dams should be embedded a minimum of 4" into existing ground.

7. The sediment trap for ponding of sediment laden runoff shall be of the dimensions shown on the plans.

8. Rock filter dam types 2 & 3 shall be secured with 20 gauge galvanized woven wire mesh with 1" diameter hexagonal openings. The aggregate shall be placed on the mesh to the height & slopes specified. The mesh shall be folded at the upstream side over the aggregate and tightly secured to itself on the downstream side using wire ties or hog rings. For in stream use, the mesh should be secured or staked to the stream bed prior to aggregate placement.

9. Sack Gabions should be staked down with $\frac{3}{4}$ " dia. rebar stakes, and have a double-twisted hexagonal weave with a nominal mesh opening of 2 $\frac{1}{2}$ x 3 $\frac{1}{4}$

10. Flow outlet should be onto a stabilized area (vegetation, rock, etc.).

11. The guidelines shown hereon are suggestions only and may be modified by the Engineer.

PLAN SHEET LEGEND

Type 1 Rock Filter Dam
Type 2 Rock Filter Dam
Type 3 Rock Filter Dam
Type 4 Rock Filter Dam
Design Division
// Texas Department of Transportation Standard
// Texas Department of Transportation Standard TEMPORARY EROSION, SEDIMENT AND WATER
TEMPORARY EROSION,
TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES
TEMPORARY EROSION, SEDIMENT AND WATER
TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES
TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES ROCK FILTER DAMS
TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES ROCK FILTER DAMS EC (2) - 16 FILE: ec216 DN: TXDOT CNT XECT JOB
TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES ROCK FILTER DAMS EC (2) - 16 FILE: ec216 DN: TXDOT CK: KM DW: VP DN/CK: L' © TXDOT: JULY 2016 CONT SECT JOB HIGHWAY REVISIONS 0910 16 147, ETC WHITLE ST, I
TEMPORARY EROSION, SEDIMENT AND WATER POLLUTION CONTROL MEASURES ROCK FILTER DAMS EC (2) - 16 FILE: ec216 DN: TXDOT CNT XECT JOB